251
|
Panda AK, Basu B. Functionalized Fluoropolymer-Compatibilized Elastomeric Bilayer Composites for Osteochondral Repair: Unraveling the Role of Substrate Stiffness and Functionalities. ACS APPLIED BIO MATERIALS 2021; 4:8543-8558. [PMID: 35005914 DOI: 10.1021/acsabm.1c01021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The osteochondral lesions and osteoarthritis-related complications continue to be clinically relevant challenges to be addressed by the biomaterials community. Hydrogel-based scaffolds have been widely investigated to enhance osteochondral regeneration, but the inferior mechanical properties together with poor functional stability are the major constraints in their clinical translation. The development of osteochondral implants with natural tissue-mimicking mechanical properties remains largely unexplored. In this perspective, the present study demonstrates a strategy to develop a bilayer osteochondral implant with an elastically stiff composite (poly(vinylidene difluoride)-reinforced BaTiO3, PVDF/BT) and elastically compliant composite (maleic anhydride-functionalized PVDF/thermoplastic polyurethane/BaTiO3, m-PVDF/TPU/BT). The compositional variation in polymer composites allowed the elastic modulus of the hybrid bilayer construct to vary from ∼2 GPa to ∼90 MPa, which enabled a better understanding of the substrate-stiffness-dependent cellular behavior and maturation of preosteoblasts and chondrocytes. The cellular functionalities on PVDF-based polymer matrices have been benchmarked against ultrahigh-molecular-weight polyethylene (UHMWPE), which is clinically used for a wide spectrum of orthopedic applications. The increased alkaline phosphatase (ALP) activity, collagen synthesis, and matrix mineralization confirmed the early differentiation of preosteoblasts on the PVDF/BT matrix with subchondral bone-like mechanical properties. On the contrary, the upregulated chondrogenic functionalities were recorded on m-PVDF/TPU/BT with an elevated level of collagen content, glycosaminoglycans, and proteoglycans. Emphasis has been laid on probing the regulation of the osteochondral behavior using tailored substrate stiffness and functionalities using compatibilized fluoropolymer-based elastomeric composites. Taken together, the results of this work conclusively establish the efficacy of the hybrid bilayer composite with natural tissue-mimicking mechanical properties for the functional repair of osteochondral defects.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, Bangalore 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, Bangalore 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Bangalore 560012, India
| |
Collapse
|
252
|
Li M, Nie Y, Zeng Y, Wu Y, Liu Y, Wu L, Xu J, Shen B. Does Bisphosphonate Increase the Sclerosis of Tibial Subchondral Bone in the Progression of Knee Osteoarthritis-A Propensity Score Matching Cohort Study Based on Osteoarthritis Initiative. Front Med (Lausanne) 2021; 8:781219. [PMID: 34881273 PMCID: PMC8647025 DOI: 10.3389/fmed.2021.781219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Bisphosphonate has great potential in KOA therapy, but whether the anti-resorption mechanism of bisphosphonate aggravates sclerosis of subchondral bone remains unclear. We found that bisphosphonate use did not increase sclerosis of subchondral bone in established KOA, perhaps resolving some concerns about bisphosphonate in patients with KOA. Introduction: Most studies have focused on the protective effect of bisphosphonate on early knee osteoarthritis (KOA) through its anti-resorption mechanism in osteoclasts. However, late KOA has a decreased rate of resorption, which is the opposite of early KOA. The risk of subchondral bone sclerosis in late KOA after using bisphosphonate has not been investigated using morphometry. Methods: Forty-five patients who had ever used bisphosphonate (or 33 patients with current use) were matched with controls through propensity matching methods, including age, body mass index (BMI), sex, health status (12-Item Short Form Survey physical health score), physical activity level (Physical Activity Scale for the Elderly score), vitamin D use, and calcium use. At the baseline and 12-month (or 18-month) follow-up, bone mineral density (BMD) of the tibia and hip was measured by dual-energy X-ray absorptiometry (DXA), and medial tibial subchondral bone morphometry: bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp) were calculated based on 3-T trabecular MRI. Data were obtained from the Bone Ancillary Study in the Osteoarthritis Initiative (OAI) project. Results: The yearly percentage change in hip BMD of the current bisphosphonate-use group was significantly greater than that of the non-bisphosphonate-use group (0.7% vs. -1%, P = 0.02). The other outcomes (BV/TV, Tb.N, Tb.Sp, Tb.Th, tibia medial BMD, and tibia lateral BMD) between the two groups presented no significant difference. The non-bisphosphonate-use group experienced a significant increase in Tb.Th [2%, 95% CI = (1%, 4%), P = 0.01], while the bisphosphonate-use group presented no significant change [1%, 95% CI = (-2%, 4%), P = 0.54]. Conclusions: Bisphosphonate use did not increase sclerosis of subchondral bone in established KOA. Bisphosphonate might have a stage-dependent effect on subchondral bone in KOA initiation and progression.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Nie
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jiawen Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
253
|
Wang Z, Wang B, Zhang J, Wu Z, Yu L, Sun Z. Chemokine (C-C Motif) Ligand 2/Chemokine Receptor 2 (CCR2) Axis Blockade to Delay Chondrocyte Hypertrophy as a Therapeutic Strategy for Osteoarthritis. Med Sci Monit 2021; 27:e930053. [PMID: 34876548 PMCID: PMC8667482 DOI: 10.12659/msm.930053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Chondrocytes play a vital role in the later stages of osteoarthritis (OA). The roles of chemokine (C-C motif) ligand 2 (CCL2) and its receptor, chemokine receptor 2 (CCR2), are as yet poorly elucidated in chondrocyte hypertrophy (CH). Here, we aimed to regulate the CCL2/CCR2 axis and explore its effect on progression of CH. Material/Methods Chondrocytes isolated from patients with OA were used in the present study. In vitro experiments were conducted to test hypertrophic gene and CCL2/CCR2 expression in chondrocyte degeneration caused by interleukin (IL)-17A or CCL2 protein stimulation. In addition, inhibition of CCL2 and CCR2 was used to assess the role of CCL2 and CCR2 blockade in CH. Relative gene expression was determined with real-time polymerase chain reaction, western blot, or immunofluorescence. Hypertrophic changes were assessed with cell area measurement. Moreover, the viability of chondrocytes was analyzed using an MTT assay and flow cytometry was used to assess cell apoptosis. Results CCL2 and CCR2 were upregulated in IL-17A-treated chondrocytes. The exogenic CCL2 stimulation also promoted CH and increased the expression of Type 10 collagen, RUNX2, and IHH, which could be reversed via suppression of CCR2. Inhibition of CCL2 and CCR2 expression was sufficient to: 1) protect Type 2 collagen synthesis; 2) alleviate IL-17A-induced overexpression of Type 10 collagen, RUNX2, and IHH; and 3) improve chondrocyte proliferation and apoptosis. Conclusions Blockading the CCL2/CCR2 axis plays a role in delaying the development of CH.
Collapse
Affiliation(s)
- Zidong Wang
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Bei Wang
- Department of Imaging, Liaocheng Infectious Disease Hospital, Liaocheng, Shandong, China (mainland)
| | - Jian Zhang
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Zhensong Wu
- Department of Joint Sports Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, China (mainland)
| | - Liankui Yu
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Zhongye Sun
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| |
Collapse
|
254
|
Badar F, Xia Y. The interface region between articular cartilage and bone by μMRI and PLM at microscopic resolutions. Microsc Res Tech 2021; 85:1483-1493. [PMID: 34859542 DOI: 10.1002/jemt.24011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/07/2022]
Abstract
This dual-modality microscopic imaging study quantifies the interface region between the noncalcified cartilage and the subchondral bone plate, which includes the deep portion of the noncalcified articular cartilage and the zone of calcified cartilage (ZCC). This interface region is typically not visible in routine MRI but becomes visible in MRI with the application of an ultra-short echo time (UTE) sequence. A number of cartilage-bone blocks from a well-documented canine humeral head were harvested for imaging by microscopic MRI (μMRI) and PLM (polarized light microscopy). In μMRI, T2 anisotropic images were acquired by 2D gradient-echo, magnetization-prepared spin-echo and UTE sequences at the 0° and 55° (the magic angle) orientations at 11.7 μm/pixel resolution. In PLM, quantitative optical retardation (nm) and collagen orientation (°) were mapped from the thin sections from the same μMRI specimens at 0.5-2 μm pixel resolutions. The orientational and organizational architecture of the collagen matrix in this interface region was quantified and correlated between the complementary imaging. The magic angle effect as seen in the noncalcified cartilage was statistically confirmed in ZCC in μMRI, which was further supported by quantitative PLM. With an enhanced understanding of the tissue properties in this important interface region, it will potentially be possible to monitor the changes of this tissue region which is instrumental to the initiation and development of osteoarthritis and other joint diseases.
Collapse
Affiliation(s)
- Farid Badar
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
255
|
Li Y, Liem Y, Dall'Ara E, Sullivan N, Ahmed H, Blom A, Sharif M. Subchondral bone microarchitecture and mineral density in human osteoarthritis and osteoporosis: A regional and compartmental analysis. J Orthop Res 2021; 39:2568-2580. [PMID: 33751647 DOI: 10.1002/jor.25018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) and osteoporosis (OP) are historically considered to be inversely correlated but there may be an overlap between the pathophysiology of the two diseases. This study aimed to investigate the subchondral bone microarchitecture and matrix mineralization, and the association between them in OA and OP in relation to the degree of cartilage degeneration. Fifty-six osteochondral plugs were collected from 16 OA femoral heads. They were graded on a regional basis according to the stages of cartilage degeneration, as evaluated by a new macroscopic and a modified microscopic grading system. Twenty-one plugs were collected from seven femoral heads with OP. Plugs were scanned by microcomputed tomography and the microarchitectural and mineral properties were obtained for both subchondral plate and trabecular bone. Microarchitecture and material and apparent densities of subchondral bone in OP were similar to regions with early cartilage degeneration but different from regions with advanced cartilage degradation in OA femoral heads. Subchondral trabecular bone was more mineralized than subchondral plate in both OP and OA, and this compartmental difference varied by severity of cartilage degradation. Furthermore, the relationship among trabecular bone volume fraction, tissue mineral density, and apparent bone density was similar in OP and different stages of OA. Subchondral bone microarchitecture and mineral properties in OP are different from OA in a regionalized manner in relation to stages of cartilage degeneration. Both regional and compartmental differences at structural, material, and cellular levels need to be studied to understand the transition of OA subchondral bone from being osteoporotic to sclerotic.
Collapse
Affiliation(s)
- Yunfei Li
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yulia Liem
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Niall Sullivan
- Department of Trauma and Orthopaedics, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Haroon Ahmed
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashley Blom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Mohammed Sharif
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
256
|
Sang F, Xu J, Chen Z, Liu Q, Jiang W. Low-Intensity Pulsed Ultrasound Alleviates Osteoarthritis Condition Through Focal Adhesion Kinase-Mediated Chondrocyte Proliferation and Differentiation. Cartilage 2021; 13:196S-203S. [PMID: 32281401 PMCID: PMC8804760 DOI: 10.1177/1947603520912322] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a prevalent chronic multifactorial degenerative disease characterized by joint tissue inflammation, osteophyte formation, subchondral bone sclerosis, and articular cartilage degradation. Low-intensity pulsed ultrasound (LIPUS), a noninvasive ultrasound technique, is widely used to attenuate diseases. The aim of this study was to investigate whether LIPUS can ameliorate OA, and to explore its underlying molecular mechanism. DESIGN The OA model was established in a C57BL/6 mouse by the anterior cruciate ligament transaction method. OA was assessed using arthritis scoring and weightbearing parameters. Chondrocyte proliferation was detected by a CCK-8 assay. The levels of interleukin-6 (IL-6), IL-8 and tumor necrosis factor-α (TNF-α) in synovial fluid of the mice were measured by enzyme-linked immunosorbent assay. RESULTS In OA mice, the arthritis score and weightbearing abilities were dramatically improved by LIPUS treatment. LIPUS also remarkably declined the levels of inflammatory cytokines IL-6, IL-8, and TNF-α in synovial fluid of OA mice. Moreover, LIPUS promoted chondrocyte proliferation and differentiation by activating focal adhesion kinase (FAK) signaling. Inhibition of FAK significantly blocked LIPUS-mediated cell proliferation and differentiation in vitro, as well as inflammation condition in OA mice. CONCLUSION LIPUS alleviates OA through promoting chondrocytes proliferation and differentiation by activating FAK, which could act as an intervening target for OA treatment.
Collapse
Affiliation(s)
- Fei Sang
- Department of Orthopaedics,
Lianshui County People’s Hospital, The Affiliated Lianshui County People’s
Hospital of Kangda College of Nanjing Medical University, Huai’an, Jiangsu,
China
| | - Jin Xu
- Department of Orthopaedics, The
Affiliated Huai’an Hospital of Xuzhou Medical University and The Second
People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Zheng Chen
- Department of Emergency Surgery,
The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical
University, Huai’an, Jiangsu, China
| | - Qingbai Liu
- Department of Orthopaedics,
Lianshui County People’s Hospital, The Affiliated Lianshui County People’s
Hospital of Kangda College of Nanjing Medical University, Huai’an, Jiangsu,
China
| | - Wenchao Jiang
- Department of Orthopaedics, Wujin
Hospital Affiliated with Jiangsu University, the Wujin Clinical College of
Xuzhou Medical University, Changzhou, Jiangsu, China,Wenchao Jiang, Department of
Orthopedics, Wujin People’s Hospital, No. 2 of Wujin North Road,
Changzhou, Jiangsu 213017, China.
| |
Collapse
|
257
|
Di Matteo B, Polignano A, Onorato F, La Porta A, Iacono F, Bonanzinga T, Raspugli G, Marcacci M, Kon E. Knee Intraosseous Injections: A Systematic Review of Clinical Evidence of Different Treatment Alternatives. Cartilage 2021; 13:1165S-1177S. [PMID: 32959675 PMCID: PMC8808871 DOI: 10.1177/1947603520959403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To systematically review the available clinical evidence regarding the safety and efficacy of knee intraosseous injections for the treatment of bone marrow lesions in patients affected by knee osteoarthritis. DESIGN A literature search was carried out on PubMed, Embase, and Google Scholar databases in January 2020. The following inclusion criteria were adopted: (1) studies of any level of evidence, dealing with subchondral injection of bone substitute materials and/or biologic agents; (2) studies with minimum 5 patients treated; and (3) studies with at least 6 months' follow-up evaluation. All relevant data concerning clinical outcomes, adverse events, and rate of conversion to arthroplasty were extracted. RESULTS A total of 12 studies were identified: 7 dealt with calcium phosphate administration, 3 with platelet-rich plasma, and 2 with bone marrow concentrate injection. Only 2 studies were randomized controlled trials, whereas 6 studies were prospective and the remaining 4 were retrospective. Studies included a total of 459 patients treated with intraosseous injections. Overall, only a few patients experienced adverse events and clinical improvement was documented in the majority of trial. The lack of any comparative evaluation versus subchondral drilling alone is the main limitation of the available evidence. CONCLUSIONS Knee intraosseous injections are a minimally invasive and safe procedure to address subchondral bone damage in osteoarthritic patients. They are able to provide beneficial effects at short-term evaluation. More high-quality evidence is needed to confirm their potential and to identify the best product to adopt in clinical practice.
Collapse
Affiliation(s)
- Berardo Di Matteo
- First Moscow State Medical University-Sechenov University, Moscow, Russia
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Alberto Polignano
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Francesco Onorato
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Agostino La Porta
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Francesco Iacono
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Tommaso Bonanzinga
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Giovanni Raspugli
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Maurilio Marcacci
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Elizaveta Kon
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
258
|
Hargrave‐Thomas EJ, Thambyah A. The micro and ultrastructural anatomy of bone spicules found in the osteochondral junction of bovine patellae with early joint degeneration. J Anat 2021; 239:1452-1464. [PMID: 34289114 PMCID: PMC8602024 DOI: 10.1111/joa.13518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The structural changes in the tissues of the osteochondral junction are a topic of interest, especially considering how bone changes are involved in the initiation and progression of osteoarthritis (OA). Our research group has previously demonstrated that at the cement line boundary between the zone of calcified cartilage (ZCC) and the subchondral bone, in mature bovine patellae with early OA, there are numerous bone spicules that have emerged from the underlying bone. These spicules contain a central vascular canal and a bone cuff. In this study, we use high-resolution differential interference contrast optical microscopy and scanning electron microscopy to compare the cartilage-bone junction of three groups of mature bovine patellae showing healthy to mild to moderately degenerate cartilage. The ZCC and bone junction was carefully examined to estimate the frequency of marrow spaces, bone spicules and fully formed bone bulges. The results reveal that bone spicules are associated with all grades of cartilage tissue studied, with the most occurring in the intermediate stages of tissue health. The micro and ultrastructure of the bone spicule are consistent with that of an osteon, especially those found in compression zones in long bones. Also considering the coexistence of marrow spaces and fully formed bone, this study suggests that these bone spicules arise similar to the formation of osteons in the bone remodelling process. The significance of this conclusion is in the way researchers approach the bone formation issue in the early degenerative joint. Instead of endochondral ossification, we propose that bone formation in OA is more akin to a combination of primary bone remodelling and de novo bone formation.
Collapse
Affiliation(s)
- Emily J. Hargrave‐Thomas
- Experimental Tissue Mechanics LaboratoryDepartment of Chemical and Materials EngineeringUniversity of AucklandAucklandNew Zealand
| | - Ashvin Thambyah
- Experimental Tissue Mechanics LaboratoryDepartment of Chemical and Materials EngineeringUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
259
|
Aizah N, Chong PP, Kamarul T. Early Alterations of Subchondral Bone in the Rat Anterior Cruciate Ligament Transection Model of Osteoarthritis. Cartilage 2021; 13:1322S-1333S. [PMID: 31569963 PMCID: PMC8804754 DOI: 10.1177/1947603519878479] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Advances in research have shown that the subchondral bone plays an important role in the propagation of cartilage loss and progression of osteoarthritis (OA), but whether the subchondral bone changes precede or lead to articular cartilage loss remains debatable. In order to elucidate the subchondral bone and cartilage changes that occur in early OA, an experiment using anterior cruciate ligament transection (ACLT) induced posttraumatic OA model of the rat knee was conducted. DESIGN Forty-two Sprague Dawley rats were divided into 2 groups: the ACLT group and the nonoperated control group. Surgery was conducted on the ACLT group, and subsequently rats from both groups were sacrificed at 1, 2, and 3 weeks postsurgery. Subchondral bone was evaluated using a high-resolution peripheral quantitative computed tomography scanner, while cartilage was histologically evaluated and scored. RESULTS A significant reduction in the subchondral trabecular bone thickness and spacing was found as early as 1 week postsurgery in ACLT rats compared with the nonoperated control. This was subsequently followed by a reduction in bone mineral density and bone fractional volume at week 2, and finally a decrease in the trabecular number at week 3. These changes occurred together with cartilage degeneration as reflected by an increasing Mankin score over all 3 weeks. CONCLUSIONS Significant changes in subchondral bone occur very early in OA concurrent with surface articular cartilage degenerative change suggest that factors affecting bone remodeling and resorption together with cartilage matrix degradation occur very early in the disease.
Collapse
Affiliation(s)
- Nik Aizah
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Nik Aizah, National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic
Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603,
Malaysia.
| | - Pan Pan Chong
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
260
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
261
|
Latif MHA, Faye I. Automated tibiofemoral joint segmentation based on deeply supervised 2D-3D ensemble U-Net: Data from the Osteoarthritis Initiative. Artif Intell Med 2021; 122:102213. [PMID: 34823835 DOI: 10.1016/j.artmed.2021.102213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Improving longevity is one of the greatest achievements in humanity. Because of this, the population is growing older, and the ubiquity of knee osteoarthritis (OA) is on the rise. Nonetheless, the understanding and ability to investigate potential precursors of knee OA have been impeded by time-consuming and laborious manual delineation processes which are prone to poor reproducibility. A method for automatic segmentation of the tibiofemoral joint using magnetic resonance imaging (MRI) is presented in this work. The proposed method utilizes a deeply supervised 2D-3D ensemble U-Net, which consists of foreground class oversampling, deep supervision loss branches, and Gaussian weighted softmax score aggregation. It was designed, optimized, and tested on 507 3D double echo steady-state (DESS) MR volumes using a two-fold cross-validation approach. A state-of-the-art segmentation accuracy measured as Dice similarity coefficient (DSC) for the femur bone (98.6 ± 0.27%), tibia bone (98.8 ± 0.31%), femoral cartilage (90.3 ± 2.89%), and tibial cartilage (86.7 ± 4.07%) is achieved. Notably, the proposed method yields sub-voxel accuracy for an average symmetric surface distance (ASD) less than 0.36 mm. The model performance is not affected by the severity of radiographic osteoarthritis (rOA) grades or the presence of pathophysiological changes. The proposed method offers an accurate segmentation with high time efficiency (~62 s) per 3D volume, which is well suited for efficient processing and analysis of the large prospective cohorts of the Osteoarthritis Initiative (OAI).
Collapse
Affiliation(s)
- Muhamad Hafiz Abd Latif
- Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Ibrahima Faye
- Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental & Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
262
|
Rothschild B, Biehler-Gomez L. Osteophytes: The product of convergent evolution. Anat Rec (Hoboken) 2021; 305:2113-2118. [PMID: 34837330 DOI: 10.1002/ar.24843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 11/07/2022]
Abstract
The very reasonable suggestion, that diarthrodial joint and juxta-discal (vertebral centra-marginal) bony overgrowths (referred to as osteophytes) have different etiologies, has eluded previous confirmation. The prevailing perspective is that diarthrodial osteophytes represent the product of compressive forces and that those on the margins of vertebral centra result from traction and therefore are enthesial in derivation. If diarthrodial joint osteophytes result from intrinsic pressures, any surface responses would require transcortical nutritional support, easily recognized by en face microscopic examination. This contrasts with enthesially derived growth, the surface of which is characterized by Sharpey's fiber insertions. These are recognized as inverted cones with a central protrusion on examination of related bone surfaces. We hypothesize that diarthrodial and disc-adjacent osteophytes have a different pathophysiology, distinguishable on the basis of microscopic surface appearance. We pursued microscopic examination of the surfaces of osteophytes present on diarthrodial joints (hip, knee, elbow, costovertebral) and vertebrae (cervical, thoracic, and lumbar) from the CAL Milano Cemetery Skeletal Collection for presence of transcortical channels and the inverted cones of Sharpey's fiber insertions. Examination of 22 diarthrodial joint osteophytes reveals the presence solely of transcortical channels, while examination of 35 vertebral centra marginal osteophytes reveals the presence only of inverted cones. Findings are independent of age, gender, joint affected, position in the spinal column and osteophyte "severity." It is now evidenced that all osteophytes are not created equal. Diarthrodial joint osteophytes are endochondrally derived; vertebral centra osteophytes, enthesial in derivation. Different pathophysiology at least partially explain the clinical character of these processes.
Collapse
Affiliation(s)
| | - Lucie Biehler-Gomez
- Laboratory of Forensic Anthropology and Odontology (LABANOF), University of Milan, Milan, Italy
| |
Collapse
|
263
|
Sulaiman SZS, Tan WM, Radzi R, Shafie INF, Ajat M, Mansor R, Mohamed S, Ng AMH, Lau SF. Comparison of bone and articular cartilage changes in osteoarthritis: a micro-computed tomography and histological study of surgically and chemically induced osteoarthritic rabbit models. J Orthop Surg Res 2021; 16:663. [PMID: 34749769 PMCID: PMC8577030 DOI: 10.1186/s13018-021-02781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a multifaceted condition that affects both the subchondral bones and the articular cartilage. Animal models are widely used as an effective supplement and simulation for human OA studies in investigating disease mechanisms and pathophysiology. This study is aimed to evaluate the temporal changes of bone and cartilage in surgically and chemically induced osteoarthritis using micro-computed tomography and histology. METHODS Thirty rabbits underwent either anterior cruciate ligament transection (ACLT) procedure or injected intraarticularly with monosodium iodoacetate (MIA, 8 mg) at the right knee joint. The subchondral bones were scanned via micro-CT, and articular cartilage was assessed histologically at 4-, 8- and 12-week post-induction. RESULTS Based on bone micro-architecture parameters, the surgically induced group revealed bone remodelling processes, indicated by increase bone volume, thickening of trabeculae, reduced trabecular separation and reduced porosity. On the other hand, the chemically induced group showed active bone resorption processes depicted by decrease bone volume, thinning of trabeculae, increased separation of trabecular and increased porosity consistently until week 12. Histologically, the chemically induced group showed more severe articular cartilage damage compared to the surgically induced group. CONCLUSIONS It can be concluded that in the ACLT group, subchondral bone remodelling precedes articular cartilage damage and vice versa in the MIA group. The findings revealed distinct pathogenic pathways for both induction methods, providing insight into tailored therapeutic strategies, as well as disease progression and treatment outcomes monitoring.
Collapse
Affiliation(s)
- Sharifah Zakiah Syed Sulaiman
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wei Miao Tan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rozanaliza Radzi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Intan Nur Fatiha Shafie
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rozaihan Mansor
- Department of Farm and Exotic Animals Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Suhaila Mohamed
- UPM-Makna Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Angela Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Seng Fong Lau
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- UPM-Makna Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
264
|
Moretti L, Bizzoca D, Giancaspro GA, Cassano GD, Moretti F, Setti S, Moretti B. Biophysical Stimulation in Athletes' Joint Degeneration: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1206. [PMID: 34833424 PMCID: PMC8619315 DOI: 10.3390/medicina57111206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease and the main cause of pain and disability in elderly people. OA currently represents a significant social health problem, since it affects 250 million individuals worldwide, mainly adults aged over 65. Although OA is a multifactorial disease, depending on both genetic and environmental factors, it is reported that joint degeneration has a higher prevalence in former athletes. Repetitive impact and loading, joint overuse and recurrent injuries followed by a rapid return to the sport might explain athletes' predisposition to joint articular degeneration. In recent years, however, big efforts have been made to improve the prevention and management of sports injuries and to speed up the athletes' return-to-sport. Biophysics is the study of biological processes and systems using physics-based methods or based on physical principles. Clinical biophysics has recently evolved as a medical branch that investigates the relationship between the human body and non-ionizing physical energy. A physical stimulus triggers a biological response by regulating specific intracellular pathways, thus acting as a drug. Preclinical and clinical trials have shown positive effects of biophysical stimulation on articular cartilage, subchondral bone and synovia. This review aims to assess the role of pulsed electromagnetic fields (PEMFs) and extracorporeal shockwave therapy (ESWT) in the prevention and treatment of joint degeneration in athletes.
Collapse
Affiliation(s)
- Lorenzo Moretti
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Davide Bizzoca
- PhD. Course in Public Health, Clinical Medicine and Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giovanni Angelo Giancaspro
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Giuseppe Danilo Cassano
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Francesco Moretti
- National Center for Chemicals, Cosmetic Products and Consumer Protection, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Stefania Setti
- IGEA Spa-Clinical Biophysics, via Parmenide, 10/A, 41012 Carpi (Mo), Italy;
| | - Biagio Moretti
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| |
Collapse
|
265
|
Taheri S, Yoshida T, Böker KO, Foerster RH, Jochim L, Flux AL, Grosskopf B, Lehmann W, Schilling AF. Investigating the Microchannel Architectures Inside the Subchondral Bone in Relation to Estimated Hip Reaction Forces on the Human Femoral Head. Calcif Tissue Int 2021; 109:510-524. [PMID: 34023913 PMCID: PMC8484212 DOI: 10.1007/s00223-021-00864-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
The interplay between articular cartilage (AC) and subchondral bone (SB) plays a pivotal role in cartilage homeostasis and functionality. As direct connective pathways between the two are poorly understood, we examined the location-dependent characteristics of the 3D microchannel network within the SB that connects the basal cartilage layer to the bone marrow (i.e. cartilage-bone marrow microchannel connectors; CMMC). 43 measuring points were defined on five human cadaveric femoral heads with no signs of osteoarthritis (OA) (age ≤ 60), and cartilage-bone cylinders with diameters of 2.00 mm were extracted for high-resolution scanning (n = 215). The micro-CT data were categorized into three groups (load-bearing region: LBR, n = 60; non-load-bearing region: NLBR, n = 60; and the peripheral rim: PR, n = 95) based on a gait analysis estimation of the joint reaction force (young, healthy cohort with no signs of OA). At the AC-SB interface, the number of CMMC in the LBR was 1.8 times and 2.2 times higher compared to the NLBR, and the PR, respectively. On the other hand, the median Feret size of the CMMC were smallest in the LBR (55.2 µm) and increased in the NLBR (73.5 µm; p = 0.043) and the PR (89.1 µm; p = 0.043). AC thickness was positively associated with SB thickness (Pearson's r = 0.48; p < 1e-13), CMMC number. (r = 0.46; p < 1e-11), and circularity index (r = 0.61; p < 1e-38). In conclusion, our data suggest that regional differences in the microchannel architecture of SB might reflect regional differences in loading.
Collapse
Affiliation(s)
- Shahed Taheri
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Takashi Yoshida
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Kai O Böker
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Robert H Foerster
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Lina Jochim
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anna Lena Flux
- Department of Historical Anthropology and Human Ecology, University of Göttingen Johann-Friedrich-Blumenbach, Institute for Zoology & Anthropology, Göttingen, Germany
| | - Birgit Grosskopf
- Department of Historical Anthropology and Human Ecology, University of Göttingen Johann-Friedrich-Blumenbach, Institute for Zoology & Anthropology, Göttingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Arndt Friedrich Schilling
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
266
|
Subchondral insufficiency fracture of the knee: unicompartmental correlation to meniscal pathology and degree of chondrosis by MRI. Skeletal Radiol 2021; 50:2185-2194. [PMID: 33866392 DOI: 10.1007/s00256-021-03777-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess the relationship between low- and high-grade subchondral insufficiency fracture of the knee (SIFK) and meniscal tear/type/location, severity of meniscal extrusion, grade of chondrosis, and extent of surrounding edema-like marrow signal intensity. MATERIALS AND METHODS Our retrospective study included 219 patients with knee pain and SIFK seen on MRI. SIFK lesions were categorized from grade 1 to 4 with a low grade (1 and 2) vs high grade (3 and 4) distinction. Associations between SIFK grade, location, lesion dimensions, edema-like marrow signal intensity, incidence of meniscal tears/type/location, and chondrosis (grade 0 to grade 4), as well as patients' age and weight, were assessed. RESULTS Our analysis consisted of 115 males and 104 females with 17% of the patients showing grade 1 SIFK, 59% grade 2, 16% grade 3, and 8% grade 4. No chondrosis or low-grade chondrosis was mostly present in patients with low-grade SIFK (68.9%), whereas high-grade chondrosis was mostly present in patients with high-grade SIFK lesions (65.4%) (p < 0.01). Further sub-analysis demonstrated that high-grade SIFK was associated with high-grade chondrosis in the same compartment (p < 0.01) but not in the adjacent compartment. There was a significant difference in the extent of edema-like marrow signal intensity between the two groups, with high-grade SIFK more frequently demonstrating severe edema-like marrow signal intensity compared to low-grade SIFK (p < 0.01). CONCLUSION High-grade SIFK lesions are associated with unicompartmental high-grade chondrosis.
Collapse
|
267
|
Ziemian SN, Ayobami OO, Rooney AM, Kelly NH, Holyoak DT, Ross FP, van der Meulen MCH. Low bone mass resulting from impaired estrogen signaling in bone increases severity of load-induced osteoarthritis in female mice. Bone 2021; 152:116071. [PMID: 34171515 PMCID: PMC8863567 DOI: 10.1016/j.bone.2021.116071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Reduced subchondral bone mass and increased remodeling are associated with early stage OA. However, the direct effect of low subchondral bone mass on the risk and severity of OA development is unclear. We sought to determine the role of low bone mass resulting from a bone-specific loss of estrogen signaling in load-induced OA development using female osteoblast-specific estrogen receptor-alpha knockout (pOC-ERαKO) mice. METHODS Osteoarthritis was induced by cyclic mechanical loading applied to the left tibia of 26-week-old female pOC-ERαKO and littermate control mice at peak loads of 6.5N, 7N, or 9N for 2 weeks. Cartilage damage and thickness, osteophyte development, and joint capsule fibrosis were assessed from histological sections. Subchondral bone morphology was analyzed by microCT. The correlation between OA severity and intrinsic bone parameters was determined. RESULTS The loss of ERα in bone resulted in an osteopenic subchondral bone phenotype, but did not directly affect cartilage health. Following two weeks of cyclic tibial loading to induce OA pathology, pOC-ERαKO mice developed more severe cartilage damage, larger osteophytes, and greater joint capsule fibrosis compared to littermate controls. Intrinsic bone parameters negatively correlated with measures of OA severity in loaded limbs. CONCLUSIONS Subchondral bone osteopenia resulting from bone-specific loss of estrogen signaling was associated with increased severity of load-induced OA pathology, suggesting that reduced subchondral bone mass directly exacerbates load-induced OA development. Bone-specific changes associated with estrogen loss may contribute to the increased incidence of OA in post-menopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | - F Patrick Ross
- Hospital for Special Surgery, New York, NY, United States of America
| | - Marjolein C H van der Meulen
- Cornell University, Ithaca, NY, United States of America; Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
268
|
Hsu GCY, Cherief M, Sono T, Wang Y, Negri S, Xu J, Peault B, James AW. Divergent effects of distinct perivascular cell subsets for intra-articular cell therapy in posttraumatic osteoarthritis. J Orthop Res 2021; 39:2388-2397. [PMID: 33512030 PMCID: PMC8319216 DOI: 10.1002/jor.24997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/04/2023]
Abstract
Intra-articular injection of mesenchymal stem cells has shown benefit for the treatment of osteoarthritis (OA). However, mesenchymal stem/stromal cells at the origin of these clinical results are heterogenous cell populations with limited cellular characterization. Here, two transgenic reporter mice were used to examine the differential effects of two precisely defined perivascular cell populations (Pdgfrα+ and Pdgfrβ+ cells) from white adipose tissue for alleviation of OA. Perivascular mesenchymal cells were isolated from transgenic Pdgfrα-and Pdgfrβ-CreERT2 reporter animals and delivered as a one-time intra-articular dose to C57BL/6J mice after destabilization of the medial meniscus (DMM). Both Pdgfrα+ and Pdgfrβ+ cell preparations improved metrics of cartilage degradation and reduced markers of chondrocyte hypertrophy. While some similarities in cell distribution were identified within the synovial and perivascular spaces, injected Pdgfrα+ cells remained in the superficial layers of articular cartilage, while Pdgfrβ+ cells were more widely dispersed. Pdgfrβ+ cell therapy prevented subchondral sclerosis induced by DMM, while Pdgfrα+ cell therapy had no effect. In summary, while both cell therapies showed beneficial effects in the DMM model, important differences in cell incorporation, persistence, and subchondral sclerosis were identified.
Collapse
Affiliation(s)
- Ginny Ching-Yun Hsu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States;,Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, 90095;,Center For Cardiovascular Science and Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| |
Collapse
|
269
|
Subchondral Bone Microarchitectural and Mineral Properties and Expression of Key Degradative Proteinases by Chondrocytes in Human Hip Osteoarthritis. Biomedicines 2021; 9:biomedicines9111593. [PMID: 34829822 PMCID: PMC8615609 DOI: 10.3390/biomedicines9111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Background: The purpose of this study was to investigate the relationship between the expression of key degradative enzymes by chondrocytes and the microarchitectural and mineral properties of subchondral bone across different stages of cartilage degradation in human hip osteoarthritis (OA). Methods: Osteochondral samples at different stages of cartilage degradation were collected from 16 femoral heads with OA. Osteochondral samples with normal cartilage were collected from seven femoral heads with osteoporosis. Microcomputed tomography was used for the investigation of subchondral bone microarchitecture and mineral densities. Immunohistochemistry was used to study the expression and distribution of MMP13 and ADAMTS4 in cartilage. Results: The microarchitecture and mineral properties of the subchondral plate and trabecular bone in OA varied with the severity of the degradation of the overlying cartilage. Chondrocytes expressing MMP13 and ADAMTS4 are mainly located in the upper zone(s) of cartilage regardless of the histopathological grades. The zonal expression of these enzymes in OA (i.e., the percentage of positive cells in the superficial, middle, and deep zones), rather than their overall expression (the percentage of positive cells in the full thickness of the cartilage), exhibited significant variation in relation to the severity of cartilage degradation. The associations between the subchondral bone properties and zonal and overall expression of these enzymes in the cartilage were generally weak or nonsignificant. Conclusions: Phenotypic changes in chondrocytes and remodelling of subchondral bone proceed at different rates throughout the process of cartilage degradation. Biological influences are more important for cartilage degradation at early stages, while biomechanical damage to the compromised tissue may outrun the phenotypic change of chondrocytes and is critical in the advanced stages.
Collapse
|
270
|
Ferrero S, Amri EZ, Roux CH. Relationship between Oxytocin and Osteoarthritis: Hope or Despair? Int J Mol Sci 2021; 22:ijms222111784. [PMID: 34769215 PMCID: PMC8584067 DOI: 10.3390/ijms222111784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Oxytocin (OT) is involved in breastfeeding and childbirth and appears to play a role in regulating the bone matrix. OT is synthesized in the supraoptic and paraventricular nuclei of the hypothalamus and is released in response to numerous stimuli. It also appears to be produced by osteoblasts in the bone marrow, acting as a paracrine–autocrine regulator of bone formation. Osteoarthritis (OA) is a disease of the whole joint. Different tissues involved in OA express OT receptors (OTRs), such as chondrocytes and osteoblasts. This hormone, which levels are reduced in patients with OA, appears to have a stimulatory effect on chondrogenesis. OT involvement in bone biology could occur at both the osteoblast and chondrocyte levels. The relationships between metabolic syndrome, body weight, and OA are well documented, and the possible effects of OT on different parameters of metabolic syndrome, such as diabetes and body weight, are important. In addition, the effects of OT on adipokines and inflammation are also discussed, especially since recent data have shown that low-grade inflammation is also associated with OA. Furthermore, OT also appears to mediate endogenous analgesia in animal and human studies. These observations provide support for the possible interest of OT in OA and its potential therapeutic treatment.
Collapse
Affiliation(s)
- Stephanie Ferrero
- Rheumatology Department, Hospital Pasteur 2 CHU, 06000 Nice, France;
| | - Ez-Zoubir Amri
- Inserm, CNRS, iBV, Université Côte d’Azur, 06000 Nice, France;
| | - Christian Hubert Roux
- Rheumatology Department, Hospital Pasteur 2 CHU, 06000 Nice, France;
- Inserm, CNRS, iBV, Université Côte d’Azur, 06000 Nice, France;
- Correspondence:
| |
Collapse
|
271
|
Logerstedt DS, Ebert JR, MacLeod TD, Heiderscheit BC, Gabbett TJ, Eckenrode BJ. Effects of and Response to Mechanical Loading on the Knee. Sports Med 2021; 52:201-235. [PMID: 34669175 DOI: 10.1007/s40279-021-01579-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Mechanical loading to the knee joint results in a differential response based on the local capacity of the tissues (ligament, tendon, meniscus, cartilage, and bone) and how those tissues subsequently adapt to that load at the molecular and cellular level. Participation in cutting, pivoting, and jumping sports predisposes the knee to the risk of injury. In this narrative review, we describe different mechanisms of loading that can result in excessive loads to the knee, leading to ligamentous, musculotendinous, meniscal, and chondral injuries or maladaptations. Following injury (or surgery) to structures around the knee, the primary goal of rehabilitation is to maximize the patient's response to exercise at the current level of function, while minimizing the risk of re-injury to the healing tissue. Clinicians should have a clear understanding of the specific injured tissue(s), and rehabilitation should be driven by knowledge of tissue-healing constraints, knee complex and lower extremity biomechanics, neuromuscular physiology, task-specific activities involving weight-bearing and non-weight-bearing conditions, and training principles. We provide a practical application for prescribing loading progressions of exercises, functional activities, and mobility tasks based on their mechanical load profile to knee-specific structures during the rehabilitation process. Various loading interventions can be used by clinicians to produce physical stress to address body function, physical impairments, activity limitations, and participation restrictions. By modifying the mechanical load elements, clinicians can alter the tissue adaptations, facilitate motor learning, and resolve corresponding physical impairments. Providing different loads that create variable tensile, compressive, and shear deformation on the tissue through mechanotransduction and specificity can promote the appropriate stress adaptations to increase tissue capacity and injury tolerance. Tools for monitoring rehabilitation training loads to the knee are proposed to assess the reactivity of the knee joint to mechanical loading to monitor excessive mechanical loads and facilitate optimal rehabilitation.
Collapse
Affiliation(s)
- David S Logerstedt
- Department of Physical Therapy, University of the Sciences in Philadelphia, Philadelphia, PA, USA.
| | - Jay R Ebert
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia.,Orthopaedic Research Foundation of Western Australia, Perth, WA, Australia.,Perth Orthopaedic and Sports Medicine Research Institute, Perth, WA, Australia
| | - Toran D MacLeod
- Department of Physical Therapy, Sacramento State University, Sacramento, CA, USA
| | - Bryan C Heiderscheit
- Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Tim J Gabbett
- Gabbett Performance Solutions, Brisbane, QLD, Australia.,Centre for Health Research, University of Southern Queensland, Ipswich, QLD, Australia
| | - Brian J Eckenrode
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
| |
Collapse
|
272
|
Yajun W, Jin C, Zhengrong G, Chao F, Yan H, Weizong W, Xiaoqun L, Qirong Z, Huiwen C, Hao Z, Jiawei G, Xinchen Z, Shihao S, Sicheng W, Xiao C, Jiacan S. Betaine Attenuates Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in Subchondral Bone. Front Pharmacol 2021; 12:723988. [PMID: 34658862 PMCID: PMC8511433 DOI: 10.3389/fphar.2021.723988] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis with no effective therapy. Subchondral bone and overlying articular cartilage are closely associated and function as “osteo-chondral unit” in the joint. Abnormal mechanical load leads to activated osteoclast activity and increased bone resorption in the subchondral bone, which is implicated in the onset of OA pathogenesis. Thus, inhibiting subchondral bone osteoclast activation could prevent OA onset. Betaine, isolated from the Lycii Radicis Cortex (LRC), has been demonstrated to exert anti-inflammatory, antifibrotic and antiangiogenic properties. Here, we evaluated the effects of betaine on anterior cruciate ligament transection (ACLT)-induced OA mice. We observed that betaine decreased the number of matrix metalloproteinase 13 (MMP-13)-positive and collagen X (Col X)-positive cells, prevented articular cartilage proteoglycan loss and lowered the OARSI score. Betaine decreased the thickness of calcified cartilage and increased the expression level of lubricin. Moreover, betaine normalized uncoupled subchondral bone remodeling as defined by lowered trabecular pattern factor (Tb.pf) and increased subchondral bone plate thickness (SBP). Additionally, aberrant angiogenesis in subchondral bone was blunted by betaine treatment. Mechanistically, we demonstrated that betaine suppressed osteoclastogenesis in vitro by inhibiting reactive oxygen species (ROS) production and subsequent mitogen-activated protein kinase (MAPK) signaling. These data demonstrated that betaine attenuated OA progression by inhibiting hyperactivated osteoclastogenesis and maintaining microarchitecture in subchondral bone.
Collapse
Affiliation(s)
- Wang Yajun
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cui Jin
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gu Zhengrong
- Department of Orthopedics, Luodian Hospital, Shanghai, China
| | - Fang Chao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hu Yan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Weng Weizong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Xiaoqun
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhou Qirong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Huiwen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhang Hao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guo Jiawei
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuang Xinchen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Shihao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wang Sicheng
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics, Zhongye Hospital, Shanghai, China
| | - Chen Xiao
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Su Jiacan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China.,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China
| |
Collapse
|
273
|
Non-polar lipid from greenshell mussel (Perna canaliculus) inhibits osteoclast differentiation. Bone Rep 2021; 15:101132. [PMID: 34632003 PMCID: PMC8493498 DOI: 10.1016/j.bonr.2021.101132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/23/2022] Open
Abstract
The osteoclast-dependent bone resorption process is a crucial part of the bone regulatory system. The excessive function of osteoclasts can cause diseases of bone, joint, and other tissues such as osteoporosis and osteoarthritis. Greenshell mussel oil (GSM), a good source of long chain omega-3 polyunsaturated fatty acids (LCn-3PUFAs), was fractionated into total lipid, polar lipid, and non-polar lipid components and their anti-osteoclastogenic activity tested in RAW 264.7 cell cultures. Osteoclast differentiation process was achieved after 5 days of incubation with RANKL in 24-well culture plates. Introducing the non-polar lipid fraction into the culture caused a lack of cell differentiation, and a reduction in tartrate-resistant acid phosphatase (TRAP) activity and TRAP cell numbers in a dose-dependent manner (50% reduction at the concentration of 20 μg/mL, p < 0.001). Moreover, actin ring formation was significantly diminished by non-polar lipids at 10-20 μg/mL. The bone digestive enzymes released by osteoclasts into the pit formation were also compromised by downregulating gene expression of cathepsin K, carbonic anhydrase II (CA II), matrix metalloproteinase 9 (MMP-9), and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). This study revealed that the non-polar lipid fraction of GSM oil contains bioactive substances which possess potent anti-osteoclastogenic activity.
Collapse
Key Words
- AA, Arachidonic acid
- ALA, Alpha linolenic acid
- CAII, Carbonic anhydrase II
- DHA, Docosahexaenoic acid
- DMSO, dimethyl sulfoxide
- DPA, Docosapentaenoic acid
- EPA, Eicosapentaenoic acid
- FFAR, Free fatty acid receptor
- GSM, Greenshell mussel
- Greenshell mussel
- LA, Linoleic acid
- LPS, Lipopolysaccharide
- MMP-9, Matrix metalloproteinase 9
- MUFA, Monounsaturated fatty acid
- NF-κB, Nuclear factor κB
- NFATc1, Nuclear factor of activated T-cells, cytoplasmic 1
- OA, Osteoarthritis
- Omega 3 fatty acid
- Osteoarthritis
- Osteoclasts
- Osteoporosis
- PA, Palmitic acid
- PPAR, Peroxisome proliferator activated receptor
- PUFA, Polyunsaturated fatty acid
- RANKL, Receptor activator of nuclear factor κB ligand
- SFA, Saturated fatty acid
- TRAP, Tartrate-resistant acid phosphatase
Collapse
|
274
|
Ng CY, Chai JY, Foo JB, Mohamad Yahaya NH, Yang Y, Ng MH, Law JX. Potential of Exosomes as Cell-Free Therapy in Articular Cartilage Regeneration: A Review. Int J Nanomedicine 2021; 16:6749-6781. [PMID: 34621125 PMCID: PMC8491788 DOI: 10.2147/ijn.s327059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/22/2021] [Indexed: 12/20/2022] Open
Abstract
Treatment of cartilage defects such as osteoarthritis (OA) and osteochondral defect (OCD) remains a huge clinical challenge in orthopedics. OA is one of the most common chronic health conditions and is mainly characterized by the degeneration of articular cartilage, shown in the limited capacity for intrinsic repair. OCD refers to the focal defects affecting cartilage and the underlying bone. The current OA and OCD management modalities focus on symptom control and on improving joint functionality and the patient’s quality of life. Cell-based therapy has been evaluated for managing OA and OCD, and its chondroprotective efficacy is recognized mainly through paracrine action. Hence, there is growing interest in exploiting extracellular vesicles to induce cartilage regeneration. In this review, we explore the in vivo evidence of exosomes on cartilage regeneration. A total of 29 in vivo studies from the PubMed and Scopus databases were identified and analyzed. The studies reported promising results in terms of in vivo exosome delivery and uptake; improved cartilage morphological, histological, and biochemical outcomes; enhanced subchondral bone regeneration; and improved pain behavior following exosome treatment. In addition, exosome therapy is safe, as the included studies documented no significant complications. Modifying exosomal cargos further increased the cartilage and subchondral bone regeneration capacity of exosomes. We conclude that exosome administration is a potent cell-free therapy for alleviating OA and OCD. However, additional studies are needed to confirm the therapeutic potential of exosomes and to identify the standard protocol for exosome-based therapy in OA and OCD management.
Collapse
Affiliation(s)
- Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| | - Jia Ying Chai
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Nor Hamdan Mohamad Yahaya
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
275
|
Molfetta L, Casabella A, Rosini S, Saviola G, Palermo A. Role of the osteochondral unit in the pathogenesis of osteoarthritis: focus on the potential use of clodronate. Curr Rheumatol Rev 2021; 18:2-11. [PMID: 34615451 DOI: 10.2174/1573397117666211006094117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/10/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
Osteoarthritis (OA) is a chronic disease characterized by inflammation and progressive deterioration of the joint. The etiology of OA includes genetic, phlogistic, dismetabolic and mechanical factors. Historically, cartilage was considered the target of the disease and therapy was aimed at protecting and lubricating the articular cartilage. The osteochondral unit is composed of articular cartilage, calcified cartilage, and subchondral and trabecular bone, which work synergistically to support the functional loading of the joint. Numerous studies today show that OA involves the osteochondral unit, with the participation therefore of the bone in the starting and progression of the disease, which is associated with chondropathy. Cytokines involved in the process leading to cartilage damage are also mediators of subchondral bone edema. Therefore, OA therapy must be based on the use of painkillers and bisphosphonates for both the control of osteometabolic damage and its analgesic activity. Monitoring of the disease of the osteochondral unit must be extensive, since bone marrow edema can be considered as a marker of the evolution of OA. In the present review we discuss some of the pathogenetic mechanisms associated with osteoarthritis, with particular focus on the osteochondral unit and the use of clodronate.
Collapse
Affiliation(s)
- Luigi Molfetta
- DISC Department of Integrated Surgical and Diagnostic science, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa. Italy
| | - Andrea Casabella
- DiMI Department of Internal Medicine Osteoporosis, Bone and Joint Disease Research Center, CROPO, Geno. Italy
| | | | - Gianantonio Saviola
- Istituti Clinici Scientifici Maugeri IRCCS, Rheumatology and Rehabilitation Unit of the Institute of Castel Goffredo, Mantua. Italy
| | - Andrea Palermo
- IRCCS Auxologico Italian Institute - 3 Unit of Orthopaedic Surgery - Capitanio Hospital, Milan. Italy
| |
Collapse
|
276
|
Chawla D, Han G, Eriten M, Henak CR. Microindentation Technique to Create Localized Cartilage Microfractures. Curr Protoc 2021; 1:e280. [PMID: 34670019 DOI: 10.1002/cpz1.280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Articular cartilage is a multiphasic, anisotropic, and heterogeneous material. Although cartilage possesses excellent mechanical and biological properties, it can undergo mechanical damage, resulting in osteoarthritis. Thus, it is important to understand the microscale failure behavior of cartilage in both basic science and clinical contexts. Determining cartilage failure behavior and mechanisms provides insight for improving treatment strategies to delay osteoarthritis initiation or progression and can also enhance the value of cartilage as bioinspiration for material fabrication. To investigate microscale failure behavior, we developed a protocol to initiate fractures by applying a microindentation technique using a well-defined tip geometry that creates localized cracks across a range of loading rates. The protocol includes extracting the tissue from the joint, preparing samples, and microfracture. Various aspects of the experiment, such as loading profile and solvent, can be adjusted to mimic physiological or pathological conditions and thereby further clarify phenomena underlying articular cartilage failure. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Harvesting and dissection of the joint surfaces Basic Protocol 2: Preparation of samples for microindentation and fatigue testing Basic Protocol 3: Microfracture using microindentation Basic Protocol 4: Crack propagation under cyclic loading.
Collapse
Affiliation(s)
- Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Guebum Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
277
|
Klimak M, Nims RJ, Pferdehirt L, Collins KH, Harasymowicz NS, Oswald SJ, Setton LA, Guilak F. Immunoengineering the next generation of arthritis therapies. Acta Biomater 2021; 133:74-86. [PMID: 33823324 DOI: 10.1016/j.actbio.2021.03.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.
Collapse
Affiliation(s)
- Molly Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Sara J Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lori A Setton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
278
|
Estakhri F, Reza Panjehshahin M, Tanideh N, Gheisari R, Azarpira N, Gholijani N. Efficacy of Combination Therapy with Apigenin and Synovial Membrane-Derived Mesenchymal Stem Cells on Knee Joint Osteoarthritis in a Rat Model. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:383-394. [PMID: 34539013 PMCID: PMC8438345 DOI: 10.30476/ijms.2020.83686.1301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/27/2019] [Accepted: 12/15/2019] [Indexed: 01/22/2023]
Abstract
Background: Osteoarthritis (OA) is a degenerative joint disease that causes a variety of adverse health effects. Considering the need to identify additional effective therapeutic options for OA therapy,
we investigated the effect of co-injection of apigenin and synovial membrane-derived mesenchymal stem cells (SMMSCs) on OA in male rats’ knee joints. Methods: The study was performed in 2019 at the Department of Pharmacology, Shiraz University of Medical Sciences, Shiraz, Iran. Anterior cruciate ligament transection (ACLT)
was used to induce OA. For three weeks, male Sprague-Dawley rats (eight groups, n=6 each) were treated once-weekly with intra-articular injections of apigenin alone or
in combination with SMMSC (three million cells), phosphate-buffered saline, or hyaluronic acid. After three months, the interleukin 1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α),
superoxide dismutase (SOD), and malondialdehyde (MDA) levels were measured in the cartilage homogenate. The expression of extracellular matrix (ECM) components including collagen 2a1,
aggrecan, IL-1β, TNF-α, inducible nitric oxide synthase (iNOS), transcription factor SOX-9, and matrix metalloproteinases 3 and 13 were assessed using real-time polymerase
chain reaction (RT-PCR) analysis. Radiological evaluation and histopathological assessment were used to evaluate the knees. Results: Levels of TNF-α (P=0.009), MDA (P>0.001), and IL-1β (P<0.001) decreased and the level of SOD increased (P=0.004) in the apigenin 0.3 µM with SMMSCs group.
RT-PCR analysis indicated that IL-1β in the apigenin 0.3 µM with SMMSCs group reduced significantly (P<0.001). This group also exhibited increased expression levels
of SOX-9, collagen 2a1, and aggrecan (P<0.001). Conclusion: Apigenin may have supplementary beneficial effects on cell therapy in a rat model of OA due to its possible effect on the reduction of oxidative stress,
suppression of inflammation, and promotion of production of ECM components.
Collapse
Affiliation(s)
- Firoozeh Estakhri
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Gheisari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasser Gholijani
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
279
|
Zhou JY, Wong JH, Berman ZT, Lombardi AF, Chang EY, von Drygalski A. Bleeding with iron deposition and vascular remodelling in subchondral cysts: A newly discovered feature unique to haemophilic arthropathy. Haemophilia 2021; 27:e730-e738. [PMID: 34537999 DOI: 10.1111/hae.14417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Joint iron accumulation is the incendiary factor triggering osteochondral destruction, synovial hypertrophy, inflammation, and vascular remodelling in haemophilic arthropathy (HA). Hemosiderin depositions have been described in synovium and, more recently, in cartilage. Clinical observations also suggest hemosiderin accumulation in subchondral cysts, implying cyst bleeding. AIM We explored associations between cystic iron accumulation, vascular remodelling and HA status to determine if cystic bleeding may contribute to HA progression. METHODS Thirty-six haemophilic joints (16 knees, 10 ankles, and 10 elbows; 31 adult patients with haemophilia A/B) were evaluated by magnetic resonance imaging (MRI) for subchondral cysts and hemosiderin. Cyst score (WORMS) and hemosiderin presence were compared between haemophilic and osteoarthritic knees, matched for the degree of arthritis (Kellgren-Lawrence score). Cystic iron accumulation, vascular remodelling and macrophage cell counts were also compared by immunohistochemistry in explanted joint tissues. In haemophilic knees, cyst number and extent of hemosiderin deposition were correlated with haemophilia joint health scores (HJHS). RESULTS Cystic hemosiderin was detected in 78% of haemophilic joints. Cyst score and presence of hemosiderin were significantly higher in haemophilic compared to osteoarthritic knees. Cyst score and presence of hemosiderin strongly correlated with HJHS. Moreover, iron deposition and vascular remodelling were significantly more pronounced within cysts in haemophilic compared to osteoarthritic knees, with similar total cell and macrophage count. CONCLUSION These findings suggest the presence of subchondral bleeding in haemophilia, contributing to poor joint health outcomes. Observations of bleeding into osseous structures are novel and should inform investigations of new therapies.
Collapse
Affiliation(s)
- Jenny Y Zhou
- Department of Medicine, Division of Haematology/Oncology, University of California San Diego, San Diego, California, USA
| | - Jonathan H Wong
- Radiology Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Zachary T Berman
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Alecio F Lombardi
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Eric Y Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, California, USA.,Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Annette von Drygalski
- Department of Medicine, Division of Haematology/Oncology, University of California San Diego, San Diego, California, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
280
|
Pekedis M, Ozan F, Yildiz H. Biomechanics of the Femoral Head Cartilage and Subchondral Trabecular Bone in Osteoporotic and Osteopenic Fractures. Ann Biomed Eng 2021; 49:3388-3400. [PMID: 34472001 DOI: 10.1007/s10439-021-02861-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the relationship between the micro structural properties of the subchondral trabecular bone (STB) and the macro mechanical properties of the articular cartilage (AC) in patients with osteoporotic (OP) and osteopenic (OPE) fractures. Sixteen femoral head samples (OP;OPE, n = 8 each) were obtained from female patients who underwent hip hemiarthroplasty. STB and AC specimens were harvested from those heads. Bone specimens were scanned using µ-CT to determine the micro structural properties. In-situ nondestructive compressive tests were performed for the cartilages to obtain elastic properties. The finite element technique was implemented on STB models created from µ-CT data to compute apparent elastic modulus. In addition, dynamic cyclic destructive tests were performed on STB and AC specimens to assess failure cycles. The results demonstrated that STB specimens in OPE group have more interconnected structure and higher cyclic dynamic strength than those in OP group. Furthermore, bone mineral density, failure cycle, and trabecular number of STB were positively correlated with the cartilage failure cycle, which indicates that STB alteration may affect the macroscopic mechanical properties of AC. The findings suggest that STB loss correlates with a decrease in cartilage strength and that improving of bone quality may prevent cartilage weakness.
Collapse
Affiliation(s)
- Mahmut Pekedis
- Department of Mechanical Engineering, Faculty of Engineering, Ege University, Bornova, 35100, Izmir, Turkey.
| | - Firat Ozan
- Department of Orthopedics and Traumatology, Kayseri City Hospital, 38080, Kayseri, Turkey
| | - Hasan Yildiz
- Department of Mechanical Engineering, Faculty of Engineering, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
281
|
Abdullah AH, Todo M. Prediction of Bone Mineral Density (BMD) Adaptation in Pelvis-Femur Model with Hip Arthroplasties. J Funct Biomater 2021; 12:jfb12030049. [PMID: 34564198 PMCID: PMC8482249 DOI: 10.3390/jfb12030049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022] Open
Abstract
The prediction of bone remodeling behaviour is a challenging factor in encouraging the long-term stability of hip arthroplasties. The presence of femoral components modifies the biomechanical environment of the bone and alters the bone growth process. Issues of bone loss and gait instability on both limbs are associated with the remodeling process. In this study, finite element analysis with an adaptive bone remodeling algorithm was used to predict the changes in bone mineral density following total hip and resurfacing hip arthroplasty. A three-dimensional model of the pelvis–femur was constructed from computed tomography (CT-based) images of a 79-year-old female patient with hip osteoarthritis. The prosthesis stem of the total hip arthroplasty was modelled with a titanium alloy material, while the femoral head had alumina properties. Meanwhile, resurfacing of the hip implant was completed with a cobalt-chromium material. Contact between the components and bone was designed to be perfectly bonded at the interface. Results indicate that the bone mineral density was modified over five years on all models, including hip osteoarthritis. The changes of BMD were predicted as being high between year zero and year one, especially in the proximal region. Changes were observed to be minimal in the following years. The bone remodeling process was also predicted for the non-operated femur. However, the adaptation was lower compared to the operated limbs. The reduction in bone mineral density suggested the bone loss phenomenon after a few years.
Collapse
Affiliation(s)
- Abdul Halim Abdullah
- School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
- Correspondence:
| | - Mitsugu Todo
- Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580, Japan;
| |
Collapse
|
282
|
Pirosa A, Tankus EB, Mainardi A, Occhetta P, Dönges L, Baum C, Rasponi M, Martin I, Barbero A. Modeling In Vitro Osteoarthritis Phenotypes in a Vascularized Bone Model Based on a Bone-Marrow Derived Mesenchymal Cell Line and Endothelial Cells. Int J Mol Sci 2021; 22:ijms22179581. [PMID: 34502489 PMCID: PMC8430538 DOI: 10.3390/ijms22179581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
The subchondral bone and its associated vasculature play an important role in the onset of osteoarthritis (OA). Integration of different aspects of the OA environment into multi-cellular and complex human, in vitro models is therefore needed to properly represent the pathology. In this study, we exploited a mesenchymal stromal cell line/endothelial cell co-culture to produce an in vitro human model of vascularized osteogenic tissue. A cocktail of inflammatory cytokines, or conditioned medium from mechanically-induced OA engineered microcartilage, was administered to this vascularized bone model to mimic the inflamed OA environment, hypothesizing that these treatments could induce the onset of specific pathological traits. Exposure to the inflammatory factors led to increased network formation by endothelial cells, reminiscent of the abnormal angiogenesis found in OA subchondral bone, demineralization of the constructs, and increased collagen production, signs of OA related bone sclerosis. Furthermore, inflammation led to augmented expression of osteogenic (alkaline phosphatase (ALP) and osteocalcin (OCN)) and angiogenic (vascular endothelial growth factor (VEGF)) genes. The treatment, with a conditioned medium from the mechanically-induced OA engineered microcartilage, also caused increased demineralization and expression of ALP, OCN, ADAMTS5, and VEGF; however, changes in network formation by endothelial cells were not observed in this second case, suggesting a possible different mechanism of action in inducing OA-like phenotypes. We propose that this vascularized bone model could represent a first step for the in vitro study of bone changes under OA mimicking conditions and possibly serve as a tool in testing anti-OA drugs.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
| | - Esma Bahar Tankus
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
| | - Andrea Mainardi
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (P.O.); (M.R.)
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (P.O.); (M.R.)
| | - Laura Dönges
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
| | - Cornelia Baum
- Department of Orthopaedic Surgery and Traumatology, University Hospital Basel, 4031 Basel, Switzerland;
- Department of Research and Development, Schulthess Klinik Zurich, 8008 Zurich, Switzerland
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (P.O.); (M.R.)
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
- Correspondence:
| |
Collapse
|
283
|
Ali E, Birch M, Hopper N, Rushton N, McCaskie AW, Brooks RA. Human osteoblasts obtained from distinct periarticular sites demonstrate differences in biological function in vitro. Bone Joint Res 2021; 10:611-618. [PMID: 34565180 PMCID: PMC8479562 DOI: 10.1302/2046-3758.109.bjr-2020-0497.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIMS Accumulated evidence indicates that local cell origins may ingrain differences in the phenotypic activity of human osteoblasts. We hypothesized that these differences may also exist in osteoblasts harvested from the same bone type at periarticular sites, including those adjacent to the fixation sites for total joint implant components. METHODS Human osteoblasts were obtained from the acetabulum and femoral neck of seven patients undergoing total hip arthroplasty (THA) and from the femoral and tibial cuts of six patients undergoing total knee arthroplasty (TKA). Osteoblasts were extracted from the usually discarded bone via enzyme digestion, characterized by flow cytometry, and cultured to passage three before measurement of metabolic activity, collagen production, alkaline phosphatase (ALP) expression, and mineralization. RESULTS Osteoblasts from the acetabulum showed lower proliferation (p = 0.034), cumulative collagen release (p < 0.001), and ALP expression (p = 0.009), and produced less mineral (p = 0.006) than those from the femoral neck. Osteoblasts from the tibia produced significantly less collagen (p = 0.021) and showed lower ALP expression than those from the distal femur. CONCLUSION We have demonstrated for the first time an anatomical regional variation in the biological behaviours of osteoblasts on either side of the hip and knee joint. The lower osteoblast proliferation, matrix production, and mineralization from the acetabulum compared to those from the proximal femur may be reflected in differences in bone formation and implant fixation at these sites. Cite this article: Bone Joint Res 2021;10(9):611-618.
Collapse
Affiliation(s)
- Erden Ali
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, Cambridge, UK
- Erden Ali. E-mail:
| | - Mark Birch
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, Cambridge, UK
| | - Niina Hopper
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, Cambridge, UK
| | - Neil Rushton
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, Cambridge, UK
| | - Andrew W. McCaskie
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, Cambridge, UK
| | - Roger A. Brooks
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
284
|
Zeng GJ, Foong FS, Lie DTT. Knee subchondroplasty for management of subchondral bone cysts: a novel treatment method. Singapore Med J 2021; 62:492-496. [DOI: 10.11622/smedj.2021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Knee subchondroplasty (SCP) is one of the most novel minimally invasive methods for treating bone marrow lesions. The literature suggests that it is safe, with few complications and good outcomes. However, no studies have documented its usage for managing large subchondral bone cysts. This article outlines a case report and details the pearls and pitfalls of SCP in treating large subchondral bone cysts. Our patient underwent arthroscopic debridement with medial femoral condyle SCP. Mild posterior extravasation of synthetic bone substitute was observed on Postoperative Day 1, which was immediately rectified on revision arthroscopy. Gradual escalation of weight bearing and good pain relief were subsequently achieved, and the patient has remained complication-free after two years. No further extravasation were observed on repeat radiography. SCP is a feasible temporising measure that may help to delay the need for bone allograft or immediate knee arthroplasty in younger patients while retaining function and delaying loss of productivity.
Collapse
|
285
|
Ukai T, Sato M, Wasai S, Takahashi T, Omura H, Watanabe M. Comparison of properties determined using electromechanical assessment (Arthro-BST™) with macroscopic and histological properties in symptomatic human articular cartilage of the hip. Arthritis Res Ther 2021; 23:227. [PMID: 34465392 PMCID: PMC8406846 DOI: 10.1186/s13075-021-02611-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cartilage degeneration is assessed using various methods. Although macroscopic evaluation can directly measure cartilage degeneration, it cannot accurately assess cartilage properties. Histological examination is one of the most accurate methods for evaluating cartilage degeneration. However, it is invasive and requires collection of cartilage tissue. In contrast, the Arthro-BST™ probe can assess cartilage properties noninvasively. This study aimed to evaluate the effectiveness of the Arthro-BST in assessing cartilage degeneration by comparing macroscopic (International Cartilage Repair Society [ICRS] classification) and histological evaluations (modified Mankin score and Osteoarthritis Research Society International [OARSI] histological grade). METHODS Fourteen femoral heads were excised from 13 patients during surgery to treat hip osteoarthritis or femoral fracture. The ICRS score was used for macroscopic evaluation of cartilage degeneration. The Arthro-BST was applied at sites matching the areas of cartilage damage. The sites assessed using the ICRS classification and Arthro-BST were evaluated histologically (modified Mankin score and OARSI histological grade), and these were compared with the Arthro-BST results. RESULTS The ICRS classification identified significant differences between grades 1 and 3 (p < 0.01), between grades 1 and 4 (p < 0.01), between grades 2 and 3 (p < 0.01), and between grades 2 and 4 (p < 0.01). Significant correlations were observed between the Arthro-BST results and the ICRS score, modified Mankin score (structure, cellularity, matrix staining, total score), and OARSI histological grade. CONCLUSIONS In the assessment of hip osteoarthritis, the Arthro-BST results correlated with those of macroscopic and histological evaluations. The Arthro-BST is useful for assessing hip osteoarthritis and may be helpful for noninvasive assessment of cartilage degeneration.
Collapse
Affiliation(s)
- Taku Ukai
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masato Sato
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan. .,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Shiho Wasai
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Takumi Takahashi
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Haruka Omura
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
286
|
Li Z, Huang Z, Bai L. Cell Interplay in Osteoarthritis. Front Cell Dev Biol 2021; 9:720477. [PMID: 34414194 PMCID: PMC8369508 DOI: 10.3389/fcell.2021.720477] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic disease and a significant health concern that needs to be urgently solved. OA affects the cartilage and entire joint tissues, including the subchondral bone, synovium, and infrapatellar fat pads. The physiological and pathological changes in these tissues affect the occurrence and development of OA. Understanding complex crosstalk among different joint tissues and their roles in OA initiation and progression is critical in elucidating the pathogenic mechanism of OA. In this review, we begin with an overview of the role of chondrocytes, synovial cells (synovial fibroblasts and macrophages), mast cells, osteoblasts, osteoclasts, various stem cells, and engineered cells (induced pluripotent stem cells) in OA pathogenesis. Then, we discuss the various mechanisms by which these cells communicate, including paracrine signaling, local microenvironment, co-culture, extracellular vesicles (exosomes), and cell tissue engineering. We particularly focus on the therapeutic potential and clinical applications of stem cell-derived extracellular vesicles, which serve as modulators of cell-to-cell communication, in the field of regenerative medicine, such as cartilage repair. Finally, the challenges and limitations related to exosome-based treatment for OA are discussed. This article provides a comprehensive summary of key cells that might be targets of future therapies for OA.
Collapse
Affiliation(s)
- Zihao Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyu Huang
- Foreign Languages College, Shanghai Normal University, Shanghai, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
287
|
Chen CH, Kang L, Chang LH, Cheng TL, Lin SY, Wu SC, Lin YS, Chuang SC, Lee TC, Chang JK, Ho ML. Intra-articular low-dose parathyroid hormone (1-34) improves mobility and articular cartilage quality in a preclinical age-related knee osteoarthritis model. Bone Joint Res 2021; 10:514-525. [PMID: 34387115 PMCID: PMC8414442 DOI: 10.1302/2046-3758.108.bjr-2020-0165.r2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aims Osteoarthritis (OA) is prevalent among the elderly and incurable. Intra-articular parathyroid hormone (PTH) ameliorated OA in papain-induced and anterior cruciate ligament transection-induced OA models; therefore, we hypothesized that PTH improved OA in a preclinical age-related OA model. Methods Guinea pigs aged between six and seven months of age were randomized into control or treatment groups. Three- or four-month-old guinea pigs served as the young control group. The knees were administered 40 μl intra-articular injections of 10 nM PTH or vehicle once a week for three months. Their endurance as determined from time on the treadmill was evaluated before kill. Their tibial plateaus were analyzed using microcalculated tomography (μCT) and histological studies. Results PTH increased the endurance on the treadmill test, preserved glycosaminoglycans, and reduced Osteoarthritis Research Society International score and chondrocyte apoptosis rate. No difference was observed in the subchondral plate bone density or metaphyseal trabecular bone volume and bone morphogenetic 2 protein staining. Conclusion Subchondral bone is crucial in the initiation and progression of OA. Although previous studies have shown that subcutaneous PTH alleviates knee OA by improving subchondral and metaphyseal bone mass, we demonstrated that intra-articular PTH injections improved spontaneous OA by directly affecting the cartilage rather than the subchondral or metaphyseal bone in a preclinical age-related OA model. Cite this article: Bone Joint Res 2021;10(8):514–525.
Collapse
Affiliation(s)
- Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Hua Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
288
|
Hopkins T, Wright KT, Kuiper NJ, Roberts S, Jermin P, Gallacher P, Kuiper JH. An In Vitro System to Study the Effect of Subchondral Bone Health on Articular Cartilage Repair in Humans. Cells 2021; 10:1903. [PMID: 34440671 PMCID: PMC8392168 DOI: 10.3390/cells10081903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Chondrocyte-based cartilage repair strategies, such as articular chondrocyte implantation, are widely used, but few studies addressed the communication between native subchondral bone cells and the transplanted chondrocytes. An indirect co-culture model was developed, representing a chondrocyte/scaffold-construct repair of a cartilage defect adjoining bone, where the bone could have varying degrees of degeneration. Human BM-MSCs were isolated from two areas of subchondral bone in each of five osteochondral tissue specimens from five patients undergoing knee arthroplasty. These two areas underlaid the macroscopically and histologically best and worst cartilage, representing early and late-stage OA, respectively. BM-MSCs were co-cultured with normal chondrocytes suspended in agarose, with the two cell types separated by a porous membrane. After 0, 7, 14 and 21 days, chondrocyte-agarose scaffolds were assessed by gene expression and biochemical analyses, and the abundance of selected proteins in conditioned media was assessed by ELISA. Co-culture with late-OA BM-MSCs resulted in a reduction in GAG deposition and a decreased expression of genes encoding matrix-specific proteins (COL2A1 and ACAN), compared to culturing with early OA BM-MSCs. The concentration of TGF-β1 was significantly higher in the early OA conditioned media. The results of this study have clinical implications for cartilage repair, suggesting that the health of the subchondral bone may influence the outcomes of chondrocyte-based repair strategies.
Collapse
Affiliation(s)
- Timothy Hopkins
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| | - Karina T. Wright
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| | - Nicola J. Kuiper
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| | - Sally Roberts
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| | - Paul Jermin
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| | - Peter Gallacher
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
| | - Jan Herman Kuiper
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; (K.T.W.); (N.J.K.); (S.R.); (P.J.); (P.G.); (J.H.K.)
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire SY10 7AG, UK
| |
Collapse
|
289
|
Husic R, Finzel S, Stradner MH, Dreu M, Hofmeister A, Beham-Schmid C, Graninger WB, Fessler J, Dejaco C. Ultrasound in Osteoarthritis of the Hand; a Comparison to Computed Tomography and Histology. Rheumatology (Oxford) 2021; 61:SI73-SI80. [PMID: 34244721 DOI: 10.1093/rheumatology/keab526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/25/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To compare structural findings between ultrasound (US), micro-computed tomography (µCT) and histology in people with osteoarthritis of the hands (HOA). METHODS We analyzed distal and proximal interphalangeal (DIP and PIP) joints of 31 fingers from 15 dissecting-room cadavers with HOA. The occurrence of bone erosions and osteophytes were recorded by US, µCT and histology at 16 regions for each joint and compared for each method. RESULTS In total, US (n = 558, 56.2% of 992 examined regions) and µCT (n = 493, 49.7%) detected a higher frequency of osteophytes at PIP and DIP joints than histology (n = 161, 23.4% of 689 histological examined regions; p= 0.01). We found a comparable number of erosions with each method [US, n = 52 (5.2%); µCT, n = 43 (4.3%); histology, n = 35 (5.2%)]. Both imaging techniques correlated moderately with each other regarding the detection of osteophytes (r = 0.54, p= 0.002) and erosions (r = 0.43, p= 0.017). Neither US nor µCT correlated with histology regarding erosions or osteophytes. With histology as the reference, US had a sensitivity of 80% and a specificity of 32% to detect osteophytes, whereas µCT had a sensitivity of 73% and a specificity of 27%. For erosions, sensitivities (US 10% and µCT 6% respectively) were much lower. Microscopically, erosions contained fibrous myxoid tissue extending from subcortical cavities through the breach of cortical bone. CONCLUSIONS The ability of US to identify osteophytes was comparable to that of µCT, yielding a good sensitivity when histology was used as the gold standard. The sensitivity of US and µCT to detecting erosions was low compared with histology.
Collapse
Affiliation(s)
- Rusmir Husic
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin H Stradner
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Manuel Dreu
- Department of Anatomy, Medical University of Graz, Graz, Austria
| | - Alexander Hofmeister
- Core Facility Alternative Biomodels & Preclinical Imaging, Medical University of Graz, Graz, Austria
| | | | - Winfried B Graninger
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Johannes Fessler
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria.,Division of Immunology and Pathophysiology, Medical University of Graz
| | - Christian Dejaco
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| |
Collapse
|
290
|
Wen ZH, Huang JS, Lin YY, Yao ZK, Lai YC, Chen WF, Liu HT, Lin SC, Tsai YC, Tsai TC, Jean YH. Chondroprotective Effects of a Histone Deacetylase Inhibitor, Panobinostat, on Pain Behavior and Cartilage Degradation in Anterior Cruciate Ligament Transection-Induced Experimental Osteoarthritic Rats. Int J Mol Sci 2021; 22:ijms22147290. [PMID: 34298911 PMCID: PMC8306086 DOI: 10.3390/ijms22147290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular degenerative disease characterized by chronic pain, joint inflammation, and movement limitations, which are significantly influenced by aberrant epigenetic modifications of numerous OA-susceptible genes. Recent studies revealed that both the abnormal activation and differential expression of histone deacetylases (HDACs) might contribute to OA pathogenesis. In this study, we investigated the chondroprotective effects of a marine-derived HDAC inhibitor, panobinostat, on anterior cruciate ligament transection (ACLT)-induced experimental OA rats. The intra-articular administration of 2 or 10 µg of panobinostat (each group, n = 7) per week from the 6th to 17th week attenuates ACLT-induced nociceptive behaviors, including secondary mechanical allodynia and weight-bearing distribution. Histopathological and microcomputed tomography analysis showed that panobinostat significantly prevents cartilage degeneration after ACLT. Moreover, intra-articular panobinostat exerts hypertrophic effects in the chondrocytes of articular cartilage by regulating the protein expressions of HDAC4, HDAC6, HDAC7, runt-domain transcription factor-2, and matrix metalloproteinase-13. The study indicated that HDACs might have different modulations on the chondrocyte phenotype in the early stages of OA development. These results provide new evidence that panobinostat may be a potential therapeutic drug for OA.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
| | - Jhy-Shrian Huang
- Section of Orthopedics, Department of Surgery, Antai Medical Care Corporation Anti Tian-Sheng Memorial Hospital, PingTong 92842, Taiwan;
| | - Yen-You Lin
- Department of Sports Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Zhi-Kang Yao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung 81341, Taiwan
| | - Yu-Cheng Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
- Department of Orthopedics, Asia University Hospital, Taichung 41354, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
- Department of Neurosurgery, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Sung-Chun Lin
- Department of Orthopedic Surgery, Pingtung Christian Hospital, No. 60 Dalian Road, Pingtung 90059, Taiwan;
| | - Yu-Chi Tsai
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan;
| | - Tsung-Chang Tsai
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Anti Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan;
| | - Yen-Hsuan Jean
- Section of Orthopedics, Department of Surgery, Antai Medical Care Corporation Anti Tian-Sheng Memorial Hospital, PingTong 92842, Taiwan;
- Correspondence: ; Tel.: +886-8-8329966
| |
Collapse
|
291
|
Song J, Wu J, Poulet B, Liang J, Bai C, Dang X, Wang K, Fan L, Liu R. Proteomics analysis of hip articular cartilage identifies differentially expressed proteins associated with osteonecrosis of the femoral head. Osteoarthritis Cartilage 2021; 29:1081-1092. [PMID: 33892138 DOI: 10.1016/j.joca.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The cartilage degeneration that accompanies subchondral bone necrosis plays an important role in the development of osteonecrosis of femoral head (ONFH). To better understand the molecular basis of cartilage degradation in ONFH, we compared the proteomic profiles of ONFH cartilage with that of fracture control. DESIGN Hip cartilage samples were collected from 16 ONFH patients and 16 matched controls with femoral neck fracture. Proteomics analysis was conducted using tandem mass tag-based quantitation technique. Gene ontology (GO) analysis, KEGG pathway and protein-protein interaction analysis were used to investigate the functions of the altered proteins and biological pathways. Differentially expressed proteins including alpha-2-HS-glycoprotein (AHSG) and Cytokine-like protein 1 (Cytl1) were validated by Western blot (WB) and immunohistochemistry (IHC). RESULTS 303 differentially expressed proteins were identified in ONFH cartilage with 72 up-regulated and 231 down-regulated. Collagen turnover, glycosaminoglycan biosynthesis, metabolic pathways, and complement and coagulation cascades were significantly modified in ONFH cartilage. WB and IHC confirmed the increased expression of AHSG and decreased expression of Cytl1 in ONFH cartilage. CONCLUSIONS Our results reveal the implication of altered protein expression in the development of ONFH, and provide novel clues for pathogenesis studies of cartilage degradation in ONFH.
Collapse
Affiliation(s)
- J Song
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - J Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China; Department of Orthopaedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province, 471009, PR China.
| | - B Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX, UK.
| | - J Liang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - C Bai
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - X Dang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - K Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - L Fan
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - R Liu
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China; Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX, UK.
| |
Collapse
|
292
|
Guo JL, Kim YS, Koons GL, Lam J, Navara AM, Barrios S, Xie VY, Watson E, Smith BT, Pearce HA, Orchard EA, van den Beucken JJJP, Jansen JA, Wong ME, Mikos AG. Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair. Acta Biomater 2021; 128:120-129. [PMID: 33930575 PMCID: PMC8222183 DOI: 10.1016/j.actbio.2021.04.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Osteochondral defects present a unique clinical challenge due to their combination of phenotypically distinct cartilage and bone, which require specific, stratified biochemical cues for tissue regeneration. Furthermore, the articular cartilage exhibits significantly worse regeneration than bone due to its largely acellular and avascular nature, prompting significant demand for regenerative therapies. To address these clinical challenges, we have developed a bilayered, modular hydrogel system that enables the click functionalization of cartilage- and bone-specific biochemical cues to each layer. In this system, the crosslinker poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT) was click conjugated with either a cartilage- or bone-specific peptide sequence of interest, and then mixed with a suspension of thermoresponsive polymer and mesenchymal stem cells (MSCs) to generate tissue-specific, cell-encapsulated hydrogel layers targeting the cartilage or bone. We implanted bilayered hydrogels in rabbit femoral condyle defects and investigated the effects of tissue-specific peptide presentation and cell encapsulation on osteochondral tissue repair. After 12 weeks implantation, hydrogels with a chondrogenic peptide sequence produced higher histological measures of overall defect filling, cartilage surface regularity, glycosaminoglycan (GAG)/cell content of neocartilage and adjacent cartilage, and bone filling and bonding compared to non-chondrogenic hydrogels. Furthermore, MSC encapsulation promoted greater histological measures of overall defect filling, cartilage thickness, GAG/cell content of neocartilage, and bone filling. Our results establish the utility of this click functionalized hydrogel system for in vivo repair of the osteochondral unit. STATEMENT OF SIGNIFICANCE: Osteochondral repair requires mimicry of both cartilage- and bone-specific biochemical cues, which are highly distinct. While traditional constructs for osteochondral repair have mimicked gross compositional differences between the cartilage and bone in mineral content, mechanical properties, proteins, or cell types, few constructs have recapitulated the specific biochemical cues responsible for the differential development of cartilage and bone. In this study, click biofunctionalized, bilayered hydrogels produced stratified presentation of developmentally inspired peptide sequences for chondrogenesis and osteogenesis. This work represents, to the authors' knowledge, the first application of bioconjugation chemistry for the simultaneous repair of bone and cartilage tissue. The conjugation of tissue-specific peptide sequences successfully promoted development of both cartilage and bone tissues in vivo.
Collapse
Affiliation(s)
- Jason L Guo
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Gerry L Koons
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Johnny Lam
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Adam M Navara
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Sergio Barrios
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Virginia Y Xie
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | | | | | - John A Jansen
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Mark E Wong
- Department of Surgery, Division of Maxillofacial Surgery, The University of Texas School of Dentistry, Houston, TX, USA.
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
293
|
Abstract
Knee osteoarthritis is a degenerative condition characterized by progressive cartilage degradation, subchondral damage, and bone remodelling. Among the approaches implemented to achieve symptomatic and functional improvements, injection treatments have gained increasing attention due to the possibility of intra-articular delivery with reduced side effects compared to systemic therapies. In addition to well-established treatment options such as hyaluronic acid (HA), cortico-steroids (CS) and oxygen-ozone therapy, many other promising products have been employed in the last decades such as polydeoxyribonucleotide (PDRN) and biologic agents such as platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs). Moreover, ultrasound-guided intra-meniscal injection and X-ray-guided subchondral injection techniques have been introduced into clinical practice. Even when not supported by high evidence consensus, intra-articular CS and HA injections have gained precise indications for symptomatic relief and clinical improvement in OA. Biological products are strongly supported by in vitro evidence but there is still a lack of robust clinical evidence. PRP and MSCs seem to relieve OA symptoms through a regulation of the joint homeostasis, even if their capability to restore articular cartilage is still to be proved in vivo. Due to increasing interest in the subchondral bone pathology, subchondral injections have been developed with promising results in delaying joint replacement. Nevertheless, due to their recent development and the heterogeneity of the injected products (biologic agents or calcium phosphate), this approach still lacks strong enough evidence to be fully endorsed. Combined biological treatments, nano-molecular approaches, monoclonal antibodies and ‘personalized’ target therapies are currently under development or under investigation with the aim of expanding our armamentarium against knee OA.
Cite this article: EFORT Open Rev 2021;6:501-509. DOI: 10.1302/2058-5241.6.210026
Collapse
Affiliation(s)
- Gerardo Fusco
- Humanitas University, Department of Biomedical Sciences, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy.,These authors contributed equally to the article and should both be considered first authors
| | - Francesco M Gambaro
- Humanitas University, Department of Biomedical Sciences, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy.,These authors contributed equally to the article and should both be considered first authors
| | - Berardo Di Matteo
- Humanitas University, Department of Biomedical Sciences, Milan, Italy.,First Moscow State Medical University - Sechenov University, Moscow, Russia
| | - Elizaveta Kon
- Humanitas University, Department of Biomedical Sciences, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
294
|
Chen D, Wu JY, Kennedy KM, Yeager K, Bernhard JC, Ng JJ, Zimmerman BK, Robinson S, Durney KM, Shaeffer C, Vila OF, Takawira C, Gimble JM, Guo XE, Ateshian GA, Lopez MJ, Eisig SB, Vunjak-Novakovic G. Tissue engineered autologous cartilage-bone grafts for temporomandibular joint regeneration. Sci Transl Med 2021; 12:12/565/eabb6683. [PMID: 33055244 DOI: 10.1126/scitranslmed.abb6683] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
Joint disorders can be detrimental to quality of life. There is an unmet need for precise functional reconstruction of native-like cartilage and bone tissues in the craniofacial space and particularly for the temporomandibular joint (TMJ). Current surgical methods suffer from lack of precision and comorbidities and frequently involve multiple operations. Studies have sought to improve craniofacial bone grafts without addressing the cartilage, which is essential to TMJ function. For the human-sized TMJ in the Yucatan minipig model, we engineered autologous, biologically, and anatomically matched cartilage-bone grafts for repairing the ramus-condyle unit (RCU), a geometrically intricate structure subjected to complex loading forces. Using image-guided micromilling, anatomically precise scaffolds were created from decellularized bone matrix and infused with autologous adipose-derived chondrogenic and osteogenic progenitor cells. The resulting constructs were cultured in a dual perfusion bioreactor for 5 weeks before implantation. Six months after implantation, the bioengineered RCUs maintained their predefined anatomical structure and regenerated full-thickness, stratified, and mechanically robust cartilage over the underlying bone, to a greater extent than either autologous bone-only engineered grafts or acellular scaffolds. Tracking of implanted cells and parallel bioreactor studies enabled additional insights into the progression of cartilage and bone regeneration. This study demonstrates the feasibility of TMJ regeneration using anatomically precise, autologous, living cartilage-bone grafts for functional, personalized total joint replacement. Inclusion of the adjacent tissues such as soft connective tissues and the TMJ disc could further extend the functional integration of engineered RCUs with the host.
Collapse
Affiliation(s)
- David Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Josephine Y Wu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kelsey M Kennedy
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Jonathan C Bernhard
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Johnathan J Ng
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Brandon K Zimmerman
- Department of Mechanical Engineering, Columbia University, New York, NY 10032, USA
| | - Samuel Robinson
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Krista M Durney
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Courtney Shaeffer
- Department of Mechanical Engineering, Columbia University, New York, NY 10032, USA
| | - Olaia F Vila
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Catherine Takawira
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA.,Department of Mechanical Engineering, Columbia University, New York, NY 10032, USA
| | - Mandi J Lopez
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sidney B Eisig
- College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA. .,College of Dental Medicine, Columbia University, New York, NY 10032, USA.,Department of Medicine, Columbia University, New York, NY 10032, USA
| |
Collapse
|
295
|
Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model. Int J Biomater 2021; 2021:5583815. [PMID: 34239571 PMCID: PMC8235960 DOI: 10.1155/2021/5583815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Reinforced hydrogels represent a promising strategy for tissue engineering of articular cartilage. They can recreate mechanical and biological characteristics of native articular cartilage and promote cartilage regeneration in combination with mesenchymal stromal cells. One of the limitations of in vivo models for testing the outcome of tissue engineering approaches is implant fixation. The high mechanical stress within the knee joint, as well as the concave and convex cartilage surfaces, makes fixation of reinforced hydrogel challenging. Methods. Different fixation methods for full-thickness chondral defects in minipigs such as fibrin glue, BioGlue®, covering, and direct suturing of nonenforced and enforced constructs were compared. Because of insufficient fixation in chondral defects, superficial osteochondral defects in the femoral trochlea, as well as the femoral condyle, were examined using press-fit fixation. Two different hydrogels (starPEG and PAGE) were compared by 3D-micro-CT (μCT) analysis as well as histological analysis. Results. Our results showed fixation of below 50% for all methods in chondral defects. A superficial osteochondral defect of 1 mm depth was necessary for long-term fixation of a polycaprolactone (PCL)-reinforced hydrogel construct. Press-fit fixation seems to be adapted for a reliable fixation of 95% without confounding effects of glue or suture material. Despite the good integration of our constructs, especially in the starPEG group, visible bone lysis was detected in micro-CT analysis. There was no significant difference between the two hydrogels (starPEG and PAGE) and empty control defects regarding regeneration tissue and cell integration. However, in the starPEG group, more cell-containing hydrogel fragments were found within the defect area. Conclusion. Press-fit fixation in a superficial osteochondral defect in the medial trochlear groove of adult minipigs is a promising fixation method for reinforced hydrogels. To avoid bone lysis, future approaches should focus on multilayered constructs recreating the zonal cartilage as well as the calcified cartilage and the subchondral bone plate.
Collapse
|
296
|
Jin H, Jiang S, Wang R, Zhang Y, Dong J, Li Y. Mechanistic Insight Into the Roles of Integrins in Osteoarthritis. Front Cell Dev Biol 2021; 9:693484. [PMID: 34222261 PMCID: PMC8250141 DOI: 10.3389/fcell.2021.693484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/19/2021] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA), one of the most common degenerative diseases, is characterized by progressive degeneration of the articular cartilage and subchondral bone, as well as the synovium. Integrins, comprising a family of heterodimeric transmembrane proteins containing α subunit and β subunit, play essential roles in various physiological functions of cells, such as cell attachment, movement, growth, differentiation, and mechanical signal conduction. Previous studies have shown that integrin dysfunction is involved in OA pathogenesis. This review article focuses on the roles of integrins in OA, especially in OA cartilage, subchondral bone and the synovium. A clear understanding of these roles may influence the future development of treatments for OA.
Collapse
Affiliation(s)
- Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shigang Jiang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruomei Wang
- Department of Endocrinology and Metabolic Diseases, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiangtao Dong
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
297
|
Lu X, Fan Y, Li M, Chang X, Qian J. HTR2B and SLC5A3 Are Specific Markers in Age-Related Osteoarthritis and Involved in Apoptosis and Inflammation of Osteoarthritis Synovial Cells. Front Mol Biosci 2021; 8:691602. [PMID: 34222340 PMCID: PMC8241908 DOI: 10.3389/fmolb.2021.691602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Objective: Osteoarthritis (OA) is a heterogeneous age-related disease, which is badly difficult to cure due to its complex regulatory networks of pathogenesis. This study explored OA-specific genes in synovial tissues and validated their roles on apoptosis and inflammation of OA synovial cells. Methods: Weighted correlation network analysis (WGCNA) was employed to explore OA-related co-expression modules in the GSE55235 and GSE55457 datasets. Then, this study screened OA-specific genes. After validation of these genes in the GSE12021 and GSE32317 datasets, HTR2B and SLC5A3 were obtained. Their expression was detected in human OA and healthy synovial tissues by RT-qPCR and western blot. OA rat models were constructed by anterior cruciate ligament transection (ACLT) operation. In OA synovial cells, HTR2B and SLC5A3 proteins were examined via western blot. After transfection with sh-HTR2B or sh-SLC5A3, apoptosis and inflammation of OA synovial cells were investigated by flow cytometry and western blot. Results: A total of 17 OA-specific DEGs were identified, which were significantly enriched in inflammation pathways. Among them, HTR2B and SLC5A3 were highly expressed in end-than early-stage OA. Their up-regulation was validated in human OA synovial tissues and ACLT-induced OA synovial cells. Knockdown of HTR2B and SLC5A3 restrained apoptosis and increased TGF-β and IL-4 expression as well as reduced TNF-α and IL-1β expression in OA synovial cells. Conclusion: Collectively, this study identified two OA-specific markers HTR2B and SLC5A3 and their knockdown ameliorated apoptosis and inflammation of OA synovial cells.
Collapse
Affiliation(s)
- Xin Lu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Fan
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingxia Li
- The Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chang
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Qian
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
298
|
Ling H, Zeng Q, Ge Q, Chen J, Yuan W, Xu R, Shi Z, Xia H, Hu S, Jin H, Wang P, Tong P. Osteoking Decelerates Cartilage Degeneration in DMM-Induced Osteoarthritic Mice Model Through TGF-β/smad-dependent Manner. Front Pharmacol 2021; 12:678810. [PMID: 34211396 PMCID: PMC8239307 DOI: 10.3389/fphar.2021.678810] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a common disease characterized by cartilage degeneration. In recent years much attention has been paid to Traditional Chinese Medicine (TCM) since its treatments have shown efficacy for ameliorating cartilage degradation with mild side effects. Osteoking is a TCM prescription that has long been used in OA treatment. However, the exact mechanism of Osteoking are not fully elucidated. In the current study, destabilization of the medial meniscus (DMM)-induced OA mice was introduced as a wild type animal model. After 8 weeks of administration of Osteoking, histomorphometry, OARSI scoring, gait analysis, micro-CT, and immunohistochemical staining for Col2, MMP-13, TGFβRII and pSmad-2 were conducted to evaluate the chondroprotective effects of Osteoking in vivo. Further in vitro experiments were then performed to detect the effect of Osteoking on chondrocytes. TGFβRIICol2ER transgenic mice were constructed and introduced in the current study to validate whether Osteoking exerts its anti-OA effects via the TGF-β signaling pathway. Results demonstrated that in wild type DMM mice, Osteoking ameliorated OA-phenotype including cartilage degradation, subchondral bone sclerosis, and gait abnormality. Col2, TGFβRII, and pSmad-2 expressions were also found to be up-regulated after Osteoking treatment, while MMP-13 was down-regulated. In vitro, the mRNA expression of MMP-13 and ADAMTS5 decreased and the mRNA expression of Aggrecan, COL2, and TGFβRII were up-regulated after the treatment of Osteoking in IL-1β treated chondrocytes. The additional treatment of SB505124 counteracted the positive impact of Osteoking on primary chondrocytes. In TGFβRIICol2ER mice, spontaneous OA-liked phenotype was observed and treatment of Osteoking failed to reverse the OA spontaneous progression. In conclusion, Osteoking ameliorates OA progression by decelerating cartilage degradation and alleviating subchondral bone sclerosis partly via the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Houfu Ling
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghe Zeng
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinwen Ge
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Xu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Shi
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hanting Xia
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Songfeng Hu
- Department of Orthopaedics and Traumatology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
299
|
Calcified cartilage revealed in whole joint by X-ray phase contrast imaging. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100168. [DOI: 10.1016/j.ocarto.2021.100168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/09/2021] [Indexed: 11/19/2022] Open
|
300
|
Wang B, Shao Z, Gu M, Ni L, Shi Y, Yan Y, Wu A, Jin H, Chen J, Pan X, Xu D. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis. J Cell Physiol 2021; 236:4369-4386. [PMID: 33164235 DOI: 10.1002/jcp.30154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/26/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
The inflammatory environment and excessive chondrocyte apoptosis have been demonstrated to play crucial roles in the onset of osteoarthritis (OA). Hydrogen sulfide (H2 S), a gaseous signalling molecule, exerts an inhibitory effect on inflammation and apoptosis in several degenerative diseases. However, the protective effect of H2 S against OA has not been fully clarified, and its underlying mechanism should be examined further. In the current study, the role of endogenous H2 S in the pathogenesis of OA and its protective effects on interleukin (IL)-1β-induced chondrocytes were identified. Our data revealed decreased H2 S expression in both human degenerative OA cartilage tissue and IL-1β-induced chondrocytes. Pretreatment with the H2 S donor sodium hydrosulfide (NaHS) dramatically attenuated IL-1β-induced overproduction of inflammatory cytokines and improved the balance between anabolic and catabolic chondrocyte capacities, and these effects were dependent on PI3K/AKT pathway-mediated inhibition of nuclear factor kappa B (NF-κB). Moreover, mitochondrial dysfunction-related apoptosis was significantly reversed by NaHS in IL-1β-stimulated chondrocytes. Mechanistically, NaHS partially suppressed IL-1β-induced phosphorylation of the mitogen-activated protein kinase (MAPK) cascades. Furthermore, in the destabilization of the medial meniscus mouse model, OA progression was ameliorated by NaHS administration. Taken together, these results suggest that H2 S may antagonize IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis via selective suppression of the PI3K/Akt/NF-κB and MAPK signalling pathways, respectively, in chondrocytes and may be a potential therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Mingbao Gu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Libin Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yingzhao Yan
- Department of Orthopaedic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|