251
|
Piel T, Sandrini G, Muyzer G, Brussaard CPD, Slot PC, van Herk MJ, Huisman J, Visser PM. Resilience of Microbial Communities after Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms. Microorganisms 2021; 9:microorganisms9071495. [PMID: 34361929 PMCID: PMC8304526 DOI: 10.3390/microorganisms9071495] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little is known about the impacts of these H2O2 treatments on other members of the microbial community. In this study, we investigated changes in microbial community composition during two lake treatments with low H2O2 concentrations (target: 2.5 mg L−1) and in two series of controlled lake incubations. The results show that the H2O2 treatments effectively suppressed the dominant cyanobacteria Aphanizomenon klebahnii, Dolichospermum sp. and, to a lesser extent, Planktothrix agardhii. Microbial community analysis revealed that several Proteobacteria (e.g., Alteromonadales, Pseudomonadales, Rhodobacterales) profited from the treatments, whereas some bacterial taxa declined (e.g., Verrucomicrobia). In particular, the taxa known to be resistant to oxidative stress (e.g., Rheinheimera) strongly increased in relative abundance during the first 24 h after H2O2 addition, but subsequently declined again. Alpha and beta diversity showed a temporary decline but recovered within a few days, demonstrating resilience of the microbial community. The predicted functionality of the microbial community revealed a temporary increase of anti-ROS defenses and glycoside hydrolases but otherwise remained stable throughout the treatments. We conclude that the use of low concentrations of H2O2 to suppress cyanobacterial blooms provides a short-term pulse disturbance but is not detrimental to lake microbial communities and their ecosystem functioning.
Collapse
Affiliation(s)
- Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Corina P. D. Brussaard
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherland Institute for Sea Research, 1790 AB Den Burg, The Netherlands
| | - Pieter C. Slot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Maria J. van Herk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Petra M. Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
- Correspondence: ; Tel.: +31-20-5257073
| |
Collapse
|
252
|
Metabarcoding under Brine: Microbial Ecology of Five Hypersaline Lakes at Rottnest Island (WA, Australia). WATER 2021. [DOI: 10.3390/w13141899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypersaline ecosystems—aquatic environments where concentration of salt exceeds 35 g L−1—host microbial communities that are highly specialised to cope with these extreme conditions. However, our knowledge on the taxonomic diversity and functional metabolisms characterising microbial communities in the water columns of hypersaline ecosystems is still limited, and this may compromise the future preservation of these unique environments. DNA metabarcoding provides a reliable and affordable tool to investigate environmental dynamics of aquatic ecosystems, and its use in brine can be highly informative. Here, we make use of bacterial 16S metabarcoding techniques combined with hydrochemical analyses to investigate the microbial patterns (diversity and functions) from five hypersaline lakes located at Rottnest Island (WA). Our results indicate lake-driven microbial aquatic assemblages that are characterised by taxonomically and functionally moderately to extremely halophilic groups, with TDS (total dissolved solids) and alkalinity amongst the most influential parameters driving the community patterns. Overall, our findings suggest that DNA metabarcoding allows rapid but reliable ecological assessment of the hypersaline aquatic microbial communities at Rottnest Island. Further studies involving different hypersaline lakes across multiple seasons will help elucidate the full extent of the potential of this tool in brine.
Collapse
|
253
|
Smith NA, Germundson DL, Gao P, Hur J, Floden AM, Nagamoto-Combs K. Anxiety-like behavior and intestinal microbiota changes as strain-and sex-dependent sequelae of mild food allergy in mouse models of cow's milk allergy. Brain Behav Immun 2021; 95:122-141. [PMID: 33705867 PMCID: PMC8525516 DOI: 10.1016/j.bbi.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
A number of studies have reported comorbidity of food allergies with various neuropsychiatric disorders, such as anxiety, depression, attention-deficit hyperactivity disorder, and autism. However, inconsistent results across clinical studies have left the association between food allergy and behavioral disorders inconclusive. We postulated that the heterogeneities in genetic background among allergic cohorts affect symptom presentation and severity of food allergy, introducing bias in patient selection criteria toward individuals with overt physical reactions. To understand the influence of genetic background on food allergy symptoms and behavioral changes beyond anaphylaxis, we generated mouse models with mild cow's milk allergy by sensitizing male and female C57BL/6J and BALB/cJ mice to a bovine whey protein, β-lactoglobulin (BLG; Bos d 5). We compared strain- and sex-dependent differences in their immediate physical reactions to BLG challenge as well as anxiety-like behavior one day after the challenge. While reactions to the allergen challenge were either absent or mild for all groups, a greater number of BLG-sensitized BALB/cJ mice presented visible symptoms and hypothermia compared to C57BL/6J mice. Interestingly, male mice of both strains displayed anxiety-like behavior on an elevated zero maze without exhibiting cognitive impairment with the cross maze test. Further characterization of plasma cytokines/chemokines and fecal microbiota also differentiated strain- and sex-dependent effects of BLG sensitization on immune-mediator levels and bacterial populations, respectively. These results demonstrated that the genetic variables in mouse models of milk allergy influenced immediate physical reactions to the allergen, manifestation of anxiety-like behavior, levels of immune responses, and population shift in gut microbiota. Thus, stratification of allergic cohorts by their symptom presentations and severity may strengthen the link between food allergy and behavioral disorders and identify a population(s) with specific genetic background that have increased susceptibility to allergy-associated behavioral disorders.
Collapse
Affiliation(s)
- Nicholas A Smith
- Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA.
| | - Danielle L Germundson
- Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA.
| | - Pan Gao
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA.
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA.
| | - Angela M Floden
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA.
| | - Kumi Nagamoto-Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA.
| |
Collapse
|
254
|
Iablokov SN, Novichkov PS, Osterman AL, Rodionov DA. Binary Metabolic Phenotypes and Phenotype Diversity Metrics for the Functional Characterization of Microbial Communities. Front Microbiol 2021; 12:653314. [PMID: 34113324 PMCID: PMC8185038 DOI: 10.3389/fmicb.2021.653314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
The profiling of 16S rRNA revolutionized the exploration of microbiomes, allowing to describe community composition by enumerating relevant taxa and their abundances. However, taxonomic profiles alone lack interpretability in terms of bacterial metabolism, and their translation into functional characteristics of microbiomes is a challenging task. This bottom-up approach minimally requires a reference collection of major metabolic traits deduced from the complete genomes of individual organisms, an accurate method of projecting these traits from a reference collection to the analyzed amplicon sequence variants (ASVs), and, ultimately, an approach to a microbiome-wide aggregation of predicted individual traits into physiologically relevant cumulative metrics to characterize and compare multiple microbiome samples. In this study, we extended a previously introduced computational approach for the functional profiling of complex microbial communities, which is based on the concept of binary metabolic phenotypes encoding the presence ("1") or absence ("0") of various measurable physiological properties in individual organisms that are termed phenotype carriers or non-carriers, respectively. Derived from complete genomes via metabolic reconstruction, binary phenotypes provide a foundation for the prediction of functional traits for each ASV identified in a microbiome sample. Here, we introduced three distinct mapping schemes for a microbiome-wide phenotype prediction and assessed their accuracy on the 16S datasets of mock bacterial communities representing human gut microbiome (HGM) as well as on two large HGM datasets, the American Gut Project and the UK twins study. The 16S sequence-based scheme yielded a more accurate phenotype predictions, while the taxonomy-based schemes demonstrated a reasonable performance to warrant their application for other types of input data (e.g., from shotgun metagenomics or qPCR). In addition to the abundance-weighted Community Phenotype Indices (CPIs) reflecting the fractional representation of various phenotype carriers in microbiome samples, we employ metrics capturing the diversity of phenotype carriers, Phenotype Alpha Diversity (PAD) and Phenotype Beta Diversity (PBD). In combination with CPI, PAD allows to classify the robustness of metabolic phenotypes by their anticipated stability in the face of potential environmental perturbations. PBD provides a promising approach for detecting the metabolic features potentially contributing to disease-associated metabolic traits as illustrated by a comparative analysis of HGM samples from healthy and Crohn's disease cohorts.
Collapse
Affiliation(s)
- Stanislav N. Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Dmitry A. Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
255
|
Murovec B, Deutsch L, Stres B. General Unified Microbiome Profiling Pipeline (GUMPP) for Large Scale, Streamlined and Reproducible Analysis of Bacterial 16S rRNA Data to Predicted Microbial Metagenomes, Enzymatic Reactions and Metabolic Pathways. Metabolites 2021; 11:336. [PMID: 34074026 PMCID: PMC8225202 DOI: 10.3390/metabo11060336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 11/23/2022] Open
Abstract
General Unified Microbiome Profiling Pipeline (GUMPP) was developed for large scale, streamlined and reproducible analysis of bacterial 16S rRNA data and prediction of microbial metagenomes, enzymatic reactions and metabolic pathways from amplicon data. GUMPP workflow introduces reproducible data analyses at each of the three levels of resolution (genus; operational taxonomic units (OTUs); amplicon sequence variants (ASVs)). The ability to support reproducible analyses enables production of datasets that ultimately identify the biochemical pathways characteristic of disease pathology. These datasets coupled to biostatistics and mathematical approaches of machine learning can play a significant role in extraction of truly significant and meaningful information from a wide set of 16S rRNA datasets. The adoption of GUMPP in the gut-microbiota related research enables focusing on the generation of novel biomarkers that can lead to the development of mechanistic hypotheses applicable to the development of novel therapies in personalized medicine.
Collapse
Affiliation(s)
- Boštjan Murovec
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia;
| | - Leon Deutsch
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Blaž Stres
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, SI-1000 Ljubljana, Slovenia
- Department of Automation, Jožef Stefan Institute, Biocybernetics and Robotics, Jamova 39, SI-1000 Ljubljana, Slovenia
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
256
|
Callegari M, Crotti E, Fusi M, Marasco R, Gonella E, De Noni I, Romano D, Borin S, Tsiamis G, Cherif A, Alma A, Daffonchio D. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes 2021; 7:42. [PMID: 33963194 PMCID: PMC8105395 DOI: 10.1038/s41522-021-00212-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The core gut microbiome of adult honeybee comprises a set of recurring bacterial phylotypes, accompanied by lineage-specific, variable, and less abundant environmental bacterial phylotypes. Several mutual interactions and functional services to the host, including the support provided for growth, hormonal signaling, and behavior, are attributed to the core and lineage-specific taxa. By contrast, the diversity and distribution of the minor environmental phylotypes and fungal members in the gut remain overlooked. In the present study, we hypothesized that the microbial components of forager honeybees (i.e., core bacteria, minor environmental phylotypes, and fungal members) are compartmentalized along the gut portions. The diversity and distribution of such three microbial components were investigated in the context of the physico-chemical conditions of different gut compartments. We observed that changes in the distribution and abundance of microbial components in the gut are consistently compartment-specific for all the three microbial components, indicating that the ecological and physiological interactions among the host and microbiome vary with changing physico-chemical and metabolic conditions of the gut.
Collapse
Affiliation(s)
- Matteo Callegari
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy.
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Ivano De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Diego Romano
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinion, Greece
| | - Ameur Cherif
- Institut Supérieur de Biotechnologie Sidi Thabet (ISBST), BVBGR-LR11ES31, Biotechpole Sidi Thabet, University Manouba, Ariana, Tunisia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
257
|
Hardoim CCP, Ramaglia ACM, Lôbo-Hajdu G, Custódio MR. Community composition and functional prediction of prokaryotes associated with sympatric sponge species of southwestern Atlantic coast. Sci Rep 2021; 11:9576. [PMID: 33953214 PMCID: PMC8100286 DOI: 10.1038/s41598-021-88288-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/07/2021] [Indexed: 02/03/2023] Open
Abstract
Prokaryotes contribute to the health of marine sponges. However, there is lack of data on the assembly rules of sponge-associated prokaryotic communities, especially for those inhabiting biodiversity hotspots, such as ecoregions between tropical and warm temperate southwestern Atlantic waters. The sympatric species Aplysina caissara, Axinella corrugata, and Dragmacidon reticulatum were collected along with environmental samples from the north coast of São Paulo (Brazil). Overall, 64 prokaryotic phyla were detected; 51 were associated with sponge species, and the dominant were Proteobacteria, Bacteria (unclassified), Cyanobacteria, Crenarchaeota, and Chloroflexi. Around 64% and 89% of the unclassified operational taxonomical units (OTUs) associated with Brazilian sponge species showed a sequence similarity below 97%, with sequences in the Silva and NCBI Type Strain databases, respectively, indicating the presence of a large number of unidentified taxa. The prokaryotic communities were species-specific, ranging 56%-80% of the OTUs and distinct from the environmental samples. Fifty-four lineages were responsible for the differences detected among the categories. Functional prediction demonstrated that Ap. caissara was enriched for energy metabolism and biosynthesis of secondary metabolites, whereas D. reticulatum was enhanced for metabolism of terpenoids and polyketides, as well as xenobiotics' biodegradation and metabolism. This survey revealed a high level of novelty associated with Brazilian sponge species and that distinct members responsible from the differences among Brazilian sponge species could be correlated to the predicted functions.
Collapse
Affiliation(s)
- C C P Hardoim
- Institute of Biosciences, São Paulo State University, Coastal Campus of São Vicente, São Paulo, Brazil.
| | - A C M Ramaglia
- Institute of Biosciences, São Paulo State University, Coastal Campus of São Vicente, São Paulo, Brazil
| | - G Lôbo-Hajdu
- Department of Genetic, Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - M R Custódio
- Department of Physiology, Center for Marine Biology, Biosciences Institute and NP-Biomar, São Paulo University, São Paulo, Brazil
| |
Collapse
|
258
|
Xu R, Fan F, Lin Q, Yuan S, Meng F. Overlooked Ecological Roles of Influent Wastewater Microflora in Improving Biological Phosphorus Removal in an Anoxic/Aerobic MBR Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6270-6280. [PMID: 33830745 DOI: 10.1021/acs.est.0c07891] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ecological roles of influent microflora in activated sludge communities have not been well investigated. Herein, parallel lab-scale anoxic/aerobic (A/O) membrane bioreactors (MBRs), which were fed with raw (MBR-C) and sterilized (MBR-T) municipal wastewater, were operated. The MBRs showed comparable nitrogen removal but superior phosphorus removal in MBR-C than MBR-T over the long-term operation. The MBR-C sludge community had higher diversity and deterministic assembly than the MBR-T sludge community as revealed by 16S rRNA gene sequencing and null model analysis. Moreover, the MBR-C sludge community had higher abundance of polyphosphate accumulating organisms (PAOs) and hydrolytic/fermentative bacteria (HFB) but lower abundance of glycogen-accumulating organisms (GAOs), in comparison with MBR-T sludge. Intriguingly, the results of both the net growth rate and Sloan's neutral model demonstrated that HFB in the sludge community were generally slow-growing or nongrowing and their consistent presence in activated sludge was primarily attributed to the HFB immigration from influent microflora. Positive correlations between PAOs and HFB and potential competitions between HFB and GAOs were observed, as revealed by the putative species-species associations in the ecological networks. Taken together, this work deciphers the positive ecological roles of influent microflora, particularly HFB, in system functioning and highlights the necessity of incorporating influent microbiota for the design and modeling of A/O MBR plants.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Qining Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| |
Collapse
|
259
|
Chou MY, Shrestha S, Rioux R, Koch P. Hyperlocal Variation in Soil Iron and the Rhizosphere Bacterial Community Determines Dollar Spot Development in Amenity Turfgrass. Appl Environ Microbiol 2021; 87:e00149-21. [PMID: 33741622 PMCID: PMC8117751 DOI: 10.1128/aem.00149-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023] Open
Abstract
Dollar spot, caused by the fungal pathogen Clarireedia spp., is an economically important foliar disease of amenity turfgrass in temperate climates worldwide. This disease often occurs in a highly variable manner, even on a local scale with relatively uniform environmental conditions. The objective of this study was to investigate mechanisms behind this local variation, focusing on contributions of the soil and rhizosphere microbiome. Turfgrass, rhizosphere, and bulk soil samples were collected from within a 256-m2 area of healthy turfgrass, transported to a controlled environment chamber, and inoculated with Clarireedia jacksonii Bacterial communities were profiled by targeting the 16S rRNA gene, and 16 different soil chemical properties were assessed. Despite their initial uniform appearance, the samples differentiated into highly susceptible and moderately susceptible groups following inoculation in the controlled environment chamber. The highly susceptible samples harbored a unique rhizosphere microbiome with suggestively lower relative abundance of putative antibiotic-producing bacterial taxa and higher predicted abundance of genes associated with xenobiotic biodegradation pathways. In addition, stepwise regression revealed that bulk soil iron content was the only significant soil characteristic that positively regressed with decreased dollar spot susceptibility during the peak disease development stage. These findings suggest that localized variation in soil iron induces the plant to select for a particular rhizosphere microbiome that alters the disease outcome. More broadly, further research in this area may indicate how plot-scale variability in soil properties can drive variable plant disease development through alterations in the rhizosphere microbiome.IMPORTANCE Dollar spot is the most economically important disease of amenity turfgrass, and more fungicides are applied targeting dollar spot than any other turfgrass disease. Dollar spot symptoms are small (3 to 5 cm), circular patches that develop in a highly variable manner within plot scale even under seemingly uniform conditions. The mechanism behind this variable development is unknown. This study observed that differences in dollar spot development over a 256-m2 area were associated with differences in bulk soil iron concentration and correlated with a particular rhizosphere microbiome. These findings provide interesting avenues for future research to further characterize the mechanisms behind the highly variable development of dollar spot, which may inform innovative control strategies. Additionally, these results suggest that small changes in soil properties can alter plant activity and hence the plant-associated microbial community, which has important implications for a broad array of agricultural and horticultural plant pathosystems.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Smita Shrestha
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Renee Rioux
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul Koch
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
260
|
Cao Y, Yu X, Ju F, Zhan H, Jiang B, Kang H, Xie Z. Airborne bacterial community diversity, source and function along the Antarctic Coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142700. [PMID: 33069481 DOI: 10.1016/j.scitotenv.2020.142700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Antarctica is an isolated and relatively simple ecosystem dominated by microorganisms, providing a rare opportunity to study the spread of airborne microbes and to predict future global climate change. However, little is known about on the diversity and potential sources of microorganisms in the marine atmosphere along the Antarctica coast. Here we explored the airborne bacterial community (i.e., bacteriome) diversity, sources and functional potential along the Antarctic coast based on 16S rRNA gene amplicon sequencing of 25 bioaerosol samples collected during the 33rd Xuelong Antarctic scientific expedition. The results showed that bacterial communities in the Antarctic bioaerosols i) were predominated by Proteobacteria (91.3%) including Sphingomonas, ii) showed relative low alpha-diversity but high spatiotemporal variabilities; and iii) were potentially immigrated with terrestrial, marine and Antarctic polar bacteria through long-range transport and sea-air exchange pathways. Moreover, canonical correspondence analysis of bacteriome composition showed that wind speed, temperature, and organic carbon had a significant effect on the bacterial community (P < 0.05), although bacterial richness (Richness index) and diversity (Simpson index and Shannon index) showed no statistically significant differences between rainy, cloudy and snowy weather conditions (Adjust P > 0.05, ANOVA, Tukey HSD test). iv) The functional profiles predicted by Tax4fun2 suggest high representation of function genes related to fatty acid biosynthesis and metabolism, amino acid metabolism, nucleotide metabolism, and carbohydrate metabolism, which is conducive to the formation of microlayers on the surface of the ocean and the survival and growth of bacteria.
Collapse
Affiliation(s)
- Yue Cao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiawei Yu
- Anhui Key Laboratory of Polar Environment and Global Change & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng Ju
- School of Engineering, Westlake University, Hangzhou 310024, China; Key Laboratory of Coastal Environment and Resource Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Haicong Zhan
- Anhui Key Laboratory of Polar Environment and Global Change & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bei Jiang
- Anhui Key Laboratory of Polar Environment and Global Change & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Kang
- Anhui Key Laboratory of Polar Environment and Global Change & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhouqing Xie
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; Anhui Key Laboratory of Polar Environment and Global Change & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
| |
Collapse
|
261
|
Gao B, Chi L, Zhu Y, Shi X, Tu P, Li B, Yin J, Gao N, Shen W, Schnabl B. An Introduction to Next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules 2021; 11:530. [PMID: 33918473 PMCID: PMC8066849 DOI: 10.3390/biom11040530] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is a microbial ecosystem which expresses 100 times more genes than the human host and plays an essential role in human health and disease pathogenesis. Since most intestinal microbial species are difficult to culture, next generation sequencing technologies have been widely applied to study the gut microbiome, including 16S rRNA, 18S rRNA, internal transcribed spacer (ITS) sequencing, shotgun metagenomic sequencing, metatranscriptomic sequencing and viromic sequencing. Various software tools were developed to analyze different sequencing data. In this review, we summarize commonly used computational tools for gut microbiome data analysis, which extended our understanding of the gut microbiome in health and diseases.
Collapse
Affiliation(s)
- Bei Gao
- Department of Marine Science, School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;
| | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Yixin Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Xiaochun Shi
- Department of Environmental Ecological Engineering, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (X.S.); (W.S.)
| | - Pengcheng Tu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Bing Li
- Suzhou Industrial Park Environmental Law Enforcement Brigade (Environmental Monitoring Station), Suzhou 215021, China;
| | - Jun Yin
- Department of Hydrometeorology, School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China;
| | - Nan Gao
- Department of Biotechnology, School of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Weishou Shen
- Department of Environmental Ecological Engineering, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (X.S.); (W.S.)
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
262
|
Wan W, Liu S, Li X, Xing Y, Chen W, Huang Q. Bridging Rare and Abundant Bacteria with Ecosystem Multifunctionality in Salinized Agricultural Soils: from Community Diversity to Environmental Adaptation. mSystems 2021; 6:e01221-20. [PMID: 33785569 PMCID: PMC8547000 DOI: 10.1128/msystems.01221-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Bacterial diversity and ecosystem multifunctionality (EMF) vary along environmental gradients. However, little is known about interconnections between EMF and taxonomic and phylogenetic diversities of rare and abundant bacteria. Using MiSeq sequencing and multiple statistical analyses, we evaluated the maintenance of taxonomic and phylogenetic diversities of rare and abundant bacteria and their contributions to EMF in salinized agricultural soils (0.09 to 19.91 dS/m). Rare bacteria exhibited closer phylogenetic clustering and broader environmental breadths than abundant ones, while abundant bacteria showed higher functional redundancies and stronger phylogenetic signals of ecological preferences than rare ones. Variable selection (86.7%) dominated rare bacterial community assembly, and dispersal limitation (54.7%) and variable selection (24.5%) determined abundant bacterial community assembly. Salinity played a decisive role in mediating the balance between stochastic and deterministic processes and showed significant effects on functions and diversities of both rare and abundant bacteria. Rare bacterial taxonomic α-diversity and abundant bacterial phylogenetic α-diversity contributed significantly to EMF, while abundant bacterial taxonomic α-diversity and rare bacterial phylogenetic α-diversity did not. Additionally, abundant rather than rare bacterial community function had a significant effect on soil EMF. These findings extend our knowledge of environmental adaptation of rare and abundant bacteria and highlight different contributions of taxonomic and phylogenetic α-diversities of rare and abundant bacteria to soil EMF.IMPORTANCE Soil salinization is a worldwide environmental problem and threatens plant productivity and microbial diversity. Understanding the generation and maintenance of microbial diversity is essential to estimate soil tillage potential via investigating ecosystem multifunctionality. Our sequence-based data showed differences in environmental adaptations of rare and abundant bacteria at taxonomic and phylogenetic levels, which led to different contributions of taxonomic and phylogenetic α-diversities of rare and abundant bacteria to soil EMF. Studying the diversity of rare and abundant bacteria and their contributions to EMF in salinized soils is critical for guiding soil restoration.
Collapse
Affiliation(s)
- Wenjie Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yonghui Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
263
|
Wei ZG, Zhang XD, Cao M, Liu F, Qian Y, Zhang SW. Comparison of Methods for Picking the Operational Taxonomic Units From Amplicon Sequences. Front Microbiol 2021; 12:644012. [PMID: 33841367 PMCID: PMC8024490 DOI: 10.3389/fmicb.2021.644012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
With the advent of next-generation sequencing technology, it has become convenient and cost efficient to thoroughly characterize the microbial diversity and taxonomic composition in various environmental samples. Millions of sequencing data can be generated, and how to utilize this enormous sequence resource has become a critical concern for microbial ecologists. One particular challenge is the OTUs (operational taxonomic units) picking in 16S rRNA sequence analysis. Lucky, this challenge can be directly addressed by sequence clustering that attempts to group similar sequences. Therefore, numerous clustering methods have been proposed to help to cluster 16S rRNA sequences into OTUs. However, each method has its clustering mechanism, and different methods produce diverse outputs. Even a slight parameter change for the same method can also generate distinct results, and how to choose an appropriate method has become a challenge for inexperienced users. A lot of time and resources can be wasted in selecting clustering tools and analyzing the clustering results. In this study, we introduced the recent advance of clustering methods for OTUs picking, which mainly focus on three aspects: (i) the principles of existing clustering algorithms, (ii) benchmark dataset construction for OTU picking and evaluation metrics, and (iii) the performance of different methods with various distance thresholds on benchmark datasets. This paper aims to assist biological researchers to select the reasonable clustering methods for analyzing their collected sequences and help algorithm developers to design more efficient sequences clustering methods.
Collapse
Affiliation(s)
- Ze-Gang Wei
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Xiao-Dan Zhang
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Ming Cao
- Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- School of Mathematics and Statistics, Shaanxi Xueqian Normal University, Xi’an, China
| | - Fei Liu
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Yu Qian
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
264
|
Borda-Molina D, Iffland H, Schmid M, Müller R, Schad S, Seifert J, Tetens J, Bessei W, Bennewitz J, Camarinha-Silva A. Gut Microbial Composition and Predicted Functions Are Not Associated with Feather Pecking and Antagonistic Behavior in Laying Hens. Life (Basel) 2021; 11:235. [PMID: 33809351 PMCID: PMC8001194 DOI: 10.3390/life11030235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Feather pecking is a well-known problem in layer flocks that causes animal welfare restrictions and contributes to economic losses. Birds' gut microbiota has been linked to feather pecking. This study aims to characterize the microbial communities of two laying hen lines divergently selected for high (HFP) and low (LFP) feather pecking and investigates if the microbiota is associated with feather pecking or agonistic behavior. METHODS Besides phenotyping for the behavioral traits, microbial communities from the digesta and mucosa of the ileum and caeca were investigated using target amplicon sequencing and functional predictions. Microbiability was estimated with a microbial mixed linear model. RESULTS Ileum digesta showed an increase in the abundance of the genus Lactobacillus in LFP, while Escherichia was abundant in HFP hens. In the caeca digesta and mucosa of the LFP line were more abundant Faecalibacterium and Blautia. Tryptophan metabolism and lysine degradation were higher in both digesta and mucosa of the HFP hens. Linear models revealed that the two lines differ significantly in all behavior traits. Microbiabilities were close to zero and not significant in both lines and for all traits. CONCLUSIONS Trait variation was not affected by the gut microbial composition in both selection lines.
Collapse
Affiliation(s)
- Daniel Borda-Molina
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Hanna Iffland
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Markus Schmid
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Regina Müller
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Svenja Schad
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Jens Tetens
- Department of Animal Sciences, University of Göttingen, 37073 Göttingen, Germany;
- Center for Integrated Breeding Research, University of Göttingen, 37075 Göttingen, Germany
| | - Werner Bessei
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| |
Collapse
|
265
|
Wan W, Grossart HP, He D, Yuan W, Yang Y. Stronger environmental adaptation of rare rather than abundant bacterioplankton in response to dredging in eutrophic Lake Nanhu (Wuhan, China). WATER RESEARCH 2021; 190:116751. [PMID: 33348071 DOI: 10.1016/j.watres.2020.116751] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Deciphering responses of rare versus abundant bacterioplankton to environmental change, crucial for understanding and mitigating of cyanobacterial blooms, is an important but poorly investigated subject. Using MiSeq sequencing, we investigated the taxonomic and phylogenetic diversity of rare and abundant bacterioplankton in eutrophic Lake Nanhu before and after dredging. We estimated environmental breadths and phylogenetic signals of ecological preferences of rare and abundant bacterioplankton, and investigated community function and bacterioplankton assembly processes. Both taxonomic and phylogenic distances of rare and abundant bacterioplankton communities were significantly positively correlated with the dissimilarity of environmental factors. Threshold indicator taxa analysis and Blomberg's K statistic indicated that rare taxa held broader environmental thresholds and stronger phylogenetic signals for ecological traits than abundant taxa. Environmental adaptations of both rare and abundant taxa exhibited distinct changes after dredging. Higher functional redundancy occurred in the abundant compared to the rare bacterioplankton, with functions of rare bacterioplankton decreasing and for the abundant ones increasing after dredging. The null model revealed that dispersal limitation belonging to stochastic processes determined the abundant bacterioplankton community assembly, whereas variable selection belonging to deterministic processes drove the rare one. Rare bacterioplankton was more environmentally constrained than the abundant one. Dissolved oxygen was the decisive factor in determining the balance between stochasticity and determinism in both rare and abundant bacterioplankton. Our study extends our knowledge of environmental adaptation of rare versus abundant bacterioplankton to massive disturbing measures, i.e. dredging, and allows to estimate dredging performance for mitigating cyanobacterial blooms from a molecular ecology viewpoint.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Hans-Peter Grossart
- Leibniz-Institude of Freshwater Ecology and Inland Fisheries (IGB), 16775, Neuglobsow, Germany; University of Potsdam, Institute of Biochemistry and Biology, Maulbeerallee 2, 14469, Potsdam, Germany
| | - Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China.
| |
Collapse
|
266
|
Zhao S, Chen W, Luo W, Fang H, Lv H, Liu R, Niu Q. Anaerobic co-digestion of chicken manure and cardboard waste: Focusing on methane production, microbial community analysis and energy evaluation. BIORESOURCE TECHNOLOGY 2021; 321:124429. [PMID: 33285504 DOI: 10.1016/j.biortech.2020.124429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the synergistic effect and microbial community changes between chicken manure (CM) and cardboard (CB) during anaerobic co-digestion. Meanwhile, the energy balance of biogas engineering was extrapolated based on the batch tests. In batch tests, co-digestion system achieved the highest improvement (14.2%) and produced 319.62 mL CH4/gVS with a 65:35 ratio of CB: CM. More extracellular polymeric substance secretion promoted the electron transfer for acidogenesis and more hydrolase was provided with 31.6% improvement. The microbial analysis illustrated that higher acetoclastic Methanosaeta abundance was achieved, leading to 211% enhancement of acetoclastic pathway. Moreover, associated network illustrated that the higher methane production was mainly achieved through matching of hydrolytic bacteria and acidogenesis bacteria. As for energy balance, the synergistic effect increased the energy output by 38% and energy recovery to 46.4%.
Collapse
Affiliation(s)
- Shunan Zhao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wenhan Chen
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wendan Luo
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hongli Fang
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huanyu Lv
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Qigui Niu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
267
|
Klammsteiner T, Walter A, Bogataj T, Heussler CD, Stres B, Steiner FM, Schlick-Steiner BC, Insam H. Impact of Processed Food (Canteen and Oil Wastes) on the Development of Black Soldier Fly ( Hermetia illucens) Larvae and Their Gut Microbiome Functions. Front Microbiol 2021; 12:619112. [PMID: 33552039 PMCID: PMC7858275 DOI: 10.3389/fmicb.2021.619112] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Canteens represent an essential food supply hub for educational institutions, companies, and business parks. Many people in these locations rely on a guaranteed service with consistent quality. It is an ongoing challenge to satisfy the demand for sufficient serving numbers, portion sizes, and menu variations to cover food intolerances and different palates of customers. However, overestimating this demand or fluctuating quality of dishes leads to an inevitable loss of unconsumed food due to leftovers. In this study, the food waste fraction of canteen leftovers was identified as an optimal diet for black soldier fly (Hermetia illucens) larvae based on 50% higher consumption and 15% higher waste reduction indices compared with control chicken feed diet. Although the digestibility of food waste was nearly twice as high, the conversion efficiency of ingested and digested chicken feed remains unparalleled (17.9 ± 0.6 and 37.5 ± 0.9 in CFD and 7.9 ± 0.9 and 9.6 ± 1.0 in FWD, respectively). The oil separator waste fraction, however, inhibited biomass gain by at least 85% and ultimately led to a larval mortality of up to 96%. In addition to monitoring larval development, we characterized physicochemical properties of pre- and post-process food waste substrates. High-throughput amplicon sequencing identified Firmicutes, Proteobacteria, and Bacteroidota as the most abundant phyla, and Morganella, Acinetobacter, and certain Lactobacillales species were identified as indicator species. By using metagenome imputation, we additionally gained insights into the functional spectrum of gut microbial communities. We anticipate that the results will contribute to the development of decentralized waste-management sites that make use of larvae to process food waste as it has become common practice for biogas plants.
Collapse
Affiliation(s)
| | - Andreas Walter
- Department of Biotechnology and Food Engineering, MCI – The Entrepreneurial School, Innsbruck, Austria
| | - Tajda Bogataj
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Carina D. Heussler
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Blaž Stres
- Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
- Institute of Sanitary Engineering, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
268
|
Oliphant K, Ali M, D’Souza M, Hughes PD, Sulakhe D, Wang AZ, Xie B, Yeasin R, Msall ME, Andrews B, Claud EC. Bacteroidota and Lachnospiraceae integration into the gut microbiome at key time points in early life are linked to infant neurodevelopment. Gut Microbes 2021; 13:1997560. [PMID: 34839801 PMCID: PMC8632288 DOI: 10.1080/19490976.2021.1997560] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
The early life microbiome plays critical roles in host development, shaping long-term outcomes including brain functioning. It is not known which initial infant colonizers elicit optimal neurodevelopment; thus, this study investigated the association between gut microbiome succession from the first week of life and head circumference growth (HCG), the earliest validated marker for neurodevelopment. Fecal samples were collected weekly from a preterm infant cohort during their neonatal intensive care unit stay and subjected to 16S rRNA gene sequencing for evaluating gut microbiome composition, in conjunction with clinical data and head circumference measurements. Preterm infants with suboptimal HCG trajectories had a depletion in the abundance/prevalence of Bacteroidota and Lachnospiraceae, independent of morbidity and caloric restriction. The severity of gut microbiome depletion matched the timing of significant HCG pattern separation between study groups at 30-week postmenstrual age demonstrating a potential mediating relationship resultant from clinical practices. Consideration of the clinical variables indicated that optimal infant microbiome succession is primarily driven by dispersal limitation (i.e., delivery mode) and secondarily by habitat filtering (i.e., antibiotics and enteral feeding). Bacteroidota and Lachnospiraceae are known core taxa of the adult microbiome, with roles in dietary glycan foraging, beneficial metabolite production and immunity, and our work provides evidence that their integration into the gut microbiome needs to occur early for optimal neurodevelopment.
Collapse
Affiliation(s)
- Kaitlyn Oliphant
- Department of Pediatrics, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Mehneez Ali
- Department of Pediatrics, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Mark D’Souza
- Center for Research Informatics, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Patrick D. Hughes
- Department of Pediatrics, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Pediatrics, Division of Neonatology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Dinanath Sulakhe
- Center for Research Informatics, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Annie Z. Wang
- Department of Pediatrics, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Bingqing Xie
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Rummanu Yeasin
- Department of Pediatrics, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Michael E. Msall
- Department of Pediatrics, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Kennedy Research Center on Intellectual and Developmental Disabilities, University of Chicago, Chicago, IL, USA
| | - Bree Andrews
- Department of Pediatrics, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Erika C. Claud
- Department of Pediatrics, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| |
Collapse
|
269
|
Tandon K, Baatar B, Chiang PW, Dashdondog N, Oyuntsetseg B, Tang SL. A Large-Scale Survey of the Bacterial Communities in Lakes of Western Mongolia with Varying Salinity Regimes. Microorganisms 2020; 8:E1729. [PMID: 33158252 PMCID: PMC7716208 DOI: 10.3390/microorganisms8111729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, climate change coupled with anthropogenic activities has led to monumental changes in saline lakes which are rapidly drying up across the globe and particularly in Central Asia. The landlocked country of Mongolia is rich in lakes which have remained primarily undisturbed by human impact, and many of these lakes have varying salinity regimes and are located across various geographical landscapes. In this study, we sampled 18 lakes with varying salinity regimes (hyperhaline, mesohaline, oligohaline, and polyhaline) covering 7000 km of western Mongolia and its various geographical landscapes (Gobi Desert, forests, and steppe). We identified that the bacterial communities that dominate these lakes are significantly influenced by salinity (p < 0.001) and geographical landscape (p < 0.001). Further, only five zOTUs were shared in all the lakes across the salinity regimes, providing evidence that both local and regional factors govern the community assembly and composition. Furthermore, the bacterial communities of hyperhaline lakes were significantly positively correlated with salinity (ANOVA, p < 0.001) and arsenic concentrations (ANOVA, p < 0.001), whereas bacterial communities of mesohaline and polyhaline lakes situated in forest and steppe landscapes were positively correlated with temperature (ANOVA, p < 0.001) and altitude (ANOVA, p < 0.001), respectively. Functional predictions based on the 16S rRNA gene indicated enrichment of KEGG Ontology terms related to transporters for osmoprotection and -regulation. Overall, our study provides a comprehensive view of the bacterial diversity and community composition present in these lakes, which might be lost in the future.
Collapse
Affiliation(s)
- Kshitij Tandon
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bayanmunkh Baatar
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
| | - Narangarvuu Dashdondog
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Bolormaa Oyuntsetseg
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
270
|
Wang B, Kong Q, Li X, Zhao J, Zhang H, Chen W, Wang G. A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients 2020; 12:E3197. [PMID: 33092019 PMCID: PMC7589760 DOI: 10.3390/nu12103197] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
A high-fat diet (HFD) can easily induce obesity and change the gut microbiota and its metabolites. However, studies on the effects of high-fat diets on the host have drawn inconsistent results. In this study, the unexpected results showed that the refined HFD increased gut microbiota diversity and short-chain fatty acids (SCFAs), causing an increase in energy metabolism. Further analysis revealed these changes were caused by the different fiber content in these two diets. Male C57BL/6J mice (4-5 weeks old) were fed either HFD or refined low-fat diet (LFD) for 14 weeks. The metabolic rates, thermogenesis, gut microbiome, and intestinal SCFAs were tested. The HFD triggered obesity and disturbed glucose homeostasis. Mice fed HFD ingested more fiber than mice fed LFD (p < 0.0001), causing higher intestinal SCFA concentrations related to the increased abundances of specific bacteria in the HFD group. Also, the HFD increased metabolic heat and up-regulated thermogenesis genes uncoupling protein 1(Ucp-1), peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α) expression in the brown adipose tissue (BAT). It was revealed by 16S rRNA gene sequencing that the HFD increased gut microbial diversity, which enriched Desulfovibrionaceae, Rikenellaceae RC9 gut group, and Mucispirillum, meanwhile, reduced the abundance of Lactobacillus, Bifidobacterium, Akkermansia, Faecalibaculum, and Blautia. The predicted metabolic pathways indicated HFD increased the gene expression of non-absorbed carbohydrate metabolism pathways, as well as the risks of colonization of intestinal pathogens and inflammation. In conclusion, the HFD was obesogenic in male C57BL/6J mice, and increased fiber intake from the HFD drove an increase in gut microbiota diversity, SCFAs, and energy expenditure. Meanwhile, the differences in specific nutrient intake can dissociate broad changes in energy expenditure, gut microbiota, and its metabolites from obesity, raising doubts in the previous studies. Therefore, it is necessary to consider whether differences in specific nutrient intake will interfere with the results of the experiments.
Collapse
Affiliation(s)
- Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.W.); (Q.K.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingmin Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.W.); (Q.K.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.W.); (Q.K.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.W.); (Q.K.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.W.); (Q.K.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Center of Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.W.); (Q.K.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Center of Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.W.); (Q.K.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
271
|
Vollmar S, Wellmann R, Borda-Molina D, Rodehutscord M, Camarinha-Silva A, Bennewitz J. The Gut Microbial Architecture of Efficiency Traits in the Domestic Poultry Model Species Japanese Quail ( Coturnix japonica) Assessed by Mixed Linear Models. G3 (BETHESDA, MD.) 2020; 10:2553-2562. [PMID: 32471941 PMCID: PMC7341145 DOI: 10.1534/g3.120.401424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
It is well known that mammals and avian gut microbiota compositions are shaped by the host genomes and affect quantitative traits. The microbial architecture describes the impact of the microbiota composition on quantitative trait variation and the number and effect distribution of microbiota features. In the present study the gut microbial architecture of feed-related traits phosphorus and calcium utilization, daily gain, feed intake and feed per gain ratio in the domestic poultry model species Japanese quail were assessed by mixed linear models. The ileum microbiota composition was characterized by 16S rRNA amplicon sequencing techniques of growing individuals. The microbiability of the traits was on a similar level as the narrow sense heritability and was highly significant except for calcium utilization. The animal microbial correlation of the traits was substantial. Microbiome-wide association analyses revealed several traits associated and highly significant microbiota features, both on the bacteria genera as well as on the operational taxonomic unit level. Most features were significant for more than one trait, which explained the high microbial correlations. It can be concluded that the traits are polymicrobial determined with some microbiota features with larger effects and many with small effects. The results are important for the development of hologenomic selection schemes for feed-related traits in avian breeding programs that are targeting the host genome and the metagenome simultaneously.
Collapse
Affiliation(s)
- Solveig Vollmar
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | | | | | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
272
|
Logtenberg MJ, Akkerman R, An R, Hermes GDA, de Haan BJ, Faas MM, Zoetendal EG, Schols HA, de Vos P. Fermentation of Chicory Fructo-Oligosaccharides and Native Inulin by Infant Fecal Microbiota Attenuates Pro-Inflammatory Responses in Immature Dendritic Cells in an Infant-Age-Dependent and Fructan-Specific Way. Mol Nutr Food Res 2020; 64:e2000068. [PMID: 32420676 PMCID: PMC7378940 DOI: 10.1002/mnfr.202000068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
SCOPE Inulin-type fructans are commonly applied in infant formula to support development of gut microbiota and immunity. These inulin-type fructans are considered to be fermented by gut microbiota, but it is unknown how fermentation impacts immune modulating capacity and whether the process of fermentation is dependent on the infant's age. METHODS AND RESULTS The in vitro fermentation of chicory fructo-oligosaccharides (FOS) and native inulin are investigated using pooled fecal inocula of two- and eight-week-old infants. Both inocula primarily utilize the trisaccharides in FOS, while they almost completely utilize native inulin with degree of polymerization (DP) 3-8. Fecal microbiota of eight-week-old infants degrades longer chains of native inulin up to DP 16. This correlates with a higher abundance of Bifidobacterium and higher production of acetate and lactate after 26 h of fermentation. Fermented FOS and native inulin attenuate pro-inflammatory cytokines produced by immature dendritic cells (DCs), but profiles and magnitude of attenuation are stronger with native inulin than with FOS. CONCLUSION The findings demonstrate that fermentation of FOS and native inulin is dependent on the infant's age and fructan structure. Fermentation enhances attenuating effects of pro-inflammatory responses in DCs, which depend mainly on microbial metabolites formed during fermentation.
Collapse
Affiliation(s)
- Madelon J. Logtenberg
- Laboratory of Food ChemistryWageningen University and ResearchBornse Weilanden 9, 6708 WGWageningenThe Netherlands
| | - Renate Akkerman
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenHanzeplein 1, 9700 RBGroningenThe Netherlands
| | - Ran An
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 4, 6708 WEWageningenThe Netherlands
| | - Gerben D. A. Hermes
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 4, 6708 WEWageningenThe Netherlands
| | - Bart J. de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenHanzeplein 1, 9700 RBGroningenThe Netherlands
| | - Marijke M. Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenHanzeplein 1, 9700 RBGroningenThe Netherlands
| | - Erwin G. Zoetendal
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 4, 6708 WEWageningenThe Netherlands
| | - Henk A. Schols
- Laboratory of Food ChemistryWageningen University and ResearchBornse Weilanden 9, 6708 WGWageningenThe Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenHanzeplein 1, 9700 RBGroningenThe Netherlands
| |
Collapse
|