251
|
Fujino G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, Ichijo H. Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol Cell Biol 2007; 27:8152-63. [PMID: 17724081 PMCID: PMC2169188 DOI: 10.1128/mcb.00227-07] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1), a member of the mitogen-activated protein kinase kinase kinase family, plays pivotal roles in reactive oxygen species (ROS)-induced cellular responses. In resting cells, endogenous ASK1 constitutively forms a homo-oligomerized but still inactive high-molecular-mass complex including thioredoxin (Trx), which we designated the ASK1 signalosome. Upon ROS stimulation, the ASK1 signalosome unbinds from Trx and forms a fully activated higher-molecular-mass complex, in part by recruitment of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. However, the precise mechanisms by which Trx inhibits and TRAF2 and TRAF6 activate ASK1 have not been elucidated fully. Here we demonstrate that the N-terminal homophilic interaction of ASK1 through the N-terminal coiled-coil domain is required for ROS-dependent activation of ASK1. Trx inhibited this interaction of ASK1, which was, however, enhanced by expression of TRAF2 or TRAF6 or by treatment of cells with H2O2. Furthermore, the H2O2-induced interaction was reduced by double knockdown of TRAF2 and TRAF6. These findings demonstrate that Trx, TRAF2, and TRAF6 regulate ASK1 activity by modulating N-terminal homophilic interaction of ASK1.
Collapse
Affiliation(s)
- Go Fujino
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
252
|
Lee JA, Park JE, Lee DH, Park SG, Myung PK, Park BC, Cho S. G1 to S phase transition protein 1 induces apoptosis signal-regulating kinase 1 activation by dissociating 14-3-3 from ASK1. Oncogene 2007; 27:1297-305. [PMID: 17700517 DOI: 10.1038/sj.onc.1210740] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1), a member of the mitogen-activated protein kinase kinase kinase family, plays a critical role in mediating apoptosis signals initiated by a variety of death stimuli such as hydrogen peroxide and tumor necrosis factor-alpha. Owing to its critical role in inducing apoptosis, the activity of ASK1 is tightly regulated by various mechanisms such as post-translational modifications and protein-protein interactions. Here we describe the identification of G(1) to S phase transition protein 1 (GSPT1), which is associated with protein translation, as a regulator of ASK1. GSPT1 interacts with ASK1 and enhances ASK1-induced apoptotic activity through the activation of caspase-3. In vitro kinase assay data show that GSPT1 enhances ASK1 autophosphorylation and its kinase activity. Cell cycle-dependent GSPT1 induction and small interfering RNA analyses show that ASK1 autophosphorylation is dependent on the expression level of endogenous GSPT1 in cells. GSPT1 inhibits the binding of ASK1 to the 14-3-3 protein, an ASK1 inhibitor, while GSPT1 has no effect on the interaction between ASK1 and TRAF2, a C-terminal-binding activator of ASK1. Thus, our results reveal a novel role of GSPT1 in the regulation of ASK1-mediated apoptosis.
Collapse
Affiliation(s)
- J A Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
253
|
Fujisawa T, Takeda K, Ichijo H. ASK Family Proteins in Stress Response and Disease. Mol Biotechnol 2007; 37:13-8. [PMID: 17914158 DOI: 10.1007/s12033-007-0053-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/25/2022]
Abstract
Cells are continuously exposed to reactive oxygen species (ROS) generated by aerobic metabolism. Excessively generated ROS causes severe dysfunctions to cells as oxidative stress. On the other hand, there is increasing evidence that ROS plays important roles as a signaling intermediate that induces a wide variety of cellular responses such as proliferation, differentiation, senescence, and apoptosis. To transmit physiological ROS-mediated signals and to adapt to oxidative stress, cells are equipped with various intracellular signal transduction systems, represented by mitogen-activated protein kinase (MAPK) cascades. Apoptosis signal-regulating kinase 1 (ASK1) is an upstream regulator of the stress-activated MAPK cascades and has been shown to play critical roles in ROS-mediated cellular responses. Here, we highlight the roles of members of the ASK family, which consists of ASK1 and newly characterized ASK2, in ROS signaling with their possible involvement in human diseases.
Collapse
Affiliation(s)
- Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | |
Collapse
|
254
|
Nadeau PJ, Charette SJ, Toledano MB, Landry J. Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol Biol Cell 2007; 18:3903-13. [PMID: 17652454 PMCID: PMC1995733 DOI: 10.1091/mbc.e07-05-0491] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Apoptosis signal-regulated kinase-1 (Ask1) lies upstream of a major redox-sensitive pathway leading to the activation of Jun NH(2)-terminal kinase (JNK) and the induction of apoptosis. We found that cell exposure to H(2)O(2) caused the rapid oxidation of Ask1, leading to its multimerization through the formation of interchain disulfide bonds. Oxidized Ask1 was fully reduced within minutes after induction by H(2)O(2). During this reduction, the thiol-disulfide oxidoreductase thioredoxin-1 (Trx1) became covalently associated with Ask1. Overexpression of Trx1 accelerated the reduction of Ask1, and a redox-inactive mutant of Trx1 (C35S) remained trapped with Ask1, blocking its reduction. Preventing the oxidation of Ask1 by either overexpressing Trx1 or using an Ask1 mutant in which the sensitive cysteines were mutated (Ask1-DeltaCys) impaired the activation of JNK and the induction of apoptosis while having little effect on Ask1 activation. These results indicate that Ask1 oxidation is required at a step subsequent to activation for signaling downstream of Ask1 after H(2)O(2) treatment.
Collapse
Affiliation(s)
- Philippe J. Nadeau
- *Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada; and
| | - Steve J. Charette
- *Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada; and
| | - Michel B. Toledano
- Laboratoire Stress Oxydants et Cancer, Service de Biologie Moléculaire Systémique, Département de Biologie Joliot-Curie, Commissariat à l'Énergie Atomique-Saclay,91191 Gif-sur-Yvette Cedex, France
| | - Jacques Landry
- *Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada; and
| |
Collapse
|
255
|
Kim YS, Morgan MJ, Choksi S, Liu ZG. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 2007; 26:675-87. [PMID: 17560373 DOI: 10.1016/j.molcel.2007.04.021] [Citation(s) in RCA: 425] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/09/2007] [Accepted: 04/27/2007] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor (TNF) is an important cytokine in immunity and inflammation and induces many cellular responses, including apoptosis and necrosis. TNF signaling enables the generation of superoxide in phagocytic and vascular cells through the activation of the NADPH oxidase Nox2/gp91. Here we show that TNF also activates the Nox1 NADPH oxidase in mouse fibroblasts when cells undergo necrosis. TNF treatment induces the formation of a signaling complex containing TRADD, RIP1, Nox1, and the small GTPase Rac1. TNF-treated RIP1-deficient fibroblasts fail to form such a complex, indicating that RIP1 is essential for Nox1 recruitment. Moreover, the prevention of TNF-induced superoxide generation with dominant-negative mutants of TRADD or Rac1, as well as knockdown of Nox1 using siRNA, inhibits necrosis. Thus our study suggests that activation of Nox1 through forming a complex with TNF signaling components plays a key role in TNF-induced necrotic cell death.
Collapse
Affiliation(s)
- You-Sun Kim
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
256
|
Yang M, Hu S, Wu B, Miao Y, Pan H, Zhu S. Ghrelin inhibits apoptosis signal-regulating kinase 1 activity via upregulating heat-shock protein 70. Biochem Biophys Res Commun 2007; 359:373-8. [PMID: 17543279 DOI: 10.1016/j.bbrc.2007.05.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Accepted: 05/20/2007] [Indexed: 11/18/2022]
Abstract
Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), which has been originally isolated from rat stomach. It has been reported that ghrelin inhibited apoptosis in several cells, such as cardiomyocytes, endothelial cells, adipocyte, adrenal zona glomerulosa cells, pancreatic beta-cells, osteoblastic MC3T3-E1 cells, intestinal epithelial cells and hypothalamic neurons. However, it is unknown whether heat-shock protein 70 (HSP70) or apoptosis signal-regulating kinase 1 (ASK1) is the important target molecule which mediates the anti-apoptotic effects of ghrelin. We show that ghrelin inhibited ASK1 activity induced by sodium nitroprusside (SNP), inhibited ASK1-mediated caspase 3 activation and apoptosis in PC12 cells. Ghrelin promoted expression of HSP70. Quercetin, an inhibitor of HSP70, blocked the effects of ghrelin on ASK1 activity. Thus, ghrelin inhibits ASK1-mediated apoptosis and ASK1 activation by a mechanism involving induction of HSP70 expression. The results of the present study suggest the therapeutic potential of ghrelin for some pathological processes or disorders.
Collapse
Affiliation(s)
- Min Yang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
257
|
Merluzzi S, D'Orlando O, Leonardi A, Vitale G, Pucillo C. TRAF2 and p38 are involved in B cells CD40-mediated APE/Ref-1 nuclear translocation: a novel pathway in B cell activation. Mol Immunol 2007; 45:76-86. [PMID: 17599408 DOI: 10.1016/j.molimm.2007.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/13/2007] [Indexed: 12/31/2022]
Abstract
The interaction between CD40 and its ligand CD40L plays a key role in the regulation of B cell proliferation, activation, isotype switching and the humoral memory response. APE/Ref-1 plays a key role in transcriptional responses during CD40-mediated B cell activation. It is demonstrated that CD40 signaling is mediated principally through TRAF adapter proteins. Different TRAFs exhibit specific biological functions and the role of individual TRAFs in the activation of different CD40-dependent signaling pathways has not yet been defined. To better understand the role of these factors in CD40-mediated B cell activation and how they contribute to APE/Ref-1 activity, we investigated the TRAF molecules and the downstream protein kinases directly activated in the pathways triggered by CD40. Here we show that TRAF2 is involved in CD40-mediated induction of APE/Ref-1 nuclear translocation and that the two proteins physically interact in vitro and in vivo. Moreover, treatment with the p38 inhibitor, SB203580 or site directed mutagenesis of the serine 54 (Ser(54)) in the MAP kinase consensus site present in APE/Ref-1 blocks its nuclear translocation caused by CD40-mediated B cell activation and reveals a potential role of p38 in this pathway. These data together uncovers a new signaling pathway regulating APE/Ref-1 nuclear translocation involving CD40-crosslinking, TRAF2 and p38.
Collapse
Affiliation(s)
- Sonia Merluzzi
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, P.le Kolbe 4, I-33100 Udine, Italy
| | | | | | | | | |
Collapse
|
258
|
Satoh M, Matter CM, Ogita H, Takeshita K, Wang CY, Dorn GW, Liao JK. Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation 2007; 115:3197-204. [PMID: 17562954 PMCID: PMC2701741 DOI: 10.1161/circulationaha.106.657981] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epidemiological studies have shown gender differences in the incidence of congestive heart failure (CHF); however, the role of estrogen in CHF is not known. We hypothesize that estrogen prevents cardiomyocyte apoptosis and the development of CHF. METHODS AND RESULTS 17Beta-estradiol (E2, 0.5 mg/60-day release) or placebo pellet was implanted subcutaneously into male G alpha q transgenic (Gq) mice. After 8 weeks, E2 treatment decreased the extent of cardiac hypertrophy and dilation and improved contractility in Gq mice. E2 treatment also attenuated nicotinamide adenine dinucleotide phosphate oxidase activity and superoxide anion production via downregulation of Rac1. This correlated with reduced apoptosis in cardiomyocytes of Gq mice. The antioxidative properties of E2 were also associated with increased expression of thioredoxin (Trx), Trx reductases, and Trx reductase activity in the hearts of Gq mice. Furthermore, the activation of apoptosis signal-regulating kinase 1 and its downstream effectors, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, in the hearts of Gq mice was reduced by long-term E2 treatment. Indeed, E2 (10 nmol/L)-treated cardiomyocytes were much more resistant to angiotensin II-induced apoptosis. These antiapoptotic and cardioprotective effects of E2 were blocked by an estrogen receptor antagonist (ICI 182,780) and by a Trx reductase inhibitor (azelaic acid). CONCLUSIONS These findings indicate that long-term E2 treatment improves CHF by antioxidative mechanisms that involve the upregulation of Trx and inhibition of Rac1-mediated attenuated nicotinamide adenine dinucleotide phosphate oxidase activity and apoptosis signal-regulating kinase 1 /c-Jun N-terminal kinase/p38 mitogen-activated protein kinase-mediated apoptosis. These results suggest that estrogen may be a useful adjunctive therapy for patients with CHF.
Collapse
Affiliation(s)
- Minoru Satoh
- Vascular Medicine Research Unit, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
259
|
Abstract
Maintenance of normal intracellular redox status plays an important role in such processes as DNA synthesis, gene expression, enzymatic activity, and others. In addition, it is clear that changes in the redox status of intracellular content and individual molecules, resulting from stress or intrinsic cellular activity, are involved in the regulation of different processes in cells. Small changes in intracellular levels of reactive oxygen species participate in intracellular signaling. Thiol-containing molecules, such as glutathione, thioredoxins, glutaredoxins, and peroxiredoxins, also play an important role in maintaining redox homeostasis and redox regulation. This review attempts to summarize the current knowledge about redox regulation in different cell types.
Collapse
Affiliation(s)
- O N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Urals Division of the Russian Academy of Sciences, 614081 Perm', Russia.
| | | |
Collapse
|
260
|
Kim EK, Noh KT, Yoon JH, Cho JH, Yoon KW, Dreyfuss G, Choi EJ. Positive regulation of ASK1-mediated c-Jun NH2-terminal kinase signaling pathway by the WD-repeat protein Gemin5. Cell Death Differ 2007; 14:1518-28. [PMID: 17541429 DOI: 10.1038/sj.cdd.4402157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gemin5 is a 170-kDa WD-repeat-containing protein that was initially identified as a component of the survival of motor neurons (SMN) complex. We now show that Gemin5 facilitates the activation of apoptosis signal-regulating kinase 1 (ASK1) and downstream signaling. Gemin5 physically interacted with ASK1 as well as with the downstream kinases SEK1 and c-Jun NH(2)-terminal kinase (JNK1), and it potentiated the H(2)O(2)-induced activation of each of these kinases in intact cells. Moreover, Gemin5 promoted the binding of ASK1 to SEK1 and to JNK1, as well as the ASK1-induced activation of JNK1. In comparison, Gemin5 did not physically associate with MKK7, MKK3, MKK6, or p38. Furthermore, depletion of endogenous Gemin5 by RNA interference (RNAi) revealed that Gemin5 contributes to the activation of ASK1 and JNK1, and to apoptosis induced by H(2)O(2) and tumor necrosis factor-alpha (TNFalpha) in HeLa cells. Together, our results suggest that Gemin5 functions as a scaffold protein for the ASK1-JNK1 signaling module and thereby potentiates ASK1-mediated signaling events.
Collapse
Affiliation(s)
- E K Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
261
|
Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and Akt by key receptors on B-lymphocytes: CD40, the B cell antigen receptor, and CXCR4. J Cell Commun Signal 2007; 1:33-43. [PMID: 18481208 DOI: 10.1007/s12079-007-0006-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/27/2007] [Accepted: 04/04/2007] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Antibodies produced by B-lymphocytes play a key role in the host defense against infection. The development, survival, and activation of B cell is regulated by multiple receptors including the B cell antigen receptor (BCR), which detects the presence of pathogens, CD40, which binds co-stimulatory molecules on activated T cells, and chemokines such as SDF-1 (CXCL12) that play key roles in B cell development and trafficking. Signaling by many receptors results in the generation of reactive oxygen species (ROS) that function as second messengers by regulating the activity of redox-sensitive kinases and phosphatases. We investigated the role of ROS in signaling by the BCR, CD40, and CXCR4, the receptor for SDF-1. We focused on activation of ERK, JNK, p38, and Akt, kinases that regulate multiple processes including cell survival, proliferation, and migration. RESULTS Using the anti-oxidants N-acetyl L-cysteine (NAC) and ebselen to deplete intracellular ROS, we identified a differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by these receptors. We found that CD40 activated JNK, p38, and Akt via redox-dependent pathways that were sensitive to ROS depletion by NAC and ebselen. In contrast, BCR-induced activation of ERK, JNK, p38, and Akt was not affected by ROS depletion. We also found that CXCR4-induced Akt activation was ROS-dependent even though activation of the ERK, JNK, and p38 MAP kinases by CXCR4 occurred via ROS-independent pathways. CONCLUSION The differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by the BCR, CD40, and CXCR4 likely reflects the multiplicity of upstream activators for each of these kinases, only some of which may be regulated in a redox-dependent manner. These findings support the idea that ROS are important second messengers in B cells and suggest that oxidants or anti-oxidants could be used to modulate B cell activation.
Collapse
|
262
|
Tran TH, Andreka P, Rodrigues CO, Webster KA, Bishopric NH. Jun kinase delays caspase-9 activation by interaction with the apoptosome. J Biol Chem 2007; 282:20340-50. [PMID: 17483091 DOI: 10.1074/jbc.m702210200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of c-Jun N-terminal kinase 1/2 (JNK) can delay oxidant-induced cell death, but the mechanism is unknown. We found that oxidant stress of cardiac myocytes activated both JNK and mitochondria-dependent apoptosis and that expression of JNK inhibitory mutants accelerated multiple steps in this pathway, including the cleavage and activation of caspases-3 and -9 and DNA internucleosomal cleavage, without affecting the rate of cytochrome c release; JNK inhibition also increased caspase-3 and -9 cleavage in a cell-free system. On activation by GSNO or H(2)O(2), JNK formed a stable association with oligomeric Apaf-1 in a approximately 1.4-2.0 mDa pre-apoptosome complex. Formation of this complex could be triggered by addition of cytochrome c and ATP to the cell-free cytosol. JNK inhibition abrogated JNK-Apaf-1 association and accelerated the association of procaspase-9 and Apaf-1 in both intact cells and cell-free extracts. We conclude that oxidant-activated JNK associates with Apaf-1 and cytochrome c in a catalytically inactive complex. We propose that this interaction delays formation of the active apoptosome, promoting cell survival during short bursts of oxidative stress.
Collapse
Affiliation(s)
- Thanh H Tran
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
263
|
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 2007; 19:1807-19. [PMID: 17570640 DOI: 10.1016/j.cellsig.2007.04.009] [Citation(s) in RCA: 379] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Accepted: 04/23/2007] [Indexed: 01/20/2023]
Abstract
Oxidative stress is an increase in the reduction potential or a large decrease in the reducing capacity of the cellular redox couples. A particularly destructive aspect of oxidative stress is the production of reactive oxygen species (ROS), which include free radicals and peroxides. Some of the less reactive of these species can be converted by oxidoreduction reactions with transition metals into more aggressive radical species that can cause extensive cellular damage. In animals, ROS may influence cell proliferation, cell death (either apoptosis or necrosis) and the expression of genes, and may be involved in the activation of several signalling pathways, activating cell signalling cascades, such as those involving mitogen-activated protein kinases. Most of these oxygen-derived species are produced at a low level by normal aerobic metabolism and the damage they cause to cells is constantly repaired. The cellular redox environment is preserved by enzymes and antioxidants that maintain the reduced state through a constant input of metabolic energy. This review summarizes current studies that have been regarding the production of ROS and the general redox-sensitive targets of cell signalling cascades.
Collapse
Affiliation(s)
- Marcelo Genestra
- Department of Immunology, Oswaldo Cruz Institute/FIOCRUZ, Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, CEP 21045-900, RJ-Brazil.
| |
Collapse
|
264
|
Abstract
It is well established that oxidative stress is an important cause of cell damage associated with the initiation and progression of many diseases. Consequently, all air-living organisms contain antioxidant enzymes that limit oxidative stress by detoxifying reactive oxygen species, including hydrogen peroxide. However, in eukaryotes, hydrogen peroxide also has important roles as a signaling molecule in the regulation of a variety of biological processes. Here, we will discuss the molecular mechanisms by which hydrogen peroxide is sensed and the increasing evidence that antioxidant enzymes play multiple, key roles as sensors and regulators of signal transduction in response to hydrogen peroxide.
Collapse
Affiliation(s)
- Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, Tyne and Wear, UK.
| | | | | |
Collapse
|
265
|
Forman HJ. Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radic Biol Med 2007; 42:926-32. [PMID: 17349920 PMCID: PMC1945171 DOI: 10.1016/j.freeradbiomed.2007.01.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/29/2006] [Accepted: 01/05/2007] [Indexed: 11/20/2022]
Abstract
The goal of this review is to present a rationale for the use of exogenous H(2)O(2), which has been demonstrated to have both toxicological and physiological signaling roles. Reasons for the use of exogenous application of nontoxic concentrations of H(2)O(2) in model systems and caveats for interpretation of the data obtained will both be presented. Briefly, an argument for the cautious use of the addition of exogenous H(2)O(2) is that, because of the permeability of cell membranes to this neutral small molecule, a concentration that is produced locally and that is necessary for the physiological action can be mimicked. On the other hand, it must be recognized that the addition of an agent or its enzymatic generation in the medium may produce reactions that may not normally occur because the total dose of H(2)O(2) and the concentration of H(2)O(2) in some cellular locations will exceed what is normally achieved even under a pathophysiological state. For this reason, this review will try to provide an unbiased balanced pros- and -cons analysis of this issue.
Collapse
Affiliation(s)
- Henry Jay Forman
- School of Natural Sciences, University of California at Merced, Merced, CA 95344, USA.
| |
Collapse
|
266
|
Noguchi M, Ropars V, Roumestand C, Suizu F. Proto‐oncogene TCL1: more than just a coactivator for Akt. FASEB J 2007; 21:2273-84. [PMID: 17360849 DOI: 10.1096/fj.06-7684com] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Serine threonine kinase Akt, also called PKB (protein kinase B), plays a central role in regulating intracellular survival. Deregulation of this Akt signaling pathway underlies various human neoplastic diseases. Recently, the proto-oncogene TCL1 (T cell leukemia 1), with a previously unknown physiological function, was shown to interact with the Akt pleckstrin homology domain, enhancing Akt kinase activity; hence, it functions as an Akt kinase coactivator. In contrast to pathological conditions in which the TCL1 gene is highly activated in various human neoplasmic diseases, the physiological expression of TCL1 is tightly limited to early developmental cells as well as various developmental stages of immune cells. The NBRE (nerve growth factor-responsive element) of the proximal TCL1 promoter sequences can regulate the restricted physiological expression of TCL1 in a negative feedback mechanism. Further, based on the NMR structural studies of Akt-TCL1 protein complexes, an inhibitory peptide, "Akt-in," consisting of the betaA strand of TCL1, has been identified and has therapeutic potential. This review article summarizes and discusses recent advances in the understanding of TCL1-Akt functional interaction in order to clarify the biological action of the proto-oncogene TCL1 family and the development avenues for a suppressive drug specific for Akt, a core intracellular survival regulator.
Collapse
Affiliation(s)
- Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
267
|
Görner K, Holtorf E, Waak J, Pham TT, Vogt-Weisenhorn DM, Wurst W, Haass C, Kahle PJ. Structural determinants of the C-terminal helix-kink-helix motif essential for protein stability and survival promoting activity of DJ-1. J Biol Chem 2007; 282:13680-91. [PMID: 17331951 DOI: 10.1074/jbc.m609821200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations in the PARK7 gene encoding DJ-1 cause autosomal recessive Parkinson disease. The most deleterious point mutation is the L166P substitution, which resides in a structure motif comprising two alpha-helices (G and H) separated by a kink. Here we subjected the C-terminal helix-kink-helix motif to systematic site-directed mutagenesis, introducing helix-incompatible proline residues as well as conservative substitutions into the helical interface. Furthermore, we generated deletion mutants lacking the H-helix, the kink, and the entire C terminus. When transfected into neural and nonneural cell lines, steady-state levels of G-helix breaking and kink deletion mutants were dramatically lower than wild-type DJ-1. The effects of H-helix breakers were comparably smaller, and the non-helix breaking mutants only slightly destabilized DJ-1. The decreased steady-state levels were due to accelerated protein degradation involving in part the proteasome. G-helix breaking DJ-1 mutations abolished dimer formation. These structural perturbations had functional consequences on the cytoprotective activities of DJ-1. The destabilizing mutations conferred reduced cytoprotection against H(2)O(2) in transiently retransfected DJ-1 knock-out mouse embryonic fibroblasts. The loss of survival promoting activity of the DJ-1 mutants with destabilizing C-terminal mutations correlated with impaired anti-apoptotic signaling. We found that wild-type, but not mutant DJ-1 facilitated the Akt pathway and simultaneously blocked the apoptosis signal-regulating kinase 1, with which DJ-1 interacted in a redox-dependent manner. Thus, the G-helix and kink are critical determinants of the C-terminal helix-kink-helix motif, which is absolutely required for stability and the regulation of survival-promoting redox signaling of the Parkinson disease-associated protein DJ-1.
Collapse
Affiliation(s)
- Karin Görner
- Laboratory of Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Ludwig Maximilians University of Munich, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Zhan J, Easton JB, Huang S, Mishra A, Xiao L, Lacy ER, Kriwacki RW, Houghton PJ. Negative regulation of ASK1 by p21Cip1 involves a small domain that includes Serine 98 that is phosphorylated by ASK1 in vivo. Mol Cell Biol 2007; 27:3530-41. [PMID: 17325029 PMCID: PMC1899956 DOI: 10.1128/mcb.00086-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21(Cip1) regulates multiple cellular functions and protects cells from genotoxic and other cellular stresses. Activation of apoptosis signal-regulating kinase 1 (ASK1) induced by inhibition of mTOR signaling leads to sustained phospho-c-Jun that is suppressed in cells with functional p53 or by forced expression of p21(Cip1). Here we show that small deletions of p21(Cip1) around S98 abrogate its association with ASK1 but do not affect binding to Cdk1, hence distinguishing between the cell cycle-regulating functions of p21(Cip1) and its ability to suppress activation of the ASK1/Jun N-terminal protein kinase (JNK) pathway. p21(Cip1) is phosphorylated in vitro by both ASK1 and JNK1 at S98. In vivo phosphorylation of p21(Cip1), predominantly carried out by ASK1, is associated with binding to ASK1 and inactivation of ASK1 kinase function. Binding of p21(Cip1) to ASK1 requires ASK1 kinase function and may involve phosphorylation of S98.
Collapse
Affiliation(s)
- Jun Zhan
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Nagai A, Kadowaki H, Nishitoh H. ER Quality Control and ER Stress-induced Cell Death in Neurodegenerative Diseases. J Oral Biosci 2007. [DOI: 10.1016/s1349-0079(07)80014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
270
|
Wicovsky A, Müller N, Daryab N, Marienfeld R, Kneitz C, Kavuri S, Leverkus M, Baumann B, Wajant H. Sustained JNK activation in response to tumor necrosis factor is mediated by caspases in a cell type-specific manner. J Biol Chem 2006; 282:2174-83. [PMID: 17121845 DOI: 10.1074/jbc.m606167200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most cell types, tumor necrosis factor (TNF) induces a transient activation of the JNK pathway. However, in NFkappaB-inhibited cells, TNF stimulates also a second sustained phase of JNK activation, which has been implicated in cell death induction. In the present study, we have analyzed the relationship of cell death induction, caspase activity, JNK, and NFkappaB stimulation in the context of TNF signaling in four different cellular systems. In all cases, NFkappaB inhibition enhanced TNF-induced cell death and primed most, but not all, cells for sustained JNK activation. The caspase inhibitor Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethyl ketone (Z-VAD-fmk) and overexpression of the antiapoptotic proteins FLIP-L and Bcl2 differentially blocked transient and sustained JNK activation in NFkappaB-inhibited KB and HaCaT cells, indicating that the two phases of TNF-induced JNK activation occur at least in these cellular models by different pathways. Although the broad range caspase inhibitor Z-VAD-fmk and the antioxidant butylated hydroxyanisole interfered with TNF-induced cell death to a varying extent in a cell type-specific manner, inhibition of JNK signaling had no or only a very moderate effect. Notably, the JNK inhibitory effect of neither Z-VAD-fmk nor butylated hydroxyanisole was strictly correlated with the capability of these compounds to rescue cells from TNF-induced cell death. Thus, sustained JNK activation by TNF has no obligate role in TNF-induced cell death and is mediated by caspases and reactive oxygen species in a cell type-specific manner.
Collapse
Affiliation(s)
- Andreas Wicovsky
- Department of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Pantano C, Anathy V, Ranjan P, Heintz NH, Janssen-Heininger YMW. Nonphagocytic oxidase 1 causes death in lung epithelial cells via a TNF-RI-JNK signaling axis. Am J Respir Cell Mol Biol 2006; 36:473-9. [PMID: 17079781 PMCID: PMC1899325 DOI: 10.1165/rcmb.2006-0109oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Airway epithelial cells are simultaneously exposed to and produce cytokines and reactive oxygen species (ROS) in inflammatory settings. The signaling events and the physiologic outcomes of exposure to these inflammatory mediators remain to be elucidated. Previously we demonstrated that in cultured mouse lung epithelial cells exposed to bolus administration of H(2)O(2), TNF-alpha-induced NF-kappaB activity was inhibited, whereas c-Jun-N-terminal kinase (JNK) activation was enhanced via a mechanism involving TNF receptor-1 (TNF-RI). In this study we used the nonphagocytic NADPH oxidase (Nox1) to study the effects of endogenously produced ROS on a line of mouse alveolar type II epithelial cells. Nox1 expression and activation inhibited TNF-alpha-induced inhibitor of kappaB kinase (IKK), and NF-kappaB while promoting JNK activation and cell death. Nox1-induced JNK activation and cell death were attenuated through expression of a dominant-negative TNF-RI construct, implicating a role for TNF-RI in Nox1 signaling. Furthermore, Nox1 used the TNF-RI adaptor protein TNF-receptor-associated factor-2 (TRAF2), and the redox-regulated JNK MAP3K, apoptosis signal kinase-1 (ASK1), to activate JNK. In addition, ASK1 siRNA attenuated both Nox1-induced JNK activity and cell death. Collectively, these studies suggest a mechanism by which ROS produced in lung epithelial cells activate JNK and cause cell death using TNF-RI and the TRAF2-ASK1 signaling axis.
Collapse
Affiliation(s)
- Cristen Pantano
- Department of Pathology, University of Vermont College of Medicine, 89 Beaumont Avenue, HSRF 216A, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
272
|
Yoshioka J, Schreiter ER, Lee RT. Role of thioredoxin in cell growth through interactions with signaling molecules. Antioxid Redox Signal 2006; 8:2143-51. [PMID: 17034356 DOI: 10.1089/ars.2006.8.2143] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The thioredoxin system helps maintain a reducing environment in cells, but thioredoxin functions as more than simply an antioxidant. Thioredoxin functions depend on the protein's redox state, as determined by two conserved cysteines. Key biologic activities of thioredoxin include antioxidant, growth control, and antiapoptotic properties, resulting from interaction with target molecules including transcription factors. Mechanisms by which thioredoxin regulates cell growth include binding to signaling molecules such as apoptosis signal-regulating kinase-1 (ASK-1) and thioredoxin-interacting protein (Txnip). The molecular interplay between thioredoxin, ASK-1, and Txnip potentially influences cell growth and survival in diverse human diseases such as cancer, diabetes, and heart disease. In this review, we focus on the structure of thioredoxin and its functional regulation of cell growth through the interactions with signaling molecules.
Collapse
Affiliation(s)
- Jun Yoshioka
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
273
|
Ingram DA, Krier TR, Mead LE, McGuire C, Prater DN, Bhavsar J, Saadatzadeh MR, Bijangi-Vishehsaraei K, Li F, Yoder MC, Haneline LS. Clonogenic endothelial progenitor cells are sensitive to oxidative stress. Stem Cells 2006; 25:297-304. [PMID: 17023514 DOI: 10.1634/stemcells.2006-0340] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endothelial progenitor cells (EPCs) circulate in the peripheral blood and reside in blood vessel walls. A hierarchy of EPCs exists where progenitors can be discriminated based on their clonogenic potential. EPCs are exposed to oxidative stress during vascular injury as residents of blood vessel walls or as circulating cells homing to sites of neovascularization. Given the links between oxidative injury, endothelial cell dysfunction, and vascular disease, we tested whether EPCs were sensitive to oxidative stress using newly developed clonogenic assays. Strikingly, in contrast to previous reports, we demonstrate that the most proliferative EPCs (high proliferative potential-endothelial colony-forming cells and low proliferative potential-endothelial colony-forming cells) had decreased clonogenic capacity after oxidant treatment. In addition, EPCs exhibited increased apoptosis and diminished tube-forming ability in vitro and in vivo in response to oxidative stress, which was directly linked to activation of a redox-dependent stress-induced kinase pathway. Thus, this study provides novel insights into the effect of oxidative stress on EPCs. Furthermore, this report outlines a framework for understanding how oxidative injury leads to vascular disease and potentially limits the efficacy of transplantation of EPCs into ischemic tissues enriched for reactive oxygen species and oxidized metabolites.
Collapse
Affiliation(s)
- David A Ingram
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. THE PLANT CELL 2006; 18:2749-66. [PMID: 16998070 PMCID: PMC1626619 DOI: 10.1105/tpc.106.044230] [Citation(s) in RCA: 354] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/28/2006] [Accepted: 08/30/2006] [Indexed: 05/11/2023]
Abstract
We isolated two T-DNA insertion mutants of Arabidopsis thaliana GLUTATHIONE PEROXIDASE3 (ATGPX3) that exhibited a higher rate of water loss under drought stress, higher sensitivity to H(2)O(2) treatment during seed germination and seedling development, and enhanced production of H(2)O(2) in guard cells. By contrast, lines engineered to overexpress ATGPX3 were less sensitive to drought stress than the wild type and displayed less transpirational water loss, which resulted in higher leaf surface temperature. The atgpx3 mutation also disrupted abscisic acid (ABA) activation of calcium channels and the expression of ABA- and stress-responsive genes. ATGPX3 physically interacted with the 2C-type protein phosphatase ABA INSENSITIVE2 (ABI2) and, to a lesser extent, with ABI1. In addition, the redox states of both ATGPX3 and ABI2 were found to be regulated by H(2)O(2). The phosphatase activity of ABI2, measured in vitro, was reduced approximately fivefold by the addition of oxidized ATGPX3. The reduced form of ABI2 was converted to the oxidized form by the addition of oxidized ATGPX3 in vitro, which might mediate ABA and oxidative signaling. These results suggest that ATGPX3 might play dual and distinctive roles in H(2)O(2) homeostasis, acting as a general scavenger and specifically relaying the H(2)O(2) signal as an oxidative signal transducer in ABA and drought stress signaling.
Collapse
Affiliation(s)
- Yuchen Miao
- Henan Key Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | | | | | | | | | | | | |
Collapse
|
275
|
Abstract
Reactive oxygen species (ROS) play critical roles for the determination of cell fate by eliciting a wide variety of cellular responses, such as proliferation, differentiation and apoptosis. Many intracellular signaling pathways involved in such ROS-induced cellular responses are regulated by the intracellular redox state, which depends on the balance between the levels of oxidizing and reducing equivalents. Recently, increasing attention has been paid to the roles of thioredoxin (Trx) as a signaling intermediate beyond its intrinsic antioxidant activity. Especially, Trx participates in the control of the mitogen-activated protein kinase (MAPK) cascades through the redox state-dependent association and dissociation with apoptosis signal-regulating kinase 1 (ASK1), an upstream regulator of the cascades. This review highlights the current understanding of prototypical molecular mechanisms by which the redox signal is converted into the signaling through ROS-responsive protein kinases, with a special focus on the ASK1-Trx system. Understanding of such mechanisms may provide the basis for therapeutic interventions in redox-related diseases including various types of cancer.
Collapse
Affiliation(s)
- Go Fujino
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, CREST, Japan Science and Technology Corporation, and Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
276
|
Abstract
Oxidative stresses are largely mediated by intracellular protein oxidations by reactive oxygen species (ROS). Host cells are equipped with antioxidants that scavenge ROS. The cellular reduction/oxidation (redox) balance is maintained by ROS and antioxidants. Accumulating evidence suggests that the redox balance plays an important role in cellular signaling through the redox modification of cysteine residues in various important components of the signal transduction pathway. Thioredoxin (TRX) is a small protein playing important roles in cellular responses, including cell growth, cell cycle, gene expression, and apoptosis, to maintain the redox circumstance. Moreover, many recent papers have shown that the redox regulation by TRX is deeply involved in the pathogenesis of various oxidative stress-associated disorders. This review focuses on TRX and its related molecules, and discusses the role of TRX-dependent redox regulation in oxidative stress-induced signal transduction.
Collapse
Affiliation(s)
- Norihiko Kondo
- Department of Biological Responses, Institute for Virus Research, Kyoto University, Translational Research Center Kyoto University Hospital, Kyoto, Japan
| | | | | | | |
Collapse
|
277
|
Abstract
Thioredoxin-1 is a 12 kDa protein that consists of a redox regulatory domain containing the active cysteine residues 32 and 35. These cysteines are conserved from bacteria to human. Unlike thioredoxins from lower species, mammalian thioredoxin-1 contains three additional nonactive cysteine residues at positions 62, 69, and 73 (for human thioredoxin-1). Key biological functions of thioredoxin-1 are antioxidative, anti-apoptotic, and pro-proliferative properties. Thioredoxin-1 is regulated by the ability of the thioredoxin reductase to reduce oxidized thioredoxin-1 at cysteines 32 and 35. However, posttranslational modifications of thioredoxin-1, including glutathionylation, thiol-oxidation, and S-nitros(yl)ation, at the nonactive cysteines importantly contribute to the regulation and functions of thioredoxin-1. This review focuses on the posttranslational modifications of the active and nonactive cysteines and their contribution for functional regulation of thioredoxin-1.
Collapse
Affiliation(s)
- Judith Haendeler
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Frankfurt, Germany.
| |
Collapse
|
278
|
Abstract
The production of reactive oxygen species (ROS) accompanies many signaling events. Antioxidants and ROS scavenging enzymes in general have effects that indicate a critical role for ROS in downstream signaling, but a mechanistic understanding of the contribution of ROS as second messengers is incomplete. Here, the role of reactive oxygen species in cell signaling is discussed, emphasizing the ability of ROS to directly modify signaling proteins through thiol oxidation. Examples are provided of protein thiol modifications that control signal transduction effectors that include protein kinases, phosphatases, and transcription factors. Whereas the effects of cysteine oxidation on these proteins in experimental systems is clear, it has proven more difficult to demonstrate these modifications in response to physiologic stimuli. Improved detection methods for analysis of thiol modification will be essential to define these regulatory mechanisms. Bridging these two areas of research could reveal new regulatory mechanisms in signaling pathways, and identify new therapeutic targets.
Collapse
Affiliation(s)
- Janet V Cross
- Department of Pathology, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
279
|
Liu H, Zhang H, Iles KE, Rinna A, Merrill G, Yodoi J, Torres M, Forman HJ. The ADP-stimulated NADPH oxidase activates the ASK-1/MKK4/JNK pathway in alveolar macrophages. Free Radic Res 2006; 40:865-74. [PMID: 17015265 PMCID: PMC2713795 DOI: 10.1080/10715760600758514] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The role of H2O2 as a second messenger in signal transduction pathways is well established. We show here that the NADPH oxidase-dependent production of O2*(-) and H2O2 or respiratory burst in alveolar macrophages (AM) (NR8383 cells) is required for ADP-stimulated c-Jun phosphorylation and the activation of JNK1/2, MKK4 (but not MKK7) and apoptosis signal-regulating kinase-1 (ASK1). ASK1 binds only to the reduced form of thioredoxin (Trx). ADP induced the dissociation of ASK1/Trx complex and thus resulted in ASK1 activation, as assessed by phosphorylation at Thr845, which was enhanced after treatment with aurothioglucose (ATG), an inhibitor of Trx reductase. While dissociation of the complex implies Trx oxidation, protein electrophoretic mobility shift assay detected oxidation of Trx only after bolus H2O2 but not after ADP stimulation. These results demonstrate that the ADP-stimulated respiratory burst activated the ASK1-MKK4-JNK1/c-Jun signaling pathway in AM and suggest that transient and localized oxidation of Trx by the NADPH oxidase-mediated generation of H2O2 may play a critical role in ASK1 activation and the inflammatory response.
Collapse
Affiliation(s)
- Honglei Liu
- School of Natural Sciences, University of California Merced, Merced, CA 95340, USA
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Tamura S, Toriumi S, Saito JI, Awano K, Kudo TA, Kobayashi T. PP2C family members play key roles in regulation of cell survival and apoptosis. Cancer Sci 2006; 97:563-7. [PMID: 16827794 PMCID: PMC11159723 DOI: 10.1111/j.1349-7006.2006.00219.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although unlimited proliferation of cancer cells is supported by multiple signaling pathways involved in the regulation of proliferation, survival, and apoptosis, the molecular mechanisms coordinating these different pathways to promote the proliferation and survival of cancer cells have remained unclear. SAPK and integrin-ILK signaling pathways play key roles in the promotion of apoptosis and cell proliferation/survival, respectively. Studies of TNFalpha- and H2O2-induced apoptosis revealed that ASK1, a component of the SAPK system, mediates the TNFalpha and H2O2 signaling of apoptosis. ASK1 is activated by autophosphorylation of a specific threonine residue (T845) following TNFalpha stimulation. Our recent studies indicate that PP2Cepsilon, a member of the PP2C family, associates with and inactivates ASK1 by dephosphorylating T845. In contrast, PP2Cdelta/ILKAP, a second PP2C family member, activates ASK1 by enhancing cellular phosphorylation of T845. PP2Cdelta/ILKAP also forms a complex with ILK1 to inhibit the GSK3beta-mediated integrin-ILK1 signaling in vivo, inhibiting cell cycle progression. These observations raise the possibility that PP2Cdelta/ILKAP acts to control the cross-talk between integrin-induced and TNFalpha-induced signaling pathways, inhibiting the former and stimulating the latter, thereby inhibiting proliferation and survival and promoting the apoptosis of cancer cells.
Collapse
Affiliation(s)
- Shinri Tamura
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | | | |
Collapse
|
281
|
Chen Y, Yu M, Jones DP, Greenamyre JT, Cai J. Protection against oxidant-induced apoptosis by mitochondrial thioredoxin in SH-SY5Y neuroblastoma cells. Toxicol Appl Pharmacol 2006; 216:256-62. [PMID: 16797630 DOI: 10.1016/j.taap.2006.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/20/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Mitochondrial oxidative stress plays important roles in aging and age-related degenerative disorders. The newly identified mitochondrial thioredoxin (mtTrx; Trx2) is a key component of the mitochondrial antioxidant system which is responsible for the clearance of reactive intermediates and repairs proteins with oxidative damage. Here, we show that in cultured SH-SY5Y human neuroblastoma 1cells, overexpression of mtTrx inhibited apoptosis and loss of mitochondrial membrane potential induced by a chemical oxidant, tert-butylhydroperoxide (tBH). The effects of calcium ionophore (Br-A23187) were not affected by mtTrx, suggesting the protection was specific against oxidative injury. The mitochondrial glutathione pool was oxidized by tBH, and this oxidation was not inhibited by increased mtTrx. Consequently, the antioxidant function of mtTrx is not redundant, but rather in addition, to that of GSH. Mutations of Cys90 and Cys93 to serines rendered mtTrx ineffective in protection against tBH-induced cytoxicity. These data indicate that mtTrx controls the mitochondrial redox status independently of GSH and is a key component of the defensive mechanism against oxidative stress in cultured neuronal cells.
Collapse
Affiliation(s)
- Yan Chen
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
282
|
Imoto K, Kukidome D, Nishikawa T, Matsuhisa T, Sonoda K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Tsuruzoe K, Matsumura T, Ichijo H, Araki E. Impact of mitochondrial reactive oxygen species and apoptosis signal-regulating kinase 1 on insulin signaling. Diabetes 2006; 55:1197-204. [PMID: 16644673 DOI: 10.2337/db05-1187] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumor necrosis factor (TNF)-alpha inhibits insulin action; however, the precise mechanisms are unknown. It was reported that TNF-alpha could increase mitochondrial reactive oxygen species (ROS) production, and apoptosis signal-regulating kinase 1 (ASK1) was reported to be required for TNF-alpha-induced apoptosis. Here, we examined roles of mitochondrial ROS and ASK1 in TNF-alpha-induced impaired insulin signaling in cultured human hepatoma (Huh7) cells. Using reduced MitoTracker Red probe, we confirmed that TNF-alpha increased mitochondrial ROS production, which was suppressed by overexpression of either uncoupling protein-1 (UCP)-1 or manganese superoxide dismutase (MnSOD). TNF-alpha significantly activated ASK1, increased serine phosphorylation of insulin receptor substrate (IRS)-1, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt, and all of these effects were inhibited by overexpression of either UCP-1 or MnSOD. Similar to TNF-alpha, overexpression of wild-type ASK1 increased serine phosphorylation of IRS-1 and decreased insulin-stimulated tyrosine phosphorylation of IRS-1, whereas overexpression of dominant-negative ASK1 ameliorated these TNF-alpha-induced events. In addition, TNF-alpha activated c-jun NH(2)-terminal kinases (JNKs), and this observation was partially inhibited by overexpression of UCP-1, MnSOD, or dominant-negative ASK1. These results suggest that TNF-alpha increases mitochondrial ROS and activates ASK1 in Huh7 cells and that these TNF-alpha-induced phenomena contribute, at least in part, to impaired insulin signaling.
Collapse
Affiliation(s)
- Koujiro Imoto
- Department of Metabolic Medicine, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Gong Y, Sohn H, Xue L, Firestone GL, Bjeldanes LF. 3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells. Cancer Res 2006; 66:4880-7. [PMID: 16651444 DOI: 10.1158/0008-5472.can-05-4162] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiologic evidence suggests that high dietary intake of Brassica vegetables, such as broccoli, cabbage, and Brussels sprouts, protects against tumorigenesis in multiple organs. 3,3'-Diindolylmethane, one of the active products derived from Brassica vegetables, is a promising antitumor agent. Previous studies in our laboratory showed that 3,3'-diindolylmethane induced a G(1) cell cycle arrest in human breast cancer MCF-7 cells by a mechanism that included increased expression of p21. In the present study, the upstream events leading to p21 overexpression were further investigated. We show for the first time that 3,3'-diindolylmethane is a strong mitochondrial H(+)-ATPase inhibitor (IC(50) approximately 20 micromol/L). 3,3'-Diindolylmethane treatment induced hyperpolarization of mitochondrial inner membrane, decreased cellular ATP level, and significantly stimulated mitochondrial reactive oxygen species (ROS) production. ROS production, in turn, led to the activation of stress-activated pathways involving p38 and c-Jun NH(2)-terminal kinase. Using specific kinase inhibitors (SB203580 and SP600125), we showed the central role of p38 and c-Jun NH(2)-terminal kinase (JNK) pathways in 3,3'-diindolylmethane-induced p21 mRNA transcription. In addition, antioxidants significantly attenuated 3,3'-diindolylmethane-induced activation of p38 and JNK and induction of p21, indicating that oxidative stress is the major trigger of these events. To further support the role of ROS in 3,3'-diindolylmethane-induced p21 overexpression, we showed that 3,3'-diindolylmethane failed to induce p21 overexpression in mitochondrial respiratory chain deficient rho(0) MCF-7 cells, in which 3,3'-diindolylmethane did not stimulate ROS production. Thus, we have established the critical role of enhanced mitochondrial ROS release in 3,3'-diindolylmethane-induced p21 up-regulation in human breast cancer cells.
Collapse
Affiliation(s)
- Yixuan Gong
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
284
|
Abstract
Nitric oxide (NO) is a multifunctional biomolecule involved in a variety of physiological and pathological processes, including regulation of blood vessel dilatation and anti-arteriosclerotic effects. However, a large amount of NO is toxic to the host and causes several diseases such as apoptosis, septic shock, and diabetes mellitus. Inducible-form NO synthase is induced in inflammatory diseases, including insulitis and arteriosclerosis. Endoplasmic reticulum (ER) stress pathway was first identified as a cellular response pathway induced by the accumulation of unfolded proteins in ER to preserve ER functions. Later it was found that ER stress pathway is also activated by various cellular stresses to protect cells, but when stresses are severe, apoptosis is induced to remove damaged cells. It is reported that NO and reactive oxygen species disturb ER functions, then ER stress-mediated apoptosis pathway is activated. CHOP/GADD153, which belongs to C/EBP transcription factor family, is induced in this process and mediates apoptosis. ER stress pathway induced by NO can be involved in the pathogenesis of various vascular diseases.
Collapse
Affiliation(s)
- Tomomi Gotoh
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | | |
Collapse
|
285
|
Wu Y, Fan Y, Xue B, Luo L, Shen J, Zhang S, Jiang Y, Yin Z. Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene 2006; 25:5787-800. [PMID: 16636664 DOI: 10.1038/sj.onc.1209576] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human glutathione S-transferase P1-1 (GSTP1-1) is an ubiquitously expressed protein that plays an important role in the detoxification and xenobiotics metabolism. It has been shown that GSTP1-1 interacts with c-Jun NH(2)-terminal kinase (JNK) and suppresses its activity. Here, we report a novel function of GSTP1-1 in regulating tumor necrosis factor-alpha (TNF-alpha)-triggered signaling. The present experiments showed that GSTP1-1 physically associated with tumor necrosis factor receptor-associated factor 2 (TRAF2) in vivo and in vitro. Overexpression of GSTP1-1 inhibited TRAF2-induced activation of both JNK and p38 but not of nuclear factor-kappaB (NF-kappaB). Glutathione S-transferase P1-1 also attenuated TRAF2-enhanced apoptosis signal-regulating kinase 1 (ASK1) autophosphorylation and inhibited TRAF2-ASK1-induced cell apoptosis by suppressing the interaction of TRAF2 and ASK1. Conversely, silencing of GSTP1-1 expression through RNA interference (RNAi) resulted in increase of TNF-alpha-dependent TRAF2-ASK1 association followed by hyper-activation of ASK1 and JNK. A mutant GSTP1-1 lacking TRAF domain-binding motif exhibited a significant decline of capacity to bind TRAF2 and block TRAF2-ASK1 signaling compared with the wild type of GSTP1-1. Moreover, the glutathione-conjugating activity of GSTP1-1 was not involved in the regulation of TRAF2 signaling. These findings indicate that GSTP1-1 plays an important regulatory role in TNF-alpha-induced signaling by forming ligand-binding interactions with TRAF2, which provides a new insight for analysing the protective effects of GSTP1-1 in tumor cells.
Collapse
Affiliation(s)
- Y Wu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, JiangSu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A. Inhibition of Mammalian Thioredoxin Reductase by Some Flavonoids: Implications for Myricetin and Quercetin Anticancer Activity. Cancer Res 2006; 66:4410-8. [PMID: 16618767 DOI: 10.1158/0008-5472.can-05-3310] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, exerts a wide range of activities in cellular redox control, antioxidant function, cell viability, and proliferation. Recently, the selenocysteine (Sec)-containing mammalian TrxR has emerged as a new target for anticancer drug development because TrxR and Trx are overexpressed in many aggressive tumors and the tumor cells seem to be more dependent on Trx system than normal cells. Here we have investigated the inhibition of mammalian TrxR by flavonoids which have been presumed to be cancer chemoprevention agents because of their antioxidant activities. Myricetin and quercetin were found to have strong inhibitory effects on mammalian TrxRs with IC50 values of 0.62 and 0.97 micromol/L, respectively. The inhibition was shown to be concentration, NADPH, and time dependent and involved an attack on the reduced COOH-terminal -Cys-Sec-Gly active site of TrxR. Oxygen-derived superoxide anions enhanced the inhibitory effect whereas anaerobic conditions attenuated inhibition. Spectral analysis suggested that the flavonols might perform their inhibitory effects via semiquinone radicals. Additionally, the flavonols had the potential to inhibit the growth of A549 cells with the same potency as inhibition of TrxR. TrxR activity in the cell lysates was reduced on treatment with myricetin >50 micromol/L, which coincided with the oxidization of Trx. The cell cycle was arrested in S phase by quercetin and an accumulation of cells in sub-G1 was observed in response to myricetin. Thus, the anticancer activity of quercetin and myricetin may be due to inhibition of TrxR, consequently inducing cell death.
Collapse
Affiliation(s)
- Jun Lu
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | | | | | | | | | | |
Collapse
|
287
|
Hayakawa T, Matsuzawa A, Noguchi T, Takeda K, Ichijo H. The ASK1–MAP kinase pathways in immune and stress responses. Microbes Infect 2006; 8:1098-107. [PMID: 16517200 DOI: 10.1016/j.micinf.2005.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 11/08/2005] [Indexed: 11/30/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase which plays pivotal roles in stress and immune responses. This review is focused on three major subjects on ASK1: the regulatory mechanisms of the kinase activity, the pathophysiological roles in stress response and innate immunity, and the evolutionary perspectives.
Collapse
Affiliation(s)
- Teruyuki Hayakawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
288
|
Hsieh CC, Papaconstantinou J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J 2006; 20:259-68. [PMID: 16449798 PMCID: PMC1479092 DOI: 10.1096/fj.05-4376com] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have proposed that the age-associated increase of reactive oxygen species (ROS) by electron transport chain (ETC) dysfunction may cause the elevated basal level of p38 MAPK stress response pathway activity. However, the mechanism by which ROS activates this pathway is not clear. Here we propose that activation of the p38 MAPK pathway by complex I (CI) generated ROS, in response to rotenone (ROT) treatment, is based on the ability of reduced Trx to bind to and inhibit ASK 1 and its release from the complex upon oxidation. This balance of free vs. bound ASK1 regulates the level of p38 MAPK pathway activity. To support this mechanism we demonstrate that the production of ROS by ROT treated AML12 hepatocyte cells dissociates the Trx-ASK1 complex, thereby increasing p38 MAPK pathway activity. This mechanism is supported by the ability of N-acetyl cysteine (NAC) to prevent dissociation of Trx-ASK1 and activation of the p38 MAPK pathway. We also demonstrated that the ratio of ASK1/Trx-ASK1 increases in aged mouse livers and that this correlates with the increased basal activity of the p38 MAPK pathway. The longevity of Snell dwarf mice has been attributed to their resistance to oxidative stress. A comparison of the levels of Trx-ASK1 in young and aged dwarfs showed a higher abundance of the complex than in their age-matched controls. These results, which are indicative of a decreased level of oxidative stress, suggest that increased ROS production in aged liver may alter the ratio of ASK1 and Trx-ASK1, thereby increasing the age-associated basal level of p38 MAPK pathway activity.
Collapse
Affiliation(s)
- Ching-Chyuan Hsieh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0643, USA
| | | |
Collapse
|
289
|
You RI, Chen MC, Wang HW, Chou YC, Lin CH, Hsieh SL. Inhibition of Lymphotoxin-β Receptor–Mediated Cell Death by Survivin-ΔEx3. Cancer Res 2006; 66:3051-61. [PMID: 16540654 DOI: 10.1158/0008-5472.can-05-2479] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TNFSF14/LIGHT is a member of the tumor necrosis factor superfamily that binds to lymphotoxin-beta receptor (LTbetaR) to induce cell death via caspase-dependent and caspase-independent pathways. It has been shown that cellular inhibitor of apoptosis protein-1 inhibits cell death by binding to LTbetaR-TRAF2/TRAF3 complexes and caspases. In this study, we found that both Kaposi's sarcoma-associated herpesvirus K7 (KSHV-K7), a viral inhibitor of apoptosis protein, and the structurally related protein survivin-DeltaEx3 could inhibit LTbetaR-mediated caspase-3 activation. However, only survivin-DeltaEx3 could protect cells from LTbetaR-mediated cell death. The differential protective effects of survivin-DeltaEx3 and KSHV-K7 can be attributed to the fact that survivin-DeltaEx3, but not KSHV-K7, is able to maintain mitochondrial membrane potential and inhibit second mitochondria-derived activator of caspase/DIABLO release. Moreover, survivin-DeltaEx3 is able to inhibit production of reactive oxygen species and can translocate from nucleus to cytosol to associate with apoptosis signal-regulating kinase 1 after activation of LTbetaR. Furthermore, survivin-DeltaEx3 protects LTbetaR-mediated cell death in caspase-3-deficient MCF-7 cells. Thus, survivin-DeltaEx3 is able to regulate both caspase-dependent and caspase-independent pathways, whereas inhibition of caspase-independent pathway is both sufficient and necessary for its protective effect on LTbetaR-mediated cell death.
Collapse
Affiliation(s)
- Ren-In You
- Institute and Department of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
290
|
Al-Lamki RS, Wang J, Vandenabeele P, Bradley JA, Thiru S, Luo D, Min W, Pober JS, Bradley JR. TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury. FASEB J 2006; 19:1637-45. [PMID: 16195372 DOI: 10.1096/fj.05-3841com] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In normal kidney, TNFR1 is expressed in glomerular and peritubular capillary EC, and some tubular cells, and colocalizes with inactive apoptosis signal-regulating kinase-1 (ASK1) phosphorylated at serine 967. Biopsies of rejecting or ischemic renal allografts, which show both tubular cell injury and proliferation, display down-regulation of TNFR1 and activation of ASK1 as well as up-regulation of TNFR2 on tubular cells, where it colocalizes with phosphorylated endothelial/epithelial tyrosine kinase (Etk). We have exploited receptor-selective muteins and evaluated phosphorylation of receptor-specific kinases to study TNF responses in situ. In organ culture, a TNFR1-specific mutein changes phosphorylation of ASK1 to threonine 845, indicative of kinase activation. A TNFR2-specific mutein down-regulates TNFR1 in glomerular EC, up-regulates TNFR2 and Etk in tubular cells, and induces phosphorylation of Etk. Wild-type TNF induces TNFR2 and Etk and activates both ASK1 and Etk but does not down-regulate TNFR1. Wild-type TNF and TNFR1-specific mutein trigger tubular cell apoptosis whereas wild-type TNF and TNFR2-specific mutein induce tubular cells to express proliferating cell nuclear antigen. Differential activation of ASK1 and Etk by regulated TNFRs in patient-derived materials provides an explanation for diverse and opposing responses to TNF at distinct sites, and an in situ bioassay of TNFR signaling.
Collapse
MESH Headings
- Apoptosis
- Biological Assay
- Biopsy
- Cell Proliferation
- Down-Regulation
- Enzyme Activation
- Humans
- In Situ Hybridization
- In Situ Nick-End Labeling
- Kidney/injuries
- Kidney/metabolism
- Kidney Diseases/pathology
- Kidney Neoplasms/pathology
- Kidney Transplantation
- Kidney Tubules/cytology
- Kidney Tubules/metabolism
- MAP Kinase Kinase Kinase 5/biosynthesis
- Microscopy, Confocal
- Models, Biological
- Organ Culture Techniques
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Signal Transduction
- Threonine/chemistry
- Up-Regulation
Collapse
Affiliation(s)
- Rafia S Al-Lamki
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Takeda K, Noguchi T, Ichijo H. ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. J Oral Biosci 2006. [DOI: 10.2330/joralbiosci.48.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
292
|
Takeda K, Noguchi T, Ichijo H. ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. J Oral Biosci 2006. [DOI: 10.1016/s1349-0079(06)80013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
293
|
McCarty MF. Adjuvant strategies for prevention of glomerulosclerosis. Med Hypotheses 2006; 67:1277-96. [PMID: 16828231 DOI: 10.1016/j.mehy.2004.11.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 11/29/2004] [Indexed: 12/23/2022]
Abstract
The glomerulosclerosis which frequently complicates diabetes and severe hypertension is mediated primarily by increased mesangial production and activation of transforming growth factor-beta (TGF-beta), which acts on mesangial cells to boost their production of matrix proteins while suppressing extracellular proteolytic activity. Hyperglycemia and glomerular hypertension work in various complementary ways to stimulate superoxide production via NADPH oxidase in mesangial cells; the resulting oxidant stress results in the induction and activation of TFG-beta. Nitric oxide, generated by glomerular capillaries and by mesangial cells themselves, functions physiologically to oppose mesangial TGF-beta overproduction; however, NO bioactivity is compromised by oxidant stress. In addition to low-protein diets and drugs that suppress angiotensin II activity, a variety of other agents and measures may have potential for impeding the process of glomerulosclerosis. These include vitamin E, which blunts the rise in mesangial diacylglycerol levels induced by hyperglycemia; statins and (possibly) policosanol, which down-regulate NADPH oxidase activity by diminishing isoprenylation of Rac1; lipoic acid, whose potent antioxidant activity antagonizes the impact of oxidant stress on TGF-beta expression; pyridoxamine, which inhibits production of advanced glycation endproducts; arginine, high-dose folate, vitamin C, and salt restriction, which may support glomerular production of nitric oxide; and estrogen and soy isoflavones, which may induce nitric oxide synthase in glomerular capillaries while also interfering with TGF-beta signaling. Further research along these lines may enable the development of complex nutraceuticals which have important clinical utility for controlling and preventing glomerulosclerosis and renal failure. Most of these measures may likewise reduce risk for left ventricular hypertrophy in hypertensives, inasmuch as the signaling mechanisms which mediate this disorder appear similar to those involved in glomerulosclerosis.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
294
|
Symons A, Beinke S, Ley SC. MAP kinase kinase kinases and innate immunity. Trends Immunol 2006; 27:40-8. [PMID: 16356769 DOI: 10.1016/j.it.2005.11.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/27/2005] [Accepted: 11/17/2005] [Indexed: 12/26/2022]
Abstract
Toll-like receptors, which respond to invariant microbial molecules, and receptors for the proinflammatory cytokines tumour necrosis factor and interleukin-1 are crucial for initiation and regulation of innate immune responses. These receptors activate each of the major mitogen-activated protein (MAP) kinase subtypes, extracellular signal-regulated protein kinases, c-Jun amino-terminal kinases and p38 MAP kinases, which are crucial for cell survival and controlling the expression of immune mediators. Here we discuss recent studies characterizing the specific MAP kinase kinase kinases (MAP 3-kinases) that link MAP kinases to receptors involved in innate immunity and the mechanisms by which the activity of MAP 3-kinases is regulated by such receptors.
Collapse
Affiliation(s)
- Antony Symons
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
295
|
Aras MA, Aizenman E. Obligatory role of ASK1 in the apoptotic surge of K+ currents. Neurosci Lett 2005; 387:136-40. [PMID: 16006035 PMCID: PMC2947746 DOI: 10.1016/j.neulet.2005.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/02/2005] [Accepted: 06/04/2005] [Indexed: 01/26/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a critical component of mitogen-activated protein kinase signaling pathways leading to cell death in response to cytokines and cellular stress. We use a dominant-negative (DN) form of ASK1 to show that this enzyme is necessary for the delayed surge in neuronal K+ channel activity, a required step in apoptosis. Furthermore, expression of ASK1 DN also suppresses the apoptotic increase in Kv2.1 currents transiently expressed in Chinese hamster ovary cells. Finally, over-expression of thioredoxin, an inhibitory binding partner of ASK1, is sufficient to halt the apoptotic current surge in neurons. Thus, ASK1 is an obligatory component of the pro-apoptotic modulation of K+ channels.
Collapse
Affiliation(s)
| | - Elias Aizenman
- Corresponding author. Tel.: +1 412 648 9434; fax: +1 412 648 1441. (E. Aizenman)
| |
Collapse
|
296
|
Pham CG, Papa S, Bubici C, Zazzeroni F, Franzoso G. In the Crosshairs: NF-κB Targets the JNK Signaling Cascade. ACTA ACUST UNITED AC 2005; 4:569-576. [PMID: 19829748 DOI: 10.2174/156801405774933188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NF-κB/Rel transcription factors are well-known for their roles in the regulation of inflammation and immunity. NF-κB also blocks programmed cell death (PCD) or apoptosis triggered by proinflammatory cytokine, tumor necrosis factor (TNF)α. Through transcriptional induction of distinct subsets of cyto-protective target genes, NF-κB inhibits the execution of apoptosis activated by this cytokine. This protective action is mediated, in part, by factors (such as A20, GADD45β, and XIAP) that downregulate the pro-apoptotic c-Jun-N-terminal (JNK) pathway. A suppression of reactive oxygen species (ROS), which are themselves major cell death-inducing elements activated by TNFα, is an additional protective function recently ascribed to NF-κB. This function of NF-κB involves an induction of mitochondrial anti-oxidant enzyme, manganese superoxide dismutase (Mn-SOD), and a control of cellular iron availability through upregulation of Ferritin heavy chain - one of two subunits of Ferritin, the major iron storage protein complex of the cell. An emerging view of NF-κB is that, while integrated, its actions in immunity and in promoting cell survival are executed through upregulation of distinct subsets of target genes. Thus, these inducible blockers of apoptosis may provide potential new targets to inhibit specific functions of NF-κB. In the future, this might allow for a better treatment of complex human diseases involving dysregulated NF-κB activity, including chronic inflammatory conditions and cancer.
Collapse
Affiliation(s)
- Can G Pham
- The Ben May Institute for Cancer Research; The University of Chicago; 924 East 57th Street; Chicago, IL 60637, USA; U.S.A
| | | | | | | | | |
Collapse
|
297
|
Noguchi T, Takeda K, Matsuzawa A, Saegusa K, Nakano H, Gohda J, Inoue JI, Ichijo H. Recruitment of Tumor Necrosis Factor Receptor-associated Factor Family Proteins to Apoptosis Signal-regulating Kinase 1 Signalosome Is Essential for Oxidative Stress-induced Cell Death. J Biol Chem 2005; 280:37033-40. [PMID: 16129676 DOI: 10.1074/jbc.m506771200] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) plays a pivotal role in oxidative stress-induced cell death. Reactive oxygen species disrupt the interaction of ASK1 with its cellular inhibitor thioredoxin and thereby activates ASK1. However, the precise mechanism by which ASK1 freed from thioredoxin undergoes oligomerization-dependent activation has not been fully elucidated. Here we show that endogenous ASK1 constitutively forms a high molecular mass complex including Trx ( approximately 1,500-2,000 kDa), which we designate ASK1 signalosome. Upon H(2)O(2) treatment, the ASK1 signalosome forms a higher molecular mass complex at least in part because of the recruitment of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. Consistent with our previous findings that TRAF2 and TRAF6 activate ASK1, H(2)O(2)-induced ASK1 activation and cell death were strongly reduced in the cells derived from Traf2-/- and Traf6-/- mice. A novel signaling complex including TRAF2, TRAF6, and ASK1 may thus be the key component in oxidative stress-induced cell death.
Collapse
Affiliation(s)
- Takuya Noguchi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, CREST, Japan
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Byrne BM, Welsh J. Altered thioredoxin subcellular localization and redox status in MCF-7 cells following 1,25-dihydroxyvitamin D3 treatment. J Steroid Biochem Mol Biol 2005; 97:57-64. [PMID: 16061374 DOI: 10.1016/j.jsbmb.2005.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1,25-Dihydroxyvitamin D(3) (1,25D) induces apoptosis in MCF-7 cells via the intrinsic pathway involving bax translocation to mitochondria, cytochrome c release and reactive oxygen species (ROS) generation. Vitamin D up-regulated protein 1 (VDUP1), an apoptotic regulatory gene induced by 1,25D in HL-60 cells, is a negative regulator of thioredoxin (Trx1), a redox protein which neutralizes ROS and protects against oxidative stress induced apoptosis. Due to the involvement of oxidative stress in 1,25D mediated apoptosis, we analyzed whether VDUP1 or Trx1 are altered by 1,25D in MCF-7 cells. In contrast to HL-60 cells, VDUP1 mRNA was not up-regulated by 1,25D in MCF-7 cells, indicating that transcriptional up-regulation of this gene is not required for 1,25D mediated apoptosis. 1,25D did not affect the expression or activity of Trx1 in MCF-7 cells, however, Trx1 activity was higher in MCF-7 cells selected for resistance to 1,25D mediated apoptosis. In untreated MCF-7 cells, Trx1 was present only in the cytosol, and the majority was in the oxidized state. In 1,25D treated MCF-7 cells, Trx1 was present in both cytosol and nucleus, and the nuclear Trx1 pool was in the reduced state. Nuclear localization of Trx1 in 1,25D treated MCF-7 cells was confirmed by immunofluorescent microscopy. Although redox status is known to alter the ability of Trx1 to bind apoptosis signal regulating kinase 1 (ASK1), no changes in ASK1 transcript or protein levels were observed in 1,25D treated MCF-7 cells. Collectively, these studies indicate that although VDUP1 and ASK1 are not altered by 1,25D, changes in redox status and sub-cellular distribution of Trx1 occurs during 1,25D mediated apoptosis of MCF-7 cells.
Collapse
Affiliation(s)
- Belinda M Byrne
- Department of Biological Sciences, 214 Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
299
|
O'Brian CA, Chu F. Post-translational disulfide modifications in cell signaling--role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission. Free Radic Res 2005; 39:471-80. [PMID: 16036322 DOI: 10.1080/10715760500073931] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cell signaling entails a host of post-translational modifications of effector-proteins. These modifications control signal transmission by regulating the activity, localization or half-life of the effector-protein. Prominent oxidative modifications induced by cell-signaling reactive oxygen species (ROS) are cysteinyl modifications such as S-nitrosylation, sulfenic acid and disulfide formation. Disulfides protect protein sulfhydryls against oxidative destruction and simultaneously influence cell signaling by engaging redox-regulatory sulfhydryls in effector-proteins. The types of disulfides implicated in signaling span (1) protein S-glutathionylation, e.g. as a novel mode of Ras activation through S-glutathionylation at Cys-118 in response to a hydrogen-peroxide burst, (2) intra-protein disulfides, e.g. in the regulation of the stability of the protein phosphatase Cdc25C by hydrogen-peroxide, (3) inter-protein disulfides, e.g. in the hydrogen peroxide-mediated inactivation of receptor protein-tyrosine phosphatase alpha (RPTPalpha) by dimerization and (4) protein S-cysteaminylation by cystamine. Cystamine is a byproduct of pantetheinase-catalyzed pantothenic acid recycling from pantetheine for biosynthesis of Coenzyme A (CoA), a ubiquitous and metabolically indispensable cofactor. Cystamine inactivates protein kinase C-epsilon (PKCepsilon), gamma-glutamylcysteine synthetase and tissue transglutaminase by S-cysteaminylation-triggered mechanisms. The importance of protein S-cysteaminylation in signal transmission in vivo is evident from the ability of cystamine administration to rescue the intestinal inflammatory-response deficit of pantetheinase knockout mice. These mice lack the predominant epithelial pantetheinase isoform and have sharply reduced levels of cystamine/cysteamine in epithelial tissues. In addition, intraperitoneal administration of cystamine significantly delays neurodegenerative pathogenesis in a Huntington's disease mouse model. Thus, cystamine may serve as a prototype for the development of novel therapeutics that target effector-proteins regulated by S-cysteaminylation.
Collapse
|
300
|
Wang M, Xiao GG, Li N, Xie Y, Loo JA, Nel AE. Use of a fluorescent phosphoprotein dye to characterize oxidative stress-induced signaling pathway components in macrophage and epithelial cultures exposed to diesel exhaust particle chemicals. Electrophoresis 2005; 26:2092-108. [PMID: 15880549 DOI: 10.1002/elps.200410428] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A large body of evidence has shown that exposure to ambient particulate matter (PM) leads to asthma exacerbation through an excitation of allergic inflammation. Utilizing diesel exhaust particles (DEPs) as a model air pollutant, we and others have demonstrated that PM contains redox-active chemicals that generate inflammation through an oxidative stress mechanism. Recently, the strengths of proteomics have enabled us to demonstrate that organic DEP extracts induce a hierarchical expression pattern of oxidative stress-induced proteins in macrophages and epithelial cells. As a further extension of this work, we now employ a new phosphosensor fluorescent dye, Pro-Q Diamond, to elucidate the induction of phosphoproteins and intracellular signaling cascades that may play a role in DEP-induced inflammation. We demonstrate that DEPs induced the phosphorylation of several phosphoproteins that belong to a number of signaling pathways as well as other oxidative stress pathways. In combination with cytokine array, phosphoproteome analysis using Pro-Q Diamond allowed us to characterize the aromatic and polar chemicals of DEPs that are involved in the activation of three different mitogen-activated protein (MAP) kinase signaling pathways.
Collapse
Affiliation(s)
- Meiying Wang
- Department of Medicine, Division of Clinical Immunology and Allergy, and David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|