251
|
Falasca M, Maffucci T. Targeting p110gamma in gastrointestinal cancers: attack on multiple fronts. Front Physiol 2014; 5:391. [PMID: 25360116 PMCID: PMC4197894 DOI: 10.3389/fphys.2014.00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/21/2014] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions that are critical for cancer progression and development, including cell survival, proliferation and migration. Three classes of PI3Ks exist with the class I PI3K encompassing four isoforms of the catalytic subunit known as p110α, p110β, p110γ, and p110δ. Although for many years attention has been mainly focused on p110α recent evidence supports the conclusion that p110β, p110γ, and p110δ can also have a role in cancer. Amongst these, accumulating evidence now indicates that p110γ is involved in several cellular processes associated with cancer and indeed this specific isoform has emerged as a novel important player in cancer progression. Studies from our laboratory have identified a specific overexpression of p110γ in human pancreatic ductal adenocarcinoma (PDAC) and in hepatocellular carcinoma (HCC) tissues compared to their normal counterparts. Our data have further established that selective inhibition of p110γ is able to block PDAC and HCC cell proliferation, strongly suggesting that pharmacological inhibition of this enzyme can directly affect growth of these tumors. Furthermore, increasing evidence suggests that p110γ plays also a key role in the interactions between cancer cells and tumor microenvironment and in particular in tumor-associated immune response. It has also been reported that p110γ can regulate invasion of myeloid cells into tumors and tumor angiogenesis. Finally p110γ has also been directly involved in regulation of cancer cell migration. Taken together these data indicate that p110γ plays multiple roles in regulation of several processes that are critical for tumor progression and metastasis. This review will discuss the role of p110γ in gastrointestinal tumor development and progression and how targeting this enzyme might represent a way to target very aggressive tumors such as pancreatic and liver cancer on multiple fronts.
Collapse
Affiliation(s)
- Marco Falasca
- Inositide Signalling Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Tania Maffucci
- Inositide Signalling Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| |
Collapse
|
252
|
The inhibitory effect of PIK-75 on inflammatory mediator response induced by hydrogen peroxide in feline esophageal epithelial cells. Mediators Inflamm 2014; 2014:178049. [PMID: 25276052 PMCID: PMC4170708 DOI: 10.1155/2014/178049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022] Open
Abstract
Isoform-selective inhibitors of phosphoinositide 3-kinase (PI3K) activation have an anti-inflammatory effect by reducing proinflammatory cytokines. Cultured feline esophageal epithelial cells (EEC) of passages 3~4 were treated with hydrogen peroxide and PIK-75. The cell viability was measured by a MTT incorporation assay. The distribution of PI3K isoforms, p-Akt, IL-1β, and IL-8 was inferred from Western blots. The release of IL-6 was determined by ELISA. The cell morphology was not considerably different from nontreated cells if the cells were pretreated with PIK-75 and treated with 300 μM hydrogen peroxide. The density of p110α of PI3K was increased, but that of other types was not affected after the treatment with hydrogen peroxide. The density of p-Akt, when the cells were exposed to PIK-75 and hydrogen peroxide, was diminished dose dependently more than that of hydrogen peroxide treatment only. The decrease of p-Akt showed an inhibition of PI3K by PIK-75. PIK-75 dose dependently reduced the expression of IL-1β, IL-8, and the level of IL-6 compared with hydrogen peroxide treatment only. These results suggest evidence that p110α mediates esophageal inflammation and that PIK-75 has an anti-inflammatory effect by reducing proinflammatory cytokines on feline esophageal epithelial cultured cells.
Collapse
|
253
|
Dibutyltin promotes oxidative stress and increases inflammatory mediators in BV-2 microglia cells. Toxicol Lett 2014; 230:177-87. [DOI: 10.1016/j.toxlet.2014.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/29/2014] [Accepted: 03/04/2014] [Indexed: 01/24/2023]
|
254
|
Agnihotri S, Gugel I, Remke M, Bornemann A, Pantazis G, Mack SC, Shih D, Singh SK, Sabha N, Taylor MD, Tatagiba M, Zadeh G, Krischek B. Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma. J Neurosurg 2014; 121:1434-45. [PMID: 25245477 DOI: 10.3171/2014.6.jns131433] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Vestibular schwannomas (VS) are common benign tumors of the vestibular nerve that cause significant morbidity. The current treatment strategies for VS include surgery or radiation, with each treatment option having associated complications and side effects. The transcriptional landscape of schwannoma remains largely unknown. METHODS In this study the authors performed gene-expression profiling of 49 schwannomas and 7 normal control vestibular nerves to identify tumor-specific gene-expression patterns. They also interrogated whether schwannomas comprise several molecular subtypes using several transcription-based clustering strategies. The authors also performed in vitro experiments testing therapeutic inhibitors of over-activated pathways in a schwannoma cell line, namely the PI3K/AKT/mTOR pathway. RESULTS The authors identified over 4000 differentially expressed genes between controls and schwannomas with network analysis, uncovering proliferation and anti-apoptotic pathways previously not implicated in VS. Furthermore, using several distinct clustering technologies, they could not reproducibly identify distinct VS subtypes or significant differences between sporadic and germline NF2-associated schwannomas, suggesting that they are highly similar entities. The authors identified overexpression of PI3K/AKT/mTOR signaling networks in their gene-expression study and evaluated this pathway for therapeutic targeting. Testing the compounds BEZ235 and PKI-587, both novel dual inhibitors of PI3K and mTOR, attenuated tumor growth in a preclinical cell line model of schwannoma (HEI-293). In vitro findings demonstrated that pharmacological inhibition of the PI3K/AKT/mTOR pathway with next-generation compounds led to decreased cell viability and increased cell death. CONCLUSIONS These findings implicate aberrant activation of the PI3K/AKT/mTOR pathway as a molecular mechanism of pathogenesis in VS and suggest inhibition of this pathway as a potential treatment strategy.
Collapse
|
255
|
Chemical intervention tools to probe phosphoinositide-dependent signalling. Biochem Soc Trans 2014; 42:1343-8. [DOI: 10.1042/bst20140186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chemical intervention tools have been beneficial to many investigations elucidating signalling networks and interactions. The present review summarizes the current status of chemical tools to probe phosphoinositide metabolism and signalling. In particular, phosphoinositide-targeting tools are compared with protein-targeting tools with respect to their unique advantages and possible applications.
Collapse
|
256
|
Al-Jarallah A, Chen X, González L, Trigatti BL. High density lipoprotein stimulated migration of macrophages depends on the scavenger receptor class B, type I, PDZK1 and Akt1 and is blocked by sphingosine 1 phosphate receptor antagonists. PLoS One 2014; 9:e106487. [PMID: 25188469 PMCID: PMC4154704 DOI: 10.1371/journal.pone.0106487] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023] Open
Abstract
HDL carries biologically active lipids such as sphingosine-1-phosphate (S1P) and stimulates a variety of cell signaling pathways in diverse cell types, which may contribute to its ability to protect against atherosclerosis. HDL and sphingosine-1-phosphate receptor agonists, FTY720 and SEW2871 triggered macrophage migration. HDL-, but not FTY720-stimulated migration was inhibited by an antibody against the HDL receptor, SR-BI, and an inhibitor of SR-BI mediated lipid transfer. HDL and FTY720-stimulated migration was also inhibited in macrophages lacking either SR-BI or PDZK1, an adaptor protein that binds to SR-BI's C-terminal cytoplasmic tail. Migration in response to HDL and S1P receptor agonists was inhibited by treatment of macrophages with sphingosine-1-phosphate receptor type 1 (S1PR1) antagonists and by pertussis toxin. S1PR1 activates signaling pathways including PI3K-Akt, PKC, p38 MAPK, ERK1/2 and Rho kinases. Using selective inhibitors or macrophages from gene targeted mice, we demonstrated the involvement of each of these pathways in HDL-dependent macrophage migration. These data suggest that HDL stimulates the migration of macrophages in a manner that requires the activities of the HDL receptor SR-BI as well as S1PR1 activity.
Collapse
Affiliation(s)
- Aishah Al-Jarallah
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Xing Chen
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Leticia González
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
257
|
Abstract
Precise control of the balance between protein phosphorylation, catalyzed by protein kinases, and protein dephosphorylation, catalyzed by protein phosphatases, is essential for cellular homeostasis. Dysregulation of this balance leads to pathophysiological states, driving diseases such as cancer, heart disease, and diabetes. Aberrant phosphorylation of components of the pathways that control cell growth and cell survival are particularly prevalent in cancer. One of the most studied tumor suppressors in these pathways is the lipid phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome ten), which dephosphorylates the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3), thus preventing activation of the oncogenic kinase AKT (v-akt murine thymoma viral oncogene homolog). In 2005, the discovery of a family of protein phosphatases whose members directly dephosphorylate and inactivate AKT introduced a new negative regulator of the phosphoinositide 3-kinase (PI3K) oncogenic pathway. Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) isozymes comprise a novel tumor suppressor family whose two members, PHLPP1 and PHLPP2, are deleted as frequently as PTEN in cancers such as those of the prostate. PHLPP is thus a novel therapeutic target to suppress oncogenic pathways and is a potential candidate biomarker to stratify patients for the appropriate targeted therapeutics. This review discusses the role of PHLPP in terminating AKT signaling and how pharmacological intervention would impact this pathway.
Collapse
Affiliation(s)
- Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093;
| | | |
Collapse
|
258
|
Pemberton JG, Orr ME, Stafford JL, Chang JP. PI3K signalling in GnRH actions on dispersed goldfish pituitary cells: relationship with PKC-mediated LH and GH release and regulation of long-term effects on secretion and total cellular hormone availability. Gen Comp Endocrinol 2014; 205:268-78. [PMID: 24681225 DOI: 10.1016/j.ygcen.2014.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/12/2014] [Indexed: 01/20/2023]
Abstract
Goldfish pituitary cells are exposed to two GnRHs, salmon (s)GnRH and chicken (c)GnRH-II. Phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC) both participate in acute sGnRH- and cGnRH-II-stimulated LH and GH release. Using goldfish pituitary cells, we examined the relationship between PI3K and PKC in acute LH and GH secretion, and PI3K involvement in chronic hormone release and total LH and GH availability. The PI3K inhibitor LY294002 did not affect PKC agonists-induced LH or GH release, and PKC agonists did not alter PI3K p85 phosphorylation, suggesting PKC activation is not upstream of PI3K in acute hormone release. In 2, 6, 12 and 24h treatments, LY294002 did not affect LH release but stimulated total LH availability at 6h. sGnRH stimulatory actions on LH release and total availability at 12 and 24h, and cGnRH-II effects on these parameters at 6h were inhibited by LY294002. LY294002 enhanced basal GH release at 2 and 6h, but reduced total GH at 12 and 24h. Increased GH release was seen following 6, 12 and 24h of sGnRH, and 2, 6 and 24h of cGnRH-II treatment but total GH availability was only elevated by 24h cGnRH-II treatment. Whereas LY294002 inhibited GH release responses to sGnRH at 12h and cGnRH-II at 6h, it attenuated cGnRH-II-elicited, but not sGnRH-induced, effects on total GH. These results indicate that PI3K differentially modulates long-term basal and GnRH-stimulated hormone release, and total hormone availability, in a time-, cell-type-, and GnRH isoform-selective manner.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael E Orr
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
259
|
Sasore T, Kennedy B. Deciphering combinations of PI3K/AKT/mTOR pathway drugs augmenting anti-angiogenic efficacy in vivo. PLoS One 2014; 9:e105280. [PMID: 25144531 PMCID: PMC4140730 DOI: 10.1371/journal.pone.0105280] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/23/2014] [Indexed: 12/27/2022] Open
Abstract
Ocular neovascularization is a common pathology associated with human eye diseases e.g. age-related macular degeneration and proliferative diabetic retinopathy. Blindness represents one of the most feared disabilities and remains a major burden to health-care systems. Current approaches to treat ocular neovascularisation include laser photocoagulation, photodynamic therapy and anti-VEGF therapies: Ranibizumab (Lucentis) and Aflibercept (Eylea). However, high clinical costs, frequent intraocular injections, and increased risk of infections are challenges related with these standards of care. Thus, there is a clinical need to develop more effective drugs that overcome these challenges. Here, we focus on an alternative approach by quantifying the in vivo anti-angiogenic efficacy of combinations of phosphatidylinositol-3-kinase (PI3K) pathway inhibitors. The PI3K/AKT/mTOR pathway is a complex signalling pathway involved in crucial cellular functions such as cell proliferation, migration and angiogenesis. RT-PCR confirms the expression of PI3K target genes (pik3ca, pik3r1, mtor and akt1) in zebrafish trunks from 6 hours post fertilisation (hpf) and in eyes from 2 days post fertilisation (dpf). Using both the zebrafish intersegmental vessel and hyaloid vessel assays to measure the in vivo anti-angiogenic efficacy of PI3K/Akt/mTOR pathway inhibitors, we identified 5 µM combinations of i) NVP-BEZ235 (dual PI3K-mTOR inhibitor) + PI-103 (dual PI3K-mTOR inhibitor); or ii) LY-294002 (pan-PI3K inhibitor) + NVP-BEZ235; or iii) NVP-BEZ235 + rapamycin (mTOR inhibitor); or iv) LY-294002 + rapamycin as the most anti-angiogenic. Treatment of developing larvae from 2–5 dpf with 5 µM NVP-BEZ235 plus PI-103 resulted in an essentially intact ocular morphology and visual behaviour, whereas other combinations severely disrupted the developing retinal morphology and visual function. In human ARPE19 retinal pigment epithelium cells, however, no significant difference in cell number was observed following treatment with the inhibitor combinations. Collectively, these results highlight the potential of combinations of PI3K/AKT/mTOR pathway inhibitors to safely and effectively treat ocular neovascularization.
Collapse
Affiliation(s)
- Temitope Sasore
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Breandán Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
260
|
Cai W, Ye Q, She QB. Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail. Oncotarget 2014; 5:6015-27. [PMID: 24970798 PMCID: PMC4171609 DOI: 10.18632/oncotarget.2109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/15/2014] [Indexed: 12/12/2022] Open
Abstract
The cap-dependent translation is frequently deregulated in a variety of cancers associated with tumor progression. However, the molecular basis of the translation activation for metastatic progression of cancer remains largely elusive. Here, we demonstrate that activation of cap-dependent translation by silencing the translational repressor 4E-BP1 causes cancer epithelial cells to undergo epithelial-mesenchymal transition (EMT), which is associated with selective upregulation of the EMT inducer Snail followed by repression of E-cadherin expression and promotion of cell migratory and invasive capabilities as well as metastasis. Conversely, inhibition of cap-dependent translation by a dominant active mutant 4E-BP1 effectively downregulates Snail expression and suppresses cell migration and invasion. Furthermore, dephosphorylation of 4E-BP1 by mTORC1 inhibition or directly targeting the translation initiation also profoundly attenuates Snail expression and cell motility, whereas knockdown of 4E-BP1 or overexpression of Snail significantly rescues the inhibitory effects. Importantly, 4E-BP1-regulated Snail expression is not associated with its changes in the level of transcription or protein stability. Together, these findings indicate a novel role of 4E-BP1 in the regulation of EMT and cell motility through translational control of Snail expression and activity, and suggest that targeting cap-dependent translation may provide a promising approach for blocking Snail-mediated metastatic potential of cancer.
Collapse
Affiliation(s)
- Weijia Cai
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Qing Ye
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Qing-Bai She
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
261
|
Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1α and HIF2α stability and tumor growth, angiogenesis, and metastasis. Mol Cancer Res 2014; 12:1520-31. [PMID: 25103499 DOI: 10.1158/1541-7786.mcr-13-0682] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Tumor growth, progression, and response to the hypoxic tumor microenvironment involve the action of hypoxia-inducible transcription factors, HIF1 and HIF2. HIF is a heterodimeric transcription factor containing an inducible HIFα subunit and a constitutively expressed HIFβ subunit. The signaling pathways operational in macrophages regulating hypoxia-induced HIFα stabilization remain the subject of intense investigation. Here, it was discovered that the PTEN/PI3K/AKT signaling axis controls hypoxia-induced HIF1α (HIF1A) and HIF2α (EPAS1) stability in macrophages. Using genetic mouse models and pan-PI3K as well as isoform-specific inhibitors, inhibition of the PI3K/AKT pathway blocked the accumulation of HIFα protein and its primary transcriptional target VEGF in response to hypoxia. Moreover, blocking the PI3K/AKT signaling axis promoted the hypoxic degradation of HIFα via the 26S proteasome. Mechanistically, a macrophage-dominant PI3K isoform (p110γ) directed tumor growth, angiogenesis, metastasis, and the HIFα/VEGF axis. Moreover, a pan-PI3K inhibitor (SF1126) blocked tumor-induced angiogenesis and inhibited VEGF and other proangiogenic factors secreted by macrophages. These data define a novel molecular mechanism by which PTEN/PI3K/AKT regulates the proteasome-dependent stability of HIFα under hypoxic conditions, a signaling pathway in macrophages that controls tumor-induced angiogenesis and metastasis. IMPLICATIONS This study indicates that PI3K inhibitors are excellent candidates for the treatment of cancers where macrophages promote tumor progression.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Alok R Singh
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Donald L Durden
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California. Division of Pediatric Hematology-Oncology, UCSD Rady Children's Hospital, San Diego, California. SignalRx Pharmaceuticals, San Diego, California.
| |
Collapse
|
262
|
Gonugunta VK, Miao L, Sareddy GR, Ravindranathan P, Vadlamudi R, Raj GV. The social network of PELP1 and its implications in breast and prostate cancers. Endocr Relat Cancer 2014; 21:T79-86. [PMID: 24859989 DOI: 10.1530/erc-13-0502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proline, glutamic acid- and leucine-rich protein 1 (PELP1) is a multi-domain scaffold protein that serves as a platform for various protein-protein interactions between steroid receptors (SRs) and signaling factors and cell cycle, transcriptional, cytoskeletal, and epigenetic remodelers. PELP1 is known to be a coregulator of transcription and participates in the nuclear and extranuclear functions of SRs, ribosome biogenesis, and cell cycle progression. The expression and localization of PELP1 are dysregulated in hormonal cancers including breast and prostate cancers. This review focuses on the interactive functions and therapeutic and prognostic significance of PELP1 in breast and prostate cancers.
Collapse
Affiliation(s)
- Vijay K Gonugunta
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Lu Miao
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Gangadhara R Sareddy
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Preethi Ravindranathan
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Ratna Vadlamudi
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Ganesh V Raj
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
263
|
Zhang Y, Hu T, Hua C, Gu J, Zhang L, Hao S, Liang H, Wang X, Wang W, Xu J, Liu H, Liu B, Cheng T, Yuan W. Rictor is required for early B cell development in bone marrow. PLoS One 2014; 9:e103970. [PMID: 25084011 PMCID: PMC4119011 DOI: 10.1371/journal.pone.0103970] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
The development of early B cells, which are generated from hematopoietic stem cells (HSCs) in a series of well-characterized stages in bone marrow (BM), represents a paradigm for terminal differentiation processes. Akt is primarily regulated by phosphorylation at Thr308 by PDK1 and at Ser473 by mTORC2, and Akt signaling plays a key role in hematopoiesis. However, the role of mTORC2 in the development of early B cells remains poorly understood. In this study, we investigated the functional role of mTORC2 by specifically deleting an integral component, Rictor, in a hematopoietic system. We demonstrated that the deletion of Rictor induced an aberrant increase in the FoxO1 and Rag-1 proteins in BM B cells and that this increase was accompanied by a significant decrease in the abundance of B cells in the peripheral blood (PB) and the spleen, suggesting impaired development of early B cells in adult mouse BM. A BM transplantation assay revealed that the B cell differentiation defect induced by Rictor deletion was not affected by the BM microenvironment, thus indicating a cell-intrinsic mechanism. Furthermore, the knockdown of FoxO1 in Rictor-deleted HSCs and hematopoietic progenitor cells (HPCs) promoted the maturation of B cells in the BM of recipient mice. In addition, we revealed that treatment with rapamycin (an mTORC1 inhibitor) aggravated the deficiency in B cell development in the PB and BM. Taken together, our results provide further evidence that Rictor regulates the development of early B cells in a cell-intrinsic manner by modifying the expression of FoxO1 and Rag-1.
Collapse
Affiliation(s)
- Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianyuan Hu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunlan Hua
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Gu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyan Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Haoyue Liang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanzhi Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
264
|
O'Brien NJ, Brzozowski M, Wilson DJ, Deady LW, Abbott BM. Synthesis and biological evaluation of substituted 2-anilino-7H-pyrrolopyrimidines as PDK1 inhibitors. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
265
|
Discovery of 9-(1-anilinoethyl)-2-morpholino-4-oxo-pyrido[1,2-a]pyrimidine-7-carboxamides as PI3Kβ/δ inhibitors for the treatment of PTEN-deficient tumours. Bioorg Med Chem Lett 2014; 24:3928-35. [DOI: 10.1016/j.bmcl.2014.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022]
|
266
|
O’Brien NJ, Brzozowski M, Wilson DJ, Deady LW, Abbott BM. Synthesis and biological evaluation of substituted 3-anilino-quinolin-2(1H)-ones as PDK1 inhibitors. Bioorg Med Chem 2014; 22:3781-90. [DOI: 10.1016/j.bmc.2014.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
|
267
|
Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech 2014; 6:1353-63. [PMID: 24203995 PMCID: PMC3820259 DOI: 10.1242/dmm.011338] [Citation(s) in RCA: 557] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An increased rate of lipid synthesis in cancerous tissues has long been recognised as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids to cellular transformation, tumour development and tumour progression, as well as their potential role in facilitating the spread of cancerous cells to secondary sites, are not yet fully understood. In this article, we review the recent findings that support the importance of lipid synthesis and metabolism in tumorigenesis. Specifically, we explore the role of aberrant lipid biosynthesis in cancer cell migration and invasion, and in the induction of tumour angiogenesis. These processes are crucial for the dissemination of tumour cells and formation of metastases, which constitute the main cause of cancer mortality.
Collapse
Affiliation(s)
- Franziska Baenke
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | | | | | | |
Collapse
|
268
|
Kumar P, Tripathi A, Ranjan R, Halbert J, Gilberger T, Doerig C, Sharma P. Regulation of Plasmodium falciparum development by calcium-dependent protein kinase 7 (PfCDPK7). J Biol Chem 2014; 289:20386-95. [PMID: 24895132 DOI: 10.1074/jbc.m114.561670] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Second messengers such as phosphoinositides and calcium are known to control diverse processes involved in the development of malaria parasites. However, the underlying molecular mechanisms and pathways need to be unraveled, which may be achieved by understanding the regulation of effectors of these second messengers. Calcium-dependent protein kinase (CDPK) family members regulate diverse parasitic processes. Because CDPKs are absent from the host, these kinases are considered as potential drug targets. We have dissected the function of an atypical CDPK from Plasmodium falciparum, PfCDPK7. The domain architecture of PfCDPK7 is very different from that of other CDPKs; it has a pleckstrin homology domain adjacent to the kinase domain and two calcium-binding EF-hands at its N terminus. We demonstrate that PfCDPK7 interacts with PI(4,5)P2 via its pleckstrin homology domain, which may guide its subcellular localization. Disruption of PfCDPK7 caused a marked reduction in the growth of the blood stage parasites, as maturation of rings to trophozoites was markedly stalled. In addition, parasite proliferation was significantly attenuated. These findings shed light on an important role for PfCDPK7 in the erythrocytic asexual cycle of malaria parasites.
Collapse
Affiliation(s)
- Praveen Kumar
- From the Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Anuj Tripathi
- From the Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Ravikant Ranjan
- From the Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Jean Halbert
- the Inserm-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tim Gilberger
- the Department of Pathology and Molecular Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada, the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Christian Doerig
- the Inserm-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland, the Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Pushkar Sharma
- From the Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India,
| |
Collapse
|
269
|
Haselmayer P, Camps M, Muzerelle M, El Bawab S, Waltzinger C, Bruns L, Abla N, Polokoff MA, Jond-Necand C, Gaudet M, Benoit A, Bertschy Meier D, Martin C, Gretener D, Lombardi MS, Grenningloh R, Ladel C, Petersen JS, Gaillard P, Ji H. Characterization of Novel PI3Kδ Inhibitors as Potential Therapeutics for SLE and Lupus Nephritis in Pre-Clinical Studies. Front Immunol 2014; 5:233. [PMID: 24904582 PMCID: PMC4033217 DOI: 10.3389/fimmu.2014.00233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022] Open
Abstract
SLE is a complex autoimmune inflammatory disease characterized by pathogenic autoantibody production as a consequence of uncontrolled T–B cell activity and immune-complex deposition in various organs, including kidney, leading to tissue damage and function loss. There is a high unmet need for better treatment options other than corticosteroids and immunosuppressants. Phosphoinositol-3 kinase δ (PI3Kδ) is a promising target in this respect as it is essential in mediating B- and T-cell function in mouse and human. We report the identification of selective PI3Kδ inhibitors that blocked B-, T-, and plasmacytoid dendritic cell activities in human peripheral blood and in primary cell co-cultures (BioMAP®) without detecting signs of undesired toxicity. In an IFNα-accelerated mouse SLE model, our PI3Kδ inhibitors blocked nephritis development, whether administered at the onset of autoantibody appearance or the onset of proteinuria. Disease amelioration correlated with normalized immune cell numbers in the spleen, reduced immune-complex deposition as well as reduced inflammation, fibrosis, and tissue damage in the kidney. Improvements were similar to those achieved with a frequently prescribed drug for lupus nephritis, the potent immunosuppressant mycophenolate mofetil. Finally, we established a pharmacodynamics/pharmacokinetic/efficacy model that revealed that a sustained PI3Kδ inhibition of 50% is sufficient to achieve full efficacy in our disease model. These data demonstrate the therapeutic potential of PI3Kδ inhibitors in SLE and lupus nephritis.
Collapse
Affiliation(s)
- Philipp Haselmayer
- Immunology, Department of Preclinical Pharmacology, Merck Serono , Darmstadt , Germany ; Biologics and Immunology Platform, Merck Serono , Darmstadt , Germany
| | - Montserrat Camps
- Department of Cellular Immunology, Merck Serono SA , Geneva , Switzerland ; Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland
| | | | - Samer El Bawab
- Drug Metabolism and Pharmacokinetics (DMPK), Non-Clinical Development, Merck Serono , Darmstadt , Germany
| | - Caroline Waltzinger
- Department of Cellular Immunology, Merck Serono SA , Geneva , Switzerland ; Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland
| | - Lisa Bruns
- Immunology, Department of Preclinical Pharmacology, Merck Serono , Darmstadt , Germany ; Biologics and Immunology Platform, Merck Serono , Darmstadt , Germany
| | - Nada Abla
- Drug Metabolism and Pharmacokinetics (DMPK), Non-Clinical Development, Merck Serono SA , Geneva , Switzerland
| | - Mark A Polokoff
- BioSeek® Division, DiscoveRx Corporation , South San Francisco, CA , USA
| | - Carole Jond-Necand
- Department of Cellular Immunology, Merck Serono SA , Geneva , Switzerland ; Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland
| | - Marilène Gaudet
- Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland ; Department of Early PK/PD Biomarker, Merck Serono SA , Geneva , Switzerland
| | - Audrey Benoit
- Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland ; Department of Early PK/PD Biomarker, Merck Serono SA , Geneva , Switzerland
| | - Dominique Bertschy Meier
- Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland ; Department of Early PK/PD Biomarker, Merck Serono SA , Geneva , Switzerland
| | - Catherine Martin
- Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland ; Department of Early PK/PD Biomarker, Merck Serono SA , Geneva , Switzerland
| | - Denise Gretener
- Department of Screening, Merck Serono SA , Geneva , Switzerland
| | - Maria Stella Lombardi
- Department of Cellular Immunology, Merck Serono SA , Geneva , Switzerland ; Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland
| | - Roland Grenningloh
- Immunology, Department of Preclinical Pharmacology, EMD Serono Research and Development Institute , Billerica, MA , USA
| | - Christoph Ladel
- Biologics and Immunology Platform, Merck Serono , Darmstadt , Germany
| | | | | | - Hong Ji
- Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland ; Department of Early PK/PD Biomarker, Merck Serono SA , Geneva , Switzerland
| |
Collapse
|
270
|
Acosta YY, Montes-Casado M, Aragoneses-Fenoll L, Dianzani U, Portoles P, Rojo JM. Suppression of CD4+ T lymphocyte activation in vitro and experimental encephalomyelitis in vivo by the phosphatidyl inositol 3-kinase inhibitor PIK-75. Int J Immunopathol Pharmacol 2014; 27:53-67. [PMID: 24674679 DOI: 10.1177/039463201402700108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Class IA phosphatidyl inositol-3 kinases (PI3-K) are important targets in cancer therapy and are essential to immune responses, particularly through costimulation by CD28 and ICOS. Thus, small PI3-K inhibitors are likely candidates to immune intervention. PIK-75 is an efficient inhibitor of the PI3-K p110alpha catalytic subunits that suppresses tumor growth, and its effects on immune and autoimmune responses should be studied. Here, we describe the effect of PIK-75 on different immune parameters in vitro and in vivo. PIK-75 at concentrations commonly used in vitro (≥0.1 μM) inhibited T and B cell activation by Concanavalin A and LPS, respectively, and survival of non-stimulated spleen cells. In naive CD4+ T lymphocytes, PIK-75 induced apoptosis of resting or activated cells that was prevented by caspase inhibitors. At low nanomolar concentrations (≤10 nM), PIK-75 inhibited naive CD4+ T cell proliferation, and IL-2 and IFN-gamma production induced by anti-CD3 plus anti-CD28. In activated CD4+ T blasts costimulated by ICOS, PIK-75 (less than 10 nM) inhibited IFN-gamma, IL-17A, or IL-21 secretion. Furthermore, PIK-75 (20 mg/kg p.o.) suppressed clinical symptoms in ongoing experimental autoimmune encephalomyelitis (EAE) and inhibited MOG-specific responses in vitro. Thus, PIK-75 is an efficient suppressor of EAE, modulating lymphocyte function and survival.
Collapse
Affiliation(s)
- Y Y Acosta
- Department of Molecular and Cellular Medicine, Centre of Biological Investigation, CSIC, Madrid, Spain
| | - M Montes-Casado
- Unit of Cellular Immunology, National Centre of Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - L Aragoneses-Fenoll
- Unit of Cellular Immunology, National Centre of Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - U Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) and Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Novara, Italy
| | - P Portoles
- Unit of Cellular Immunology, National Centre of Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - J M Rojo
- Department of Molecular and Cellular Medicine, Centre of Biological Investigation, CSIC, Madrid, Spain
| |
Collapse
|
271
|
Nelson VLB, Jiang YP, Dickman KG, Ballou LM, Lin RZ. Adipose tissue insulin resistance due to loss of PI3K p110α leads to decreased energy expenditure and obesity. Am J Physiol Endocrinol Metab 2014; 306:E1205-16. [PMID: 24691033 PMCID: PMC4025064 DOI: 10.1152/ajpendo.00625.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adipose tissue is a highly insulin-responsive organ that contributes to metabolic regulation. Insulin resistance in the adipose tissue affects systemic lipid and glucose homeostasis. Phosphoinositide 3-kinase (PI3K) mediates downstream insulin signaling in adipose tissue, but its physiological role in vivo remains unclear. Using Cre recombinase driven by the aP2 promoter, we created mice that lack the class 1A PI3K catalytic subunit p110α or p110β specifically in the white and brown adipose tissue. The loss of p110α, not p110β, resulted in increased adiposity, glucose intolerance and liver steatosis. Mice lacking p110α in adipose tissue exhibited a decrease in energy expenditure but no change in food intake or activity compared with control animals. This low energy expenditure is a consequence of low cellular respiration in the brown adipocytes caused by a decrease in expression of key mitochondrial genes including uncoupling protein-1. These results illustrate a critical role of p110α in the regulation of energy expenditure through modulation of cellular respiration in the brown adipose tissue and suggest that compromised insulin signaling in adipose tissue might be involved in the onset of obesity.
Collapse
Affiliation(s)
- Victoria L B Nelson
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Ya-Ping Jiang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York; Department of Medicine, Stony Brook University, Stony Brook, New York; and
| | - Lisa M Ballou
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Richard Z Lin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York; Department of Veterans Affairs Medical Center, Northport, New York
| |
Collapse
|
272
|
Abstract
Class I PI3Ks are composed of four catalytic subunit variants (p110α, p110β, p110δ and p110γ). The PI3K pathway is among the most frequently activated pathways in many diseases, and has emerged as an attractive target for drug development, in particular for the treatment of many human cancers including breast, prostate, ovarian, gastric, colon and hepatocellular cancers. One of the challenges in the discovery of drugs that target kinases is designing small-molecule inhibitors that are sufficiently selective to minimize off-target activity and reduce the risk of potential toxicity. This review explores the current landscape of PI3K-selective inhibitor development and highlights recent advances in achieving selectivity for PI3Ks over other protein kinases, with an emphasis on available structural information.
Collapse
|
273
|
Ying WZ, Aaron KJ, Sanders PW. Sodium and potassium regulate endothelial phospholipase C-γ and Bmx. Am J Physiol Renal Physiol 2014; 307:F58-63. [PMID: 24785188 DOI: 10.1152/ajprenal.00615.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The amount of Na(+) and K(+) in the diet promotes significant changes in endothelial cell function. In the present study, a series of in vitro and in vivo experiments determined the role of Na(+) and K(+) in the regulation of two pleckstrin homology domain-containing intracellular signaling molecules, phospholipase C (PLC)-γ1 and epithelial and endothelial tyrosine kinase/bone marrow tyrosine kinase on chromosome X (Bmx), and agonist-generated Ca(2+) signaling in the endothelium. Extracellular K(+) concentration regulated the levels of activated PLC-γ1, Bmx, and carbachol-stimulated intracellular Ca(2+) mobilization in human endothelial cells. Additional experiments confirmed that high-conductance Ca(2+)-activated K(+) channels and phosphatidylinositol 3-kinase mediated these effects. The content of Na(+) and K(+) in the diet also regulated Bmx levels in endothelial cells and activated PLC-γ1 levels in rats in vivo. The effects of dietary K(+) on Bmx were more pronounced in rats fed a high-salt diet compared with rats fed a low-salt diet. These experiments elucidated an endothelial cell signaling mechanism regulated by electrolytes, further demonstrating an integral relationship between endothelial cell function and dietary Na(+) and K(+) content.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Kristal J Aaron
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
274
|
Gelabert-Baldrich M, Soriano-Castell D, Calvo M, Lu A, Viña-Vilaseca A, Rentero C, Pol A, Grinstein S, Enrich C, Tebar F. Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association. FASEB J 2014; 28:3023-37. [PMID: 24719356 DOI: 10.1096/fj.13-241158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endocytic compartment is emerging as a functional platform for controlling important cellular processes. We have found that ∼10 to 15% of total KRas, a protein that is frequently mutated in cancer, is present on endosomes, independent of its activation state. The dynamics of GFP-KRas wild-type (WT) and constitutively active or inactive mutants on endosomes were analyzed by fluorescence recovery after photobleaching (FRAP) microscopy. The measurements revealed an extraordinarily fast recovery of KRas WT [half-time (HT), ∼1.3 s] compared to HRas, Rab5, and EGFR, with the active KRasG12V mutant being significantly faster and more mobile (HT, ∼1 s, and ∼82% of exchangeable fraction) than the inactive KRasS17N (HT, ∼1.6 s, and ∼60% of exchangeable fraction). KRas rapidly switches from the cytoplasm to the endosomal membranes by an electrostatic interaction between its polybasic region and the endosomal acidic phospholipids, mainly phosphatidylserine.-Gelabert-Baldrich, M., Soriano-Castell, D., Calvo, M., Lu, A., Viña-Vilaseca, A., Rentero, C., Pol, A., Grinstein, S. Enrich, C., Tebar, F. Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association.
Collapse
Affiliation(s)
- Mariona Gelabert-Baldrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - David Soriano-Castell
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Maria Calvo
- Unitat de Microscopia Òptica Avançada, Facultat de Medicina, Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Arnau Viña-Vilaseca
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Albert Pol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; and
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| |
Collapse
|
275
|
O'Donnell VB, Murphy RC, Watson SP. Platelet lipidomics: modern day perspective on lipid discovery and characterization in platelets. Circ Res 2014; 114:1185-203. [PMID: 24677238 PMCID: PMC4021279 DOI: 10.1161/circresaha.114.301597] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipids are diverse families of biomolecules that perform essential structural and signaling roles in platelets. Their formation and metabolism are tightly controlled by enzymes and signal transduction pathways, and their dysregulation leads to significant defects in platelet function and disease. Platelet activation is associated with significant changes to membrane lipids, and formation of diverse bioactive lipids plays essential roles in hemostasis. In recent years, new generation mass spectrometry analysis of lipids (termed lipidomics) has begun to alter our understanding of how these molecules participate in key cellular processes. Although the application of lipidomics to platelet biology is still in its infancy, seminal earlier studies have shaped our knowledge of how lipids regulate key aspects of platelet biology, including aggregation, shape change, coagulation, and degranulation, as well as how lipids generated by platelets influence other cells, such as leukocytes and the vascular wall, and thus how they regulate hemostasis, vascular integrity, and inflammation, as well as contribute to pathologies, including arterial/deep vein thrombosis and atherosclerosis. This review will provide a brief historical perspective on the characterization of lipids in platelets, then an overview of the new generation lipidomic approaches, their recent application to platelet biology, and future perspectives for research in this area. The major platelet-regulatory lipid families, their formation, metabolism, and their role in health and disease, will be summarized.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- From the Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (V.B.O'D.); Department of Pharmacology, University of Colorado at Denver, Aurora (R.C.M.); and Birmingham Platelet Group, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Birmingham, United Kingdom (S.P.W.)
| | | | | |
Collapse
|
276
|
Abstract
The central role of phosphoinositide 3-kinase (PI3K) activation in tumour cell biology has prompted a sizeable effort to target PI3K and/or downstream kinases such as AKT and mammalian target of rapamycin (mTOR) in cancer. However, emerging clinical data show limited single-agent activity of inhibitors targeting PI3K, AKT or mTOR at tolerated doses. One exception is the response to PI3Kδ inhibitors in chronic lymphocytic leukaemia, where a combination of cell-intrinsic and -extrinsic activities drive efficacy. Here, we review key challenges and opportunities for the clinical development of inhibitors targeting the PI3K-AKT-mTOR pathway. Through a greater focus on patient selection, increased understanding of immune modulation and strategic application of rational combinations, it should be possible to realize the potential of this promising class of targeted anticancer agents.
Collapse
|
277
|
Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis. Proc Natl Acad Sci U S A 2014; 111:E978-87. [PMID: 24591580 DOI: 10.1073/pnas.1311029111] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macropinocytosis is a highly conserved endocytic process by which extracellular fluid and solutes are internalized into cells. Macropinocytosis starts with the formation of membrane ruffles at the plasma membrane and ends with their closure. The transient and sequential emergence of phosphoinositides PI(3,4,5)P3 and PI(3,4)P2 in the membrane ruffles is essential for macropinocytosis. By making use of information in the Caenorhabditis elegans mutants defective in fluid-phase endocytosis, we found that mammalian phosphoinositide phosphatase MTMR6 that dephosphorylates PI(3)P to PI, and its binding partner MTMR9, are required for macropinocytosis. INPP4B, which dephosphorylates PI(3,4)P2 to PI(3)P, was also found to be essential for macropinocytosis. These phosphatases operate after the formation of membrane ruffles to complete macropinocytosis. Finally, we showed that KCa3.1, a Ca(2+)-activated K(+) channel that is activated by PI(3)P, is required for macropinocytosis. We propose that the sequential breakdown of PI(3,4,5)P3 → PI(3,4)P2 → PI(3)P → PI controls macropinocytosis through specific effectors of the intermediate phosphoinositides.
Collapse
|
278
|
Koushik AB, Welter BH, Rock ML, Temesvari LA. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica. EUKARYOTIC CELL 2014; 13:401-11. [PMID: 24442890 PMCID: PMC3957588 DOI: 10.1128/ec.00329-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 11/20/2022]
Abstract
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen.
Collapse
Affiliation(s)
- Amrita B. Koushik
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Brenda H. Welter
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Michelle L. Rock
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Lesly A. Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
279
|
Puri KD, Di Paolo JA, Gold MR. B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies. Int Rev Immunol 2014; 32:397-427. [PMID: 23886342 DOI: 10.3109/08830185.2013.818140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell receptor (BCR) signaling is essential for normal B-cell development, selection, survival, proliferation, and differentiation into antibody-secreting cells. Similarly, this pathway plays a key role in the pathogenesis of multiple B-cell malignancies. Genetic and pharmacological approaches have established an important role for the Spleen tyrosine kinase (Syk), Bruton's tyrosine kinase (Btk), and phosphatidylinositol 3-kinase isoform p110delta (PI3Kδ) in coupling the BCR and other BCRs to B-cell survival, migration, and activation. In the past few years, several small-molecule inhibitory drugs that target PI3Kδ, Btk, and Syk have been developed and shown to have efficacy in clinical trials for the treatment of several types of B-cell malignancies. Emerging preclinical data have also shown a critical role of BCR signaling in the activation and function of self-reactive B cells that contribute to autoimmune diseases. Because BCR signaling plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, inhibition of this pathway may represent a promising new strategy for treating these diseases. This review summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity of these BCR signaling inhibitors, with a focus on their emerging role in treating lymphoid malignancies and autoimmune disorders.
Collapse
|
280
|
Marahatta A, Bhandary B, Lee YC, Kim SR, Chae HJ. Development and validation of a highly sensitive LC–MS/MS method for quantification of IC87114 in mice plasma, bronchoalveolar lavage and lung samples: Application to pharmacokinetic study. J Pharm Biomed Anal 2014; 89:197-202. [DOI: 10.1016/j.jpba.2013.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/02/2013] [Accepted: 11/05/2013] [Indexed: 11/15/2022]
|
281
|
Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation. PLoS One 2014; 9:e85110. [PMID: 24416348 PMCID: PMC3885679 DOI: 10.1371/journal.pone.0085110] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/01/2013] [Indexed: 12/14/2022] Open
Abstract
Olfactory receptors (ORs) are expressed in the olfactory epithelium, where they detect odorants, but also in other tissues with additional functions. Some ORs are even overexpressed in tumor cells. In this study, we identified ORs expressed in enterochromaffin tumor cells by RT-PCR, showing that single cells can co-express several ORs. Some of the receptors identified were already reported in other tumors, but they are orphan (without known ligand), as it is the case for most of the hundreds of human ORs. Thus, genes coding for human ORs with known ligands were transfected into these cells, expressing functional heterologous ORs. The in vitro stimulation of these cells by the corresponding OR odorant agonists promoted cell invasion of collagen gels. Using LNCaP prostate cancer cells, the stimulation of the PSGR (Prostate Specific G protein-coupled Receptor), an endogenously overexpressed OR, by β-ionone, its odorant agonist, resulted in the same phenotypic change. We also showed the involvement of a PI3 kinase γ dependent signaling pathway in this promotion of tumor cell invasiveness triggered by OR stimulation. Finally, after subcutaneous inoculation of LNCaP cells into NSG immunodeficient mice, the in vivo stimulation of these cells by the PSGR agonist β-ionone significantly enhanced metastasis emergence and spreading.
Collapse
|
282
|
Brzozowski M, O'Brien NJ, Wilson DJ, Abbott BM. Synthesis of substituted 4-(1H-indol-6-yl)-1H-indazoles as potential PDK1 inhibitors. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.11.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
283
|
Abstract
Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that regulate multiple biological functions such as cell growth, proliferation, migration, and survival. Class I PI3Ks consist of four kinases isoforms. Over the past years many studies have documented that each isoform of PI3K plays specific biological functions in different cell types. Accumulating evidence indicates that activation of PI3K signaling is deregulated in human disease, including cancer. A major pharmaceutical effort has gone into developing PI3K inhibitors that hit multiple or individual PI3K isoforms, which are currently used in early and late-phase clinical trials. In this chapter we describe an in vitro PI3K assay that may be helpful in verifying which tumor cells have increased PI3K activity and thus may be targeted with inhibitors of PI3K.
Collapse
Affiliation(s)
- Antonio Bilancio
- Dipartimento di Biochimica, Biofisica e Patologia Generale, II Università di Napoli, Via L. De Crecchio 7, 80138, Naples, Italy,
| | | |
Collapse
|
284
|
Mierke CT. The role of focal adhesion kinase in the regulation of cellular mechanical properties. Phys Biol 2013; 10:065005. [PMID: 24304934 DOI: 10.1088/1478-3975/10/6/065005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, D-04103 Leipzig, Germany
| |
Collapse
|
285
|
Oka Y, Yabuuchi T, Oi T, Kuroda S, Fujii Y, Ohtake H, Inoue T, Wakahara S, Kimura K, Fujita K, Endo M, Taguchi K, Sekiguchi Y. Discovery of N-{5-[3-(3-hydroxypiperidin-1-yl)-1,2,4-oxadiazol-5-yl]-4-methyl-1,3-thiazol-2-yl}acetamide (TASP0415914) as an orally potent phosphoinositide 3-kinase γ inhibitor for the treatment of inflammatory diseases. Bioorg Med Chem 2013; 21:7578-83. [DOI: 10.1016/j.bmc.2013.10.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 10/25/2013] [Accepted: 10/26/2013] [Indexed: 11/27/2022]
|
286
|
Fan Z, Li C, Qin C, Xie L, Wang X, Gao Z, Qiangbacuozhen, Wang T, Yu L, Liu H. Role of the PI3K/AKT pathway in modulating cytoskeleton rearrangements and phenotype switching in rat pulmonary arterial vascular smooth muscle cells. DNA Cell Biol 2013; 33:12-9. [PMID: 24283363 DOI: 10.1089/dna.2013.2022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pulmonary arterial smooth muscle cell (PASMC) phenotype switching, which is characterized by changes in smooth muscle (SM)-specific gene expression, contributes to vascular remodeling in pulmonary hypertension. In addition, it has been shown that the transcription of SM-specific genes is modulated by cytoskeleton rearrangement. However, the intracellular mechanisms and signaling pathways that regulate these relationships are largely unknown. In the present study, we aimed to investigate the roles that phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB), also known as AKT, play in modulating the cytoskeleton and phenotype of rat PASMCs. To observe the downstream effects of inhibiting or enhancing PI3K/AKT pathway activity, we used various approaches to manipulate protein function and gene expression. Treatment of PASMCs with platelet-derived growth factor (PDGF)-BB or PIK3CA-adenovirus induced cytoskeleton rearrangements and downregulated SM22α and α-SM actin gene expression. Inhibition of PI3K led to blocking of AKT phosphorylation and attenuated the PDGF-BB-induced downregulation of F-actin and SM-specific genes, the downstream effector of PI3K. The decrease in SM22α and α-SM actin mRNA levels induced by PDGF-BB was markedly and reproducibly blocked by LY294002. PI3K/AKT pathway plays a vital role in the modulation of PASMCs cytoskeleton rearrangement and phenotype switching.
Collapse
Affiliation(s)
- Zhiyu Fan
- 1 Pulmonary Vascular Remodeling Research Unit, West China Institute of Women's and Children's Health, West China Second University Hospital, Sichuan University , Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Wu J, Akkuratov EE, Bai Y, Gaskill CM, Askari A, Liu L. Cell signaling associated with Na(+)/K(+)-ATPase: activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry 2013; 52:9059-67. [PMID: 24266852 PMCID: PMC3868411 DOI: 10.1021/bi4011804] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Exposure
of intact cells to selective inhibitors of Na+/K+-ATPase such as ouabain activates several growth-related
cell signaling pathways. It has been suggested that the initial event
of these pathways is the binding of ouabain to a preexisting complex
of Src with Na+/K+-ATPase of the plasma membrane.
The aim of this work was to evaluate the role of Src in the ouabain-induced
activation of phosphatidylinositide 3-kinase 1A (PI3K1A) and its downstream
consequences. When fibroblasts devoid of Src (SYF cells) and controls
(Src++ cells) were exposed to ouabain, PI3K1A, Akt, and
proliferative growth were similarly stimulated in both cell lines.
Ouabain-induced activation of Akt was not prevented by the Src inhibitor
PP2. In contrast, ERK1/2 were not activated by ouabain in SYF cells
but were stimulated in Src++ cells; this was prevented
by PP2. In isolated adult mouse cardiac myocytes, where ouabain induces
hypertrophic growth, PP2 also did not prevent ouabain-induced activation
of Akt and the resulting hypertrophy. Ouabain-induced increases in
the levels of co-immunoprecipitation of the α-subunit of Na+/K+-ATPase with the p85 subunit of PI3K1A were
noted in SYF cells, Src++ cells, and adult cardiac myocytes.
In conjunction with previous findings, the results presented here
indicate that (a) if there is a preformed complex of Src and Na+/K+-ATPase, it is irrelevant to ouabain-induced
activation of the PI3K1A/Akt pathway through Na+/K+-ATPase and (b) a more likely, but not established, mechanism
of linkage of Na+/K+-ATPase to PI3K1A is the
ouabain-induced interaction of a proline-rich domain of the α-subunit
of Na+/K+-ATPase with the SH3 domain of the
p85 subunit of PI3K1A.
Collapse
Affiliation(s)
- Jian Wu
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus , Toledo, Ohio 43614, United States
| | | | | | | | | | | |
Collapse
|
288
|
Wei X, Wang X, Xia Y, Tang Y, Li F, Fang W, Zhang H. Kindlin-2 regulates renal tubular cell plasticity by activation of Ras and its downstream signaling. Am J Physiol Renal Physiol 2013; 306:F271-8. [PMID: 24226523 DOI: 10.1152/ajprenal.00499.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kindlin-2 is an adaptor protein that contributes to renal tubulointerstitial fibrosis (TIF). Epithelial-to-mesenchymal transition (EMT) in tubular epithelial cells was regarded as one of the key events in TIF. To determine whether kindlin-2 is involved in the EMT process, we investigated its regulation of EMT in human kidney tubular epithelial cells (TECs) and explored the underlying mechanism. In this study, we found that overexpression of kindlin-2 suppressed epithelial marker E-cadherin and increased the expression of fibronectin and the myofibroblast marker α-smooth muscle actin (SMA). Kindlin-2 significantly activated ERK1/2 and Akt, and inhibition of ERK1/2 or Akt reversed kindlin-2-induced EMT in human kidney TECs. Mechanistically, kindlin-2 interacted with Ras and son of sevenless (Sos)-1. Furthermore, overexpression of kindlin-2 increased Ras activation through recruiting Sos-1. Treatment with a Ras inhibitor markedly repressed kindlin-2-induced ERK1/2 and Akt activation, leading to restraint of EMT. We further demonstrated that knockdown of kindlin-2 inhibited EGF-induced Ras-Sos-1 interaction, resulting in reduction of Ras activation and suppression of EMT stimulated by EGF. Importantly, we found that depletion of kindlin-2 significantly inhibited activation of ERK1/2 and Akt signaling in mice with unilateral ureteral obstruction. We conclude that kindlin-2, through activating Ras and the downstream ERK1/2 and Akt signaling pathways, plays an important role in regulating renal tubular EMT and could be a potential therapeutic target for the treatment of fibrotic kidney diseases.
Collapse
Affiliation(s)
- Xiaofan Wei
- Laboratory of Molecular Cell Biology and Tumor Biology, Dept. of Anatomy, Histology, and Embryology, Peking Univ. Health Science Center, No. 38 Xue Yuan Rd., Beijing 100191, China.
| | | | | | | | | | | | | |
Collapse
|
289
|
Myer JR, Romach EH, Elangbam CS. Species- and Dose-Specific Pancreatic Responses and Progression in Single- and Repeat-Dose Studies with GI181771X. Toxicol Pathol 2013; 42:260-74. [DOI: 10.1177/0192623313506792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compound-induced pancreatic injury is a serious liability in preclinical toxicity studies. However, its relevance to humans should be cautiously evaluated because of interspecies variations. To highlight such variations, we evaluated the species- and dose-specific pancreatic responses and progression caused by GI181771X, a novel cholecystokinin 1 receptor agonist investigated by GlaxoSmithKline for the treatment of obesity. Acute (up to 2,000 mg/kg GI181771X, as single dose) and repeat-dose studies in mice and/or rats (0.25–250 mg/kg/day for 7 days to 26 weeks) showed wide-ranging morphological changes in the pancreas that were dose and duration dependent, including necrotizing pancreatitis, acinar cell hypertrophy/atrophy, zymogen degranulation, focal acinar cell hyperplasia, and interstitial inflammation. In contrast to rodents, pancreatic changes were not observed in cynomolgus monkeys given GI181771X (1–500 mg/kg/day with higher systemic exposure than rats) for up to 52 weeks. Similarly, no GI181771X treatment-associated abnormalities in pancreatic structure were noted in a 24-week clinical trial with obese patients (body mass index >30 or >27 kg/m2) as assessed by abdominal ultrasound or by magnetic resonance imaging. Mechanisms for interspecies variations in the pancreatic response to CCK among rodents, monkeys, and humans and their relevance to human risk are discussed.
Collapse
Affiliation(s)
- James R. Myer
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Elizabeth H. Romach
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | |
Collapse
|
290
|
Devereaux K, Dall’Armi C, Alcazar-Roman A, Ogasawara Y, Zhou X, Wang F, Yamamoto A, De Camilli P, Di Paolo G. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLoS One 2013; 8:e76405. [PMID: 24098492 PMCID: PMC3789715 DOI: 10.1371/journal.pone.0076405] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
Synthesis of phosphatidylinositol-3-phosphate (PI3P) by Vps34, a class III phosphatidylinositol 3-kinase (PI3K), is critical for the initial steps of autophagosome (AP) biogenesis. Although Vps34 is the sole source of PI3P in budding yeast, mammalian cells can produce PI3P through alternate pathways, including direct synthesis by the class II PI3Ks; however, the physiological relevance of these alternate pathways in the context of autophagy is unknown. Here we generated Vps34 knockout mouse embryonic fibroblasts (MEFs) and using a higher affinity 4x-FYVE finger PI3P-binding probe found a Vps34-independent pool of PI3P accounting for (~)35% of the total amount of this lipid species by biochemical analysis. Importantly, WIPI-1, an autophagy-relevant PI3P probe, still formed some puncta upon starvation-induced autophagy in Vps34 knockout MEFs. Additional characterization of autophagy by electron microscopy as well as protein degradation assays showed that while Vps34 is important for starvation-induced autophagy there is a significant component of functional autophagy occurring in the absence of Vps34. Given these findings, class II PI3Ks (α and β isoforms) were examined as potential positive regulators of autophagy. Depletion of class II PI3Ks reduced recruitment of WIPI-1 and LC3 to AP nucleation sites and caused an accumulation of the autophagy substrate, p62, which was exacerbated upon the concomitant ablation of Vps34. Our studies indicate that while Vps34 is the main PI3P source during autophagy, class II PI3Ks also significantly contribute to PI3P generation and regulate AP biogenesis.
Collapse
Affiliation(s)
- Kelly Devereaux
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Claudia Dall’Armi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Abel Alcazar-Roman
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yuta Ogasawara
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Xiang Zhou
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Fan Wang
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Akitsugu Yamamoto
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
291
|
Ying WZ, Aaron KJ, Sanders PW. Transforming growth factor-β regulates endothelial function during high salt intake in rats. Hypertension 2013; 62:951-6. [PMID: 24041947 DOI: 10.1161/hypertensionaha.113.01835] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies have demonstrated that an increase in dietary NaCl (salt) intake stimulated endothelial cells to produce transforming growth factor-β (TGF-β). The intent of the present study was to determine the functional significance of increased TGF-β on endothelial cell function. Young Sprague-Dawley rats were fed diets containing 0.3 or 8.0% NaCl for 2 days before treatment with a specific inhibitor of the TGF-β receptor I/activin receptor-like kinase 5 kinase, or vehicle for another 2 days. At day 4 of study, endothelial phosphorylated Smad2 (S465/467) increased and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) levels decreased in the high-salt-treated rats. In addition, phosphorylated Akt (S473) and phosphorylation of the endothelial isoform of NO synthase (NOS3) at S1177 increased. Treatment with the TGF-β receptor I/activin receptor-like kinase 5 inhibitor reduced Smad2 phosphorylation to levels observed in rats on the low-salt diet and prevented the downstream signaling events induced by the high-salt diet. In human umbilical vein endothelial cells, reduction in PTEN levels increased phosphorylated Akt and NOS3. Treatment of macrovascular endothelial cells with TGF-β1 increased phosphorylated NOS3 and the concentration of NO metabolites in the medium but had no effect on either of these variables in cells pretreated with small interfering RNA directed against PTEN. Thus, during high salt intake, an increase in TGF-β directly promoted a reduction in endothelial PTEN levels, which in turn regulated Akt activation and NOS3 phosphorylation. This effect closes a feedback loop that potentially mitigates the effect of TGF-β on the vasculature.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology/Department of Medicine, 642 Lyons-Harrison Research Bldg, 1530 Third Ave, South, University of Alabama at Birmingham, Birmingham, AL 35294-0007.
| | | | | |
Collapse
|
292
|
Mlcochova P, Pelchen-Matthews A, Marsh M. Organization and regulation of intracellular plasma membrane-connected HIV-1 assembly compartments in macrophages. BMC Biol 2013; 11:89. [PMID: 23915020 PMCID: PMC3751737 DOI: 10.1186/1741-7007-11-89] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/26/2013] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND In HIV-1-infected human monocyte-derived macrophages (MDMs), virus particles assemble primarily on intracellularly sequestered plasma membrane domains termed intracellular plasma membrane-connected compartments (IPMCs). Despite their clear role in virus formation, little is known of the organization, composition, dynamics or function of these compartments. RESULTS We have used amphipathic membrane dyes to reveal the complex three-dimensional structure of IPMCs in whole MDMs and to visualize connections between IPMCs and the cell surface. The observation of similar IPMC structures in both infected and uninfected cells indicates that these compartments are not induced by virus infection, but are present constitutively in MDMs. By expressing a phospholipase Cδ pleckstrin homology domain linked to green fluorescent protein, we demonstrate that IPMCs contain phosphatidylinositol 4,5-bisphosphate. Live cell imaging of cells expressing this probe shows that IPMCs are dynamic, but relatively stable, sub-domains of the plasma membrane. As recent electron microscopy studies indicated that portions of IPMCs are coated with β2 integrin-containing focal adhesion-like complexes linked to actin, we investigated whether the actin cytoskeleton is required for the organization of IPMCs. In MDMs treated with the actin polymerization inhibitor latrunculin, the normally compact IPMCs dispersed into smaller structures that remained connected to the plasma membrane. Moreover, latrunculin enhanced the release of preformed, mature HIV-1 particles from infected MDMs. CONCLUSIONS IPMCs are constitutive features of MDMs that are continuous with the plasma membrane and are used as unique sites for the assembly of new virions following infection by HIV-1. A functionally intact actin cytoskeleton is required to maintain the organization of the IPMCs and, in HIV-1-infected cells, perturbation of the actin cytoskeleton influences both the organization of the compartment and the release of sequestered virus.
Collapse
Affiliation(s)
- Petra Mlcochova
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Annegret Pelchen-Matthews
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
293
|
Structure guided optimization of a fragment hit to imidazopyridine inhibitors of PI3K. Bioorg Med Chem Lett 2013; 23:4652-6. [DOI: 10.1016/j.bmcl.2013.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022]
|
294
|
Raleigh DR, Haas-Kogan DA. Molecular targets and mechanisms of radiosensitization using DNA damage response pathways. Future Oncol 2013; 9:219-33. [PMID: 23414472 DOI: 10.2217/fon.12.185] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cellular reaction to genomic instability includes a network of signal transduction pathways collectively referred to as the DNA damage response (DDR). Activated by a variety of DNA lesions, the DDR orchestrates cell cycle arrest and DNA repair, and initiates apoptosis in instances where damage cannot be repaired. As such, disruption of the DDR increases the prevalence of DNA damage secondary to incomplete repair, and in doing so, enhances radiation-induced cytotoxicity. This article describes the molecular agents and their targets within DDR pathways that sensitize cells to radiation. Moreover, it reviews the therapeutic implications of these compounds, provides an overview of relevant clinical trials and offers a viewpoint on the evolution of the field in the years to come.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
295
|
Hoeller O, Bolourani P, Clark J, Stephens LR, Hawkins PT, Weiner OD, Weeks G, Kay RR. Two distinct functions for PI3-kinases in macropinocytosis. J Cell Sci 2013; 126:4296-307. [PMID: 23843627 DOI: 10.1242/jcs.134015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Class-1 PI3-kinases are major regulators of the actin cytoskeleton, whose precise contributions to chemotaxis, phagocytosis and macropinocytosis remain unresolved. We used systematic genetic ablation to examine this question in growing Dictyostelium cells. Mass spectroscopy shows that a quintuple mutant lacking the entire genomic complement of class-1 PI3-kinases retains only 10% of wild-type PtdIns(3,4,5)P3 levels. Chemotaxis to folate and phagocytosis of bacteria proceed normally in the quintuple mutant but macropinocytosis is abolished. In this context PI3-kinases show specialized functions, only one of which is directly linked to gross PtdIns(3,4,5)P3 levels: macropinosomes originate in patches of PtdIns(3,4,5)P3, with associated F-actin-rich ruffles, both of which depend on PI3-kinase 1/2 (PI3K1/2) but not PI3K4, whereas conversion of ruffles into vesicles requires PI3K4. A biosensor derived from the Ras-binding domain of PI3K1 suggests that Ras is activated throughout vesicle formation. Binding assays show that RasG and RasS interact most strongly with PI3K1/2 and PI3K4, and single mutants of either Ras have severe macropinocytosis defects. Thus, the fundamental function of PI3-kinases in growing Dictyostelium cells is in macropinocytosis where they have two distinct functions, supported by at least two separate Ras proteins.
Collapse
Affiliation(s)
- Oliver Hoeller
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
296
|
Jones PH, Mahauad-Fernandez WD, Madison MN, Okeoma CM. BST-2/tetherin is overexpressed in mammary gland and tumor tissues in MMTV-induced mammary cancer. Virology 2013; 444:124-39. [PMID: 23806386 DOI: 10.1016/j.virol.2013.05.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/03/2013] [Accepted: 05/31/2013] [Indexed: 11/26/2022]
Abstract
BST-2 restricts MMTV replication, but once infection has established, MMTV modulates BST-2 levels. MMTV-directed BST-2 modulation is tissue-specific and dependent on infection and neoplastic transformation status of cells. In the lymphoid compartment of infected mice, BST-2 expression is first upregulated and then significantly downregulated regardless of absence or presence of mammary tumors. However, in mammary gland tissues, upregulation of BST-2 expression is dependent on the presence of mammary tumors and tumor tissues themselves have high BST-2 levels. Elevated BST-2 expression in these tissues is not attributable to IFN since levels of IFNα and IFNγ negatively correlate with BST-2. Importantly, soluble factors released by tumor cells suppress IFNα and IFNγ but induce BST-2. These data suggest that overexpression of BST-2 in carcinoma tissues could not be attributed to IFNs but to a yet to be determined factor that upregulates BST-2 once oncogenesis is initiated.
Collapse
Affiliation(s)
- Philip H Jones
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA.
| | | | | | | |
Collapse
|
297
|
Lai CL, Srivastava A, Pilling C, Chase AR, Falke JJ, Voth GA. Molecular mechanism of membrane binding of the GRP1 PH domain. J Mol Biol 2013; 425:3073-90. [PMID: 23747485 DOI: 10.1016/j.jmb.2013.05.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
The pleckstrin homology (PH) domain of the general receptor of phosphoinositides 1 (GRP1) protein selectively binds to a rare signaling phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), in the membrane. The specific PIP3 lipid docking of GRP1 PH domain is essential to protein cellular function and is believed to occur in a stepwise process, electrostatic-driven membrane association followed by the specific PIP3 binding. By a combination of all-atom molecular dynamics (MD) simulations, coarse-grained analysis, electron paramagnetic resonance (EPR) membrane docking geometry, and fluorescence resonance energy transfer (FRET) kinetic studies, we have investigated the search and bind process in the GRP1 PH domain at the molecular scale. We simulated the two membrane binding states of the GRP1 PH domain in the PIP3 search process, before and after the GRP1 PH domain docks with the PIP3 lipid. Our results suggest that the background anionic phosphatidylserine lipids, which constitute around one-fifth of the membrane by composition, play a critical role in the initial stages of recruiting protein to the membrane surface through non-specific electrostatic interactions. Our data also reveal a previously unseen transient membrane association mechanism that is proposed to enable a two-dimensional "hopping" search of the membrane surface for the rare PIP3 target lipid. We further modeled the PIP3-bound membrane-protein system using the EPR membrane docking structure for the MD simulations, quantitatively validating the EPR membrane docking structure and augmenting our understanding of the binding interface with atomic-level detail. Several observations and hypotheses reached from our MD simulations are also supported by experimental kinetic studies.
Collapse
Affiliation(s)
- Chun-Liang Lai
- Department of Chemistry, Institute of Biophysical Dynamics, James Franck Institute, and Computation Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
298
|
Defective K-Ras oncoproteins overcome impaired effector activation to initiate leukemia in vivo. Blood 2013; 121:4884-93. [PMID: 23637129 DOI: 10.1182/blood-2012-05-432252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reversing the aberrant biochemical output of oncogenic Ras proteins is one of the great challenges in cancer therapeutics; however, it is uncertain which Ras effectors are required for tumor initiation and maintenance. To address this question, we expressed oncogenic K-Ras(D12) proteins with "second site" amino acid substitutions that impair PI3 kinase/Akt or Raf/MEK/ERK activation in bone marrow cells and transplanted them into recipient mice. In spite of attenuated signaling properties, defective K-Ras oncoproteins initiated aggressive clonal T-lineage acute lymphoblastic leukemia (T-ALL). Murine T-ALLs expressing second site mutant proteins restored full oncogenic Ras activity through diverse mechanisms, which included acquiring novel somatic third site Kras(D12) mutations and silencing PTEN. T-ALL cell lines lacking PTEN had elevated levels of phosphorylated Akt, a gene expression pattern similar to human early T-cell precursor ALL, and were resistant to the potent and selective MEK inhibitor PD0325901. Our data, which demonstrate strong selective pressure to overcome the defective activation of PI3 kinase/Akt and Raf/MEK/ERK, implicate both Ras effector pathways as drivers of aberrant growth in T-ALL and further suggest that leukemia cells will deploy multiple mechanisms to develop resistance to targeted inhibitors in vivo.
Collapse
|
299
|
Osorio-Fuentealba C, Contreras-Ferrat AE, Altamirano F, Espinosa A, Li Q, Niu W, Lavandero S, Klip A, Jaimovich E. Electrical stimuli release ATP to increase GLUT4 translocation and glucose uptake via PI3Kγ-Akt-AS160 in skeletal muscle cells. Diabetes 2013; 62:1519-26. [PMID: 23274898 PMCID: PMC3636621 DOI: 10.2337/db12-1066] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Skeletal muscle glucose uptake in response to exercise is preserved in insulin-resistant conditions, but the signals involved are debated. ATP is released from skeletal muscle by contractile activity and can autocrinely signal through purinergic receptors, and we hypothesized it may influence glucose uptake. Electrical stimulation, ATP, and insulin each increased fluorescent 2-NBD-Glucose (2-NBDG) uptake in primary myotubes, but only electrical stimulation and ATP-dependent 2-NBDG uptake were inhibited by adenosine-phosphate phosphatase and by purinergic receptor blockade (suramin). Electrical stimulation transiently elevated extracellular ATP and caused Akt phosphorylation that was additive to insulin and inhibited by suramin. Exogenous ATP transiently activated Akt and, inhibiting phosphatidylinositol 3-kinase (PI3K) or Akt as well as dominant-negative Akt mutant, reduced ATP-dependent 2-NBDG uptake and Akt phosphorylation. ATP-dependent 2-NBDG uptake was also inhibited by the G protein βγ subunit-interacting peptide βark-ct and by the phosphatidylinositol 3-kinase-γ (PI3Kγ) inhibitor AS605240. ATP caused translocation of GLUT4myc-eGFP to the cell surface, mechanistically mediated by increased exocytosis involving AS160/Rab8A reduced by dominant-negative Akt or PI3Kγ kinase-dead mutants, and potentiated by myristoylated PI3Kγ. ATP stimulated 2-NBDG uptake in normal and insulin-resistant adult muscle fibers, resembling the reported effect of exercise. Hence, the ATP-induced pathway may be tapped to bypass insulin resistance.
Collapse
Affiliation(s)
- Cesar Osorio-Fuentealba
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Ariel E. Contreras-Ferrat
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Francisco Altamirano
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- School of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Qing Li
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Wenyan Niu
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Sergio Lavandero
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- Faculty of Pharmaceutical and Chemical Sciences, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- Corresponding author: Enrique Jaimovich,
| |
Collapse
|
300
|
Lipid phosphatases identified by screening a mouse phosphatase shRNA library regulate T-cell differentiation and protein kinase B AKT signaling. Proc Natl Acad Sci U S A 2013; 110:E1849-56. [PMID: 23630283 DOI: 10.1073/pnas.1305070110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Screening a complete mouse phosphatase lentiviral shRNA library using high-throughput sequencing revealed several phosphatases that regulate CD4 T-cell differentiation. We concentrated on two lipid phosphatases, the myotubularin-related protein (MTMR)9 and -7. Silencing MTMR9 by shRNA or siRNA resulted in enhanced T-helper (Th)1 differentiation and increased Th1 protein kinase B (PKB)/AKT phosphorylation while silencing MTMR7 caused increased Th2 and Th17 differentiation and increased AKT phosphorylation in these cells. Irradiated mice reconstituted with MTMR9 shRNA-transduced bone marrow cells had an elevated proportion of T-box transcription factor T-bet expressors among their CD4 T cells. After adoptive transfer of naïve cells from such reconstituted mice, immunization resulted in a greater proportion of T-box transcription factor T-bet-expressing cells. Thus, myotubularin-related proteins have a role in controlling in vitro and in vivo Th-cell differentiation, possibly through regulation of phosphatidylinositol [3,4,5]-trisphosphate activity.
Collapse
|