251
|
Khatri J, Mills CE, Maskell P, Odongerel C, Webb AJ. It is rocket science - why dietary nitrate is hard to 'beet'! Part I: twists and turns in the realization of the nitrate-nitrite-NO pathway. Br J Clin Pharmacol 2017; 83:129-139. [PMID: 26896747 PMCID: PMC5338143 DOI: 10.1111/bcp.12913] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Dietary nitrate (found in green leafy vegetables, such as rocket, and in beetroot) is now recognized to be an important source of nitric oxide (NO), via the nitrate-nitrite-NO pathway. Dietary nitrate confers several cardiovascular beneficial effects on blood pressure, platelets, endothelial function, mitochondrial efficiency and exercise. While this pathway may now seem obvious, its realization followed a rather tortuous course over two decades. Early steps included the discovery that nitrite was a source of NO in the ischaemic heart but this appeared to have deleterious effects. In addition, nitrate-derived nitrite provided a gastric source of NO. However, residual nitrite was not thought to be absorbed systemically. Nitrite was also considered to be physiologically inert but potentially carcinogenic, through N-nitrosamine formation. In Part 1 of a two-part Review on the nitrate-nitrite-NO pathway we describe key twists and turns in the elucidation of the pathway and the underlying mechanisms. This provides the critical foundation for the more recent developments in the nitrate-nitrite-NO pathway which are covered in Part 2.
Collapse
Affiliation(s)
- Jibran Khatri
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical PharmacologySt. Thomas, HospitalLondonSE1 7EHUK
| | - Charlotte Elizabeth Mills
- Department of Dietetics and Nutrition, Division of Diabetes and Nutritional SciencesKing's College LondonLondonSE1 0NHUK
| | - Perry Maskell
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical PharmacologySt. Thomas, HospitalLondonSE1 7EHUK
| | - Chimed Odongerel
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical PharmacologySt. Thomas, HospitalLondonSE1 7EHUK
| | - Andrew James Webb
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical PharmacologySt. Thomas, HospitalLondonSE1 7EHUK
| |
Collapse
|
252
|
Dulce RA, Kulandavelu S, Schulman IH, Fritsch J, Hare JM. Nitric Oxide Regulation of Cardiovascular Physiology and Pathophysiology. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00024-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
253
|
Montenegro MF, Sundqvist ML, Larsen FJ, Zhuge Z, Carlström M, Weitzberg E, Lundberg JO. Blood Pressure–Lowering Effect of Orally Ingested Nitrite Is Abolished by a Proton Pump Inhibitor. Hypertension 2017; 69:23-31. [DOI: 10.1161/hypertensionaha.116.08081] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022]
Abstract
Inorganic nitrate and nitrite from dietary and endogenous sources are metabolized to NO and other bioactive nitrogen oxides that affect blood pressure. The mechanisms for nitrite bioactivation are unclear, but recent studies in rodents suggest that gastric acidity may influence the systemic effects of this anion. In a randomized, double-blind, placebo-controlled crossover study, we tested the effects of a proton pump inhibitor on the acute cardiovascular effects of nitrite. Fifteen healthy nonsmoking, normotensive subjects, aged 19 to 39 years, were pretreated with placebo or esomeprazole (3×40 mg) before ingesting sodium nitrite (0.3 mg kg
−1
), followed by blood pressure monitoring. Nitrite reduced systolic blood pressure by a maximum of 6±1.3 mm Hg when taken after placebo, whereas pretreatment with esomeprazole blunted this effect. Peak plasma nitrite, nitrate, and nitroso species levels after nitrite ingestion were similar in both interventions. In 8 healthy volunteers, we then infused increasing doses of sodium nitrite (1, 10, and 30 nmol kg
−1
min
−1
) intravenously. Interestingly, although plasma nitrite peaked at similar levels as with orally ingested nitrite (≈1.8 µmol/L), no changes in blood pressure were observed. In rodents, esomeprazole did not affect the blood pressure response to the NO donor, DEA NONOate, or vascular relaxation to nitroprusside and acetylcholine, demonstrating an intact downstream NO-signaling pathway. We conclude that the acute blood pressure–lowering effect of nitrite requires an acidic gastric environment. Future studies will reveal if the cardiovascular complications associated with the use of proton pump inhibitors are linked to interference with the nitrate–nitrite–NO pathway.
Collapse
Affiliation(s)
- Marcelo F. Montenegro
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Michaela L. Sundqvist
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Filip J. Larsen
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Zhengbing Zhuge
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Mattias Carlström
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Eddie Weitzberg
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| | - Jon O. Lundberg
- From the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.F.M., M.S., Z.Z., M.C., E.W., J.O.L.); and Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden (F.J.L.)
| |
Collapse
|
254
|
Jones DA, Rathod KS, Ahluwalia A. Update on Nitrite Reduction in Ischemic Disease: Mechanisms and Clinical Translation. NITRIC OXIDE 2017:195-211. [DOI: 10.1016/b978-0-12-804273-1.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
255
|
Cicero AFG, Fogacci F, Colletti A. Food and plant bioactives for reducing cardiometabolic disease risk: an evidence based approach. Food Funct 2017; 8:2076-2088. [DOI: 10.1039/c7fo00178a] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutraceuticals active on the main cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Arrigo F. G. Cicero
- Atherosclerosis and Metabolic Diseases Research Center
- Medical & Surgical Sciences Dept
- Alma Mater Studiorum – University of Bologna
- Bologna
- Italy
| | - Federica Fogacci
- Atherosclerosis and Metabolic Diseases Research Center
- Medical & Surgical Sciences Dept
- Alma Mater Studiorum – University of Bologna
- Bologna
- Italy
| | - Alessandro Colletti
- Atherosclerosis and Metabolic Diseases Research Center
- Medical & Surgical Sciences Dept
- Alma Mater Studiorum – University of Bologna
- Bologna
- Italy
| |
Collapse
|
256
|
Bailey SJ, Blackwell JR, Wylie LJ, Emery A, Taylor E, Winyard PG, Jones AM. Influence of iodide ingestion on nitrate metabolism and blood pressure following short-term dietary nitrate supplementation in healthy normotensive adults. Nitric Oxide 2016; 63:13-20. [PMID: 28024935 DOI: 10.1016/j.niox.2016.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
Uptake of inorganic nitrate (NO3-) into the salivary circulation is a rate-limiting step for dietary NO3- metabolism in mammals. It has been suggested that salivary NO3- uptake occurs in competition with inorganic iodide (I-). Therefore, this study tested the hypothesis that I- supplementation would interfere with NO3- metabolism and blunt blood pressure reductions after dietary NO3- supplementation. Nine healthy adults (4 male, mean ± SD, age 20 ± 1 yr) reported to the laboratory for initial baseline assessment (control) and following six day supplementation periods with 140 mL·day-1 NO3--rich beetroot juice (8.4 mmol NO3-·day-1) and 198 mg potassium gluconate·day-1 (nitrate), and 140 mL·day-1 NO3--rich beetroot juice and 450 μg potassium iodide·day-1 (nitrate + iodide) in a randomized, cross-over experiment. Salivary [I-] was higher in the nitrate + iodide compared to the control and NIT trials (P < 0.05). Salivary and plasma [NO3-] and [NO2-] were higher in the nitrate and nitrate + iodide trials compared to the control trial (P < 0.05). Plasma [NO3-] was higher (474 ± 127 vs. 438 ± 117 μM) and the salivary-plasma [NO3-] ratio was lower (14 ± 6 vs. 20 ± 6 μM), indicative of a lower salivary NO3- uptake, in the nitrate + iodide trial compared to the nitrate trial (P < 0.05). Plasma and salivary [NO2-] were not different between the nitrate and nitrate + iodide trials (P > 0.05). Systolic blood pressure was lower than control (112 ± 13 mmHg) in the nitrate (106 ± 13 mmHg) and nitrate + iodide (106 ± 11 mmHg) trials (P < 0.05), with no differences between the nitrate and nitrate + iodide trials (P > 0.05). In conclusion, co-ingesting NO3- and I- perturbed salivary NO3- uptake, but the increase in salivary and plasma [NO2-] and the lowering of blood pressure were similar compared to NO3- ingestion alone. Therefore, increased dietary I- intake, which is recommended in several countries worldwide as an initiative to offset hypothyroidism, does not appear to compromise the blood pressure reduction afforded by increased dietary NO3- intake.
Collapse
Affiliation(s)
- Stephen J Bailey
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK.
| | - Jamie R Blackwell
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Annabelle Emery
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Ellie Taylor
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Paul G Winyard
- University of Exeter Medical School, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| |
Collapse
|
257
|
Rathod KS, Jones DA, Van-Eijl TJA, Tsang H, Warren H, Hamshere SM, Kapil V, Jain AK, Deaner A, Poulter N, Caulfield MJ, Mathur A, Ahluwalia A. Randomised, double-blind, placebo-controlled study investigating the effects of inorganic nitrate on vascular function, platelet reactivity and restenosis in stable angina: protocol of the NITRATE-OCT study. BMJ Open 2016; 6:e012728. [PMID: 27998900 PMCID: PMC5223652 DOI: 10.1136/bmjopen-2016-012728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The mainstay treatment for reducing the symptoms of angina and long-term risk of heart attacks in patients with heart disease is stent implantation in the diseased coronary artery. While this procedure has revolutionised treatment, the incidence of secondary events remains a concern. These repeat events are thought to be due, in part, to continued enhanced platelet reactivity, endothelial dysfunction and ultimately restenosis of the stented artery. In this study, we will investigate whether a once a day inorganic nitrate administration might favourably modulate platelet reactivity and endothelial function leading to a decrease in restenosis. METHODS AND DESIGN NITRATE-OCT is a double-blind, randomised, single-centre, placebo-controlled phase II trial that will enrol 246 patients with stable angina due to have elective percutaneous coronary intervention procedure with stent implantation. Patients will be randomised to receive 6 months of a once a day dose of either nitrate-rich beetroot juice or nitrate-deplete beetroot juice (placebo) starting up to 1 week before their procedure. The primary outcome is reduction of in-stent late loss assessed by quantitative coronary angiography and optical coherence tomography at 6 months. The study is powered to detect a 0.22±0.55 mm reduction in late loss in the treatment group compared with the placebo group. Secondary end points include change from baseline assessment of endothelial function measured using flow-mediated dilation at 6 months, target vessel revascularisation (TVR), restenosis rate (diameter>50%) and in-segment late loss at 6 months, markers of inflammation and platelet reactivity and major adverse cardiac events (ie, myocardial infarction, death, cerebrovascular accident, TVR) at 12 and 24 months. ETHICS AND DISSEMINATION The study was approved by the Local Ethics Committee (15/LO/0555). Trial results will be published according to the CONSORT statement and will be presented at conferences and reported in peer-reviewed journals. TRIAL REGISTRATION NUMBERS NCT02529189 and ISRCTN17373946, Pre-results.
Collapse
Affiliation(s)
- Krishnaraj S Rathod
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Daniel A Jones
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - T J A Van-Eijl
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Hilda Tsang
- Imperial Clinical Trials Unit, Imperial College, London, UK
| | - Helen Warren
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
| | - Stephen M Hamshere
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Vikas Kapil
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
| | - Ajay K Jain
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- King George Hospital, Barking and Havering NHS Trust, London, UK
| | - Andrew Deaner
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- King George Hospital, Barking and Havering NHS Trust, London, UK
| | - Neil Poulter
- Imperial Clinical Trials Unit, Imperial College, London, UK
| | - Mark J Caulfield
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
| | - Anthony Mathur
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
- Department of Cardiology, Barts Heart Centre,2 St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Amrita Ahluwalia
- Barts NIHR Cardiovascular Biomedical Research Unit, Centre of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University, London, UK
| |
Collapse
|
258
|
Pinheiro LC, Ferreira GC, Amaral JH, Portella RL, Tella SDOC, Passos MA, Tanus-Santos JE. Oral nitrite circumvents antiseptic mouthwash-induced disruption of enterosalivary circuit of nitrate and promotes nitrosation and blood pressure lowering effect. Free Radic Biol Med 2016; 101:226-235. [PMID: 27769921 DOI: 10.1016/j.freeradbiomed.2016.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 02/04/2023]
Abstract
The nitric oxide (NO•) metabolites nitrite and nitrate exert antihypertensive effects by mechanisms that involve gastric formation of S-nitrosothiols. However, while the use of antiseptic mouthwash (AM) is known to attenuate the responses to nitrate by disrupting its enterosalivary cycle, there is little information about whether AM attenuates the effects of orally administered nitrite. We hypothesized that the antihypertensive effects of orally administered nitrite would not be prevented by AM because, in contrast to oral nitrate, oral nitrite could promote S-nitrosothiols formation in the stomach without intereference by AM. Chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats (and normotensive controls) treated with AM (or vehicle) once/day. We found that orally administered nitrite exerts antihypertensive effects that were not affected by AM. This finding contrasts with lack of antihypertensive responses to oral nitrate in 2K1C hypertensive rats treated with AM. Nitrite and nitrate treatments increased plasma nitrites, nitrates, and S-nitrosothiols concentrations. However, while treatment with AM attenuated the increases in plasma nitrite concentrations after both nitrite and nitrate treatments, AM attenuated the increases in S-nitrosothiols in nitrate-treated rats, but not in nitrite-treated rats. Moreover, AM attenuated vascular S-nitrosylation (detected by the SNO-RAC method) after nitrate, but not after nitrite treatment. Significant correlations were found between the hypotensive responses and S-nitrosothiols, and vascular S-nitrosylation levels. These results show for the first time that oral nitrite exerts antihypertensive effects notwithstanding the fact that antiseptic mouthwash disrupts the enterosalivary circulation of nitrate. Our results support a major role for S-nitrosothiols formation resulting in vascular S-nitrosylation as a key mechanism for the antihypertensive effects of both oral nitrite and nitrate.
Collapse
Affiliation(s)
- Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Jefferson H Amaral
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Rafael L Portella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Sandra de O C Tella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Madla A Passos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
259
|
McDonagh STJ, Vanhatalo A, Fulford J, Wylie LJ, Bailey SJ, Jones AM. Dietary nitrate supplementation attenuates the reduction in exercise tolerance following blood donation. Am J Physiol Heart Circ Physiol 2016; 311:H1520-H1529. [DOI: 10.1152/ajpheart.00451.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023]
Abstract
We tested the hypothesis that dietary nitrate (NO3−)-rich beetroot juice (BR) supplementation could partially offset deteriorations in O2transport and utilization and exercise tolerance after blood donation. Twenty-two healthy volunteers performed moderate-intensity and ramp incremental cycle exercise tests prior to and following withdrawal of ∼450 ml of whole blood. Before donation, all subjects consumed seven 70-ml shots of NO3−-depleted BR [placebo (PL)] in the 48 h preceding the exercise tests. During the 48 h after blood donation, subjects consumed seven shots of BR (each containing 6.2 mmol of NO3−, n = 11) or PL ( n = 11) before repeating the exercise tests. Hemoglobin concentration and hematocrit were reduced by ∼8–9% following blood donation ( P < 0.05), with no difference between the BR and PL groups. Steady-state O2uptake during moderate-intensity exercise was ∼4% lower after than before donation in the BR group ( P < 0.05) but was unchanged in the PL group. The ramp test peak power decreased from predonation (341 ± 70 and 331 ± 68 W in PL and BR, respectively) to postdonation (324 ± 69 and 322 ± 66 W in PL and BR, respectively) in both groups ( P < 0.05). However, the decrement in performance was significantly less in the BR than PL group (2.7% vs. 5.0%, P < 0.05). NO3−supplementation reduced the O2cost of moderate-intensity exercise and attenuated the decline in ramp incremental exercise performance following blood donation. These results have implications for improving functional capacity following blood loss.
Collapse
Affiliation(s)
- Sinead T. J. McDonagh
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom; and
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom; and
| | - Jonathan Fulford
- University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Lee J. Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom; and
| | - Stephen J. Bailey
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom; and
| | - Andrew M. Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom; and
| |
Collapse
|
260
|
Sundqvist ML, Lundberg JO, Weitzberg E. Effects of antiseptic mouthwash on resting metabolic rate: A randomized, double-blind, crossover study. Nitric Oxide 2016; 61:38-44. [DOI: 10.1016/j.niox.2016.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
|
261
|
Keane KM, Haskell-Ramsay CF, Veasey RC, Howatson G. Montmorency Tart cherries (Prunus cerasus L.) modulate vascular function acutely, in the absence of improvement in cognitive performance. Br J Nutr 2016; 116:1935-1944. [PMID: 27989253 DOI: 10.1017/s0007114516004177] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cerebral blood volume and metabolism of oxygen decline as part of human ageing, and this has been previously shown to be related to cognitive decline. There is some evidence to suggest that polyphenol-rich foods can play an important role in delaying the onset or halting the progression of age-related health disorders such as CVD and Alzheimer's disease and to improve cognitive function. In the present study, an acute, placebo-controlled, double-blinded, cross-over, randomised Latin-square design study with a washout period of at least 14 d was conducted on twenty-seven, middle-aged (defined as 45-60 years) volunteers. Participants received either a 60 ml dose of Montmorency tart cherry concentrate (MC), which contained 68·0 (sd 0·26) mg cyanidin-3-glucoside/l, 160·75 (sd 0·55) mean gallic acid equivalent/l and 0·59 (sd 0·02) mean Trolox equivalent/l, respectively, or a placebo. Cerebrovascular responses, cognitive performance and blood pressure were assessed at baseline and 1, 2, 3 and 5 h following consumption. There were significant differences in concentrations of total Hb and oxygenated Hb during the task period 1 h after MC consumption (P≤0·05). Furthermore, MC consumption significantly lowered systolic blood pressure (P≤0·05) over a period of 3 h, with peak reductions of 6±2 mmHg at 1 h after MC consumption relative to the placebo. Cognitive function and mood were not affected. These results show that a single dose of MC concentrate can modulate certain variables of vascular function; however, this does not translate to improvements in cognition or mood.
Collapse
Affiliation(s)
- K M Keane
- 1Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences,Northumbria University,Newcastle Upon Tyne NE1 8ST,UK
| | - C F Haskell-Ramsay
- 2Brain, Performance and Nutrition Research Centre, Faculty of Health and Life Sciences,Northumbria University,Newcastle upon Tyne NE1 8ST,UK
| | - R C Veasey
- 2Brain, Performance and Nutrition Research Centre, Faculty of Health and Life Sciences,Northumbria University,Newcastle upon Tyne NE1 8ST,UK
| | - G Howatson
- 1Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences,Northumbria University,Newcastle Upon Tyne NE1 8ST,UK
| |
Collapse
|
262
|
Ashor AW, Chowdhury S, Oggioni C, Qadir O, Brandt K, Ishaq A, Mathers JC, Saretzki G, Siervo M. Inorganic Nitrate Supplementation in Young and Old Obese Adults Does Not Affect Acute Glucose and Insulin Responses but Lowers Oxidative Stress. J Nutr 2016; 146:2224-2232. [PMID: 27733522 DOI: 10.3945/jn.116.237529] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/08/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Aging and obesity are associated with raised oxidative stress and a reduction of nitric oxide (NO) bioavailability, with subsequent decline in insulin sensitivity and endothelial function. Inorganic nitrate is converted into NO via a 2-step reduction process and may be an effective nutritional intervention to modify vascular and metabolic functions. OBJECTIVES This study tested whether inorganic nitrate supplementation improved glucose disposal and attenuated the acute effects of hyperglycemia on oxidative stress, inflammation, and vascular function in young and old obese participants. METHODS Ten young (aged 18-44 y) and 10 old (aged 55-70 y) obese participants consumed 75 g glucose followed by either potassium nitrate (7 mg/kg body weight) or potassium chloride (placebo) in a randomized, double-blind crossover design. Resting blood pressure (BP), endothelial function, and blood biomarkers were measured for 3 h postintervention. Biomarkers included plasma nitrate/nitrite (NOx), glucose, insulin, cyclic GMP, interleukin 6, 3-nitrotyrosine, E- and P-selectins, intercellular adhesion molecule 3 (ICAM-3), and thrombomodulin, as well as superoxide in freshly isolated peripheral blood mononuclear cells (PBMCs). RESULTS Inorganic nitrate supplementation did not affect plasma glucose (P = 0.18) or insulin (P = 0.26) responses. The increase in plasma NOx concentrations 3 h after the administration of inorganic nitrate was significantly higher in young than in old participants (234% increase compared with 149% increase, respectively, P < 0.001). Plasma 3-nitrotyrosine concentrations declined significantly after inorganic nitrate supplementation compared with placebo (3 h postdose, 46% decrease compared with 27% increase, respectively, P = 0.04), and a similar nonsignificant trend was observed for superoxide concentrations (3 h postdose, 16% decrease compared with 23% increase, respectively, P = 0.06). Plasma cyclic GMP, ICAM-3, and thrombomodulin concentrations differed between young and old participants (P < 0.01). Inorganic nitrate supplementation did not improve BP or endothelial function. CONCLUSIONS Oral supplementation with inorganic nitrate did not improve glucose and insulin responses but reduced oxidative stress in old individuals during acute hyperglycemia. This trial was registered at www.controlled-trials.com as ISRCTN42776917.
Collapse
Affiliation(s)
- Ammar W Ashor
- Human Nutrition Research Centre, Institute of Cellular Medicine.,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and.,College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | | | - Clio Oggioni
- Human Nutrition Research Centre, Institute of Cellular Medicine
| | - Othman Qadir
- Human Nutrition Research Centre, School of Agriculture, Food and Rural Development
| | - Kirsten Brandt
- Human Nutrition Research Centre, School of Agriculture, Food and Rural Development.,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Abbas Ishaq
- Institute for Cell and Molecular Biosciences.,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine.,Research Councils UK Centre for Ageing and Vitality, and.,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Gabriele Saretzki
- Institute for Cell and Molecular Biosciences.,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, .,Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| |
Collapse
|
263
|
Thompson C, Vanhatalo A, Jell H, Fulford J, Carter J, Nyman L, Bailey SJ, Jones AM. Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance. Nitric Oxide 2016; 61:55-61. [PMID: 27777094 DOI: 10.1016/j.niox.2016.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/30/2022]
Abstract
The influence of dietary nitrate (NO3-) supplementation on indices of maximal sprint and intermittent exercise performance is unclear. PURPOSE To investigate the effects of NO3- supplementation on sprint running performance, and cognitive function and exercise performance during the sport-specific Yo-Yo Intermittent Recovery level 1 test (IR1). METHODS In a double-blind, randomized, crossover study, 36 male team-sport players received NO3--rich (BR; 70 mL·day-1; 6.4 mmol of NO3-), and NO3--depleted (PL; 70 mL·day-1; 0.04 mmol NO3-) beetroot juice for 5 days. On day 5 of supplementation, subjects completed a series of maximal 20-m sprints followed by the Yo-Yo IR1. Cognitive tasks were completed prior to, during and immediately following the Yo-Yo IR1. RESULTS BR improved sprint split times relative to PL at 20 m (1.2%; BR 3.98 ± 0.18 vs. PL 4.03 ± 0.19 s; P < 0.05), 10 m (1.6%; BR 2.53 ± 0.12 vs. PL 2.57 ± 0.19 s; P < 0.05) and 5 m (2.3%; BR 1.73 ± 0.09 vs. PL 1.77 ± 0.09 s; P < 0.05). The distance covered in the Yo-Yo IR1 test improved by 3.9% (BR 1422 ± 502 vs. PL 1369 ± 505 m; P < 0.05). The reaction time to the cognitive tasks was shorter in BR (615 ± 98 ms) than PL (645 ± 120 ms; P < 0.05) at rest but not during the Yo-Yo IR1. There was no difference in response accuracy. CONCLUSIONS Dietary NO3- supplementation enhances maximal sprint and high-intensity intermittent running performance in competitive team sport players. Our findings suggest that NO3- supplementation has the potential to improve performance in single-sprint or multiple-sprint (team) sports.
Collapse
Affiliation(s)
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter, UK
| | - Harry Jell
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter, UK
| | - Jonathan Fulford
- NIHR Exeter Clinical Research Facility, University of Exeter, Heavitree Road, Exeter, UK
| | - James Carter
- Gatorade Sports Science Institute, PepsiCo R&D, Barrington, IL, USA
| | - Lara Nyman
- Gatorade Sports Science Institute, PepsiCo R&D, Barrington, IL, USA
| | - Stephen J Bailey
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter, UK.
| |
Collapse
|
264
|
Potential Therapeutic Strategies for Hypertension-Exacerbated Cardiotoxicity of Anticancer Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8139861. [PMID: 27829985 PMCID: PMC5086499 DOI: 10.1155/2016/8139861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
Despite their recognized cardiotoxic effects, anthracyclines remain an essential component in many anticancer regimens due to their superior antitumor efficacy. Epidemiologic data revealed that about one-third of cancer patients have hypertension, which is the most common comorbidity in cancer registries. The purpose of this review is to assess whether anthracycline chemotherapy exacerbates cardiotoxicity in patients with hypertension. A link between hypertension comorbidity and anthracycline-induced cardiotoxicity (AIC) was first suggested in 1979. Subsequent preclinical and clinical studies have supported the notion that hypertension is a major risk factor for AIC, along with the cumulative anthracycline dosage. There are several common or overlapping pathological mechanisms in AIC and hypertension, such as oxidative stress. Current evidence supports the utility of cardioprotective modalities as adjunct treatment prior to and during anthracycline chemotherapy. Several promising cardioprotective approaches against AIC pathologies include dexrazoxane, early hypertension management, and dietary supplementation of nitrate with beetroot juice or other medicinal botanical derivatives (e.g., visnagin and Danshen), which have both antihypertensive and anti-AIC properties. Future research is warranted to further elucidate the mechanisms of hypertension and AIC comorbidity and to conduct well-controlled clinical trials for identifying effective clinical strategies to improve long-term prognoses in this subgroup of cancer patients.
Collapse
|
265
|
Short-term treatment with nitrate is not sufficient to induce in vivo antithrombotic effects in rats and mice. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:85-94. [PMID: 27743016 PMCID: PMC5203854 DOI: 10.1007/s00210-016-1308-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/27/2016] [Indexed: 10/25/2022]
Abstract
In humans, short-term supplementation with nitrate is hypotensive and inhibits platelet aggregation via an nitric oxide (NO)-dependent mechanism. In the present work, we analyzed whether short-term treatment with nitrate induces antithrombotic effects in rats and mice. Arterial thrombosis was evoked electrically in a rat model in which renovascular hypertension was induced by partial ligation of the left renal artery. In mice expressing green fluorescent protein, laser-induced thrombosis was analyzed intravitally by using confocal microscope. Sodium nitrate (NaNO3) or sodium nitrite (NaNO2) was administered orally at a dose of 0.17 mmol/kg, twice per day for 3 days. Short-term nitrate treatment did not modify thrombus formation in either rats or mice, while nitrite administration led to pronounced antithrombotic activity. In hypertensive rats, nitrite treatment resulted in a significant decrease in thrombus weight (0.50 ± 0.08 mg vs. VEH 0.96 ± 0.09 mg; p < 0.01). In addition, nitrite inhibited ex vivo platelet aggregation and thromboxane B2 (TxB2) generation and prolonged prothrombin time. These effects were accompanied by significant increases in blood NOHb concentration and plasma nitrite concentration. In contrast, nitrate did not affect ex vivo platelet aggregation or prothrombin time and led to only slightly elevated nitrite plasma concentration. In mice, nitrate was also ineffective, while nitrite led to decreased platelet accumulation in the area of laser-induced endothelial injury. In conclusion, although nitrite induced profound NO-dependent antithrombotic effects in vivo, conversion of nitrates to nitrite in rats and mice over short-term 3-day treatment was not sufficient to elicit NO-dependent antiplatelet or antithrombotic effects.
Collapse
|
266
|
Schwarz K, Singh S, Parasuraman SK, Bruce M, Shepstone L, Feelisch M, Minnion M, Ahmad S, Horowitz J, Dawson DK, Frenneaux MP. A randomized double-blind placebo-controlled crossover trial of sodium nitrate in patients with stable angina INAS. Future Cardiol 2016; 12:617-626. [PMID: 27730819 DOI: 10.2217/fca-2016-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In an aging western population, a significant number of patients continue to suffer from angina once all revascularization and optimal medical treatment options are exhausted. Under experimental conditions, oral supplementation with inorganic nitrate was shown to exhibit a blood pressure-lowering effect, and has also been shown to promote angiogenesis, improve endothelial dysfunction and mitochondrial efficiency in skeletal muscle. It is unknown whether similar changes occur in cardiac muscle. In the current study, we investigate whether oral sodium nitrate treatment will improve myocardial ischemia in patients with stable angina.
Collapse
Affiliation(s)
- Konstantin Schwarz
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK.,Worcestershire Royal Hospital, Worcester, UK
| | - Satnam Singh
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK
| | - Satish Kumar Parasuraman
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK.,Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building James Watson Road, Norwich, NR4 7UQ, UK
| | - Maggie Bruce
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK
| | - Lee Shepstone
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building James Watson Road, Norwich, NR4 7UQ, UK
| | | | | | - Shakil Ahmad
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - John Horowitz
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK.,University of Adelaide, Adelaide, Australia
| | - Dana K Dawson
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK
| | - Michael P Frenneaux
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK.,Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building James Watson Road, Norwich, NR4 7UQ, UK
| |
Collapse
|
267
|
Bailey SJ, Blackwell JR, Wylie LJ, Holland T, Winyard PG, Jones AM. Improvement in blood pressure after short-term inorganic nitrate supplementation is attenuated in cigarette smokers compared to non-smoking controls. Nitric Oxide 2016; 61:29-37. [PMID: 27744007 DOI: 10.1016/j.niox.2016.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/22/2023]
Abstract
Dietary supplementation with inorganic nitrate (NO3-) has been reported to improve cardiovascular health indices in healthy adults. Cigarette smoking increases circulating thiocyanate (SCN-), which has been suggested to competitively inhibit salivary nitrate (NO3-) uptake, a rate-limiting step in dietary NO3- metabolism. Therefore, this study tested the hypothesis that dietary NO3- supplementation would be less effective at increasing the circulating plasma nitrite concentration ([NO2-]) and lowering blood pressure in smokers (S) compared to non-smokers (NS). Nine healthy smokers and eight healthy non-smoking controls reported to the laboratory at baseline (CON) and following six day supplementation periods with 140 mL day-1 NO3--rich (8.4 mmol NO3- day-1; NIT) and NO3--depleted (0.08 mmol NO3- day-1; PLA) beetroot juice in a cross-over experiment. Plasma and salivary [SCN-] were elevated in smokers compared to non-smokers in all experimental conditions (P < 0.05). Plasma and salivary [NO3-] and [NO2-] were elevated in the NIT condition compared to CON and PLA conditions in smokers and non-smokers (P < 0.05). However, the change in salivary [NO3-] (S: 3.5 ± 2.1 vs. NS: 7.5 ± 4.4 mM), plasma [NO3-] (S: 484 ± 198 vs. NS: 802 ± 199 μM) and plasma [NO2-] (S: 218 ± 128 vs. NS: 559 ± 419 nM) between the CON and NIT conditions was lower in the smokers compared to the non-smokers (P < 0.05). Salivary [NO2-] increased above CON to a similar extent with NIT in smokers and non-smokers (P > 0.05). Systolic blood pressure was lowered compared to PLA with NIT in non-smokers (P < 0.05), but not smokers (P > 0.05). These findings suggest that dietary NO3- metabolism is compromised in smokers leading to an attenuated blood pressure reduction compared to non-smokers after NO3- supplementation. These observations may provide novel insights into the cardiovascular risks associated with cigarette smoking and suggest that this population may be less likely to benefit from improved cardiovascular health if they increase dietary NO3- intake.
Collapse
Affiliation(s)
- Stephen J Bailey
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK.
| | - Jamie R Blackwell
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Terezia Holland
- University of Exeter Medical School, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Paul G Winyard
- University of Exeter Medical School, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| |
Collapse
|
268
|
Chirinos JA, Zamani P. The Nitrate-Nitrite-NO Pathway and Its Implications for Heart Failure and Preserved Ejection Fraction. Curr Heart Fail Rep 2016; 13:47-59. [PMID: 26792295 DOI: 10.1007/s11897-016-0277-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathogenesis of exercise intolerance in patients with heart failure and preserved ejection fraction (HFpEF) is likely multifactorial. In addition to cardiac abnormalities (diastolic dysfunction, abnormal contractile reserve, chronotropic incompetence), several peripheral abnormalities are likely to be involved. These include abnormal pulsatile hemodynamics, abnormal arterial vasodilatory responses to exercise, and abnormal peripheral O2 delivery, extraction, and utilization. The nitrate-nitrite-NO pathway is emerging as a potential target to modify key physiologic abnormalities, including late systolic left ventricular (LV) load from arterial wave reflections (which has deleterious short- and long-term consequences for the LV), arterial vasodilatory reserve, muscle O2 delivery, and skeletal muscle mitochondrial function. In a recently completed randomized trial, the administration of a single dose of exogenous inorganic nitrate has been shown to exert various salutary arterial hemodynamic effects, ultimately leading to enhanced aerobic capacity in patients with HFpEF. These effects have the potential for both immediate improvements in exercise tolerance and for long-term "disease-modifying" effects. In this review, we provide an overview of key mechanistic contributors to exercise intolerance in HFpEF, and of the potential therapeutic role of drugs that target the nitrate-nitrite-NO pathway.
Collapse
Affiliation(s)
- Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Hospital of the University of Pennsylvania, Philadelphia, PA, USA. .,Ghent University, Ghent, Belgium.
| | - Payman Zamani
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
269
|
Bakker JR, Bondonno NP, Gaspari TA, Kemp-Harper BK, McCashney AJ, Hodgson JM, Croft KD, Ward NC. Low dose dietary nitrate improves endothelial dysfunction and plaque stability in the ApoE -/- mouse fed a high fat diet. Free Radic Biol Med 2016; 99:189-198. [PMID: 27519268 DOI: 10.1016/j.freeradbiomed.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nitric oxide (NO) is an important vascular signalling molecule. NO is synthesised endogenously by endothelial nitric oxide synthase (eNOS). An alternate pathway is exogenous dietary nitrate, which can be converted to nitrite and then stored or further converted to NO and used immediately. Atherosclerosis is associated with endothelial dysfunction and subsequent lesion formation. This is thought to arise due to a reduction in the bioavailability and/or bioactivity of endogenous NO. AIM To determine if dietary nitrate can protect against endothelial dysfunction and lesion formation in the ApoE-/- mouse fed a high fat diet (HFD). METHODS AND RESULTS ApoE-/- fed a HFD were randomized to receive (i) high nitrate (10mmol/kg/day, n=12), (ii) moderate nitrate (1mmol/kg/day, n=8), (iii) low nitrate (0.1mmol/kg/day, n=8), or (iv) sodium chloride supplemented drinking water (control, n=10) for 10 weeks. A group of C57BL6 mice (n=6) received regular water and served as a healthy reference group. At 10 weeks, ACh-induced vessel relaxation was significantly impaired in ApoE-/- mice versus C57BL6. Mice supplemented with low or moderate nitrate showed significant improvements in ACh-induced vessel relaxation compared to ApoE-/- mice given the high nitrate or sodium chloride. Plaque collagen expression was increased and lipid deposition reduced following supplementation with low or moderate nitrate compared to sodium chloride, reflecting increased plaque stability with nitrate supplementation. Plasma nitrate and nitrite levels were significantly increased in all three groups fed the nitrate-supplemented water. CONCLUSION Low and moderate dose nitrate significantly improved endothelial function and atherosclerotic plaque composition in ApoE-/- mice fed a HFD.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/diet therapy
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Collagen/genetics
- Collagen/metabolism
- Diet, High-Fat/adverse effects
- Dietary Supplements
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Expression
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitrates/administration & dosage
- Nitrates/blood
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress
- Plaque, Atherosclerotic/diet therapy
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Tissue Culture Techniques
- Vasodilation/drug effects
Collapse
Affiliation(s)
- J R Bakker
- School of Medicine & Pharmacology, University of Western Australia, Perth, Australia
| | - N P Bondonno
- School of Medicine & Pharmacology, University of Western Australia, Perth, Australia
| | - T A Gaspari
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Australia
| | - B K Kemp-Harper
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Australia
| | - A J McCashney
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Australia
| | - J M Hodgson
- School of Medicine & Pharmacology, University of Western Australia, Perth, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - K D Croft
- School of Medicine & Pharmacology, University of Western Australia, Perth, Australia
| | - N C Ward
- School of Medicine & Pharmacology, University of Western Australia, Perth, Australia; School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
270
|
Li T, Lu X, Sun Y, Yang X. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption. Food Nutr Res 2016; 60:32010. [PMID: 27616738 PMCID: PMC5018658 DOI: 10.3402/fnr.v60.32010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Background Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO) level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34) showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58), which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet. Conclusions The intake of spinach nitrate can augment NO status, improve lipid homeostasis, relieve inflammation, and enhance endothelial function, suggesting that spinach is promising dietary supplements for insulin resistance prevention.
Collapse
Affiliation(s)
- Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xinshan Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yanfei Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China;
| |
Collapse
|
271
|
Hughes WE, Ueda K, Treichler DP, Casey DP. Effects of acute dietary nitrate supplementation on aortic blood pressure and aortic augmentation index in young and older adults. Nitric Oxide 2016; 59:21-7. [DOI: 10.1016/j.niox.2016.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 02/03/2023]
|
272
|
Hohensinn B, Haselgrübler R, Müller U, Stadlbauer V, Lanzerstorfer P, Lirk G, Höglinger O, Weghuber J. Sustaining elevated levels of nitrite in the oral cavity through consumption of nitrate-rich beetroot juice in young healthy adults reduces salivary pH. Nitric Oxide 2016; 60:10-15. [PMID: 27593618 DOI: 10.1016/j.niox.2016.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) and its reduced forms nitrite (NO2-) and nitric oxide (NO), respectively, are of critical importance for host defense in the oral cavity. High concentrations of salivary nitrate are linked to a lower prevalence of caries due to growth inhibition of cariogenic bacteria. OBJECTIVE In-vitro studies suggest that the formation of antimicrobial NO results in an increase of the pH preventing erosion of tooth enamel. The purpose of this study was to prove this effect in-vivo. METHODS In a randomized clinical study with 46 subjects we investigated whether NO3- rich beetroot juice exhibits a protective effect against caries by an increase of salivary pH. RESULTS Our results show that, in comparison to a placebo group, consumption of beetroot juice that contains 4000 mg/L NO3- results in elevated levels of salivary NO2-, nitrite NO3-, and NO. Furthermore, we determined an increase of the mean pH of saliva from 7.0 to 7.5, confirming the anti-cariogenic effect of the used NO3--rich beetroot juice. CONCLUSIONS Taken together, we have found that NO3--rich beetroot juice holds potential effects against dental caries by preventing acidification of human saliva. TRIAL REGISTRATION C-87-15 (Ethics Commissions of Upper Austria).
Collapse
Affiliation(s)
| | | | - Ulrike Müller
- University of Applied Science Upper Austria, 4600, Wels, Austria
| | | | | | - Gerald Lirk
- University of Applied Science Upper Austria, 4232, Hagenberg, Austria
| | - Otmar Höglinger
- University of Applied Science Upper Austria, 4600, Wels, Austria
| | - Julian Weghuber
- University of Applied Science Upper Austria, 4600, Wels, Austria.
| |
Collapse
|
273
|
Das S, Filippone SM, Williams DS, Das A, Kukreja RC. Beet root juice protects against doxorubicin toxicity in cardiomyocytes while enhancing apoptosis in breast cancer cells. Mol Cell Biochem 2016; 421:89-101. [DOI: 10.1007/s11010-016-2789-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
|
274
|
Thaptimthong T, Kasemsuk T, Sibmooh N, Unchern S. Platelet inhibitory effects of juices from Pachyrhizus erosus L. root and Psidium guajava L. fruit: a randomized controlled trial in healthy volunteers. Altern Ther Health Med 2016; 16:269. [PMID: 27488183 PMCID: PMC4972974 DOI: 10.1186/s12906-016-1255-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Background The purpose of this study is to investigate cardiovascular benefits of juices obtained from two commonly consumed fruits in Thailand, Pachyrhizus erosus, L. (yam bean) and Psidium guajava, L. (guava), by examining their acute cardiovascular effects in healthy volunteers. Possible involvements of the dietary nitrate on their effects were investigated as well. Method Thirty healthy volunteers were randomly divided into three groups of 10 subjects per group and each group was allocated to drink 500 ml of freshly prepared yam bean root juice, guava fruit juice, or water. Systemic nitrate and nitrite concentrations, heart rate, systolic and diastolic blood pressure, serum K+ concentrations, ex vivo platelet aggregation, and plasma cGMP concentrations were monitored at the baseline and at various time points after the intake of juices or water. Data were compared by repeated measures ANOVA. Results Following the ingestion of both yam bean root juice and guava fruit juice, collagen-induced but not ADP-induced platelet aggregation was attenuated. Ingestion of yam bean root juice increased systemic nitrate and nitrite concentrations whereby elevated nitrite concentrations correlated with the extent of inhibiting collagen-induced platelet aggregation. In addition, positive correlation between systemic nitrite and plasma cGMP concentrations and negative correlation between plasma cGMP concentrations and the extent of collagen-induced platelet aggregation were revealed. Nevertheless, yam bean root juice reduced only diastolic blood pressure while guava fruit juice reduced heart rate, systolic and diastolic blood pressure. Conclusion The present study has illustrated, for the first time, acute inhibitory effects of yam bean root juice and guava fruit juice on ex vivo collagen-induced platelet aggregation in healthy subjects. Dietary nitrate was shown to underlie the effect of yam bean root juice but not that of guava fruit juice. Following yam bean root juice ingestion, systemic nitrate apparently converts to nitrite and further to NO which may attenuate platelet responses to collagen stimulation. Cardiovascular benefits of juices from yam bean root and guava fruit are noteworthy in term of the cardiovascular health-promoting approach. Trial registration Randomized controlled trial TCTR20150228001.
Collapse
|
275
|
Aslani N, Entezari MH, Askari G, Maghsoudi Z, Maracy MR. Effect of Garlic and Lemon Juice Mixture on Lipid Profile and Some Cardiovascular Risk Factors in People 30-60 Years Old with Moderate Hyperlipidaemia: A Randomized Clinical Trial. Int J Prev Med 2016; 7:95. [PMID: 27563431 PMCID: PMC4977979 DOI: 10.4103/2008-7802.187248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/24/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND This study was performed to effects of garlic and lemon juice mixture on lipid profile and some cardiovascular risk factors in people 30-60 years old with moderate hyperlipidemia. METHODS In a parallel-designed randomized controlled clinical trial, a total of 112 hyperlipidemic patients 30-60 years, were recruited from Isfahan Cardiovascular Research Center. People were selected and randomly divided into four groups. Control blood samples were taken and height, weight, and blood pressure were recorded. (1) Received 20 g of garlic daily, plus 1 tablespoon lemon juice, (2) received 20 g garlic daily, (3) received 1 tablespoon of lemon juice daily, and (4) did not receive garlic or lemon juice. A study technician was done the random allocations using a random numbers table. All participants presented 3 days of dietary records and 3 days of physical activity records during 8 weeks. Blood samples were obtained at study baseline and after 8 weeks of intervention. RESULTS Results showed a significant decrease in total cholesterol (changes from baseline: 40.8 ± 6.1, P < 0.001), low-density lipoprotein-cholesterol (29.8 ± 2.6, P < 0.001), and fibrinogen (111.4 ± 16.1, P < 0.001) in the Group 1, in comparison with other groups. A greater reduction in systolic and diastolic blood pressure was observed in Group 1 compared with the Groups 3 and 4 (37 ± 10, P = 0.01) (24 ± 1, P = 0.02); respectively. Furthermore, a great reduction in body mass index was observed in the mixed group compared with the lemon juice and control groups (1.6 ± 0.1, P = 0.04). CONCLUSIONS Administration of garlic plus lemon juice resulted in an improvement in lipid levels, fibrinogen and blood pressure of patients with hyperlipidemia.
Collapse
Affiliation(s)
- Negar Aslani
- Department of Clinical Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hasan Entezari
- Department of Clinical Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Maghsoudi
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Maracy
- Department of Epidemiology and Biostatics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
276
|
Borlaug BA, Melenovsky V, Koepp KE. Inhaled Sodium Nitrite Improves Rest and Exercise Hemodynamics in Heart Failure With Preserved Ejection Fraction. Circ Res 2016; 119:880-6. [PMID: 27458234 DOI: 10.1161/circresaha.116.309184] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE Abnormalities in nitric oxide signaling play a pivotal role in heart failure with preserved ejection fraction (HFpEF). Intravenous sodium nitrite, which is converted to nitric oxide in vivo, improves hemodynamics in HFpEF, but its use is limited by the need for parenteral administration. Nitrite can also be administered using a novel, portable micronebulizer system suitable for chronic use. OBJECTIVE Determine whether inhaled nitrite improves hemodynamics in HFpEF. METHODS AND RESULTS In a double-blind, randomized, placebo-controlled, parallel-group trial, subjects with HFpEF (n=26) underwent cardiac catheterization with simultaneous expired gas analysis at rest and during exercise before and after treatment with inhaled sodium nitrite (90 mg) or placebo. The primary end point was the pulmonary capillary wedge pressure during exercise. Before study drug administration, HFpEF subjects displayed an increase in pulmonary capillary wedge pressure with exercise from 20±6 to 34±7 mm Hg (P<0.0001). After study drug administration, exercise pulmonary capillary wedge pressure was substantially improved by nitrite as compared with placebo (baseline-adjusted mean 25±5 versus 31±6 mm Hg; analysis of covariance P=0.022). Inhaled nitrite reduced resting pulmonary capillary wedge pressure (-4±3 versus -1±2 mm Hg; P=0.002), improved pulmonary artery compliance (+1.5±1.1 versus +0.6±0.9 mL/mm Hg), and decreased mean pulmonary artery pressures at rest (-7±4 versus -3±4 mm Hg; P=0.007) and with exercise (-10±6 versus -5±6 mm Hg; P=0.05). Nitrite reduced right atrial pressures, with no effect on cardiac output or stroke volume. CONCLUSIONS Acute administration of inhaled sodium nitrite reduces biventricular filling pressures and pulmonary artery pressures at rest and during exercise in HFpEF. Further study is warranted to evaluate chronic effects of inhaled nitrite in HFpEF. CLINICAL TRIAL REGISTRATION This single center randomized clinical trial is registered at clinicaltrials.gov (NCT02262078).
Collapse
Affiliation(s)
- Barry A Borlaug
- From the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic Rochester, MN.
| | - Vojtech Melenovsky
- From the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic Rochester, MN
| | - Katlyn E Koepp
- From the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic Rochester, MN
| |
Collapse
|
277
|
Briskey D, Tucker PS, Johnson DW, Coombes JS. Microbiota and the nitrogen cycle: Implications in the development and progression of CVD and CKD. Nitric Oxide 2016; 57:64-70. [DOI: 10.1016/j.niox.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023]
|
278
|
Curry BH, Bond V, Pemminati S, Gorantla VR, Volkova YA, Kadur K, Millis RM. Effects of a Dietary Beetroot Juice Treatment on Systemic and Cerebral Haemodynamics- A Pilot Study. J Clin Diagn Res 2016; 10:CC01-5. [PMID: 27630836 DOI: 10.7860/jcdr/2016/20049.8113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Beetroot Juice (BJ) contains dietary nitrates that increase the blood Nitric Oxide (NO) level, decrease Blood Pressure (BP), increase athletic performance and improve cognitive functions but the mechanism remains unclear. Ultrasonographic measurement of middle cerebral artery blood flow velocity with computation of Cerebral Augmentation Index (CAIx) is a measure of the reflected flow signal, modulated by changes in cerebrovascular resistance and compliance. AIM This pilot study tests the hypothesis that ingestion of an amount of BJ sufficient to raise the blood NO level two-to three-fold, decreases Transcranial Doppler (TCD) measured CAIx. MATERIALS AND METHODS Ten healthy young-adult African-American women were studied at two levels of submaximal exercise, 40% and 80% of their predetermined peak oxygen consumptions. The subjects ingested nitrate-free orange juice (OJ, control) and an isocaloric BJ beverage (1.5 mg/mL nitrate, 220 Cal), on different days, 1-2 weeks apart. RESULTS The BJ treatment increased blood NO and decreased systolic BP at rest and at the two levels of exercise. The BJ treatment decreased CAIx only at the two levels of exercise (from 79 ± 2% to 62 ± 2% and from 80 ± 2% to 60 ± 3%, p<0.05). Exercise increased TCD-measured resistance and pulsatility indices (RIx, PIx) without changing AIx. The BJ treatment had no effect on RIx and PIx. CONCLUSION These findings suggest that decreased CAIx associated with aerobic exercise reflects the change in cerebral haemodynamics resulting from dietary nitrate supplementation. Future studies should determine whether the BJ-induced decrement in CAIx is correlated with an improvement in brain function.
Collapse
Affiliation(s)
- Bryan Heath Curry
- Professor, Department of Medicine, Division of Cardiology, Howard University College of Medicine and Howard University Hospital , Washington, DC 20060, United States of America
| | - Vernon Bond
- Professor, Department of Recreation, Human Performance and Leisure Studies and Exercise Science and Human Nutrition Laboratory, Howard University Cancer Centre , Washington, DC 20060, United States of America
| | - Sudhakar Pemminati
- Associate Professor, Department of Medical Pharmacology, AUA College of Medicine and Manipal University , Antigua
| | - Vasavi Rakesh Gorantla
- Assistant Professor, Department of Behavioural Sciences and Neuroscience, AUA College of Medicine , Antigua
| | | | - Kishan Kadur
- Assistant Professor, Department of Medical Physiology, AUA College of Medicine , Antigua
| | - Richard Mark Millis
- Professor, Department of Medical Physiology, AUA College of Medicine , Antigua
| |
Collapse
|
279
|
Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: Acute vs. chronic supplementation. Nitric Oxide 2016; 57:30-39. [DOI: 10.1016/j.niox.2016.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Accepted: 04/13/2016] [Indexed: 12/31/2022]
|
280
|
Subramanian D, Gupta S. Pharmacokinetic study of amaranth extract in healthy humans: A randomized trial. Nutrition 2016; 32:748-53. [DOI: 10.1016/j.nut.2015.12.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 02/05/2023]
|
281
|
Improvement of hypertension, endothelial function and systemic inflammation following short-term supplementation with red beet (Beta vulgaris L.) juice: a randomized crossover pilot study. J Hum Hypertens 2016; 30:627-32. [PMID: 27278926 DOI: 10.1038/jhh.2016.34] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023]
Abstract
Hypertension is a major risk factor for cardiovascular disease and has a prevalence of about one billion people worldwide. It has been shown that adherence to a diet rich in fruits and vegetables helps in decreasing blood pressure (BP). This study aimed to investigate the effect of raw beet juice (RBJ) and cooked beet (CB) on BP of hypertensive subjects. In this randomized crossover study, 24 hypertensive subjects aged 25-68 years old were divided into two groups. One group took RBJ for 2 weeks and the other group took CB. After 2 weeks of treatment, both groups had a washout for 2 weeks then switched to the alternate treatment. Each participant consumed 250 ml day(-1) of RBJ or 250 g day(-1) of CB each for a period of 2 weeks. Body weight, BP, flow-mediated dilation (FMD), lipid profile and inflammatory parameters were measured at baseline and after each period. According to the results, high-sensitivity C-reactive protein (hs-CRP) and tumour necrosis factor alpha (TNF-α) were significantly lower and FMD was significantly higher after treatment with RBJ compared with CB (P<0.05). FMD was significantly (P<0.05) increased, but systolic and diastolic BP, intracellular adhesion molecule-1 (ICAM-1), vascular endothelial adhesion molecule-1 (VCAM-1), hs-CRP, interleukin-6, E-selectin and TNF-α were significantly (P<0.05) decreased with RBJ or CB. Total antioxidant capacity was increased and non-high-density lipoprotein (HDL), low-density lipoprotein (LDL) and total cholesterol (TC) were decreased with RBJ but not with CB. Although both forms of beetroot were effective in improving BP, endothelial function and systemic inflammation, the raw beetroot juice had greater antihypertensive effects. Also more improvement was observed in endothelial function and systemic inflammation with RBJ compared with CB.
Collapse
|
282
|
Roizen MF. Where's the "Label" for Beet Juice: The Value of the Food and Drug Administration. JACC. HEART FAILURE 2016; 4:438-440. [PMID: 27256746 DOI: 10.1016/j.jchf.2016.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
|
283
|
Keane KM, George TW, Constantinou CL, Brown MA, Clifford T, Howatson G. Effects of Montmorency tart cherry (Prunus Cerasus L.) consumption on vascular function in men with early hypertension. Am J Clin Nutr 2016; 103:1531-9. [PMID: 27146650 DOI: 10.3945/ajcn.115.123869] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/31/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Tart cherries contain numerous polyphenolic compounds that could potentially improve endothelial function and reduce cardiovascular disease risk. OBJECTIVE We sought to examine the acute effects of Montmorency tart cherry (MC) juice on vascular function in subjects with early hypertension. DESIGN A placebo-controlled, blinded, crossover, randomized Latin square design study with a washout period of ≥14 d was conducted. Fifteen men with early hypertension [systolic blood pressure (SBP) ≥130 mm Hg, diastolic blood pressure ≥80 mm Hg, or both] received either a 60-mL dose of MC concentrate or placebo. Microvascular reactivity (laser Doppler imaging with iontophoresis), arterial stiffness (pulse wave velocity and analysis), blood pressure, and phenolic acid absorption were assessed at baseline and at 1, 2, 3, 5, and 8 h postconsumption. RESULTS MC consumption significantly lowered SBP (P < 0.05) over a period of 3 h, with peak reductions of mean ± SEM 7 ± 3 mm Hg 2 h after MC consumption relative to the placebo. Improvements in cardiovascular disease risk factors were closely linked to increases in circulating protocatechuic and vanillic acid at 1-2 h. CONCLUSIONS MC intake acutely reduces SBP in men with early hypertension. These benefits may be mechanistically linked to the actions of circulating phenolic acids. This study provides information on a new application of MCs in health maintenance, particularly in positively modulating SBP. This trial was registered at clinicaltrials.gov as NCT02234648.
Collapse
Affiliation(s)
- Karen M Keane
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom; and
| | - Trevor W George
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom; and
| | - Costas L Constantinou
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom; and
| | - Meghan A Brown
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom; and
| | - Tom Clifford
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom; and
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom; and Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| |
Collapse
|
284
|
Mills CE, Khatri J, Maskell P, Odongerel C, Webb AJ. It is rocket science - why dietary nitrate is hard to 'beet'! Part II: further mechanisms and therapeutic potential of the nitrate-nitrite-NO pathway. Br J Clin Pharmacol 2016; 83:140-151. [PMID: 26914827 DOI: 10.1111/bcp.12918] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/17/2016] [Indexed: 12/14/2022] Open
Abstract
Dietary nitrate (found in green leafy vegetables such as rocket and in beetroot) is now recognized to be an important source of nitric oxide, via the nitrate-nitrite-NO pathway. Dietary nitrate confers several cardiovascular beneficial effects on blood pressure, platelets, endothelial function, mitochondrial efficiency and exercise. Having described key twists and turns in the elucidation of the pathway and the underlying mechanisms in Part I, we explore the more recent developments which have served to confirm mechanisms, extend our understanding, and discover new properties and potential therapeutic uses of the pathway in Part II. Even the established dependency on low oxygen states for bioactivation of nitrite has recently been challenged. Dietary nitrate appears to be an important component of 'healthy diets', such as the DASH diet to lower blood pressure and the Mediterranean diet, with its potential to lower cardiovascular risk, possibly through beneficial interactions with a range of other constituents. The World Cancer Research Foundation report strong evidence for vegetables including spinach and lettuce (high nitrate-containing) decreasing cancer risk (mouth, pharynx, larynx, oesophagus and stomach), summarized in a 'Nitrate-Cancer Risk Veg-Table'. The European Space Agency recommends that beetroot, lettuce, spinach and rocket (high-nitrate vegetables) are grown to provide food for long-term space missions. Nitrate, an ancient component of rocket fuel, could support sustainable crops for healthy humans.
Collapse
Affiliation(s)
- Charlotte Elizabeth Mills
- Department of Dietetics and Nutrition, Division of Diabetes and Nutritional Sciences, King's College London, Franklins Wilkins Building, London, SE1 0NH
| | - Jibran Khatri
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St.Thomas, Hospital, London, SE1 7EH, UK
| | - Perry Maskell
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St.Thomas, Hospital, London, SE1 7EH, UK
| | - Chimed Odongerel
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St.Thomas, Hospital, London, SE1 7EH, UK
| | - Andrew James Webb
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St.Thomas, Hospital, London, SE1 7EH, UK
| |
Collapse
|
285
|
Jonvik KL, Nyakayiru J, Pinckaers PJ, Senden JM, van Loon LJ, Verdijk LB. Nitrate-Rich Vegetables Increase Plasma Nitrate and Nitrite Concentrations and Lower Blood Pressure in Healthy Adults. J Nutr 2016; 146:986-93. [PMID: 27075914 DOI: 10.3945/jn.116.229807] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/07/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. OBJECTIVE We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. METHODS With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index (BMI, in kg/m(2)): 23 ± 1; exercise: 1-10 h/wk] ingested 4 different beverages, each containing 800 mg (∼12.9 mmol) nitrate: sodium nitrate (NaNO3), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. RESULTS Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages (P < 0.001). Peak plasma nitrate concentrations were similar for all treatments (all values presented as means ± SEMs: NaNO3: 583 ± 29 μmol/L; beetroot juice: 597 ± 23 μmol/L; rocket salad beverage: 584 ± 24 μmol/L; spinach beverage: 584 ± 23 μmol/L). Peak plasma nitrite concentrations were different between treatments (NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice (from 118 ± 2 to 113 ± 2 mm Hg; P < 0.001) and rocket salad beverage (from 122 ± 3 to 116 ± 2 mm Hg; P = 0.007) and 300 min after ingestion of spinach beverage (from 118 ± 2 to 111 ± 3 mm Hg; P < 0.001), but did not change with NaNO3 Diastolic blood pressure declined 150 min after ingestion of all beverages (P < 0.05) and remained lower at 300 min after ingestion of rocket salad (P = 0.045) and spinach (P = 0.001) beverages. CONCLUSIONS Ingestion of nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate supplements. This trial was registered at clinicaltrials.gov as NCT02271633.
Collapse
Affiliation(s)
- Kristin L Jonvik
- Nutrition and Toxicology Research Institute Maastricht, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands; and Institute of Sport and Exercise Studies, Hogeschool van Arnhem en Nijmegen, University of Applied Sciences, Nijmegen, Netherlands
| | - Jean Nyakayiru
- Nutrition and Toxicology Research Institute Maastricht, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands; and
| | - Philippe Jm Pinckaers
- Nutrition and Toxicology Research Institute Maastricht, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands; and
| | - Joan Mg Senden
- Nutrition and Toxicology Research Institute Maastricht, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands; and
| | - Luc Jc van Loon
- Nutrition and Toxicology Research Institute Maastricht, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands; and Institute of Sport and Exercise Studies, Hogeschool van Arnhem en Nijmegen, University of Applied Sciences, Nijmegen, Netherlands
| | - Lex B Verdijk
- Nutrition and Toxicology Research Institute Maastricht, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands; and
| |
Collapse
|
286
|
Mirmiran P, Bahadoran Z, Golzarand M, Asghari G, Azizi F. Consumption of nitrate containing vegetables and the risk of chronic kidney disease: Tehran Lipid and Glucose Study. Ren Fail 2016; 38:937-44. [PMID: 27055566 DOI: 10.3109/0886022x.2016.1165118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND There is growing evidence regarding the potential properties of nitrate-rich foods in development of chronic diseases. In this study, we investigated the association of nitrate-containing vegetables (NCVs) and the risk of chronic kidney disease (CKD). METHODS We evaluated 1546 eligible adult participants of the Tehran Lipid and Glucose Study (TLGS), at baseline (2006-2008) and again after 3 years (2009-2011). Dietary intake was collected using the validated semi-quantitative food frequency questionnaire. Nitrate-containing vegetables and its categories including high-, medium-, and low-nitrate vegetables were defined. Estimated glomerular filtration rate (eGFR) and CKD were defined. Association between NCVs and CKD in the cross-sectional phase and the predictability of NCVs consumption in CKD occurrence were assessed using multivariable logistic regression models with adjustment for potential confounders. RESULTS Mean dietary intake of energy-adjusted NCVs was 298.0 ± 177.3 g/day. Highest compared to the lowest tertile of NCVs was accompanied with a significantly lower mean eGFR (76.6 vs. 83.3, mL/min/1.73 m(2), p < 0.001) and a higher prevalence of CKD (21.7 vs. 9.9%, p < 0.001). At baseline, higher intake of high-NCVs was associated with a 48% higher chance of having CKD (OR = 1.48, 95% CI = 1.05-2.13). After 3 years of follow-up, there was no significant association between consumption of total NCVs and its categories with the occurrence of CKD. CONCLUSION Considering the lack of association between high-NCVs intakes and the risk of CKD in prospective analysis, additional research is recommended to clarify possible effect of nitrate intakes from vegetables on kidney function.
Collapse
Affiliation(s)
- Parvin Mirmiran
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zahra Bahadoran
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mahdieh Golzarand
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Golaleh Asghari
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fereidoun Azizi
- b Endocrine Research Center, Research Institute for Endocrine Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
287
|
Omar SA, Webb AJ, Lundberg JO, Weitzberg E. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. J Intern Med 2016; 279:315-36. [PMID: 26522443 DOI: 10.1111/joim.12441] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is generated endogenously by NO synthases to regulate a number of physiological processes including cardiovascular and metabolic functions. A decrease in the production and bioavailability of NO is a hallmark of many major chronic diseases including hypertension, ischaemia-reperfusion injury, atherosclerosis and diabetes. This NO deficiency is mainly caused by dysfunctional NO synthases and increased scavenging of NO by the formation of reactive oxygen species. Inorganic nitrate and nitrite are emerging as substrates for in vivo NO synthase-independent formation of NO bioactivity. These anions are oxidation products of endogenous NO generation and are also present in the diet, with green leafy vegetables having a high nitrate content. The effects of nitrate and nitrite are diverse and include vasodilatation, improved endothelial function, enhanced mitochondrial efficiency and reduced generation of reactive oxygen species. Administration of nitrate or nitrite in animal models of cardiovascular disease shows promising results, and clinical trials are currently ongoing to investigate the therapeutic potential of nitrate and nitrite in hypertension, pulmonary hypertension, peripheral artery disease and myocardial infarction. In addition, the nutritional aspects of the nitrate-nitrite-NO pathway are interesting as diets suggested to protect against cardiovascular disease, such as the Mediterranean diet, are especially high in nitrate. Here, we discuss the potential therapeutic opportunities for nitrate and nitrite in prevention and treatment of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- S A Omar
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A J Webb
- Cardiovascular Division, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, London, UK
| | - J O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
288
|
Park BM, Cha SA, Kim HY, Kang DK, Yuan K, Chun H, Chae SW, Kim SH. Fermented garlic extract decreases blood pressure through nitrite and sGC-cGMP-PKG pathway in spontaneously hypertensive rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
289
|
Böhmer A, Pich A, Schmidt M, Haghikia A, Tsikas D. Evidence by chromatography and mass spectrometry that inorganic nitrite induces S -glutathionylation of hemoglobin in human red blood cells. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:72-82. [DOI: 10.1016/j.jchromb.2016.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/16/2016] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
|
290
|
Forest C, Joffin N, Jaubert AM, Noirez P. What induces watts in WAT? Adipocyte 2016; 5:136-52. [PMID: 27386158 PMCID: PMC4916896 DOI: 10.1080/21623945.2016.1187345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023] Open
Abstract
Excess calories stored in white adipose tissue (WAT) could be reduced either through the activation of brown adipose tissue (BAT) or the development of brown-like cells ("beige" or "brite") in WAT, a process named "browning." Calorie dissipation in brown and beige adipocytes might rely on the induction of uncoupling protein 1 (UCP1), which is absent in white fat cells. Any increase in UCP1 is commonly considered as the trademark of energy expenditure. The intracellular events involved in the recruitment process of beige precursors were extensively studied lately, as were the effectors, hormones, cytokines, nutrients and drugs able to modulate the route of browning and theoretically affect fat mass in rodents and in humans. The aim of this review is to update the characterization of the extracellular effectors that induce UCP1 in WAT and potentially provoke calorie dissipation. The potential influence of metabolic cycling in energy expenditure is also questioned.
Collapse
Affiliation(s)
- Claude Forest
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Nolwenn Joffin
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
| | - Philippe Noirez
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
- Faculté des Sciences et Techniques des Activités Physiques et Sportives, Université Paris Descartes, Paris, France
| |
Collapse
|
291
|
d'El-Rei J, Cunha AR, Trindade M, Neves MF. Beneficial Effects of Dietary Nitrate on Endothelial Function and Blood Pressure Levels. Int J Hypertens 2016; 2016:6791519. [PMID: 27088010 PMCID: PMC4819099 DOI: 10.1155/2016/6791519] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/02/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
Poor eating habits may represent cardiovascular risk factors since high intake of fat and saturated fatty acids contributes to dyslipidemia, obesity, diabetes mellitus, and hypertension. Thus, nutritional interventions are recognized as important strategies for primary prevention of hypertension and as adjuvants to pharmacological therapies to reduce cardiovascular risk. The DASH (Dietary Approach to Stop Hypertension) plan is one of the most effective strategies for the prevention and nonpharmacological management of hypertension. The beneficial effects of DASH diet on blood pressure might be related to the high inorganic nitrate content of some food products included in this meal plan. The beetroot and other food plants considered as nitrate sources account for approximately 60-80% of the daily nitrate exposure in the western population. The increased levels of nitrite by nitrate intake seem to have beneficial effects in many of the physiological and clinical settings. Several clinical trials are being conducted to determine the broad therapeutic potential of increasing the bioavailability of nitrite in human health and disease, including studies related to vascular aging. In conclusion, the dietary inorganic nitrate seems to represent a promising complementary therapy to support hypertension treatment with benefits for cardiovascular health.
Collapse
Affiliation(s)
- Jenifer d'El-Rei
- Department of Clinical Medicine, State University of Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Ana Rosa Cunha
- Department of Clinical Medicine, State University of Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Michelle Trindade
- Department of Clinical Medicine, State University of Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Mario Fritsch Neves
- Department of Clinical Medicine, State University of Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
292
|
Borghi C, Cicero AFG. Nutraceuticals with a clinically detectable blood pressure-lowering effect: a review of available randomized clinical trials and their meta-analyses. Br J Clin Pharmacol 2016; 83:163-171. [PMID: 26852373 DOI: 10.1111/bcp.12902] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
AIMS The aim of the present study was to review and comment on the available evidence on nutraceuticals with a clinically demonstrable blood pressure (BP)-lowering effect. METHODS We reviewed studies published in the English language from 1990 to 2015 on dietary supplements or nutraceuticals claiming to show an effect on human BP. An initial list of possibly effective agents and studies was obtained from the online reference, the Natural Medicine Comprehensive Database. Using PubMed, we searched agents identified from this list using the MeSH terms 'hypertension', 'blood pressure', 'dietary supplement' and 'nutraceuticals', alone and in combination. We then focused our attention on meta-analyses and randomized clinical trials. RESULTS Beyond the well-known effects on BP of the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet, a large number of studies have investigated the possible BP-lowering effect of different dietary supplements and nutraceuticals, most of which are antioxidant agents with a high tolerability and safety profile. In particular, a relatively large body of evidence supports the use of potassium, magnesium, L-arginine, vitamin C, cocoa flavonoids, beetroot juice, coenzyme Q10, controlled-release melatonin and aged garlic extract. The antihypertensive effect of all these nutraceuticals seems to be dose related and the overall tolerability is good. CONCLUSION Some nutraceuticals might have a positive impact on BP in humans. Further clinical research is needed, to identify from the available active nutraceuticals those with the best cost-effectiveness and risk-benefit ratio for widespread and long-term use in the general population with a low-added cardiovascular risk related to uncomplicated hypertension.
Collapse
Affiliation(s)
- Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| |
Collapse
|
293
|
Bedale W, Sindelar JJ, Milkowski AL. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci 2016; 120:85-92. [PMID: 26994928 DOI: 10.1016/j.meatsci.2016.03.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
Abstract
Consumers have an illogical relationship with nitrite (and its precursor, nitrate) in food. Despite a long history of use, nitrite was nearly banned from use in foods in the 1970s due to health concerns related to the potential for carcinogenic nitrosamine formation. Changes in meat processing methods reduced those potential risks, and nitrite continued to be used in foods. Since then, two opposing movements continue to shape how consumers view dietary nitrate and nitrite. The discovery of the profound physiological importance of nitric oxide led to the realization that dietary nitrate contributes significantly to the nitrogen reservoir for nitric oxide formation. Numerous clinical studies have also demonstrated beneficial effects from dietary nitrate consumption, especially in vascular and metabolic health. However, the latest wave of consumer sentiment against food additives, the clean-label movement, has renewed consumer fear and avoidance of preservatives, including nitrite. Education is necessary but may not be sufficient to resolve this disconnect in consumer perception.
Collapse
Affiliation(s)
- Wendy Bedale
- Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey J Sindelar
- Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew L Milkowski
- Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
294
|
Gee LC, Ahluwalia A. Dietary Nitrate Lowers Blood Pressure: Epidemiological, Pre-clinical Experimental and Clinical Trial Evidence. Curr Hypertens Rep 2016; 18:17. [PMID: 26815004 PMCID: PMC4729801 DOI: 10.1007/s11906-015-0623-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO), a potent vasodilator critical in maintaining vascular homeostasis, can reduce blood pressure in vivo. Loss of constitutive NO generation, for example as a result of endothelial dysfunction, occurs in many pathological conditions, including hypertension, and contributes to disease pathology. Attempts to therapeutically deliver NO via organic nitrates (e.g. glyceryl trinitrate, GTN) to reduce blood pressure in hypertensives have been largely unsuccessful. However, in recent years inorganic (or 'dietary') nitrate has been identified as a potential solution for NO delivery through its sequential chemical reduction via the enterosalivary circuit. With dietary nitrate found in abundance in vegetables this review discusses epidemiological, pre-clinical and clinical data supporting the idea that dietary nitrate could represent a cheap and effective dietary intervention capable of reducing blood pressure and thereby improving cardiovascular health.
Collapse
Affiliation(s)
- Lorna C Gee
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
295
|
Silva DVTD, Silva FDO, Perrone D, Pierucci APTR, Conte-Junior CA, Alvares TDS, Aguila EMD, Paschoalin VMF. Physicochemical, nutritional, and sensory analyses of a nitrate-enriched beetroot gel and its effects on plasmatic nitric oxide and blood pressure. Food Nutr Res 2016; 60:29909. [PMID: 26790368 PMCID: PMC4720688 DOI: 10.3402/fnr.v60.29909] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 02/03/2023] Open
Abstract
Background Beetroot (Beta vulgaris L.) is a dietary source of natural antioxidants and inorganic nitrate (NO3-). It is well known that the content of antioxidant compounds and inorganic nitrate in beetroot can reduce blood pressure (BP) and the risk of adverse cardiovascular effects. Objective The aim of the present study was to formulate a beetroot gel to supplement dietary nitrate and antioxidant compounds able to cause beneficial health effects following acute administration. Design and subjects A beetroot juice produced from Beta vulgaris L., without any chemical additives, was used. The juice was evaluated by physicochemical and microbiological parameters. The sample was tested in five healthy subjects (four males and one female), ingesting 100 g of beetroot gel. Results The formulated gel was nitrate enriched and contained carbohydrates, fibers, saponins, and phenolic compounds. The formulated gels possess high total antioxidant activity and showed adequate rheological properties, such as high viscosity and pleasant texture. The consumer acceptance test for flavor, texture, and overall acceptability of beetroot gel flavorized with synthetic orange flavor had a sensory quality score >6.6. The effects of acute inorganic nitrate supplementation on nitric oxide production and BP of five healthy subjects were evaluated. The consumption of beetroot gel increased plasma nitrite threefold after 60 min of ingestion and decreased systolic BP (−6.2 mm Hg), diastolic BP (−5.2 mm Hg), and heart rate (−7 bpm).
Collapse
Affiliation(s)
| | - Fabricio de Oliveira Silva
- Departamento de Bioqímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Perrone
- Departamento de Bioqímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carlos Adam Conte-Junior
- Departamento de Tecnologia e Inspeção de Alimentos, Instituto de Tecnologia de Alimentos, Universidade Federal Fluminense, Niterói, Brazil
| | - Thiago da Silveira Alvares
- Instituto de Nutrição, Nucleo de Nutrição Básica e Dietética, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Eduardo Mere Del Aguila
- Departamento de Bioqímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
296
|
Woessner M, Smoliga JM, Tarzia B, Stabler T, Van Bruggen M, Allen JD. A stepwise reduction in plasma and salivary nitrite with increasing strengths of mouthwash following a dietary nitrate load. Nitric Oxide 2016; 54:1-7. [PMID: 26778277 DOI: 10.1016/j.niox.2016.01.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 02/07/2023]
Abstract
Nitric Oxide (NO) bioavailability is essential for vascular health. Dietary supplementation with inorganic nitrate, which is abundant in vegetables and roots, has been identified as an effective means of increasing vascular NO bioavailability. Recent studies have shown a reduction in resting blood pressures in both normotensive and hypertensive subjects following ingestion of inorganic nitrate. Oral bacteria play a key role in this process and the use of strong antibacterial mouthwash rinses can disable this mechanism. Hence, mouthwash usage, a $1.4 billion market in the US, may potentially be detrimental to cardiovascular health. The purpose of this study was to examine the effects of different strengths of commercially available mouthwash products on salivary and plasma nitrate and nitrite concentrations following 8.4 mmol inorganic nitrate load (beetroot juice). Specifically, we examined the effects of Listerine antiseptic mouthwash, Cepacol antibacterial mouthwash, and Chlorhexidine mouthwash versus control (water). Twelve apparently healthy normotensive males (36 ± 11 yrs) completed four testing visits in a randomized order, separated by one week. Testing consisted of blood pressure (BP), and saliva and venous blood collection at baseline and each hour for 4 h. Following baseline-testing participants consumed 140 ml of beet juice and then 15 min later gargled with 5 mL of assigned mouthwash. Testing and mouthwash rinse was repeated every hour for 4 h. Linear mixed effects models, followed by pairwise comparisons where appropriate, were used to determine the influence of treatment and time on plasma and saliva nitrate and nitrite, and BP. Plasma and salivary nitrate increased above baseline (time effect) for all conditions (p ≤ 0.01). There were time (p ≤ 0.01), treatment (p ≤ 0.01), and interaction (p ≤ 0.05) effects for plasma and salivary nitrite. There was a treatment effect on systolic BP (p ≤ 0.05). Further examination revealed a differentiation of plasma and salivary nitrite concentration between control/antiseptic and antibacterial/chlorhexidine treatments. When examined in this manner there was a reduction in both SBP (p ≤ 0.01) and mean arterial BP (p ≤ 0.05) from the antibacterial/chlorhexidine treatments. These results suggest a potentially differentiating effect of different commercially available mouthwash solutions on plasma and salivary nitrite concentrations and resting blood pressure responses. This raises potential public health related questions on the appropriate widespread usage of different mouthwash formulations.
Collapse
Affiliation(s)
- Mary Woessner
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - James M Smoliga
- Institute for Human Health and Sports Science Research, Department of Physical Therapy, High Point University, High Point, NC, USA
| | - Brendan Tarzia
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Thomas Stabler
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Mitch Van Bruggen
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Jason D Allen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
297
|
Effect of dietary nitrate supplementation on metabolic rate during rest and exercise in human: A systematic review and a meta-analysis. Nitric Oxide 2016; 53:65-76. [PMID: 26772523 DOI: 10.1016/j.niox.2016.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/27/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Recent randomized controlled trials have suggested that dietary nitrate (NO3(-)), found in beetroot and other vegetables, and inorganic NO3(-) salts decrease metabolic rate under resting and exercise conditions. OBJECTIVE Our aim was therefore to determine from a systematic review and meta-analysis whether dietary NO3(-) supplementation significantly reduces metabolic rate, expressed as oxygen uptake (VO2), under resting and exercise conditions in healthy humans and those with cardiorespiratory diseases. DESIGN A systematic article search was performed on electronic databases (PubMed, Scopus and Web of Science) from February to March 2015. The inclusion criteria included 1) randomized controlled trials; 2) studies reporting the effect of NO3(-) on VO2 under resting and/or exercise conditions; 3) comparison between dietary NO3(-) supplementation and placebo. Random-effects models were used to calculate the pooled effect size. RESULTS Twenty nine randomized placebo-controlled trials were included in the systematic review, and 26 of which were included in the meta-analysis. Dietary NO3(-) supplementation significantly decreases VO2 during submaximal intensity exercise [-0.26 (95% IC: -0.38, -0.15), p < 0.01], but not in the sub-analysis of subjects with chronic diseases [-0.09 (95% IC: -0.50, 0.32), p = 0.67]. When data were separately analyzed by submaximal intensity domains, NO3(-) supplementation reduces VO2 during moderate [-0.29 (95% IC: -0.48,-0.10), p < 0.01] and heavy [-0.33 (95% IC: -0.54,-0.12), p < 0.01] intensity exercise. When the studies with the largest effects were excluded from the meta-analysis, there is a trend for a VO2 decrease under resting condition in dietary NO3(-) supplementation [-0.28 (95% IC: -0.62, 0.05), p = 0.10]. CONCLUSION Dietary NO3(-) supplementation decreases VO2 during exercise performed in the moderate and heavy intensity domains in healthy subjects. The present meta-analysis did not show any significant effect of dietary NO3(-) supplementation on metabolic rate in subjects with chronic diseases, despite enhanced exercise tolerance.
Collapse
|
298
|
Velmurugan S, Gan JM, Rathod KS, Khambata RS, Ghosh SM, Hartley A, Van Eijl S, Sagi-Kiss V, Chowdhury TA, Curtis M, Kuhnle GGC, Wade WG, Ahluwalia A. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 2016; 103:25-38. [PMID: 26607938 PMCID: PMC4691670 DOI: 10.3945/ajcn.115.116244] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The beneficial cardiovascular effects of vegetables may be underpinned by their high inorganic nitrate content. OBJECTIVE We sought to examine the effects of a 6-wk once-daily intake of dietary nitrate (nitrate-rich beetroot juice) compared with placebo intake (nitrate-depleted beetroot juice) on vascular and platelet function in untreated hypercholesterolemics. DESIGN A total of 69 subjects were recruited in this randomized, double-blind, placebo-controlled parallel study. The primary endpoint was the change in vascular function determined with the use of ultrasound flow-mediated dilatation (FMD). RESULTS Baseline characteristics were similar between the groups, with primary outcome data available for 67 patients. Dietary nitrate resulted in an absolute increase in the FMD response of 1.1% (an ∼24% improvement from baseline) with a worsening of 0.3% in the placebo group (P < 0.001). A small improvement in the aortic pulse wave velocity (i.e., a decrease of 0.22 m/s; 95% CI: -0.4, -0.3 m/s) was evident in the nitrate group, showing a trend (P = 0.06) to improvement in comparison with the placebo group. Dietary nitrate also caused a small but significant reduction (7.6%) in platelet-monocyte aggregates compared with an increase of 10.1% in the placebo group (P = 0.004), with statistically significant reductions in stimulated (ex vivo) P-selectin expression compared with the placebo group (P < 0.05) but no significant changes in unstimulated expression. No adverse effects of dietary nitrate were detected. The composition of the salivary microbiome was altered after the nitrate treatment but not after the placebo treatment (P < 0.01). The proportions of 78 bacterial taxa were different after the nitrate treatment; of those taxa present, 2 taxa were responsible for >1% of this change, with the proportions of Rothia mucilaginosa trending to increase and Neisseria flavescens (P < 0.01) increased after nitrate treatment relative to after placebo treatment. CONCLUSIONS Sustained dietary nitrate ingestion improves vascular function in hypercholesterolemic patients. These changes are associated with alterations in the oral microbiome and, in particular, nitrate-reducing genera. Our findings provide additional support for the assessment of the potential of dietary nitrate as a preventative strategy against atherogenesis in larger cohorts. This trial was registered at clinicaltrials.gov as NCT01493752.
Collapse
Affiliation(s)
- Shanti Velmurugan
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Jasmine Ming Gan
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Krishnaraj S Rathod
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Rayomand S Khambata
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Suborno M Ghosh
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Amy Hartley
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Sven Van Eijl
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Virag Sagi-Kiss
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom; and
| | - Tahseen A Chowdhury
- Barts National Health Service Trust, Department of Diabetes and Metabolic Medicine, The Royal London Hospital, London, United Kingdom
| | | | - Gunter G C Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom; and
| | - William G Wade
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Amrita Ahluwalia
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit,
| |
Collapse
|
299
|
Flueck JL, Bogdanova A, Mettler S, Perret C. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise. Appl Physiol Nutr Metab 2015; 41:421-9. [PMID: 26988767 DOI: 10.1139/apnm-2015-0458] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.
Collapse
Affiliation(s)
- Joelle Leonie Flueck
- a Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, 6207 Nottwil, Switzerland
| | - Anna Bogdanova
- b Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Samuel Mettler
- c Swiss Federal Institute of Sports Magglingen (SFISM), 2532 Magglingen, Switzerland.,d Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Claudio Perret
- a Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, 6207 Nottwil, Switzerland
| |
Collapse
|
300
|
Ashmore T, Roberts LD, Morash AJ, Kotwica AO, Finnerty J, West JA, Murfitt SA, Fernandez BO, Branco C, Cowburn AS, Clarke K, Johnson RS, Feelisch M, Griffin JL, Murray AJ. Nitrate enhances skeletal muscle fatty acid oxidation via a nitric oxide-cGMP-PPAR-mediated mechanism. BMC Biol 2015; 13:110. [PMID: 26694920 PMCID: PMC4688964 DOI: 10.1186/s12915-015-0221-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Insulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of β-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease. Dietary inorganic nitrate was recently shown to reverse aspects of the metabolic syndrome in rodents by as yet incompletely defined mechanisms. RESULTS Herein, we report that nitrate enhances skeletal muscle FA oxidation in rodents in a dose-dependent manner. We show that nitrate induces FA oxidation through a soluble guanylate cyclase (sGC)/cGMP-mediated PPARβ/δ- and PPARα-dependent mechanism. Enhanced PPARβ/δ and PPARα expression and DNA binding induces expression of FA oxidation enzymes, increasing muscle carnitine and lowering tissue malonyl-CoA concentrations, thereby supporting intra-mitochondrial pathways of FA oxidation and enhancing mitochondrial respiration. At higher doses, nitrate induces mitochondrial biogenesis, further increasing FA oxidation and lowering long-chain FA concentrations. Meanwhile, nitrate did not affect mitochondrial FA oxidation in PPARα(-/-) mice. In C2C12 myotubes, nitrate increased expression of the PPARα targets Cpt1b, Acadl, Hadh and Ucp3, and enhanced oxidative phosphorylation rates with palmitoyl-carnitine; however, these changes in gene expression and respiration were prevented by inhibition of either sGC or protein kinase G. Elevation of cGMP, via the inhibition of phosphodiesterase 5 by sildenafil, also increased expression of Cpt1b, Acadl and Ucp3, as well as CPT1B protein levels, and further enhanced the effect of nitrate supplementation. CONCLUSIONS Nitrate may therefore be effective in the treatment of metabolic disease by inducing FA oxidation in muscle.
Collapse
Affiliation(s)
- Tom Ashmore
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lee D Roberts
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research, University of Cambridge, Cambridge, UK
| | - Andrea J Morash
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Aleksandra O Kotwica
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - John Finnerty
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - James A West
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Steven A Murfitt
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Bernadette O Fernandez
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton, UK
| | - Cristina Branco
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Andrew S Cowburn
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Randall S Johnson
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Martin Feelisch
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton, UK
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|