251
|
Dobierzewska A, Palominos M, Sanchez M, Dyhr M, Helgert K, Venegas-Araneda P, Tong S, Illanes SE. Impairment of Angiogenic Sphingosine Kinase-1/Sphingosine-1-Phosphate Receptors Pathway in Preeclampsia. PLoS One 2016; 11:e0157221. [PMID: 27284992 PMCID: PMC4902228 DOI: 10.1371/journal.pone.0157221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/26/2016] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia (PE), is a serious pregnancy disorder characterized in the early gestation by shallow trophoblast invasion, impaired placental neo-angiogenesis, placental hypoxia and ischemia, which leads to maternal and fetal morbidity and mortality. Here we hypothesized that angiogenic sphingosine kinase-1 (SPHK1)/sphingosine-1-phosphate (S1P) receptors pathway is impaired in PE. We found that SPHK1 mRNA and protein expression are down-regulated in term placentae and term chorionic villous explants from patients with PE or severe PE (PES), compared with controls. Moreover, mRNA expression of angiogenic S1PR1 and S1PR3 receptors were decreased in placental samples of PE and PES patients, whereas anti-angiogenic S1PR2 was up-regulated in chorionic villous tissue of PES subjects, pointing to its potential atherogenic and inflammatory properties. Furthermore, in in vitro (JAR cells) and ex vivo (chorionic villous explants) models of placental hypoxia, SPHK1 mRNA and protein were strongly up-regulated under low oxygen tension (1% 02). In contrast, there was no change in SPHK1 expression under the conditions of placental physiological hypoxia (8% 02). In both models, nuclear protein levels of HIF1A were increased at 1% 02 during the time course, but there was no up-regulation at 8% 02, suggesting that SPHK1 and HIF1A might be the part of the same canonical pathway during hypoxia and that both contribute to placental neovascularization during early gestation. Taken together, this study suggest the SPHK1 pathway may play a role in the human early placentation process and may be involved in the pathogenesis of PE.
Collapse
Affiliation(s)
- Aneta Dobierzewska
- Department of Obstetrics & Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- * E-mail:
| | - Macarena Palominos
- Department of Obstetrics & Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Marianela Sanchez
- Department of Obstetrics & Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Michael Dyhr
- Department of Obstetrics & Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Katja Helgert
- Department of Obstetrics & Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Pia Venegas-Araneda
- Department of Obstetrics & Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Stephen Tong
- Translational Obstetrics Group, Department of Obstetrics and Gynecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Sebastian E. Illanes
- Department of Obstetrics & Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Department of Maternal-Fetal Medicine, Clinica Davila, Santiago, Chile
| |
Collapse
|
252
|
Strickland DK, Muratoglu SC. LRP in Endothelial Cells: A Little Goes a Long Way. Arterioscler Thromb Vasc Biol 2016; 36:213-6. [PMID: 26819461 DOI: 10.1161/atvbaha.115.306895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease (D.K.S., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (D.K.S., S.C.M.), University of Maryland School of Medicine, Baltimore.
| | - Selen C Muratoglu
- From the Center for Vascular and Inflammatory Disease (D.K.S., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (D.K.S., S.C.M.), University of Maryland School of Medicine, Baltimore
| |
Collapse
|
253
|
Kitada Y, Kajita K, Taguchi K, Mori I, Yamauchi M, Ikeda T, Kawashima M, Asano M, Kajita T, Ishizuka T, Banno Y, Kojima I, Chun J, Kamata S, Ishii I, Morita H. Blockade of Sphingosine 1-Phosphate Receptor 2 Signaling Attenuates High-Fat Diet-Induced Adipocyte Hypertrophy and Systemic Glucose Intolerance in Mice. Endocrinology 2016; 157:1839-51. [PMID: 26943364 PMCID: PMC4870879 DOI: 10.1210/en.2015-1768] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sphingosine 1-phosphate (S1P) is known to regulate insulin resistance in hepatocytes, skeletal muscle cells, and pancreatic β-cells. Among its 5 cognate receptors (S1pr1-S1pr5), S1P seems to counteract insulin signaling and confer insulin resistance via S1pr2 in these cells. S1P may also regulate insulin resistance in adipocytes, but the S1pr subtype(s) involved remains unknown. Here, we investigated systemic glucose/insulin tolerance and phenotypes of epididymal adipocytes in high-fat diet (HFD)-fed wild-type and S1pr2-deficient (S1pr2(-/-)) mice. Adult S1pr2(-/-) mice displayed smaller body/epididymal fat tissue weights, but the differences became negligible after 4 weeks with HFD. However, HFD-fed S1pr2(-/-) mice displayed better scores in glucose/insulin tolerance tests and had smaller epididymal adipocytes that expressed higher levels of proliferating cell nuclear antigen than wild-type mice. Next, proliferation/differentiation of 3T3-L1 and 3T3-F442A preadipocytes were examined in the presence of various S1pr antagonists: JTE-013 (S1pr2 antagonist), VPC-23019 (S1pr1/S1pr3 antagonist), and CYM-50358 (S1pr4 antagonist). S1P or JTE-013 treatment of 3T3-L1 preadipocytes potently activated their proliferation and Erk phosphorylation, whereas VPC-23019 inhibited both of these processes, and CYM-50358 had no effects. In contrast, S1P or JTE-013 treatment inhibited adipogenic differentiation of 3T3-F442A preadipocytes, whereas VPC-23019 activated it. The small interfering RNA knockdown of S1pr2 promoted proliferation and inhibited differentiation of 3T3-F442A preadipocytes, whereas that of S1pr1 acted oppositely. Moreover, oral JTE-013 administration improved glucose tolerance/insulin sensitivity in ob/ob mice. Taken together, S1pr2 blockade induced proliferation but suppressed differentiation of (pre)adipocytes both in vivo and in vitro, highlighting a novel therapeutic approach for obesity/type 2 diabetes.
Collapse
Affiliation(s)
- Yoshihiko Kitada
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Kazuo Kajita
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Koichiro Taguchi
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Ichiro Mori
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Masahiro Yamauchi
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Takahide Ikeda
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Mikako Kawashima
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Motochika Asano
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Toshiko Kajita
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Tatsuo Ishizuka
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Yoshiko Banno
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Itaru Kojima
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Jerold Chun
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Shotaro Kamata
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Isao Ishii
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Hiroyuki Morita
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| |
Collapse
|
254
|
Scott FL, Clemons B, Brooks J, Brahmachary E, Powell R, Dedman H, Desale HG, Timony GA, Martinborough E, Rosen H, Roberts E, Boehm MF, Peach RJ. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1 ) and receptor-5 (S1P5 ) agonist with autoimmune disease-modifying activity. Br J Pharmacol 2016; 173:1778-92. [PMID: 26990079 DOI: 10.1111/bph.13476] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine1-phosphate (S1P) receptors mediate multiple events including lymphocyte trafficking, cardiac function, and endothelial barrier integrity. Stimulation of S1P1 receptors sequesters lymphocyte subsets in peripheral lymphoid organs, preventing their trafficking to inflamed tissue sites, modulating immunity. Targeting S1P receptors for treating autoimmune disease has been established in clinical studies with the non-selective S1P modulator, FTY720 (fingolimod, Gilenya™). The purpose of this study was to assess RPC1063 for its therapeutic utility in autoimmune diseases. EXPERIMENTAL APPROACH The specificity and potency of RPC1063 (ozanimod) was evaluated for all five S1P receptors, and its effect on cell surface S1P1 receptor expression, was characterized in vitro. The oral pharmacokinetic (PK) parameters and pharmacodynamic effects were established in rodents, and its activity in three models of autoimmune disease (experimental autoimmune encephalitis, 2,4,6-trinitrobenzenesulfonic acid colitis and CD4(+) CD45RB(hi) T cell adoptive transfer colitis) was assessed. KEY RESULTS RPC1063 was specific for S1P1 and S1P5 receptors, induced S1P1 receptor internalization and induced a reversible reduction in circulating B and CCR7(+) T lymphocytes in vivo. RPC1063 showed high oral bioavailability and volume of distribution, and a circulatory half-life that supports once daily dosing. Oral RPC1063 reduced inflammation and disease parameters in all three autoimmune disease models. CONCLUSIONS AND IMPLICATIONS S1P receptor selectivity, favourable PK properties and efficacy in three distinct disease models supports the clinical development of RPC1063 for the treatment of relapsing multiple sclerosis and inflammatory bowel disease, differentiates RPC1063 from other S1P receptor agonists, and could result in improved safety outcomes in the clinic.
Collapse
Affiliation(s)
| | | | - J Brooks
- Receptos Inc, San Diego, CA, USA
| | | | - R Powell
- Receptos Inc, San Diego, CA, USA
| | - H Dedman
- Receptos Inc, San Diego, CA, USA
| | | | | | | | - H Rosen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - E Roberts
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
255
|
Ader I, Gstalder C, Bouquerel P, Golzio M, Andrieu G, Zalvidea S, Richard S, Sabbadini RA, Malavaud B, Cuvillier O. Neutralizing S1P inhibits intratumoral hypoxia, induces vascular remodelling and sensitizes to chemotherapy in prostate cancer. Oncotarget 2016; 6:13803-21. [PMID: 25915662 PMCID: PMC4537051 DOI: 10.18632/oncotarget.3144] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/12/2015] [Indexed: 12/19/2022] Open
Abstract
Hypoxia promotes neovascularization, increased tumor growth, and therapeutic resistance. The transcription factor, hypoxia-inducible factor 1α (HIF-1α), has been reported as the master driver of adaptation to hypoxia. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF-1α under hypoxia. Taking advantage of a monoclonal antibody neutralizing extracellular S1P (sphingomab), we report that inhibition of S1P extracellular signaling blocks HIF-1α accumulation and activity in several cancer cell models exposed to hypoxia. In an orthotopic xenograft model of prostate cancer, we show that sphingomab reduces hypoxia and modifies vessel architecture within 5 days of treatment, leading to increased intratumoral blood perfusion. Supporting the notion that a transient vascular normalization of tumor vessels is the mechanism by which sphingomab exerts its effects, we demonstrate that administration of the antibody for 5 days before chemotherapy is more effective at local tumor control and metastatic dissemination than any other treatment scheduling. These findings validate sphingomab as a potential new normalization agent that could contribute to successful sensitization of hypoxic tumors to chemotherapy.
Collapse
Affiliation(s)
- Isabelle Ader
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Cécile Gstalder
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Pierre Bouquerel
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Muriel Golzio
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Guillaume Andrieu
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Santiago Zalvidea
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, CHU Arnaud de Villeneuve, Montpellier, France
| | - Sylvain Richard
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, CHU Arnaud de Villeneuve, Montpellier, France
| | | | - Bernard Malavaud
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
| | - Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| |
Collapse
|
256
|
Cai Y, Bolte C, Le T, Goda C, Xu Y, Kalin TV, Kalinichenko VV. FOXF1 maintains endothelial barrier function and prevents edema after lung injury. Sci Signal 2016; 9:ra40. [PMID: 27095594 DOI: 10.1126/scisignal.aad1899] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple signaling pathways, structural proteins, and transcription factors are involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(-/-)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a single Foxf1 allele made heterozygous Pdgfb-iCreER/Foxf1(+/-)mice more susceptible to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of the S1pr1 promoter. Pharmacological administration of S1P to injured Pdgfb-iCreER/Foxf1(+/-)mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway.
Collapse
Affiliation(s)
- Yuqi Cai
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Craig Bolte
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tien Le
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Chinmayee Goda
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. The Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. The Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
257
|
Herr DR, Reolo MJY, Peh YX, Wang W, Lee CW, Rivera R, Paterson IC, Chun J. Sphingosine 1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: implications for otoprotective therapy. Sci Rep 2016; 6:24541. [PMID: 27080739 PMCID: PMC4832229 DOI: 10.1038/srep24541] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Ototoxic drugs, such as platinum-based chemotherapeutics, often lead to permanent hearing loss through apoptosis of neuroepithelial hair cells and afferent neurons of the cochlea. There is no approved therapy for preventing or reversing this process. Our previous studies identified a G protein-coupled receptor (GPCR), S1P2, as a potential mediator of otoprotection. We therefore sought to identify a pharmacological approach to prevent cochlear degeneration via activation of S1P2. The cochleae of S1pr2−/− knockout mice were evaluated for accumulation of reactive oxygen species (ROS) with a nitro blue tetrazolium (NBT) assay. This showed that loss of S1P2 results in accumulation of ROS that precedes progressive cochlear degeneration as previously reported. These findings were supported by in vitro cell-based assays to evaluate cell viability, induction of apoptosis, and accumulation of ROS following activation of S1P2 in the presence of cisplatin. We show for the first time, that activation of S1P2 with a selective receptor agonist increases cell viability and reduces cisplatin-mediated cell death by reducing ROS. Cumulatively, these results suggest that S1P2 may serve as a therapeutic target for attenuating cisplatin-mediated ototoxicity.
Collapse
Affiliation(s)
- Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597.,Department of Biology, San Diego State University, San Diego, CA, USA
| | - Marie J Y Reolo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Yee Xin Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Wei Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Chang-Wook Lee
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Rich Rivera
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research &Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
258
|
Tang H, Zhao D, Chen S, Fang M, Wang F, Cui Y, Tang N, Chen Q. Expression of Sphingosine-1-phosphate (S1P) on the cerebral vasospasm after subarachnoid hemorrhage in rabbits. Acta Cir Bras 2016; 30:654-9. [PMID: 26560422 DOI: 10.1590/s0102-865020150100000001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/17/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To demonstrate the relationship between of sphingosine-1-phosphate (S1P) expression and subarachnoid hemorrhage (SAH). METHODS The basilar arteries from a "double-hemorrhage" rabbit model of SAH were used to investigate the relation between S1P expression and SAH. Various symptoms, including blood clots, basilar artery cross-sectional area, and S1P phosphatase expression were measured at day 3, 5, 7, 9. RESULTS The expression of S1P was enhanced in the cerebral vasospasm after subarachnoid hemorrhage in the rabbits. And S1P expression was consistent with the basilar artery cross-sectional area changes at day 3, 5, 7, 9. CONCLUSION Sphingosine-1-phosphate expression in the cerebral arterial may be a new indicator in the development of cerebral vasospasm after subarachnoid hemorrhage and provide a new therapeutic method for SAH.
Collapse
Affiliation(s)
- Hua Tang
- Department of Neurosurgery, Wuhan University, Hubei Province, P.R.C, China
| | - Donggang Zhao
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Shaojun Chen
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Ming Fang
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Feifan Wang
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Ying Cui
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Na Tang
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| |
Collapse
|
259
|
Papangeli I, Kim J, Maier I, Park S, Lee A, Kang Y, Tanaka K, Khan OF, Ju H, Kojima Y, Red-Horse K, Anderson DG, Siekmann AF, Chun HJ. MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular maturation. Nat Commun 2016; 7:11268. [PMID: 27068353 PMCID: PMC4832062 DOI: 10.1038/ncomms11268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 03/08/2016] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptor (GPCR) signalling, including that involving apelin (APLN) and its receptor APLNR, is known to be important in vascular development. How this ligand–receptor pair regulates the downstream signalling cascades in this context remains poorly understood. Here, we show that mice with Apln, Aplnr or endothelial-specific Aplnr deletion develop profound retinal vascular defects, which are at least in part due to dysregulated increase in endothelial CXCR4 expression. Endothelial CXCR4 is negatively regulated by miR-139-5p, whose transcription is in turn induced by laminar flow and APLN/APLNR signalling. Inhibition of miR-139-5p in vivo partially phenocopies the retinal vascular defects of APLN/APLNR deficiency. Pharmacological inhibition of CXCR4 signalling or augmentation of the miR-139-5p-CXCR4 axis can ameliorate the vascular phenotype of APLN/APLNR deficient state. Overall, we identify an important microRNA-mediated GPCR crosstalk, which plays a key role in vascular development. G protein-coupled receptors APLNR and CXCR4 are crucial for vascular development. Here, the authors show that these two signaling pathways communicate and that in response to blood flow APLNR signaling induces a decrease in CXCR4 expression via miR-139-5p, thereby restricting CXCR4 expression to the non-flow exposed tip cells in the retinal vasculature.
Collapse
Affiliation(s)
- Irinna Papangeli
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, 300 George Street, 7th Floor, New Haven, Connecticut 06511, USA
| | - Jongmin Kim
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, 300 George Street, 7th Floor, New Haven, Connecticut 06511, USA.,Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Korea
| | - Inna Maier
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Saejeong Park
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, 300 George Street, 7th Floor, New Haven, Connecticut 06511, USA
| | - Aram Lee
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Korea
| | - Yujung Kang
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, 300 George Street, 7th Floor, New Haven, Connecticut 06511, USA
| | - Keiichiro Tanaka
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, 300 George Street, 7th Floor, New Haven, Connecticut 06511, USA
| | - Omar F Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Hyekyung Ju
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, 300 George Street, 7th Floor, New Haven, Connecticut 06511, USA
| | - Yoko Kojima
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, 300 George Street, 7th Floor, New Haven, Connecticut 06511, USA
| | - Kristy Red-Horse
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Hyung J Chun
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, 300 George Street, 7th Floor, New Haven, Connecticut 06511, USA
| |
Collapse
|
260
|
Dimasi DP, Pitson SM, Bonder CS. Examining the Role of Sphingosine Kinase-2 in the Regulation of Endothelial Cell Barrier Integrity. Microcirculation 2016; 23:248-65. [DOI: 10.1111/micc.12271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/25/2016] [Indexed: 12/30/2022]
Affiliation(s)
- David P. Dimasi
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
- School of Medicine; University of Adelaide; Adelaide South Australia Australia
- School of Biological Sciences; University of Adelaide; Adelaide South Australia Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
- School of Medicine; University of Adelaide; Adelaide South Australia Australia
- School of Biological Sciences; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
261
|
Christensen PM, Liu CH, Swendeman SL, Obinata H, Qvortrup K, Nielsen LB, Hla T, Di Lorenzo A, Christoffersen C. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1. FASEB J 2016; 30:2351-9. [PMID: 26956418 DOI: 10.1096/fj.201500064] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/22/2016] [Indexed: 12/25/2022]
Abstract
Apolipoprotein M (ApoM) transports sphingosine-1-phosphate (S1P) in plasma, and ApoM-deficient mice (Apom(-/-)) have ∼50% reduced plasma S1P levels. There are 5 known S1P receptors, and S1P induces adherens junction formation between endothelial cells through the S1P1 receptor, which in turn suppresses vascular leak. Increased vascular permeability is a hallmark of inflammation. The purpose of this study was to explore the relationships between vascular leakage in ApoM deficiency and S1P1 function in normal physiology and in inflammation. Vascular permeability in the lungs was assessed by accumulation of dextran molecules (70 kDa) and was increased ∼40% in Apom(-/-) mice compared to WT (C57Bl6/j) mice. Reconstitution of plasma ApoM/S1P or treatment with an S1P1 receptor agonist (SEW2871) rapidly reversed the vascular leakage to a level similar to that in WT mice, suggesting that it is caused by decreased plasma levels of S1P and reduced S1P1 stimulation. In a carrageenan-induced model of inflammation, Apom(-/-) mice had increased vascular leakage compared with that in WT mice. Adenoviral overexpression of ApoM in Apom(-/-) mice decreased the vascular leakage compared to adenoviral overexpression of green fluorescent protein. The study suggests that vascular leakage of albumin-sized particles in ApoM deficiency is S1P- and S1P1-dependent and this dependency exacerbates the response to inflammatory stimuli.-Christensen, P. M., Liu, C. H., Swendeman, S. L., Obinata, H., Qvortrup, K., Nielsen, L B., Hla, T., Di Lorenzo, A., Christoffersen, C. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1.
Collapse
Affiliation(s)
- Pernille M Christensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Catherine H Liu
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Steven L Swendeman
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Hideru Obinata
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Klaus Qvortrup
- Department of Biomedical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; and
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Annarita Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
262
|
di Masi A, Trezza V, Leboffe L, Ascenzi P. Human plasma lipocalins and serum albumin: Plasma alternative carriers? J Control Release 2016; 228:191-205. [PMID: 26951925 DOI: 10.1016/j.jconrel.2016.02.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/14/2023]
Abstract
Lipocalins are an evolutionarily conserved family of proteins that bind and transport a variety of exogenous and endogenous ligands. Lipocalins share a conserved eight anti-parallel β-sheet structure. Among the different lipocalins identified in humans, α-1-acid glycoprotein (AGP), apolipoprotein D (apoD), apolipoprotein M (apoM), α1-microglobulin (α1-m) and retinol-binding protein (RBP) are plasma proteins. In particular, AGP is the most important transporter for basic and neutral drugs, apoD, apoM, and RBP mainly bind endogenous molecules such as progesterone, pregnenolone, bilirubin, sphingosine-1-phosphate, and retinol, while α1-m binds the heme. Human serum albumin (HSA) is a monomeric all-α protein that binds endogenous and exogenous molecules like fatty acids, heme, and acidic drugs. Changes in the plasmatic levels of lipocalins and HSA are responsible for the onset of pathological conditions associated with an altered drug transport and delivery. This, however, does not necessary result in potential adverse effects in patients because many drugs can bind both HSA and lipocalins, and therefore mutual compensatory binding mechanisms can be hypothesized. Here, molecular and clinical aspects of ligand transport by plasma lipocalins and HSA are reviewed, with special attention to their role as alterative carriers in health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy.
| | - Viviana Trezza
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy
| | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy
| | - Paolo Ascenzi
- Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy; Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy
| |
Collapse
|
263
|
Park-Windhol C, D'Amore PA. Disorders of Vascular Permeability. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:251-81. [PMID: 26907525 DOI: 10.1146/annurev-pathol-012615-044506] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Patricia A D'Amore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
264
|
Uranbileg B, Ikeda H, Kurano M, Enooku K, Sato M, Saigusa D, Aoki J, Ishizawa T, Hasegawa K, Kokudo N, Yatomi Y. Increased mRNA Levels of Sphingosine Kinases and S1P Lyase and Reduced Levels of S1P Were Observed in Hepatocellular Carcinoma in Association with Poorer Differentiation and Earlier Recurrence. PLoS One 2016; 11:e0149462. [PMID: 26886371 PMCID: PMC4757388 DOI: 10.1371/journal.pone.0149462] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Although sphingosine 1-phosphate (S1P) has been reported to play an important role in cancer pathophysiology, little is known about S1P and hepatocellular carcinoma (HCC). To clarify the relationship between S1P and HCC, 77 patients with HCC who underwent surgical treatment were consecutively enrolled in this study. In addition, S1P and its metabolites were quantitated by LC-MS/MS. The mRNA levels of sphingosine kinases (SKs), which phosphorylate sphingosine to generate S1P, were increased in HCC tissues compared with adjacent non-HCC tissues. Higher mRNA levels of SKs in HCC were associated with poorer differentiation and microvascular invasion, whereas a higher level of SK2 mRNA was a risk factor for intra- and extra-hepatic recurrence. S1P levels, however, were unexpectedly reduced in HCC compared with non-HCC tissues, and increased mRNA levels of S1P lyase (SPL), which degrades S1P, were observed in HCC compared with non-HCC tissues. Higher SPL mRNA levels in HCC were associated with poorer differentiation. Finally, in HCC cell lines, inhibition of the expression of SKs or SPL by siRNA led to reduced proliferation, invasion and migration, whereas overexpression of SKs or SPL enhanced proliferation. In conclusion, increased SK and SPL mRNA expression along with reduced S1P levels were more commonly observed in HCC tissues compared with adjacent non-HCC tissues and were associated with poor differentiation and early recurrence. SPL as well as SKs may be therapeutic targets for HCC treatment.
Collapse
MESH Headings
- Aldehyde-Lyases/antagonists & inhibitors
- Aldehyde-Lyases/genetics
- Aldehyde-Lyases/metabolism
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/surgery
- Lysophospholipids/metabolism
- Metabolome
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Risk Factors
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
- CREST, JST, Japan
- * E-mail:
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
- CREST, JST, Japan
| | - Kenichiro Enooku
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaya Sato
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Miyagi, Japan
- CREST, JST, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
- CREST, JST, Japan
| | - Takeaki Ishizawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
- CREST, JST, Japan
| |
Collapse
|
265
|
Lappano R, Rigiracciolo D, De Marco P, Avino S, Cappello AR, Rosano C, Maggiolini M, De Francesco EM. Recent Advances on the Role of G Protein-Coupled Receptors in Hypoxia-Mediated Signaling. AAPS JOURNAL 2016; 18:305-10. [PMID: 26865461 DOI: 10.1208/s12248-016-9881-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/28/2016] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are cell surface proteins mainly involved in signal transmission; however, they play a role also in several pathophysiological conditions. Chemically heterogeneous molecules like peptides, hormones, lipids, and neurotransmitters activate second messengers and induce several biological responses by binding to these seven transmembrane receptors, which are coupled to heterotrimeric G proteins. Recently, additional molecular mechanisms have been involved in GPCR-mediated signaling, leading to an intricate network of transduction pathways. In this regard, it should be mentioned that diverse GPCR family members contribute to the adaptive cell responses to low oxygen tension, which is a distinguishing feature of several illnesses like neoplastic and cardiovascular diseases. For instance, the G protein estrogen receptor, namely G protein estrogen receptor (GPER)/GPR30, has been shown to contribute to relevant biological effects induced by hypoxia via the hypoxia-inducible factor (HIF)-1α in diverse cell contexts, including cancer. Likewise, GPER has been found to modulate the biological outcome of hypoxic/ischemic stress in both cardiovascular and central nervous systems. Here, we describe the role exerted by GPCR-mediated signaling in low oxygen conditions, discussing, in particular, the involvement of GPER by a hypoxic microenvironment.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Damiano Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Paola De Marco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Silvia Avino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Camillo Rosano
- UOS Proteomics IRCCS AOU San Martino-IST National Institute for Cancer Research, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy.
| | | |
Collapse
|
266
|
Santos-Cortez RLP, Faridi R, Rehman AU, Lee K, Ansar M, Wang X, Morell RJ, Isaacson R, Belyantseva IA, Dai H, Acharya A, Qaiser TA, Muhammad D, Ali RA, Shams S, Hassan MJ, Shahzad S, Raza SI, Bashir ZEH, Smith JD, Nickerson DA, Bamshad MJ, Riazuddin S, Ahmad W, Friedman TB, Leal SM. Autosomal-Recessive Hearing Impairment Due to Rare Missense Variants within S1PR2. Am J Hum Genet 2016; 98:331-8. [PMID: 26805784 DOI: 10.1016/j.ajhg.2015.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022] Open
Abstract
The sphingosine-1-phosphate receptors (S1PRs) are a well-studied class of transmembrane G protein-coupled sphingolipid receptors that mediate multiple cellular processes. However, S1PRs have not been previously reported to be involved in the genetic etiology of human traits. S1PR2 lies within the autosomal-recessive nonsyndromic hearing impairment (ARNSHI) locus DFNB68 on 19p13.2. From exome sequence data we identified two pathogenic S1PR2 variants, c.323G>C (p.Arg108Pro) and c.419A>G (p.Tyr140Cys). Each of these variants co-segregates with congenital profound hearing impairment in consanguineous Pakistani families with maximum LOD scores of 6.4 for family DEM4154 and 3.3 for family PKDF1400. Neither S1PR2 missense variant was reported among ∼120,000 chromosomes in the Exome Aggregation Consortium database, in 76 unrelated Pakistani exomes, or in 720 Pakistani control chromosomes. Both DNA variants affect highly conserved residues of S1PR2 and are predicted to be damaging by multiple bioinformatics tools. Molecular modeling predicts that these variants affect binding of sphingosine-1-phosphate (p.Arg108Pro) and G protein docking (p.Tyr140Cys). In the previously reported S1pr2(-/-) mice, stria vascularis abnormalities, organ of Corti degeneration, and profound hearing loss were observed. Additionally, hair cell defects were seen in both knockout mice and morphant zebrafish. Family PKDF1400 presents with ARNSHI, which is consistent with the lack of gross malformations in S1pr2(-/-) mice, whereas family DEM4154 has lower limb malformations in addition to hearing loss. Our findings suggest the possibility of developing therapies against hair cell damage (e.g., from ototoxic drugs) through targeted stimulation of S1PR2.
Collapse
Affiliation(s)
- Regie Lyn P Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Atteeq U Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Kwanghyuk Lee
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad Ansar
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Xin Wang
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert J Morell
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Rivka Isaacson
- Department of Chemistry, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Hang Dai
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tanveer A Qaiser
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Dost Muhammad
- Chandka Medical College, Larkana, Sindh 77150, Pakistan
| | | | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University, Mardan, 23200 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Jawad Hassan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad 44000, Pakistan
| | - Shaheen Shahzad
- Department of Biotechnology and Bioinformatics, International Islamic University, Islamabad 44000, Pakistan
| | - Syed Irfan Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zil-E-Huma Bashir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sheikh Riazuddin
- University of Lahore, Lahore 54550, Pakistan; Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore 54550, Pakistan; Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
267
|
Zimmer J, Takahashi T, Duess JW, Hofmann AD, Puri P. Upregulation of S1P1 and Rac1 receptors in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 2016; 32:147-54. [PMID: 26543024 DOI: 10.1007/s00383-015-3825-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE Sphingolipids play a crucial role in pulmonary development. The sphingosine kinase 1 (SphK1) modulates the synthesis of sphingolipid sphingosine-1-phosphate (S1P). S1P regulates cell proliferation and angiogenesis via different receptors, S1P1, S1P2 and S1P3, which all influence the expression of Ras-related C3 botulinum toxin substrate 1 (Rac1). We designed this study to test the hypothesis that the S1P/Rac1 pathway is altered in the nitrofen-induced CDH model. METHODS Pregnant rats received nitrofen or vehicle on D9. On D21, fetuses were killed and divided into nitrofen and control group (n = 12). QRT-PCR, western blotting and confocal-immunofluorescence microscopy were performed to reveal pulmonary gene and protein expression levels of SphK1, S1P1, S1P2, S1P3 and Rac1. RESULTS Pulmonary gene expression of S1P1 and Rac1 was significantly increased in the CDH group compared to controls, whereas S1P2 and S1P3 expression was decreased. These results were confirmed by western blotting and confocal microscopy. SphK1 expression was not found to be altered. CONCLUSION The increased expression of S1P1 and Rac1 in the pulmonary vasculature of nitrofen-induced CDH lungs suggests that S1P1 and Rac1 are important mediators of PH in this model.
Collapse
Affiliation(s)
- Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Johannes W Duess
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
- School of Medicine and Medical Science and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alejandro D Hofmann
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
- School of Medicine and Medical Science and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
268
|
Downregulation of Sphingosine 1-Phosphate Receptor 1 Promotes the Switch from Tangential to Radial Migration in the OB. J Neurosci 2016; 35:13659-72. [PMID: 26446219 DOI: 10.1523/jneurosci.1353-15.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Neuroblast migration is a highly orchestrated process that ensures the proper integration of newborn neurons into complex neuronal circuits. In the postnatal rodent brain, neuroblasts migrate long distances from the subependymal zone of the lateral ventricles to the olfactory bulb (OB) within the rostral migratory stream (RMS). They first migrate tangentially in close contact to each other and later radially as single cells until they reach their final destination in the OB. Sphingosine 1-phosphate (S1P) is a bioactive lipid that interacts with cell-surface receptors to exert different cellular responses. Although well studied in other systems and a target for the treatment of multiple sclerosis, little is known about S1P in the postnatal brain. Here, we report that the S1P receptor 1 (S1P1) is expressed in neuroblasts migrating in the RMS. Using in vivo and in vitro gain- and loss-of-function approaches in both wild-type and transgenic mice, we found that the activation of S1P1 by its natural ligand S1P, acting as a paracrine signal, contributes to maintain neuroblasts attached to each other while they migrate in chains within the RMS. Once in the OB, neuroblasts cease to express S1P1, which results in cell detachment and initiation of radial migration, likely via downregulation of NCAM1 and β1 integrin. Our results reveal a novel physiological function for S1P1 in the postnatal brain, directing the path followed by newborn neurons in the neurogenic niche. SIGNIFICANCE STATEMENT The function of each neuron is highly determined by the position it occupies within a neuronal circuit. Frequently, newborn neurons must travel long distances from their birthplace to their predetermined final location and, to do so, they use different modes of migration. In this study, we identify the sphingosine 1-phosphate (S1P) receptor 1 (S1P1) as one of the key players that govern the switch from tangential to radial migration of postnatally generated neuroblasts in the olfactory bulb. Of interest is the evidence that the ligand, S1P, is provided by nearby astrocytes. Finally, we also propose adhesion molecules that act downstream of S1P1 and initiate the transition from tangential chain migration to individual radial migration outside of the stream.
Collapse
|
269
|
Dukala DE, Soliven B. S1P1deletion in oligodendroglial lineage cells: Effect on differentiation and myelination. Glia 2015; 64:570-82. [DOI: 10.1002/glia.22949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/14/2015] [Accepted: 11/17/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Danuta E. Dukala
- Department of Neurology; the University of Chicago; Chicago Illinois
| | - Betty Soliven
- Department of Neurology; the University of Chicago; Chicago Illinois
| |
Collapse
|
270
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
271
|
Hu Y, Li M, Göthert JR, Gomez RA, Sequeira-Lopez MLS. Hemovascular Progenitors in the Kidney Require Sphingosine-1-Phosphate Receptor 1 for Vascular Development. J Am Soc Nephrol 2015; 27:1984-95. [PMID: 26534925 DOI: 10.1681/asn.2015060610] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/03/2015] [Indexed: 02/05/2023] Open
Abstract
The close relationship between endothelial and hematopoietic precursors during early development of the vascular system suggested the possibility of a common yet elusive precursor for both cell types. Whether similar or related progenitors for endothelial and hematopoietic cells are present during organogenesis is unclear. Using inducible transgenic mice that specifically label endothelial and hematopoietic precursors, we performed fate-tracing studies combined with colony-forming assays and crosstransplantation studies. We identified a progenitor, marked by the expression of helix-loop-helix transcription factor stem cell leukemia (SCL/Tal1). During organogenesis of the kidney, SCL/Tal1(+) progenitors gave rise to endothelium and blood precursors with multipotential colony-forming capacity. Furthermore, appropriate morphogenesis of the kidney vasculature, including glomerular capillary development, arterial mural cell coating, and lymphatic vessel development, required sphingosine 1-phosphate (S1P) signaling via the G protein-coupled S1P receptor 1 in these progenitors. Overall, these results show that SCL/Tal1(+) progenitors with hemogenic capacity originate and differentiate within the early embryonic kidney by hemovasculogenesis (the concomitant formation of blood and vessels) and underscore the importance of the S1P pathway in vascular development.
Collapse
Affiliation(s)
- Yan Hu
- Department of Pediatrics and Department of Biology, University of Virginia, Charlottesville, Virginia; and
| | | | - Joachim R Göthert
- Department of Hematology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | | |
Collapse
|
272
|
Shaikh RS, Keul P, Schäfers M, Levkau B, Haufe G. New fluorinated agonists for targeting the sphingosin-1-phosphate receptor 1 (S1P1). Bioorg Med Chem Lett 2015; 25:5048-51. [DOI: 10.1016/j.bmcl.2015.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 11/25/2022]
|
273
|
Mahajan-Thakur S, Böhm A, Jedlitschky G, Schrör K, Rauch BH. Sphingosine-1-Phosphate and Its Receptors: A Mutual Link between Blood Coagulation and Inflammation. Mediators Inflamm 2015; 2015:831059. [PMID: 26604433 PMCID: PMC4641948 DOI: 10.1155/2015/831059] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/26/2015] [Accepted: 09/30/2015] [Indexed: 02/02/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a versatile lipid signaling molecule and key regulator in vascular inflammation. S1P is secreted by platelets, monocytes, and vascular endothelial and smooth muscle cells. It binds specifically to a family of G-protein-coupled receptors, S1P receptors 1 to 5, resulting in downstream signaling and numerous cellular effects. S1P modulates cell proliferation and migration, and mediates proinflammatory responses and apoptosis. In the vascular barrier, S1P regulates permeability and endothelial reactions and recruitment of monocytes and may modulate atherosclerosis. Only recently has S1P emerged as a critical mediator which directly links the coagulation factor system to vascular inflammation. The multifunctional proteases thrombin and FXa regulate local S1P availability and interact with S1P signaling at multiple levels in various vascular cell types. Differential expression patterns and intracellular signaling pathways of each receptor enable S1P to exert its widespread functions. Although a vast amount of information is available about the functions of S1P and its receptors in the regulation of physiological and pathophysiological conditions, S1P-mediated mechanisms in the vasculature remain to be elucidated. This review summarizes recent findings regarding the role of S1P and its receptors in vascular wall and blood cells, which link the coagulation system to inflammatory responses in the vasculature.
Collapse
Affiliation(s)
- Shailaja Mahajan-Thakur
- Institut für Pharmakologie, Universitätsmedizin Greifswald, Felix-Hausdorf Strasse 3, 17487 Greifswald, Germany
| | - Andreas Böhm
- Institut für Pharmakologie, Universitätsmedizin Greifswald, Felix-Hausdorf Strasse 3, 17487 Greifswald, Germany
| | - Gabriele Jedlitschky
- Institut für Pharmakologie, Universitätsmedizin Greifswald, Felix-Hausdorf Strasse 3, 17487 Greifswald, Germany
| | - Karsten Schrör
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Bernhard H. Rauch
- Institut für Pharmakologie, Universitätsmedizin Greifswald, Felix-Hausdorf Strasse 3, 17487 Greifswald, Germany
| |
Collapse
|
274
|
Winkler MS, Nierhaus A, Holzmann M, Mudersbach E, Bauer A, Robbe L, Zahrte C, Geffken M, Peine S, Schwedhelm E, Daum G, Kluge S, Zoellner C. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:372. [PMID: 26498205 PMCID: PMC4620595 DOI: 10.1186/s13054-015-1089-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/03/2015] [Indexed: 12/29/2022]
Abstract
Introduction Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates pathophysiological processes involved in sepsis progression, including endothelial permeability, cytokine release, and vascular tone. The aim of this study was to investigate whether serum-S1P concentrations are associated with disease severity in patients with sepsis. Methods This single-center prospective-observational study includes 100 patients with systemic inflammatory response syndrome (SIRS) plus infection (n = 40), severe sepsis (n = 30), or septic shock (n = 30) and 214 healthy blood donors as controls. Serum-S1P was measured by mass spectrometry. Blood parameters, including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), lactate, and white blood cells (WBCs), were determined by routine assays. The Sequential Organ Failure Assessment (SOFA) score was generated and used to evaluate disease severity. Results Serum-S1P concentrations were lower in patients than in controls (P < 0.01), and the greatest difference was between the control and the septic shock groups (P < 0.01). Serum-S1P levels were inversely correlated with disease severity as determined by the SOFA score (P < 0.01) as well as with IL-6, PCT, CRP, creatinine, lactate, and fluid balance. A receiver operating characteristic analysis for the presence or absence of septic shock revealed equally high sensitivity and specificity for S1P compared with the SOFA score. In a multivariate logistic regression model calculated for prediction of septic shock, S1P emerged as the strongest predictor (P < 0.001). Conclusions In patients with sepsis, serum-S1P levels are dramatically decreased and are inversely associated with disease severity. Since S1P is a potent regulator of endothelial integrity, low S1P levels may contribute to capillary leakage, impaired tissue perfusion, and organ failure in sepsis.
Collapse
Affiliation(s)
- Martin Sebastian Winkler
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Maximilian Holzmann
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Eileen Mudersbach
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Antonia Bauer
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Linda Robbe
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Corinne Zahrte
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Maria Geffken
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Guenter Daum
- Clinic and Polyclinic for Vascular Medicine, University Heart Center, Martinistr. 52, 20246, Hamburg, Germany.
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Christian Zoellner
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
275
|
Shao X, Liu K, Fan Y, Ding Z, Chen M, Zhu M, Weinstein LS, Li H, Li H. Gαs Relays Sphingosine-1-Phosphate Receptor 1 Signaling to Stabilize Vascular Endothelial-Cadherin at Endothelial Junctions to Control Mouse Embryonic Vascular Integrity. J Genet Genomics 2015; 42:613-624. [PMID: 26674379 DOI: 10.1016/j.jgg.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 02/05/2023]
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1), a G protein-coupled receptor (GPCR), controls vascular stability by stabilizing vascular endothelial (VE)-cadherin junctional localization and inhibiting vascular endothelial growth factor receptor 2 (VEGFR2) signaling. However, the molecular mechanisms that link S1PR1 signaling to intracellular effectors remain unknown. In this study, we demonstrate that the heterotrimeric G protein subfamily member Gαs, encoded by GNAS, acts as a relay mediator of S1PR1 signaling to control vascular integrity by stabilizing VE-cadherin at endothelial junctions. The endothelial cell-specific deletion of Gαs in mice causes early embryonic lethality with massive hemorrhage and a disorganized vasculature. The immunostaining results revealed that Gαs deletion remarkably reduces the junctional localization of VE-cadherin, whereas the mural cell coverage of the vessels is not impaired. In addition, we found that Gαs depletion blocks the S1PR1-activation induced VE-cadherin stabilization at junctions, supporting that Gαs acts downstream of S1PR1 signaling. Thus, our results demonstrate that Gαs is an essential mediator to relay S1PR1 signaling and maintain vascular integrity.
Collapse
Affiliation(s)
- Ximing Shao
- West China Developmental and Stem Cell Institute, West China Second Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ke Liu
- West China Developmental and Stem Cell Institute, West China Second Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Fan
- West China Developmental and Stem Cell Institute, West China Second Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhihao Ding
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Min Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Minyan Zhu
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Lee S Weinstein
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongchang Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Huashun Li
- West China Developmental and Stem Cell Institute, West China Second Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China; Nerdbio Inc., SIP Biobay, Suzhou 215213, China.
| |
Collapse
|
276
|
Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling. Mediators Inflamm 2015; 2015:492659. [PMID: 26576074 PMCID: PMC4630407 DOI: 10.1155/2015/492659] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 01/31/2023] Open
Abstract
Initial and recurrent stroke produces central nervous system (CNS) damage, involving neuroinflammation. Receptor-mediated S1P signaling can influence neuroinflammation and has been implicated in cerebral ischemia through effects on the immune system. However, S1P-mediated events also occur within the brain itself where its roles during stroke have been less well studied. Here we investigated the involvement of S1P signaling in initial and recurrent stroke by using a transient middle cerebral artery occlusion/reperfusion (M/R) model combined with analyses of S1P signaling. Gene expression for S1P receptors and involved enzymes was altered during M/R, supporting changes in S1P signaling. Direct S1P microinjection into the normal CNS induced neuroglial activation, implicating S1P-initiated neuroinflammatory responses that resembled CNS changes seen during initial M/R challenge. Moreover, S1P microinjection combined with M/R potentiated brain damage, approximating a model for recurrent stroke dependent on S1P and suggesting that reduction in S1P signaling could ameliorate stroke damage. Delivery of FTY720 that removes S1P signaling with chronic exposure reduced damage in both initial and S1P-potentiated M/R-challenged brain, while reducing stroke markers like TNF-α. These results implicate direct S1P CNS signaling in the etiology of initial and recurrent stroke that can be therapeutically accessed by S1P modulators acting within the brain.
Collapse
|
277
|
Mori H, Izawa T, Tanaka E. Smad3 Deficiency Leads to Mandibular Condyle Degradation via the Sphingosine 1-Phosphate (S1P)/S1P3 Signaling Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2742-56. [DOI: 10.1016/j.ajpath.2015.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/25/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023]
|
278
|
Ichijo M, Ishibashi S, Li F, Yui D, Miki K, Mizusawa H, Yokota T. Sphingosine-1-Phosphate Receptor-1 Selective Agonist Enhances Collateral Growth and Protects against Subsequent Stroke. PLoS One 2015; 10:e0138029. [PMID: 26367258 PMCID: PMC4569572 DOI: 10.1371/journal.pone.0138029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022] Open
Abstract
Background and Purpose Collateral growth after acute occlusion of an intracranial artery is triggered by increasing shear stress in preexisting collateral pathways. Recently, sphingosine-1-phosphate receptor-1 (S1PR1) on endothelial cells was reported to be essential in sensing fluid shear stress. Here, we evaluated the expression of S1PR1 in the hypoperfused mouse brain and investigated the effect of a selective S1PR1 agonist on leptomeningeal collateral growth and subsequent ischemic damage after focal ischemia. Methods In C57Bl/6 mice (n = 133) subjected to unilateral common carotid occlusion (CCAO) and sham surgery. The first series examined the time course of collateral growth, cell proliferation, and S1PR1 expression in the leptomeningeal arteries after CCAO. The second series examined the relationship between pharmacological regulation of S1PR1 and collateral growth of leptomeningeal anastomoses. Animals were randomly assigned to one of the following groups: LtCCAO and daily intraperitoneal (ip) injection for 7 days of an S1PR1 selective agonist (SEW2871, 5 mg/kg/day); sham surgery and daily ip injection for 7 days of SEW2871 after surgery; LtCCAO and daily ip injection for 7 days of SEW2871 and an S1PR1 inverse agonist (VPC23019, 0.5 mg/kg); LtCCAO and daily ip injection of DMSO for 7 days after surgery; and sham surgery and daily ip injection of DMSO for 7 days. Leptomeningeal anastomoses were visualized 14 days after LtCCAO by latex perfusion method, and a set of animals underwent subsequent permanent middle cerebral artery occlusion (pMCAO) 7days after the treatment termination. Neurological functions 1hour, 1, 4, and 7days and infarction volume 7days after pMCAO were evaluated. Results In parallel with the increase in S1PR1 mRNA levels, S1PR1 expression colocalized with endothelial cell markers in the leptomeningeal arteries, increased markedly on the side of the CCAO, and peaked 7 days after CCAO. Mitotic cell numbers in the leptomeningeal arteries increased after CCAO. Administration of the S1PR1 selective agonist significantly increased cerebral blood flow (CBF) and the diameter of leptomeningeal collateral vessels (42.9 ± 2.6 μm) compared with the controls (27.6 ± 5.7 μm; P < 0.01). S1PR1 inverse agonist administration diminished the effect of the S1PR1 agonist (P < 0.001). After pMCAO, S1PR1 agonist pretreated animals showed significantly smaller infarct volume (17.5% ± 4.0% vs. 7.7% ± 4.0%, P < 0.01) and better functional recovery than vehicle-treated controls. Conclusions These results suggest that S1PR1 is one of the principal regulators of leptomeningeal collateral recruitment at the site of increased shear stress and provide evidence that an S1PR1 selective agonist has a role in promoting collateral growth and preventing of ischemic damage and neurological dysfunction after subsequent stroke in patients with intracranial major artery stenosis or occlusion.
Collapse
Affiliation(s)
- Masahiko Ichijo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Fuying Li
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daishi Yui
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazunori Miki
- Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- The Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
279
|
Hennessy EJ, Oza V, Adam A, Byth K, Castriotta L, Grewal G, Hamilton GA, Kamhi VM, Lewis P, Li D, Lyne P, Öster L, Rooney MT, Saeh JC, Sha L, Su Q, Wen S, Xue Y, Yang B. Identification and Optimization of Benzimidazole Sulfonamides as Orally Bioavailable Sphingosine 1-Phosphate Receptor 1 Antagonists with in Vivo Activity. J Med Chem 2015; 58:7057-75. [DOI: 10.1021/acs.jmedchem.5b01078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Edward J. Hennessy
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Vibha Oza
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ammar Adam
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Kate Byth
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Lillian Castriotta
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Gurmit Grewal
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Geraldine A. Hamilton
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Victor M. Kamhi
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Paula Lewis
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Danyang Li
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Paul Lyne
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Linda Öster
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D Mölndal, S-43183, Mölndal, Sweden
| | - Michael T. Rooney
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jamal C. Saeh
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Li Sha
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Qibin Su
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Shengua Wen
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Yafeng Xue
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D Mölndal, S-43183, Mölndal, Sweden
| | - Bin Yang
- Oncology iMed, Innovative Medicines and Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
280
|
Galvani S, Sanson M, Blaho VA, Swendeman SL, Obinata H, Conger H, Dahlbäck B, Kono M, Proia RL, Smith JD, Hla T. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci Signal 2015; 8:ra79. [PMID: 26268607 PMCID: PMC4768813 DOI: 10.1126/scisignal.aaa2581] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The sphingosine 1-phosphate receptor 1 (S1P1) is abundant in endothelial cells, where it regulates vascular development and microvascular barrier function. In investigating the role of endothelial cell S1P1 in adult mice, we found that the endothelial S1P1 signal was enhanced in regions of the arterial vasculature experiencing inflammation. The abundance of proinflammatory adhesion proteins, such as ICAM-1, was enhanced in mice with endothelial cell-specific deletion of S1pr1 and suppressed in mice with endothelial cell-specific overexpression of S1pr1, suggesting a protective function of S1P1 in vascular disease. The chaperones ApoM(+)HDL (HDL) or albumin bind to sphingosine 1-phosphate (S1P) in the circulation; therefore, we tested the effects of S1P bound to each chaperone on S1P1 signaling in cultured human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to ApoM(+)HDL-S1P, but not to albumin-S1P, promoted the formation of a cell surface S1P1-β-arrestin 2 complex and attenuated the ability of the proinflammatory cytokine TNFα to activate NF-κB and increase ICAM-1 abundance. Although S1P bound to either chaperone induced MAPK activation, albumin-S1P triggered greater Gi activation and receptor endocytosis. Endothelial cell-specific deletion of S1pr1 in the hypercholesterolemic Apoe(-/-) mouse model of atherosclerosis enhanced atherosclerotic lesion formation in the descending aorta. We propose that the ability of ApoM(+)HDL to act as a biased agonist on S1P1 inhibits vascular inflammation, which may partially explain the cardiovascular protective functions of HDL.
Collapse
Affiliation(s)
- Sylvain Galvani
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Marie Sanson
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Victoria A Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Steven L Swendeman
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Hideru Obinata
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Heather Conger
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Björn Dahlbäck
- Department of Translational Medicine, Skåne University Hospital, Lund University, 214 28 Malmö, Sweden
| | - Mari Kono
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan D Smith
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
281
|
Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat Commun 2015; 6:7893. [PMID: 26243335 PMCID: PMC4587559 DOI: 10.1038/ncomms8893] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 06/23/2015] [Indexed: 12/13/2022] Open
Abstract
The use and effectiveness of current stroke reperfusion therapies are limited by the complications of reperfusion injury, which include increased cerebrovascular permeability and haemorrhagic transformation. Sphingosine-1-phosphate (S1P) is emerging as a potent modulator of vascular integrity via its receptors (S1PR). By using genetic approaches and a S1PR2 antagonist (JTE013), here we show that S1PR2 plays a critical role in the induction of cerebrovascular permeability, development of intracerebral haemorrhage and neurovascular injury in experimental stroke. In addition, inhibition of S1PR2 results in decreased matrix metalloproteinase (MMP)-9 activity in vivo and lower gelatinase activity in cerebral microvessels. S1PR2 immunopositivity is detected only in the ischemic microvessels of wild-type mice and in the cerebrovascular endothelium of human brain autopsy samples. In vitro, S1PR2 potently regulates the responses of the brain endothelium to ischaemic and inflammatory injury. Therapeutic targeting of this novel pathway could have important translational relevance to stroke patients.
Collapse
|
282
|
Ong WY, Herr DR, Farooqui T, Ling EA, Farooqui AA. Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 2015; 19:1725-42. [DOI: 10.1517/14728222.2015.1071794] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
283
|
Zhu C, Cao C, Dai L, Yuan J, Li S. Corticotrophin-releasing factor participates in S1PR3-dependent cPLA2 expression and cell motility in vascular smooth muscle cells. Vascul Pharmacol 2015; 71:116-26. [DOI: 10.1016/j.vph.2015.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/06/2015] [Accepted: 03/21/2015] [Indexed: 02/06/2023]
|
284
|
Binder BYK, Williams PA, Silva EA, Leach JK. Lysophosphatidic Acid and Sphingosine-1-Phosphate: A Concise Review of Biological Function and Applications for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:531-42. [PMID: 26035484 DOI: 10.1089/ten.teb.2015.0107] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presentation and controlled release of bioactive signals to direct cellular growth and differentiation represents a widely used strategy in tissue engineering. Historically, work in this field has primarily focused on the delivery of large cytokines and growth factors, which can be costly to manufacture and difficult to deliver in a sustained manner. There has been a marked increase over the past decade in the pursuit of lipid mediators due to their wide range of effects over multiple cell types, low cost, and ease of scale-up. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two bioactive lysophospholipids (LPLs) that have gained attention for use as pharmacological agents in tissue engineering applications. While these lipids can have similar effects on cellular response, they possess distinct chemical backbones, mechanisms of synthesis and degradation, and signaling pathways using a discrete set of G-protein-coupled receptors (GPCRs). LPA and S1P predominantly act extracellularly on their GPCRs and can directly regulate cell survival, differentiation, cytokine secretion, proliferation, and migration--each of the important functions that must be considered in regenerative medicine. In addition to these potent physiological functions, these LPLs play pivotal roles in a number of pathophysiological processes. To capitalize on the promise of these molecules in tissue engineering, these lipids have been incorporated into biomaterials for in vivo delivery. Here, we survey the effects of LPA and S1P on both cellular- and tissue-level phenotypes, with an eye toward regulating stem/progenitor cell growth and differentiation. In particular, we examine work that has translational applications for cell-based tissue engineering strategies in promoting cell survival, bone and cartilage engineering, and therapeutic angiogenesis.
Collapse
Affiliation(s)
- Bernard Y K Binder
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Priscilla A Williams
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Eduardo A Silva
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - J Kent Leach
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California.,2 Department of Orthopaedic Surgery, School of Medicine, University of California , Davis, Sacramento, California
| |
Collapse
|
285
|
Mendelson K, Lan Y, Hla T, Evans T. Maternal or zygotic sphingosine kinase is required to regulate zebrafish cardiogenesis. Dev Dyn 2015; 244:948-54. [PMID: 25997406 DOI: 10.1002/dvdy.24288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/06/2015] [Accepted: 04/17/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The sphingosine 1-phosphate (S1P) signaling pathway regulates zebrafish cardiogenesis, and provides a paradigm for how signaling gradients coordinate collective cell migration across tissue layers. It is known that the S1P transporter (Spns2) functions in extra-embryonic YSL to activate G protein-coupled receptor (S1pr2) signaling in endoderm for deposition of positional cues (integrin, fibronectin, etc.). Such cues are recognized by overlying lateral precardiac mesoderm that migrates to the midline and fuses to form the primordial heart tube. However, the source of bio-active S1P is not known. There are multiple receptors and it is not known if there are earlier or even receptor-independent functions for S1P. RESULTS Because S1P can only be generated by sphingosine kinases, we targeted a mutation to the single kinase gene expressed during early embryogenesis (sphk2). Zygotic mutants survive to adulthood and appear normal, but maternal-zygotic mutant embryos phenocopy null zygotic mutants of spns2 or s1pr2. CONCLUSIONS The data show that maternally derived sphk2 RNA is fully sufficient to generate an S1P signaling gradient in the YSL that ultimately controls precardiac mesoderm migration during embryogenesis. Furthermore, despite maternal expression of sphk2, there are no obvious developmental functions requiring its activity prior to stimulation of S1pr2 in endoderm.
Collapse
Affiliation(s)
- Karen Mendelson
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, 10065.,Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, 10065
| | - Yahui Lan
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, 10065
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, 10065
| |
Collapse
|
286
|
Rodriguez AM, Graef AJ, LeVine DN, Cohen IR, Modiano JF, Kim JH. Association of Sphingosine-1-phosphate (S1P)/S1P Receptor-1 Pathway with Cell Proliferation and Survival in Canine Hemangiosarcoma. J Vet Intern Med 2015; 29:1088-97. [PMID: 26118793 PMCID: PMC4684944 DOI: 10.1111/jvim.13570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/10/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Sphingosine‐1‐phosphate (S1P) is a key biolipid signaling molecule that regulates cell growth and survival, but it has not been studied in tumors from dogs. Hypothesis/Objectives S1P/S1P1 signaling will contribute to the progression of hemangiosarcoma (HSA). Animals Thirteen spontaneous HSA tissues, 9 HSA cell lines, 8 nonmalignant tissues, including 6 splenic hematomas and 2 livers with vacuolar degeneration, and 1 endothelial cell line derived from a dog with splenic hematoma were used. Methods This was a retrospective case series and in vitro study. Samples were obtained as part of medically necessary diagnostic procedures. Microarray, qRT‐PCR, immunohistochemistry, and immunoblotting were performed to examine S1P1 expression. S1P concentrations were measured by high‐performance liquid chromatography/mass spectrometry. S1P signaling was evaluated by intracellular Ca2+ mobilization; proliferation and survival were evaluated using the MTS assay and Annexin V staining. Results Canine HSA cells expressed higher levels of S1P1mRNA than nonmalignant endothelial cells. S1P1 protein was present in HSA tissues and cell lines. HSA cells appeared to produce low levels of S1P, but they selectively consumed S1P from the culture media. Exogenous S1P induced an increase in intracellular calcium as well as increased proliferation and viability of HSA cells. Prolonged treatment with FTY720, an inhibitor of S1P1, decreased S1P1 protein expression and induced apoptosis of HSA cells. Conclusions and clinical importance S1P/S1P1 signaling pathway functions to maintain HSA cell viability and proliferation. The data suggest that S1P1 or the S1P pathway in general could be targets for therapeutic intervention for dogs with HSA.
Collapse
Affiliation(s)
| | - A J Graef
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN.,Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - D N LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA
| | | | - J F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN.,Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - J-H Kim
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN.,Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
287
|
Das A, Segar CE, Chu Y, Wang TW, Lin Y, Yang C, Du X, Ogle RC, Cui Q, Botchwey EA. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras. Biomaterials 2015; 64:98-107. [PMID: 26125501 DOI: 10.1016/j.biomaterials.2015.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/31/2022]
Abstract
Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects.
Collapse
Affiliation(s)
- Anusuya Das
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Claire E Segar
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yihsuan Chu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Tiffany W Wang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yong Lin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Chunxi Yang
- Department of Orthopaedic Surgery, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Xeujun Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Roy C Ogle
- School of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA, USA
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Edward A Botchwey
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
288
|
Hisano Y, Inoue A, Taimatsu K, Ota S, Ohga R, Kotani H, Muraki M, Aoki J, Kawahara A. Comprehensive analysis of sphingosine-1-phosphate receptor mutants during zebrafish embryogenesis. Genes Cells 2015; 20:647-58. [PMID: 26094551 DOI: 10.1111/gtc.12259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
The lipid mediator sphingosine-1-phosphate (S1P) regulates various physiological and pathological phenomena such as angiogenesis and oncogenesis. Secreted S1P associates with the G-protein-coupled S1P receptors (S1PRs), leading to the activation of downstream signaling molecules. In mammals, five S1prs have been identified and the genetic disruption of a single S1pr1 gene causes vascular defects. In zebrafish, seven s1prs have been isolated. We found that individual s1prs showed unique expression patterns with some overlapping expression domains during early embryogenesis. We generated all s1pr single-mutant zebrafish by introducing premature stop codons in their coding regions using transcription activator-like effector nucleases and analyzed their phenotypes during early embryogenesis. Zygotic s1pr1, s1pr3a, s1pr3b, s1pr4, s1pr5a and s1pr5b mutants showed no developmental defects and grew into adults, whereas zygotic s1pr2 mutant showed embryonic lethality with a cardiac defect, showing quite distinct embryonic phenotypes for individual S1pr mutants between zebrafish and mouse. We further generated maternal-zygotic s1pr1, s1pr3a, s1pr3b, s1pr4, s1pr5a and s1pr5b mutants and found that these maternal-zygotic mutants also showed no obvious developmental defects, presumably suggesting the redundant functions of the S1P receptor-mediated signaling in zebrafish.
Collapse
Affiliation(s)
- Yu Hisano
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory for Cardiovascular Molecular Dynamics, Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0074, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-8613, Japan
| | - Kiyohito Taimatsu
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Satoshi Ota
- Laboratory for Cardiovascular Molecular Dynamics, Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0074, Japan.,Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Rie Ohga
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hirohito Kotani
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Michiko Muraki
- Laboratory for Cardiovascular Molecular Dynamics, Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0074, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, 332-8613, Japan
| | - Atsuo Kawahara
- Laboratory for Cardiovascular Molecular Dynamics, Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0074, Japan.,Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
289
|
Ren K, Tang ZL, Jiang Y, Tan YM, Yi GH. Apolipoprotein M. Clin Chim Acta 2015; 446:21-9. [DOI: 10.1016/j.cca.2015.03.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
|
290
|
Prager B, Spampinato SF, Ransohoff RM. Sphingosine 1-phosphate signaling at the blood–brain barrier. Trends Mol Med 2015; 21:354-63. [DOI: 10.1016/j.molmed.2015.03.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 12/20/2022]
|
291
|
Hennessy EJ, Grewal G, Byth K, Kamhi VM, Li D, Lyne P, Oza V, Ronco L, Rooney MT, Saeh JC, Su Q. Discovery of heterocyclic sulfonamides as sphingosine 1-phosphate receptor 1 (S1P1) antagonists. Bioorg Med Chem Lett 2015; 25:2041-5. [DOI: 10.1016/j.bmcl.2015.03.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/13/2022]
|
292
|
Pulkoski-Gross MJ, Donaldson JC, Obeid LM. Sphingosine-1-phosphate metabolism: A structural perspective. Crit Rev Biochem Mol Biol 2015; 50:298-313. [PMID: 25923252 DOI: 10.3109/10409238.2015.1039115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sphingolipids represent an important class of bioactive signaling lipids which have key roles in numerous cellular processes. Over the last few decades, the levels of bioactive sphingolipids and/or their metabolizing enzymes have been realized to be important factors involved in disease development and progression, most notably in cancer. Targeting sphingolipid-metabolizing enzymes in disease states has been the focus of many studies and has resulted in a number of pharmacological inhibitors, with some making it into the clinic as therapeutics. In order to better understand the regulation of sphingolipid-metabolizing enzymes as well as to develop much more potent and specific inhibitors, the field of sphingolipids has recently taken a turn toward structural biology. The last decade has seen the structural determination of a number of sphingolipid enzymes and effector proteins. In these terms, one of the most complete arms of the sphingolipid pathway is the sphingosine-1-phosphate (S1P) arm. The structures of proteins involved in the function and regulation of S1P are being used to investigate further the regulation of said proteins as well as in the design and development of inhibitors as potential therapeutics.
Collapse
Affiliation(s)
| | - Jane C Donaldson
- b Department of Medicine , Stony Brook University , Stony Brook , NY , USA .,c Stony Brook Cancer Center , Stony Brook , NY , USA , and
| | - Lina M Obeid
- b Department of Medicine , Stony Brook University , Stony Brook , NY , USA .,c Stony Brook Cancer Center , Stony Brook , NY , USA , and.,d Northport Veterans Affairs Medical Center , Northport , NY , USA
| |
Collapse
|
293
|
Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood 2015; 125:3769-77. [PMID: 25908104 DOI: 10.1182/blood-2014-09-603803] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/15/2015] [Indexed: 02/06/2023] Open
Abstract
Mice with a constitutive or platelet-specific deletion of the C-type-lectin-like receptor (CLEC-2) exhibit hemorrhaging in the brain at mid-gestation. We sought to investigate the basis of this defect, hypothesizing that it is mediated by the loss of CLEC-2 activation by its endogenous ligand, podoplanin, which is expressed on the developing neural tube. To induce deletion of podoplanin at the 2-cell stage, we generated a podoplanin(fl/fl) mouse crossed to a PGK-Cre mouse. Using 3-dimensional light-sheet microscopy, we observed cerebral vessels were tortuous and aberrantly patterned at embryonic (E) day 10.5 in podoplanin- and CLEC-2-deficient mice, preceding the formation of large hemorrhages throughout the fore-, mid-, and hindbrain by E11.5. Immunofluorescence and electron microscopy revealed defective pericyte recruitment and misconnections between the endothelium of developing blood vessels and surrounding pericytes and neuro-epithelial cells. Nestin-Cre-driven deletion of podoplanin on neural progenitors also caused widespread cerebral hemorrhaging. Hemorrhaging was also seen in the ventricles of embryos deficient in the platelet integrin subunit glycoprotein IIb or in embryos in which platelet α-granule and dense granule secretion is abolished. We propose a novel role for podoplanin on the neuro-epithelium, which interacts with CLEC-2 on platelets, mediating platelet adhesion, aggregation, and secretion to guide the maturation and integrity of the developing vasculature and prevent hemorrhage.
Collapse
|
294
|
Romero-Guevara R, Cencetti F, Donati C, Bruni P. Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss? Front Aging Neurosci 2015; 7:60. [PMID: 25954197 PMCID: PMC4407579 DOI: 10.3389/fnagi.2015.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is one of the most prevalent conditions around the world, in particular among people over 60 years old. Thus, an increase of this affection is predicted as result of the aging process in our population. In this context, it is important to further explore the function of molecular targets involved in the biology of inner ear sensory cells to better individuate new candidates for therapeutic application. One of the main causes of deafness resides into the premature death of hair cells and auditory neurons. In this regard, neurotrophins and growth factors such as insulin like growth factor are known to be beneficial by favoring the survival of these cells. An elevated number of published data in the last 20 years have individuated sphingolipids not only as structural components of biological membranes but also as critical regulators of key biological processes, including cell survival. Ceramide, formed by catabolism of sphingomyelin (SM) and other complex sphingolipids, is a strong inducer of apoptotic pathway, whereas sphingosine 1-phosphate (S1P), generated by cleavage of ceramide to sphingosine and phosphorylation catalyzed by two distinct sphingosine kinase (SK) enzymes, stimulates cell survival. Interestingly S1P, by acting as intracellular mediator or as ligand of a family of five distinct S1P receptors (S1P1–S1P5), is a very powerful bioactive sphingolipid, capable of triggering also other diverse cellular responses such as cell migration, proliferation and differentiation, and is critically involved in the development and homeostasis of several organs and tissues. Although new interesting data have become available, the information on S1P pathway and other sphingolipids in the biology of the inner ear is limited. Nonetheless, there are several lines of evidence implicating these signaling molecules during neurogenesis in other cell populations. In this review, we discuss the role of S1P during inner ear development, also as guidance for future studies.
Collapse
Affiliation(s)
- Ricardo Romero-Guevara
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Francesca Cencetti
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Chiara Donati
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Paola Bruni
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| |
Collapse
|
295
|
Possible involvement of sphingomyelin in the regulation of the plasma sphingosine 1-phosphate level in human subjects. Clin Biochem 2015; 48:690-7. [PMID: 25863111 DOI: 10.1016/j.clinbiochem.2015.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid mediator. Although the plasma S1P concentration is reportedly determined by cellular components, including erythrocytes, platelets, and vascular endothelial cells, the possible involvement of other factors, such as serum sphingomyelin (SM) and autotaxin (ATX), remains to be elucidated. DESIGN AND METHODS We measured S1P using high-performance liquid chromatography (HPLC), SM and lysophosphatidic acid (LPA) using enzymatic assays, ATX antigen using a two-site enzyme immunoassay, and ATX activity using a lysophospholipase D activity assay. To fractionate the lipoproteins, plasma samples were separated using fast protein liquid chromatography (FPLC) utilizing a Superose 6 column. RESULTS The plasma S1P level was positively correlated with the levels of SM and lysophosphatidylcholine, but not with the level of phosphatidylcholine. Although SM was present in the very low-density lipoprotein (VLDL) fraction, neither the plasma S1P level nor the SM level was affected by feeding. The plasma S1P level was negatively correlated with the ATX activity. Although the incubation of 100 μmol/L of sphingosylphosphorylcholine (SPC) with the serum resulted in a significant increase in the S1P level because of the presence of ATX, the physiological concentration of SPC did not mimic this effect. CONCLUSION The plasma S1P level was affected by the serum SM level, while the possibility of ATX involvement in the increase in the plasma S1P level was considered to be remote at least in healthy human subjects.
Collapse
|
296
|
Aguiar C, Batista S, Pacheco R. Cardiovascular effects of fingolimod: Relevance, detection and approach. Rev Port Cardiol 2015; 34:279-85. [PMID: 25843307 DOI: 10.1016/j.repc.2014.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/15/2014] [Indexed: 01/10/2023] Open
Abstract
Fingolimod, a structural analogue of sphingosine, is the first oral treatment available for multiple sclerosis. The presence of sphingosine-1-phosphate receptors in the sinus and atrioventricular nodes, myocardial cells, endothelial cells and arterial smooth muscle cells is responsible for fingolimod's cardiovascular effects. We provide a comprehensive review of the mechanisms of these effects and characterize their clinical relevance.
Collapse
Affiliation(s)
- Carlos Aguiar
- Cardiology Department, Hospital Santa Cruz, CHLO, Carnaxide, Portugal.
| | - Sónia Batista
- Multiple Sclerosis Outpatient Clinic, Coimbra University, Coimbra, Portugal
| | - Ricardo Pacheco
- Medical Department, Novartis Farma S.A., Porto Salvo, Portugal
| |
Collapse
|
297
|
Aguiar C, Batista S, Pacheco R. Cardiovascular effects of fingolimod: Relevance, detection and approach. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.repce.2014.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
298
|
Sphingosine-1-Phosphate Receptor Subtype 2 Signaling in Endothelial Senescence-Associated Functional Impairments and Inflammation. Curr Atheroscler Rep 2015; 17:504. [DOI: 10.1007/s11883-015-0504-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
299
|
Kwong E, Li Y, Hylemon PB, Zhou H. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism. Acta Pharm Sin B 2015; 5:151-7. [PMID: 26579441 PMCID: PMC4629213 DOI: 10.1016/j.apsb.2014.12.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/09/2014] [Accepted: 12/29/2014] [Indexed: 12/15/2022] Open
Abstract
The liver is the central organ involved in lipid metabolism. Dyslipidemia and its related disorders, including non-alcoholic fatty liver disease (NAFLD), obesity and other metabolic diseases, are of increasing public health concern due to their increasing prevalence in the population. Besides their well-characterized functions in cholesterol homoeostasis and nutrient absorption, bile acids are also important metabolic regulators and function as signaling hormones by activating specific nuclear receptors, G-protein coupled receptors, and multiple signaling pathways. Recent studies identified a new signaling pathway by which conjugated bile acids (CBA) activate the extracellular regulated protein kinases (ERK1/2) and protein kinase B (AKT) signaling pathway via sphingosine-1-phosphate receptor 2 (S1PR2). CBA-induced activation of S1PR2 is a key regulator of sphingosine kinase 2 (SphK2) and hepatic gene expression. This review focuses on recent findings related to the role of bile acids/S1PR2-mediated signaling pathways in regulating hepatic lipid metabolism.
Collapse
Key Words
- ABC, ATP-binding cassette
- AKT/PKB, protein kinase B
- BSEP/ABCB11, bile salt export protein
- Bile acid
- CA, cholic acid
- CBA, conjugated bile acids
- CDCA, chenodeoxycholic acid
- CYP27A1, sterol 27-hydroxylase
- CYP7A1, cholesterol 7α-hydroxylase
- CYP7B1, oxysterol 7α-hydroxylase
- CYP8B1, 12α-hydroxylase
- DCA, deoxycholic acid
- EGFR, epidermal growth factor receptor
- ERK, extracellular regulated protein kinases
- FGF15/19, fibroblast growth factor 15/19
- FGFR, fibroblast growth factor receptor
- FXR, farnesoid X receptor
- G-6-Pase, glucose-6-phophatase
- GPCR, G-protein coupled receptor
- HDL, high density lipoprotein
- HNF4α, hepatocyte nuclear factor-4α
- Heptic lipid metabolism
- IBAT, ileal sodium-dependent bile acid transporter
- JNK1/2, c-Jun N-terminal kinase
- LCA, lithocholic acid
- LDL, low-density lipoprotein
- LRH-1, liver-related homolog-1
- M1–5, muscarinic receptor 1–5
- MMP, matrix metalloproteinase
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer cells
- NTCP, sodium taurocholate cotransporting polypeptide
- PEPCK, PEP carboxykinse
- PTX, pertussis toxin
- S1P, sphingosine-1-phosphate
- S1PR2, sphingosine-1-phosphate receptor 2
- SHP, small heterodimer partner
- SPL, S1P lyase
- SPPs, S1P phosphatases
- SRC, proto-oncogene tyrosine-protein kinase
- SphK, sphingosine kinase
- Sphingosine-1 phosphate receptor
- Spns2, spinster homologue 2
- TCA, taurocholate
- TGR5, G-protein-coupled bile acid receptor
- TNFα, tumor necrosis factor α
- VLDL, very-low-density lipoprotein
Collapse
Affiliation(s)
- Eric Kwong
- Department of Microbiology and Immunology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | - Yunzhou Li
- McGuire VA Medical Center, Richmond, VA 23249, USA
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
- McGuire VA Medical Center, Richmond, VA 23249, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
- McGuire VA Medical Center, Richmond, VA 23249, USA
- Corresponding author at: Department of Microbiology and Immunology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA. Tel.: +1 804 8286817; fax: +1 804 8280676.
| |
Collapse
|
300
|
Egom EE. Sphingosine-1-phosphate signalling as a therapeutic target for patients with abnormal glucose metabolism and ischaemic heart disease. J Cardiovasc Med (Hagerstown) 2015; 15:517-24. [PMID: 23839592 DOI: 10.2459/jcm.0b013e3283639755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abnormalities of glucose metabolism in patients with ischaemic heart disease (IHD) are common and are associated with a poor outcome in patients with and without diabetes. Sphingosine-1-phosphate (S1P) is a bioactive lipid which has been shown to increase insulin sensitivity in rodents and to increase myocardial tolerance to ischaemia. In the present review, I explore the relevance of S1P signalling pathway to IHD and abnormalities in glucose tolerance, and its potential as a therapeutic target for patients with abnormal glucose metabolism and IHD.
Collapse
Affiliation(s)
- Emmanuel E Egom
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|