251
|
Ahmadian S, Mahdipour M, Pazhang M, Sheshpari S, Mobarak H, Bedate AM, Rahbarghazi R, Nouri M. Effectiveness of Stem Cell Therapy in the Treatment of Ovarian Disorders and Female Infertility: A Systematic Review. Curr Stem Cell Res Ther 2020; 15:173-186. [PMID: 31746298 DOI: 10.2174/1574888x14666191119122159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/22/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Infertility is a major problem worldwide. Various strategies are being used to develop better treatments for infertility and The most trending strategy is the stem cell therapy. In this study, the literature on stem cell therapy for ovarian disorders is summarized with analysis of current developments. OBJECTIVE Different published studies on stem cell-based therapy for the treatment of various types of ovarian insufficiency and disorders such as Premature Ovarian Insufficiency (POI) in the affected female population in animal or human clinical studies are systematically reviewed. METHODS We monitored five databases, including PubMed, Cochrane, Embase, Scopus, and ProQuest. A comprehensive online search was done using the criteria targeting the application of stem cells in animal models for menopause. Two independent reviewers carefully evaluated titles and abstracts of studies. The stem cell type, source, dosage, route of administration were highlighted in various POI animals models. Non-relevant and review articles were excluded. OUTCOMES 648 published studies were identified during the initial comprehensive search process from which 41 were selected according to designed criteria. Based on our analysis, stem cells could accelerate ovarian tissues rejuvenation, regulate systemic sex-related hormones levels and eventually increase fertility rate. CONCLUSION The evidence suggests that stem cell-based therapies could be considered as an alternative modality to deal with women undergoing POI.
Collapse
Affiliation(s)
- Shahin Ahmadian
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Pazhang
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Sepideh Sheshpari
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alberto Miranda Bedate
- Laboratory for Translational Immunology (LTI), Universitair Medisch Centrum Utrecht, (UMCU), Utrecht, Netherlands
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
252
|
Therapeutic Potential of Mesenchymal Stem Cells and Their Secretome in the Treatment of SARS-CoV-2-Induced Acute Respiratory Distress Syndrome. ACTA ACUST UNITED AC 2020; 2020:1939768. [PMID: 33274176 PMCID: PMC7678745 DOI: 10.1155/2020/1939768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent responsible for the development of a new coronavirus disease (COVID-19), is a highly transmittable virus which, in just ten months, infected more than 40 million people in 214 countries worldwide. After inhalation, aerosols containing SARS-CoV-2 penetrate to the depths of the lungs and cause severe pneumonia, alveolar injury, and life-threatening acute respiratory distress syndrome (ARDS). Since there are no specific drugs or vaccines available to cure or prevent COVID-19 infection and COVID-19-related ARDS, a new therapeutic agent which will support oxygen supply and, at the same time, efficiently alleviate SARS-CoV-2-induced lung inflammation is urgently needed. Due to their potent immuno- and angiomodulatory characteristics, mesenchymal stem cells (MSCs) may increase oxygen supply in the lungs and may efficiently alleviate ongoing lung inflammation, including SARS-CoV-2-induced ARDS. In this review article, we described molecular mechanisms that are responsible for MSC-based modulation of immune cells which play a pathogenic role in the development of SARS-CoV-2-induced ARDS and we provided a brief outline of already conducted and ongoing clinical studies that increase our understanding about the therapeutic potential of MSCs and their secretome in the therapy of COVID-19-related ARDS.
Collapse
|
253
|
Mesenchymal Stem Cells in Multiple Sclerosis: Recent Evidence from Pre-Clinical to Clinical Studies. Int J Mol Sci 2020; 21:ijms21228662. [PMID: 33212873 PMCID: PMC7698327 DOI: 10.3390/ijms21228662] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system. Nowadays, available therapies for MS can help to manage MS course and symptoms, but new therapeutic approaches are required. Stem cell therapy using mesenchymal stem cells (MSCs) appeared promising in different neurodegenerative conditions, thanks to their beneficial capacities, including the immunomodulation ability, and to their secretome. The secretome is represented by growth factors, cytokines, and extracellular vesicles (EVs) released by MSCs. In this review, we focused on studies performed on in vivo MS models involving the administration of MSCs and on clinical trials evaluating MSCs administration. Experimental models of MS evidenced that MSCs were able to reduce inflammatory cell infiltration and disease score. Moreover, MSCs engineered to express different genes, preconditioned with different compounds, differentiated or in combination with other compounds also exerted beneficial actions in MS models, in some cases also superior to native MSCs. Secretome, both conditioned medium and EVs, also showed protective effects in MS models and appeared promising to develop new approaches. Clinical trials highlighted the safety and feasibility of MSC administration and reported some improvements, but other trials using larger cohorts of patients are needed.
Collapse
|
254
|
Vadadustat, a HIF Prolyl Hydroxylase Inhibitor, Improves Immunomodulatory Properties of Human Mesenchymal Stromal Cells. Cells 2020; 9:cells9112396. [PMID: 33139632 PMCID: PMC7693843 DOI: 10.3390/cells9112396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The therapeutic potential of mesenchymal stromal cells (MSCs) is largely attributed to their immunomodulatory properties, which can be further improved by hypoxia priming. In this study, we investigated the immunomodulatory properties of MSCs preconditioned with hypoxia-mimetic Vadadustat (AKB-6548, Akebia). Gene expression analysis of immunomodulatory factors was performed by real-time polymerase chain reaction (real-time PCR) on RNA isolated from six human bone-marrow derived MSCs populations preconditioned for 6 h with 40 μM Vadadustat compared to control MSCs. The effect of Vadadustat preconditioning on MSCs secretome was determined using Proteome Profiler and Luminex, while their immunomodulatory activity was assessed by mixed lymphocyte reaction (MLR) and Culturex transwell migration assays. Real-time PCR revealed that Vadadustat downregulated genes related to immune system: IL24, IL1B, CXCL8, PDCD1LG1, PDCD1LG2, HIF1A, CCL2 and IL6, and upregulated IL17RD, CCL28 and LEP. Vadadustat caused a marked decrease in the secretion of IL6 (by 51%), HGF (by 47%), CCL7 (MCP3) (by 42%) and CXCL8 (by 40%). Vadadustat potentiated the inhibitory effect of MSCs on the proliferation of alloactivated human peripheral blood mononuclear cells (PBMCs), and reduced monocytes-enriched PBMCs chemotaxis towards the MSCs secretome. Preconditioning with Vadadustat may constitute a valuable approach to improve the therapeutic properties of MSCs.
Collapse
|
255
|
Esfandyari S, Chugh RM, Park HS, Hobeika E, Ulin M, Al-Hendy A. Mesenchymal Stem Cells as a Bio Organ for Treatment of Female Infertility. Cells 2020; 9:E2253. [PMID: 33050021 PMCID: PMC7599919 DOI: 10.3390/cells9102253] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022] Open
Abstract
Female infertility is a global medical condition that can be caused by various disorders of the reproductive system, including premature ovarian failure (POF), polycystic ovary syndrome (PCOS), endometriosis, Asherman syndrome, and preeclampsia. It affects the quality of life of both patients and couples. Mesenchymal stem cells (MSCs) have received increasing attention as a potential cell-based therapy, with several advantages over other cell sources, including greater abundance, fewer ethical considerations, and high capacity for self-renewal and differentiation. Clinical researchers have examined the therapeutic use of MSCs in female infertility. In this review, we discuss recent studies on the use of MSCs in various reproductive disorders that lead to infertility. We also describe the role of microRNAs (miRNAs) and exosomal miRNAs in controlling MSC gene expression and driving MSC therapeutic outcomes. The clinical application of MSCs holds great promise for the treatment of infertility or ovarian insufficiency, and to improve reproductive health for a significant number of women worldwide.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Hang-soo Park
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Elie Hobeika
- Fertility Centers of Illinois, Glenview, IL 60026, USA;
| | - Mara Ulin
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
- Department of Obstetrics and Gynecology, University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA
| |
Collapse
|
256
|
Abstract
Over the past decade, the clinical application of mesenchymal stromal cells (MSCs) has generated growing enthusiasm as an innovative cell-based approach in solid organ transplantation (SOT). These expectations arise from a significant number of both transplant- and non-transplant-related experimental studies investigating the complex anti-inflammatory, immunomodulatory, and tissue-repair properties of MSCs. Promising preclinical results have prompted clinical trials using MSC-based therapy in SOT. In the present review, the general properties of MSCs are summarized, with a particular emphasis on MSC-mediated impact on the immune system and in the ischemic conditioning strategy. Next, we chronologically detail all clinical trials using MSCs in the field of SOT. Finally, we envision the challenges and perspectives of MSC-based cell therapy in SOT.
Collapse
|
257
|
Salvador T, Oliveira MB, Mano JF. Leachable-Free Fabrication of Hydrogel Foams Enabling Homogeneous Viability of Encapsulated Cells in Large-Volume Constructs. Adv Healthc Mater 2020; 9:e2000543. [PMID: 32902167 DOI: 10.1002/adhm.202000543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/10/2020] [Indexed: 01/18/2023]
Abstract
The popularity of cell-laden injectable hydrogels has steeply increased due to their compatibility with minimally invasive surgical procedures. However, the diffusion of indispensable molecules for cell survival through bulk hydrogel structures, particularly oxygen, is often limited to micrometric distances, often hampering cell viability or uniform tissue formation in constructs with clinically relevant sizes. The introduction of micropores in hydrogels or the use of oxygen-generating materials has enabled combining advantages of porous 3D scaffolds with the injectability properties of in situ-solidifying hydrogels. Here, cell-laden injectable gelatin methacryloyl (GelMA) foams are fabricated using a single polymer formulation. Air bubbles are introduced into GelMA solutions using a simple-to-implement method based on pulling/pushing the solution through a syringe. Human mesenchymal stem cells derived from the adipose tissue (hASCs) cultured in bulk hydrogels (diameter c.a. 5 mm) show low permanence in the core of the materials and stain for factors associated to hypoxia (hypoxia-inducible factor-1 alpha (HIF-1α)) after 7 days of culture. In opposition, cells cultured in optimized foams do not stain for HIF-1α, show high permanence, homogeneous viability, and consistent phenotype in the whole depth of the biomaterials, while secreting increased amounts of regenerative growth factors to the surrounding medium.
Collapse
Affiliation(s)
- Tânia Salvador
- Department of Chemistry CICECO—Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Mariana B. Oliveira
- Department of Chemistry CICECO—Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- Department of Chemistry CICECO—Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
258
|
Woods N, MacLoughlin R. Defining a Regulatory Strategy for ATMP/Aerosol Delivery Device Combinations in the Treatment of Respiratory Disease. Pharmaceutics 2020; 12:E922. [PMID: 32993197 PMCID: PMC7601063 DOI: 10.3390/pharmaceutics12100922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Advanced Therapeutic Medicinal Products (ATMP) are a heterogenous group of investigational medicinal products at the forefront of innovative therapies with direct applicability in respiratory diseases. ATMPs include, but are not limited to, stem cells, their secretome, or extracellular vesicles, and each have shown some potential when delivered topically within the lung. This review focuses on that subset of ATMPs. One key mode of delivery that has enabling potential in ATMP validation is aerosol-mediated delivery. The selection of the most appropriate aerosol generator technology is influenced by several key factors, including formulation, patient type, patient intervention, and healthcare economics. The aerosol-mediated delivery of ATMPs has shown promise for the treatment of both chronic and acute respiratory disease in pre-clinical and clinical trials; however, in order for these ATMP device combinations to translate from the bench through to commercialization, they must meet the requirements set out by the various global regulatory bodies. In this review, we detail the potential for ATMP utility in the lungs and propose the nebulization of ATMPs as a viable route of administration in certain circumstances. Further, we provide insight to the current regulatory guidance for nascent ATMP device combination product development within the EU and US.
Collapse
Affiliation(s)
- Niamh Woods
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| |
Collapse
|
259
|
Lu M, Guo J, Wu B, Zhou Y, Wu M, Farzaneh M, Khoshnam SE. Mesenchymal Stem Cell-Mediated Mitochondrial Transfer: a Therapeutic Approach for Ischemic Stroke. Transl Stroke Res 2020; 12:212-229. [PMID: 32975692 DOI: 10.1007/s12975-020-00853-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022]
Abstract
Stroke is the leading cause of death and adult disability worldwide. Mitochondrial dysfunction is one of the hallmarks of stroke-induced neuronal death, and maintaining mitochondrial function is essential in cell survival and neurological progress following ischemic stroke. Stem cell-mediated mitochondrial transfer represents an emerging therapeutic approach for ischemic stroke. Accumulating evidence suggests that mesenchymal stem cells (MSCs) can directly transfer healthy mitochondria to damaged cells, and rescue mitochondrial damage-provoked tissue degeneration. This review summarizes the research on MSCs-mediated mitochondrial transfer as a therapeutic strategy against ischemic stroke.
Collapse
Affiliation(s)
- Meng Lu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, 050091, China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jindong Guo
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, 050091, China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Bowen Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, 050091, China.,Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yuhui Zhou
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, 050091, China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Mishan Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, 050091, China. .,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
260
|
Ahangar P, Mills SJ, Cowin AJ. Mesenchymal Stem Cell Secretome as an Emerging Cell-Free Alternative for Improving Wound Repair. Int J Mol Sci 2020; 21:ijms21197038. [PMID: 32987830 PMCID: PMC7583030 DOI: 10.3390/ijms21197038] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem cells (MSC) for the treatment of cutaneous wounds is currently of enormous interest. However, the broad translation of cell therapies into clinical use is hampered by their efficacy, safety, manufacturing and cost. MSCs release a broad repertoire of trophic factors and immunomodulatory cytokines, referred to as the MSC secretome, that has considerable potential for the treatment of cutaneous wounds as a cell-free therapy. In this review, we outline the current status of MSCs as a treatment for cutaneous wounds and introduce the potential of the MSC secretome as a cell-free alternative for wound repair. We discuss the challenges and provide insights and perspectives for the future development of the MSC secretome as well as identify its potential clinical translation into a therapeutic treatment.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia; (P.A.); (S.J.M.)
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Stuart J. Mills
- Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia; (P.A.); (S.J.M.)
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia; (P.A.); (S.J.M.)
- Correspondence: ; Tel.: +61-8-8302-5018
| |
Collapse
|
261
|
Maron-Gutierrez T, Rocco PRM. Cell-Free Therapies: Novel Approaches for COVID-19. Front Immunol 2020; 11:583017. [PMID: 33072130 PMCID: PMC7530633 DOI: 10.3389/fimmu.2020.583017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,COVID-19 Virus Network, Ministry of Science and Technology, and Innovation, Rio de Janeiro, Brazil
| |
Collapse
|
262
|
Qian X, An N, Ren Y, Yang C, Zhang X, Li L. Immunosuppressive Effects of Mesenchymal Stem Cells-derived Exosomes. Stem Cell Rev Rep 2020; 17:411-427. [PMID: 32935222 DOI: 10.1007/s12015-020-10040-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) have become important seed cells in therapy because of their immunosuppressive function and anti-inflammatory effects. MSCs exert immunosuppressive effects through direct contact or paracrine action. The paracrine functions of MSCs are at least partially mediated by exosomes, which are membrane vesicles, carrying abundant proteins, nucleic acids and other active molecules. MSC-exos have heterogeneity. The exosomes from different donors, tissues generations of MSCs carry different bioactive molecules. These cargos are transferred to recipient cells by endocytosis or binding to proteins on the receptor surface to mediate intercellular communication between different cell types and affect the functions of the recipient cells. Exosomes play an important role in the regulation of the immune system. Exosomes derived from MSCs (MSC-exos) carry immunomodulatory effectors or transmit active signal molecules to regulate the biological activities of immune cells and thus mediating immune suppression, especially on macrophages and T cells. Mitochondria and autophagy-related pathways are also associated with MSC-exos immunosuppressive effects. Graphical Abstract.
Collapse
Affiliation(s)
- Xiaoli Qian
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Nan An
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Yifan Ren
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Chenxin Yang
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
263
|
Guy R, Offen D. Promising Opportunities for Treating Neurodegenerative Diseases with Mesenchymal Stem Cell-Derived Exosomes. Biomolecules 2020; 10:E1320. [PMID: 32942544 PMCID: PMC7564210 DOI: 10.3390/biom10091320] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disease refers to any pathological condition in which there is a progressive decline in neuronal function resulting from brain atrophy. Despite the immense efforts invested over recent decades in developing treatments for neurodegenerative diseases, effective therapy for these conditions is still an unmet need. One of the promising options for promoting brain recovery and regeneration is mesenchymal stem cell (MSC) transplantation. The therapeutic effect of MSCs is thought to be mediated by their secretome, and specifically, by their exosomes. Research shows that MSC-derived exosomes retain some of the characteristics of their parent MSCs, such as immune system modulation, regulation of neurite outgrowth, promotion of angiogenesis, and the ability to repair damaged tissue. Here, we summarize the functional outcomes observed in animal models of neurodegenerative diseases following MSC-derived exosome treatment. We will examine the proposed mechanisms of action through which MSC-derived exosomes mediate their therapeutic effects and review advanced studies that attempt to enhance the improvement achieved using MSC-derived exosome treatment, with a view towards future clinical use.
Collapse
Affiliation(s)
| | - Daniel Offen
- Felsenstein Medical Research Center, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
264
|
Guo M, Yin Z, Chen F, Lei P. Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer's disease. Alzheimers Res Ther 2020; 12:109. [PMID: 32928293 PMCID: PMC7488700 DOI: 10.1186/s13195-020-00670-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) has been a devastating public health with the development of global aging. Approaches for reducing the current AD epidemic are becoming a primary focus of human healthcare due to the lack of achieved lasting and complete remission strategies to treat AD with the characteristics of heterogeneity and complexity. Exosomes, which is the new emerging approach to intercellular communication, provide novel perspective on identified therapeutic strategies of AD. Mesenchymal stem cell-derived exosomes (MSC-exos) are emerging to be an appealing therapeutic tool for AD, with the donor-derived properties and the characteristics of minimal immunogenicity, effortless storage, nature delivery vehicles, and low risks of tumor formation based on the previous researches. In this review, we elaborate the mechanism of MSC-exos in the treatment of AD and discuss limitations in the clinical application.
Collapse
Affiliation(s)
- Mengtian Guo
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
265
|
Perez-Valle A, Del Amo C, Andia I. Overview of Current Advances in Extrusion Bioprinting for Skin Applications. Int J Mol Sci 2020; 21:E6679. [PMID: 32932676 PMCID: PMC7555324 DOI: 10.3390/ijms21186679] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bioprinting technologies, which have the ability to combine various human cell phenotypes, signaling proteins, extracellular matrix components, and other scaffold-like biomaterials, are currently being exploited for the fabrication of human skin in regenerative medicine. We performed a systematic review to appraise the latest advances in 3D bioprinting for skin applications, describing the main cell phenotypes, signaling proteins, and bioinks used in extrusion platforms. To understand the current limitations of this technology for skin bioprinting, we briefly address the relevant aspects of skin biology. This field is in the early stage of development, and reported research on extrusion bioprinting for skin applications has shown moderate progress. We have identified two major trends. First, the biomimetic approach uses cell-laden natural polymers, including fibrinogen, decellularized extracellular matrix, and collagen. Second, the material engineering line of research, which is focused on the optimization of printable biomaterials that expedite the manufacturing process, mainly involves chemically functionalized polymers and reinforcement strategies through molecular blending and postprinting interventions, i.e., ionic, covalent, or light entanglement, to enhance the mechanical properties of the construct and facilitate layer-by-layer deposition. Skin constructs manufactured using the biomimetic approach have reached a higher level of complexity in biological terms, including up to five different cell phenotypes and mirroring the epidermis, dermis and hypodermis. The confluence of the two perspectives, representing interdisciplinary inputs, is required for further advancement toward the future translation of extrusion bioprinting and to meet the urgent clinical demand for skin equivalents.
Collapse
Affiliation(s)
| | | | - Isabel Andia
- Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza Cruces 12, 48903 Barakaldo, Spain; (A.P.-V.); (C.D.A.)
| |
Collapse
|
266
|
Asgarpour K, Shojaei Z, Amiri F, Ai J, Mahjoubin-Tehran M, Ghasemi F, ArefNezhad R, Hamblin MR, Mirzaei H. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Commun Signal 2020; 18:149. [PMID: 32917227 PMCID: PMC7488404 DOI: 10.1186/s12964-020-00650-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Exosomes are extracellular vesicles characterized by their size, source, release mechanism and contents. MicroRNAs (miRNAs) are single stranded non-coding RNAs transcribed from DNA. Exosomes and miRNAs are widespread in eukaryotic cells, especially in mesenchymal stem cells (MSCs). MSCs are used for tissue regeneration, and also exert paracrine, anti-inflammatory and immunomodulatory effects. However, the use of MSCs is controversial, especially in the presence or after the remission of a tumor, due to their secretion of growth factors and their migration ability. Instead of intact MSCs, MSC-derived compartments or substances could be used as practical tools for diagnosis, follow up, management and monitoring of diseases. Herein, we discuss some aspects of exosomal miRNAs derived from MSCs in the progression, diagnosis and treatment of various diseases. Video Abstract.
Collapse
Affiliation(s)
- Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Zahra Shojaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine (SATM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| |
Collapse
|
267
|
Spehar K, Pan A, Beerman I. Restoring aged stem cell functionality: Current progress and future directions. Stem Cells 2020; 38:1060-1077. [PMID: 32473067 PMCID: PMC7483369 DOI: 10.1002/stem.3234] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Stem cell dysfunction is a hallmark of aging, associated with the decline of physical and cognitive abilities of humans and other mammals [Cell 2013;153:1194]. Therefore, it has become an active area of research within the aging and stem cell fields, and various techniques have been employed to mitigate the decline of stem cell function both in vitro and in vivo. While some techniques developed in model organisms are not directly translatable to humans, others show promise in becoming clinically relevant to delay or even mitigate negative phenotypes associated with aging. This review focuses on diet, treatment, and small molecule interventions that provide evidence of functional improvement in at least one type of aged adult stem cell.
Collapse
Affiliation(s)
- Kevin Spehar
- Epigenetics and Stem Cell Aging Unit, Translational Gerontology Branch, National Institute on Aging, NIH, BRC, Baltimore, Maryland
| | - Andrew Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Isabel Beerman
- Epigenetics and Stem Cell Aging Unit, Translational Gerontology Branch, National Institute on Aging, NIH, BRC, Baltimore, Maryland
| |
Collapse
|
268
|
Spatial Distributions, Characteristics, and Applications of Craniofacial Stem Cells. Stem Cells Int 2020; 2020:8868593. [PMID: 32908545 PMCID: PMC7475745 DOI: 10.1155/2020/8868593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 02/05/2023] Open
Abstract
Stem cells play an irreplaceable role in the development, homeostasis, and regeneration of the craniofacial bone. Multiple populations of tissue-resident craniofacial skeletal stem cells have been identified in different stem cell niches, including the cranial periosteum, jawbone marrow, temporomandibular joint, cranial sutures, and periodontium. These cells exhibit self-renewal and multidirectional differentiation abilities. Here, we summarized the properties of craniofacial skeletal stem cells, based on their spatial distribution. Specifically, we focused on the in vivo genetic fate mapping of stem cells, by exploring specific stem cell markers and observing their lineage commitment in both the homeostatic and regenerative states. Finally, we discussed their application in regenerative medicine.
Collapse
|
269
|
Nilforoushzadeh MA, Khodadadi Yazdi M, Baradaran Ghavami S, Farokhimanesh S, Mohammadi Amirabad L, Zarrintaj P, Saeb MR, Hamblin MR, Zare M, Mozafari M. Mesenchymal Stem Cell Spheroids Embedded in an Injectable Thermosensitive Hydrogel: An In Situ Drug Formation Platform for Accelerated Wound Healing. ACS Biomater Sci Eng 2020; 6:5096-5109. [DOI: 10.1021/acsbiomaterials.0c00988] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samila Farokhimanesh
- Department of Biotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
270
|
Noori L, Arabzadeh S, Mohamadi Y, Mojaverrostami S, Mokhtari T, Akbari M, Hassanzadeh G. Intrathecal administration of the extracellular vesicles derived from human Wharton's jelly stem cells inhibit inflammation and attenuate the activity of inflammasome complexes after spinal cord injury in rats. Neurosci Res 2020; 170:87-98. [PMID: 32717259 DOI: 10.1016/j.neures.2020.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Activation of inflammasome complexes during spinal cord injury (SCI) lead to conversion of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and interleukin-18 (IL-18) to their active form to initiates the neuroinflammation. Mesenchymal stem cells (MSCs) showed anti-inflammatory properties through their extracellular vehicles (EVs). We investigated immunomodulatory potential of human Wharton's jelly mesenchymal stem cells derived extracellular vesicles (hWJ-MSC-EVs) on inflammasome activity one week after SCI in rats. The gene expression and protein level of IL-1β, IL-18, tumor necrosis factor alpha (TNF-α) and caspase1, were assessed by QPCR and western blotting. Immunohistochemistry (IHC) was done to measure the glial fibrillary acidic protein (GFAP) and Nestin expression. Cell death, histological evaluation and hind limb locomotion was studied by TUNEL assay, Nissl staining and Basso, Beattie, Bresnaham (BBB), respectively. Our finding represented that intrathecally administrated of hWJ-MSC-EVs significantly attenuated expression of the examined factors in both mRNA (P < 0.05 and P ≤ 0.01) and protein levels (P < 0.05 and P ≤ 0.01), decreased GFAP and increased Nestin expression (P < 0.05), reduced cell death and revealed the higher number of typical neurons in ventral horn of spinal cord. Consequently, progress in locomotion. We came to the conclusion that hWJ-MSC-EVs has the potential to control the inflammasome activity after SCI in rats. Moreover, EVs stimulated the neural progenitor cells and modulate the astrocyte activity.
Collapse
Affiliation(s)
- Leila Noori
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Arabzadeh
- Department of Biology, School of Basic Sciences, Ale Taha Institute of Higher Education, Tehran, Iran
| | - Yousef Mohamadi
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and addiction studies, School of advanced technologies in medicine, Tehran University of Medical Sciences, Tehran, Iran; Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
| |
Collapse
|
271
|
Insights into the Effects of Mesenchymal Stem Cell-Derived Secretome in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21155241. [PMID: 32718092 PMCID: PMC7432166 DOI: 10.3390/ijms21155241] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC)-derived secretome demonstrated therapeutic effects like those reported after MSCs transplantation. MSC-derived secretome may avoid various side effects of MSC-based therapy, comprising undesirable differentiation of engrafted MSCs and potential activation of the allogeneic immune response. MSC-derived secretome comprises soluble factors and encapsulated extravesicles (EVs). MSC-derived EVs comprise microvesicles, apoptotic bodies, and exosomes. In this review, we focus on the recent insights into the effects of MSC-derived secretome in Parkinson’s disease (PD). In particular, MSC-derived secretome and exosomal components counteracted neuroinflammation and enhanced antioxidant capacity and neurotrophic factors expression. In light of the insights reported in this review, MSC-derived secretome or their released exosomes may be used as a potential therapeutic approach or as adjuvant therapy to counteract the disease progression and improve PD symptoms. Also, MSC-derived secretome may be used as a vehicle in cell transplantation approaches to enhance the viability and survival of engrafted cells. Furthermore, since exosomes can cross the blood–brain barrier, they may be used as biomarkers of neural dysfunction. Further studies are necessary to fully characterize the bioactive molecules present in the secretome and to create a new, effective, cell-free therapeutic approach towards a robust clinical outcome for PD patients.
Collapse
|
272
|
De Pieri A, Rana S, Korntner S, Zeugolis DI. Seaweed polysaccharides as macromolecular crowding agents. Int J Biol Macromol 2020; 164:434-446. [PMID: 32679331 DOI: 10.1016/j.ijbiomac.2020.07.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Development of mesenchymal stem cell-based tissue engineered implantable devices requires prolonged in vitro culture for the development of a three-dimensional implantable device, which leads to phenotypic drift, thus hindering the clinical translation and commercialisation of such approaches. Macromolecular crowding, a biophysical phenomenon based on the principles of excluded-volume effect, dramatically accelerates and increases extracellular matrix deposition during in vitro culture. However, the optimal macromolecular crowder is still elusive. Herein, we evaluated the biophysical properties of various concentrations of different seaweed in origin sulphated polysaccharides and their effect on human adipose derived stem cell cultures. Carrageenan, possibly due to its high sulphation degree, exhibited the highest negative charge values. No correlation was observed between the different concentrations of the crowders and charge, polydispersity index, hydrodynamic radius and fraction volume occupancy across all crowders. None of the crowders, but arabinogalactan, negatively affected cell viability. Carrageenan, fucoidan, galactofucan and ulvan increased extracellular matrix (especially collagen type I and collagen type V) deposition. Carrageenan induced the highest osteogenic effect and galactofucan and fucoidan demonstrated the highest chondrogenic effect. All crowders were relatively ineffective with respect to adipogenesis. Our data highlight the potential of sulphated seaweed polysaccharides for tissue engineering purposes.
Collapse
Affiliation(s)
- Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Shubhasmin Rana
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Stefanie Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
273
|
Terraza-Aguirre C, Campos-Mora M, Elizondo-Vega R, Contreras-López RA, Luz-Crawford P, Jorgensen C, Djouad F. Mechanisms behind the Immunoregulatory Dialogue between Mesenchymal Stem Cells and Th17 Cells. Cells 2020; 9:cells9071660. [PMID: 32664207 PMCID: PMC7408034 DOI: 10.3390/cells9071660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of MSCs to treat various experimental inflammatory and autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease showed promising therapeutic results. These therapeutic properties mediated by MSCs are associated with an attenuated immune response characterized by a reduced frequency of Th17 cells and the generation of regulatory T cells. In this manuscript, we review how MSC and Th17 cells interact, communicate, and exchange information through different ways such as cell-to-cell contact, secretion of soluble factors, and organelle transfer. Moreover, we discuss the consequences of this dynamic dialogue between MSC and Th17 well described by their phenotypic and functional plasticity.
Collapse
Affiliation(s)
- Claudia Terraza-Aguirre
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
| | | | - Roberto Elizondo-Vega
- Facultad de Ciencias Biológicas, Departamento de Biología Celular, Laboratorio de Biología Celular, Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Patricia Luz-Crawford
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago 7620001, Chile;
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
- CHU Montpellier, F-34295 Montpellier, France
- Correspondence: (C.J.); (F.D.); Tel.: +33-(0)-4-67-33-77-96 (C.J.); +33-(0)-4-67-33-04-75 (F.D.)
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
- Correspondence: (C.J.); (F.D.); Tel.: +33-(0)-4-67-33-77-96 (C.J.); +33-(0)-4-67-33-04-75 (F.D.)
| |
Collapse
|
274
|
FoxC1-Induced Vascular Niche Improves Survival and Myocardial Repair of Mesenchymal Stem Cells in Infarcted Hearts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7865395. [PMID: 32963702 PMCID: PMC7490631 DOI: 10.1155/2020/7865395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Aims Forkhead box C1 (FoxC1) is essential for maintaining the hair follicle stem cell niche. The role of FoxC1 in maintaining mesenchymal stem cell (MSC) niches after myocardial infarction (MI) has not been directly determined to date. In this study, we determined to explore the possible roles and mechanisms of FoxC1 on MSC survival and function in the ischemic niche. Methods and Results MI model was established in this study, and expression level of FoxC1 was overexpressed or knocked down through efficient delivery of FoxC1 transfection or siFoxC1. Fifteen days later, the animals were allocated randomly to receive phosphate-buffered saline (PBS) injection or MSC transplantation. We identified FoxC1 as a key regulator of maintaining the vascular niche in the infarcted hearts (IHs) by driving proangiogenic and anti-inflammatory cytokines while repressing inflammatory and fibrotic factor expression. This vascular niche improved MSC survival and capacity in the IHs. Importantly, FoxC1 interacted with MSCs and was required for vessel specification and differentiation of engrafted MSCs in the ischemic niches, promoting myocardial repair. Inhibiting FoxC1 abolished these effects. Conclusion These results definitively implicate FoxC1 signaling in maintaining ischemic vascular niche, which may be helpful in myocardial repair induced by MSC therapy.
Collapse
|
275
|
Robert AW, Stimamiglio MA. The secretome from embryonic stem cell cardiomyogenesis: Same signals, different cellular feedbacks. J Cell Physiol 2020; 236:971-980. [PMID: 32592189 DOI: 10.1002/jcp.29907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022]
Abstract
Ischemic heart diseases are a global health problem that requires the search for alternative therapies to the current treatments. Thus, an understanding of how cardiomyogenic signals can affect cellular behavior would allow us to create strategies to improve the cell recovery in damaged tissues. In this study, we aimed to evaluate the effects of the conditioned medium (CM), collected at different time points during in vitro cardiomyogenesis of human embryonic stem cells (hESCs), to direct cell behavior. We assayed different cell types to demonstrate noncytotoxic effects from the collected CM and that the CM obtained at initial time points of cardiomyogenic differentiation could promote the cell proliferation. Otherwise, the secretome derived from cardiac committed cells during cardiomyogenesis was unable to improve angiogenesis or migration in endothelial cells, and ineffective to stimulate the differentiation of cardioblasts or increase the differentiation efficiency of hESC. Therefore, we demonstrated that the effectiveness of the CM response varies depending on the cell type and the differentiation step of hESC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Anny W Robert
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz-Paraná, Curitiba, Paraná, Brazil
| | - Marco A Stimamiglio
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz-Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
276
|
The Efficacy of Stem Cells Secretome Application in Osteoarthritis: A Systematic Review of In Vivo Studies. Stem Cell Rev Rep 2020; 16:1222-1241. [DOI: 10.1007/s12015-020-09980-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
277
|
Microvesicles from Human Immortalized Cell Lines of Endothelial Progenitor Cells and Mesenchymal Stem/Stromal Cells of Adipose Tissue Origin as Carriers of Bioactive Factors Facilitating Angiogenesis. Stem Cells Int 2020; 2020:1289380. [PMID: 32612661 PMCID: PMC7312709 DOI: 10.1155/2020/1289380] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/14/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Endothelial progenitor cells (EPCs) and mesenchymal stem/stromal cells (MSCs) are associated with maintaining tissue homeostasis and tissue repair. Both types of cells contribute to tissue regeneration through the secretion of trophic factors (alone or in the form of microvesicles). This study investigated the isolation and biological properties of microvesicles (MVs) derived from human immortalized MSC line HATMSC1 of adipose tissue origin and EPC line. The human immortalized cell line derived from the adipose tissue of a patient with venous stasis was established in our laboratory using the hTERT and pSV402 plasmids. The human EPC line originating from cord blood (HEPC-CB.1) was established in our previous studies. Microvesicles were isolated through a sequence of centrifugations. Analysis of the protein content of both populations of microvesicles, using the Membrane-Based Antibody Array and Milliplex ELISA showed that isolated microvesicles transported growth factors and pro- and antiangiogenic factors. Analysis of the miRNA content of isolated microvesicles revealed the presence of proangiogenic miRNA (miR-126, miR-296, miR-378, and miR-210) and low expression of antiangiogenic miRNA (miR-221, miR-222, and miR-92a) using real-time RT-PCR with the TaqMan technique. The isolated microvesicles were assessed for their effect on the proliferation and proangiogenic properties of cells involved in tissue repair. It was shown that both HEPC-CB.1- and HATMSC1-derived microvesicles increased the proliferation of human endothelial cells of dermal origin and that this effect was dose-dependent. In contrast, microvesicles had a limited impact on the proliferation of fibroblasts and keratinocytes. Both types of microvesicles improved the proangiogenic properties of human dermal endothelial cells, and this effect was also dose-dependent, as shown in the Matrigel assay. These results confirm the hypothesis that microvesicles of HEPC-CB.1 and HATMSC1 origin carry proteins and miRNAs that support and facilitate angiogenic processes that are important for cutaneous tissue regeneration.
Collapse
|
278
|
Deng J, Zhang N, Wang Y, Yang C, Wang Y, Xin C, Zhao J, Jin Z, Cao F, Zhang Z. FNDC5/irisin improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction. Stem Cell Res Ther 2020; 11:228. [PMID: 32522253 PMCID: PMC7288492 DOI: 10.1186/s13287-020-01746-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background The beneficial functions of bone marrow mesenchymal stem cells (BM-MSCs) decline with decreased cell survival, limiting their therapeutic efficacy for myocardial infarction (MI). Irisin, a novel myokine which is cleaved from its precursor fibronectin type III domain-containing protein 5 (FNDC5), is believed to be involved in a cardioprotective effect, but little was known on injured BM-MSCs and MI repair yet. Here, we investigated whether FNDC5 or irisin could improve the low viability of transplanted BM-MSCs and increase their therapeutic efficacy after MI. Methods BM-MSCs, isolated from dual-reporter firefly luciferase and enhanced green fluorescent protein positive (Fluc+–eGFP+) transgenic mice, were exposed to normoxic condition and hypoxic stress for 12 h, 24 h, and 48 h, respectively. In addition, BM-MSCs were treated with irisin (20 nmol/L) and overexpression of FNDC5 (FNDC5-OV) in serum deprivation (H/SD) injury. Furthermore, BM-MSCs were engrafted into infarcted hearts with or without FNDC5-OV. Results Hypoxic stress contributed to increased apoptosis, decreased cell viability, and paracrine effects of BM-MSCs while irisin or FNDC5-OV alleviated these injuries. Longitudinal in vivo bioluminescence imaging and immunofluorescence results illustrated that BM-MSCs with overexpression of FNDC5 treatment (FNDC5-MSCs) improved the survival of transplanted BM-MSCs, which ameliorated the increased apoptosis and decreased angiogenesis of BM-MSCs in vivo. Interestingly, FNDC5-OV elevated the secretion of exosomes in BM-MSCs. Furthermore, FNDC5-MSC therapy significantly reduced fibrosis and alleviated injured heart function. Conclusions The present study indicated that irisin or FNDC5 improved BM-MSC engraftment and paracrine effects in infarcted hearts, which might provide a potential therapeutic target for MI.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Cardiology, Postgraduate Training Base in PLA Rocket Force Characteristic Medical Center, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ning Zhang
- Central Beijing Medical District, Chinese PLA General Hospital, Fuxing-Road, Haidian, Beijing, 100853, China
| | - Yong Wang
- Department of Nuclear Medicine, the Fifth Medical Center,, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Beijing, 100071, China
| | - Chao Yang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Yabin Wang
- National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Xin
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Jinming Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhitao Jin
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zheng Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China.
| |
Collapse
|
279
|
Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X, Yu C, Li F, Liang C, Chen Q. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 2020; 11:439. [PMID: 32513969 PMCID: PMC7280216 DOI: 10.1038/s41419-020-2620-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Due to the disconnection of surviving neural elements after spinal cord injury (SCI), such patients had to suffer irreversible loss of motor or sensory function, and thereafter enormous economic and emotional burdens were brought to society and family. Despite many strategies being dealing with SCI, there is still no effective regenerative therapy. To date, significant progress has been made in studies of SCI repair strategies, including gene regulation of neural regeneration, cell or cell-derived exosomes and growth factors transplantation, repair of biomaterials, and neural signal stimulation. The pathophysiology of SCI is complex and multifaceted, and its mechanisms and processes are incompletely understood. Thus, combinatorial therapies have been demonstrated to be more effective, and lead to better neural circuits reconstruction and functional recovery. Combinations of biomaterials, stem cells, growth factors, drugs, and exosomes have been widely developed. However, simply achieving axon regeneration will not spontaneously lead to meaningful functional recovery. Therefore, the formation and remodeling of functional neural circuits also depend on rehabilitation exercises, such as exercise training, electrical stimulation (ES) and Brain-Computer Interfaces (BCIs). In this review, we summarize the recent progress in biological and engineering strategies for reconstructing neural circuits and promoting functional recovery after SCI, and emphasize current challenges and future directions.
Collapse
Affiliation(s)
- Biao Yang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Zhang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Liwei Ying
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhe Gong
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Cao Yu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Chengzhen Liang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Qixin Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
280
|
Cao J, Wang B, Tang T, Lv L, Ding Z, Li Z, Hu R, Wei Q, Shen A, Fu Y, Liu B. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Res Ther 2020; 11:206. [PMID: 32460853 PMCID: PMC7251891 DOI: 10.1186/s13287-020-01719-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023] Open
Abstract
Background Exosomes derived from mesenchymal stem cells (MSC-exos) have been demonstrated with great potential in the treatment of multiple human diseases including acute kidney injury (AKI) by virtue of their intrinsic cargoes. However, there are major challenges of low yield and the lack of an established biomanufacturing platform to efficiently produce MSC-exos, thereby limiting their therapeutic application. Here, we aimed to establish a novel strategy to produce MSC-exos with a hollow fiber bioreactor-based three-dimensional (3D) culture system and evaluate the therapeutic efficacy of 3D-exosomes (3D-exos) on AKI. Methods Mesenchymal stem cells (MSCs) were isolated from fresh human umbilical cord and cultured in two-dimensional (2D) flasks. 2 × 108 MSCs were inoculated into the hollow fiber bioreactor for 3D culture. The culture supernatants were collected every 1 or 2 days for isolating exosomes. Exosomes from 2D (2D-exos) and 3D cultures were characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting analysis of exosome markers. The yield of exosomes from 2 × 108 MSCs seeded in 2D and 3D culture system was compared, based on protein quantification. The therapeutic efficacy of 2D-exos and 3D-exos was investigated in a murine model of cisplatin-induced AKI in vivo and in vitro. Results 3D culture did not significantly change the surface markers of MSCs, as well as the morphology, size, and exosomal markers of 3D-exos when compared to those of 2D-exos. Compared with conventional 2D culture, the 3D culture system increased total exosome production up to 19.4-fold. 3D-exos were more concentrated in the harvested supernatants (15.5-fold) than 2D-exos, which led to a higher exosome collection efficiency of 3D culture system. In vivo, both 2D-exos and 3D-exos significantly alleviated cisplatin-induced murine AKI evidenced by improved renal function, attenuated pathological changes of renal tubules, reduced inflammatory factors, and repressed T cell and macrophage infiltration. Impressively, 3D-exos were more effective than 2D-exos. Moreover, 3D-exos were taken up by tubular epithelial cells (TECs) with improved efficiency, thereby exhibiting superior anti-inflammatory effect and improved viability of TECs in vitro. Conclusions In summary, our findings demonstrate that the hollow fiber 3D culture system provides an efficient strategy for the continuous production of MSC-exos which has enhanced therapeutic potential for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Jingyuan Cao
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China
| | - Taotao Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China
| | - Linli Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China
| | - Zhaoying Ding
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China
| | - Zuolin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China
| | - Ruoyu Hu
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China
| | - Qing Wei
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China
| | - Anran Shen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China
| | - Yuqi Fu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China
| | - Bicheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
281
|
Harrell CR, Jovicic N, Djonov V, Volarevic V. Therapeutic Use of Mesenchymal Stem Cell-Derived Exosomes: From Basic Science to Clinics. Pharmaceutics 2020; 12:pharmaceutics12050474. [PMID: 32456070 PMCID: PMC7313713 DOI: 10.3390/pharmaceutics12050474] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSC) are, due to their immunosuppressive and regenerative properties, used as new therapeutic agents in cell-based therapy of inflammatory and degenerative diseases. A large number of experimental and clinical studies revealed that most of MSC-mediated beneficial effects were attributed to the effects of MSC-sourced exosomes (MSC-Exos). MSC-Exos are nano-sized extracellular vesicles that contain MSC-derived bioactive molecules (messenger RNA (mRNA), microRNAs (miRNAs)), enzymes, cytokines, chemokines, and growth factors) that modulate phenotype, function and homing of immune cells, and regulate survival and proliferation of parenchymal cells. In this review article, we emphasized current knowledge about molecular and cellular mechanisms that were responsible for MSC-Exos-based beneficial effects in experimental models and clinical trials. Additionally, we elaborated on the challenges of conventional MSC-Exos administration and proposed the use of new bioengineering and cellular modification techniques which could enhance therapeutic effects of MSC-Exos in alleviation of inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL 34684, USA;
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 2 Baltzerstrasse, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), Università di Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Correspondence: ; Tel.: +381-34306800; Fax: +381-34306800
| |
Collapse
|
282
|
Varderidou-Minasian S, Lorenowicz MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics 2020; 10:5979-5997. [PMID: 32483432 PMCID: PMC7254996 DOI: 10.7150/thno.40122] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are important players in tissue homeostasis and regeneration owing to their immunomodulatory potential and release of trophic factors that promote healing. They have been increasingly used in clinical trials to treat multiple conditions associated with inflammation and tissue damage such as graft versus host disease, orthopedic injuries and cardiac and liver diseases. Recent evidence demonstrates that their beneficial effects are derived, at least in part, from their secretome. In particular, data from animal models and first-in-man studies indicate that MSC-derived extracellular vesicles (MSC-EVs) can exert similar therapeutic potential as their cells of origin. MSC-EVs are membranous structures loaded with proteins, lipids, carbohydrates and nucleic acids, which play an important role in cell-cell communication and may represent an attractive alternative for cell-based therapy. In this article we summarize recent advances in the use of MSC-EVs for tissue repair. We highlight several isolation and characterization approaches used to enrich MSC-derived EVs. We discuss our current understanding of the relative contribution of the MSC-EVs to the immunomodulatory and regenerative effects mediated by MSCs and MSC secretome. Finally we highlight the challenges and opportunities, which come with the potential use of MSC-EVs as cell free therapy for conditions that require tissue repair.
Collapse
|
283
|
Carrillo‐Gálvez AB, Gálvez‐Peisl S, González‐Correa JE, de Haro‐Carrillo M, Ayllón V, Carmona‐Sáez P, Ramos‐Mejía V, Galindo‐Moreno P, Cara FE, Granados‐Principal S, Muñoz P, Martin F, Anderson P. GARP is a key molecule for mesenchymal stromal cell responses to TGF-β and fundamental to control mitochondrial ROS levels. Stem Cells Transl Med 2020; 9:636-650. [PMID: 32073751 PMCID: PMC7180295 DOI: 10.1002/sctm.19-0372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising cell therapy in regenerative medicine and for autoimmune/inflammatory diseases. However, a main hurdle for MSCs-based therapies is the loss of their proliferative potential in vitro. Here we report that glycoprotein A repetitions predominant (GARP) is required for the proliferation and survival of adipose-derived MSCs (ASCs) via its regulation of transforming growth factor-β (TGF-β) activation. Silencing of GARP in human ASCs increased their activation of TGF-β which augmented the levels of mitochondrial reactive oxygen species (mtROS), resulting in DNA damage, a block in proliferation and apoptosis. Inhibition of TGF-β signaling reduced the levels of mtROS and DNA damage and restored the ability of GARP-/low ASCs to proliferate. In contrast, overexpression of GARP in ASCs increased their proliferative capacity and rendered them more resistant to etoposide-induced DNA damage and apoptosis, in a TGF-β-dependent manner. In summary, our data show that the presence or absence of GARP on ASCs gives rise to distinct TGF-β responses with diametrically opposing effects on ASC proliferation and survival.
Collapse
Affiliation(s)
- Ana Belén Carrillo‐Gálvez
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Sheyla Gálvez‐Peisl
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Juan Elías González‐Correa
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Marina de Haro‐Carrillo
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Verónica Ayllón
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Pedro Carmona‐Sáez
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Verónica Ramos‐Mejía
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Pablo Galindo‐Moreno
- Department of Oral Surgery and Implant DentistrySchool of Dentistry, University of GranadaGranadaSpain
| | - Francisca E. Cara
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
- UGC de Oncología Médica, Hospital Universitario de JaénJaénSpain
| | - Sergio Granados‐Principal
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
- UGC de Oncología Médica, Hospital Universitario de JaénJaénSpain
| | - Pilar Muñoz
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Francisco Martin
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Per Anderson
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio ClínicoHospital Universitario Virgen de las NievesGranadaSpain
- Biosanitary Institute of Granada (ibs.Granada), University of GranadaSpain
| |
Collapse
|
284
|
Ragni E, Perucca Orfei C, De Luca P, Mondadori C, Viganò M, Colombini A, de Girolamo L. Inflammatory priming enhances mesenchymal stromal cell secretome potential as a clinical product for regenerative medicine approaches through secreted factors and EV-miRNAs: the example of joint disease. Stem Cell Res Ther 2020; 11:165. [PMID: 32345351 PMCID: PMC7189600 DOI: 10.1186/s13287-020-01677-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC)-enriched products showed positive clinical outcomes in regenerative medicine, where tissue restoration and inflammation control are needed. GMP-expanded MSCs displayed an even higher potential due to exclusive secretion of therapeutic factors, both free and conveyed within extracellular vesicles (EVs), collectively termed secretome. Moreover, priming with biochemical cues may influence the portfolio and biological activities of MSC-derived factors. For these reasons, the use of naive or primed secretome gained attention as a cell-free therapeutic option. Albeit, at present, a homogenous and comprehensive secretome fingerprint is still missing. Therefore, the aim of this work was to deeply characterize adipose-derived MSC (ASC)-secreted factors and EV-miRNAs, and their modulation after IFNγ preconditioning. The crucial influence of the target pathology or cell type was also scored in osteoarthritis to evaluate disease-driven potency. METHODS ASCs were isolated from four donors and cultured with and without IFNγ. Two-hundred secreted factors were assayed by ELISA. ASC-EVs were isolated by ultracentrifugation and validated by flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. miRNome was deciphered by high-throughput screening. Bioinformatics was used to predict the modulatory effect of secreted molecules on pathologic cartilage and synovial macrophages based on public datasets. Models of inflammation for both macrophages and chondrocytes were used to test by flow cytometry the secretome anti-inflammatory potency. RESULTS Data showed that more than 60 cytokines/chemokines could be identified at varying levels of intensity in all samples. The vast majority of factors are involved in extracellular matrix remodeling, and chemotaxis or motility of inflammatory cells. IFNγ is able to further increase the capacity of the secretome to stimulate cell migration signals. Moreover, more than 240 miRNAs were found in ASC-EVs. Sixty miRNAs accounted for > 95% of the genetic message that resulted to be chondro-protective and M2 macrophage polarizing. Inflammation tipped the balance towards a more pronounced tissue regenerative and anti-inflammatory phenotype. In silico data were confirmed on inflamed macrophages and chondrocytes, with secretome being able to increase M2 phenotype marker CD163 and reduce the chondrocyte inflammation marker VCAM1, respectively. IFNγ priming further enhanced secretome anti-inflammatory potency. CONCLUSIONS Given the portfolio of soluble factors and EV-miRNAs, ASC secretome showed a marked capacity to stimulate cell motility and modulate inflammatory and degenerative processes. Preconditioning is able to increase this ability, suggesting inflammatory priming as an effective strategy to obtain a more potent clinical product which use should always be driven by the molecular mark of the target pathology.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Carlotta Mondadori
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via R. Galeazzi 4, Milan, 20161 Italy
| |
Collapse
|
285
|
Lv Q, Deng J, Chen Y, Wang Y, Liu B, Liu J. Engineered Human Adipose Stem-Cell-Derived Exosomes Loaded with miR-21-5p to Promote Diabetic Cutaneous Wound Healing. Mol Pharm 2020; 17:1723-1733. [PMID: 32233440 DOI: 10.1021/acs.molpharmaceut.0c00177] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetic wounds are a worldwide health problem causing extremely heavy public health burden and require effective treatment. Optimal strategies for treating nonhealing diabetic wounds include stem-cell-based therapy and delivery of novel drug substances, such as functional microRNAs (miRNAs); however, miRNA easily degrades in the wound microenvironment. Herein, we developed a human adipose stem-cell-derived exosome (hASC-exos)-based miRNA delivery strategy to enhance its therapeutic efficacy. The miR-21-5p mimics, as novel therapeutic candidates for diabetic wounds, were loaded into hASC-exos by electroporation, taking advantage of natural availability and biocompatibility of exosomes as extracellular miRNA transporting particles. The engineered exosomes (E-exos) exhibited excellent effects on promoting proliferation and migration of keratinocytes via Wnt/β-catenin signaling in vitro and accelerating diabetic wound healing by increasing re-epithelialization, collagen remodeling, angiogenesis, and vessel maturation in vivo. Results from this study would set the fundamentals of applying hASC-exos to deliver future drug substances and to develop cell-free therapy for wound-healing treatments.
Collapse
Affiliation(s)
- Qijun Lv
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Junfeng Deng
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - You Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yizhen Wang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
286
|
Luo Y, Kishi S, Sasaki T, Ohmori H, Fujiwara-Tani R, Mori S, Goto K, Nishiguchi Y, Mori T, Kawahara I, Kondoh M, Kuniyasu H. Targeting claudin-4 enhances chemosensitivity in breast cancer. Cancer Sci 2020; 111:1840-1850. [PMID: 32086991 PMCID: PMC7226188 DOI: 10.1111/cas.14361] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by highly aggressive phenotype, limited treatment options and a poor prognosis. In the present study, we examined the therapeutic effect of anti–claudin (CLDN)‐4 extracellular domain antibody, 4D3, on TNBC. When the expression of CLDN4 and CLDN1 in invasive ductal carcinoma (IDC) was examined in 114 IDC (78 cases from 2004 to 2009 in a single center and 36 cases of tissues array), CLDN1 had lower expression than CLDN4 and was correlated with histological grade. In contrast, expression of CLDN4 was correlated with histological grade, receptor subtype, and stage. CLDN4 expression in human IDC cell lines MCF‐7 (luminal subtype) and MDA‐468 (TNBC) was at the same level. In both cells, paclitaxel (PTX)‐induced growth suppression was enhanced by 4D3. Furthermore, 4D3 increased both intracellular PTX concentration (in both cells) and apoptosis. In the mouse model, 4D3 promoted the antitumor effect of PTX on subcutaneous tumors and reduced lung metastasis. The combination of PTX and 4D3 reduced M2 macrophages and mesenchymal stem cells in the tumor. 4D3 also reduced stemness of the tumors and increased the intratumoral pH. Moreover, concurrent treatment with 4D3, PTX and tamoxifen, or with PTX and tamoxifen in MDA‐468 also showed the same level of antitumor activity and survival as MCF‐7. Furthermore, in a bone metastasis model, combination of PTX and bisphosphonate with 4D3 promoted tumor growth in both cells. Thus, CLDN4 targeting of the antibody facilitated existing therapeutic effects.
Collapse
Affiliation(s)
- Yi Luo
- Department of Molecular Pathology, Nara Medical University, Nara, Japan.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | | | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| |
Collapse
|
287
|
Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int 2020; 2020:4356359. [PMID: 32215017 PMCID: PMC7085399 DOI: 10.1155/2020/4356359] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the mesenchymal stromal cell- (MSC-) derived secretome is becoming increasingly intriguing from a clinical perspective due to its ability to stimulate endogenous tissue repair processes as well as its effective regulation of the immune system, mimicking the therapeutic effects produced by the MSCs. The secretome is a composite product secreted by MSC in vitro (in conditioned medium) and in vivo (in the extracellular milieu), consisting of a protein soluble fraction (mostly growth factors and cytokines) and a vesicular component, extracellular vesicles (EVs), which transfer proteins, lipids, and genetic material. MSC-derived secretome differs based on the tissue from which the MSCs are isolated and under specific conditions (e.g., preconditioning or priming) suggesting that clinical applications should be tailored by choosing the tissue of origin and a priming regimen to specifically correct a given pathology. MSC-derived secretome mediates beneficial angiogenic effects in a variety of tissue injury-related diseases. This supports the current effort to develop cell-free therapeutic products that bring both clinical benefits (reduced immunogenicity, persistence in vivo, and no genotoxicity associated with long-term cell cultures) and manufacturing advantages (reduced costs, availability of large quantities of off-the-shelf products, and lower regulatory burden). In the present review, we aim to give a comprehensive picture of the numerous components of the secretome produced by MSCs derived from the most common tissue sources for clinical use (e.g., AT, BM, and CB). We focus on the factors involved in the complex regulation of angiogenic processes.
Collapse
|
288
|
Meng HY, Chen LQ, Chen LH. The inhibition by human MSCs-derived miRNA-124a overexpression exosomes in the proliferation and migration of rheumatoid arthritis-related fibroblast-like synoviocyte cell. BMC Musculoskelet Disord 2020; 21:150. [PMID: 32143603 PMCID: PMC7060528 DOI: 10.1186/s12891-020-3159-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis is a long-term, progressive autoimmune disease. It is characterized by synovial hyperplasia leading to swelling, stiffness, and joint deformity in more than one joint. Fibroblast-like synoviocytes are the major cell types that make up the synovial intima structure, which is one of the decisive factors in the development and course of rheumatoid arthritis. METHODS The potential therapeutic effects of MSCs-derived miRNA-124a overexpression exosomes were evaluated in vitro by the method including MTT assay and cell cycle test for cell proliferation, scratch wound closure and transwell for cell migration, flow cytometry and western for the apoptosis detection. RESULTS Exosomes derived from human MSCs that overexpression miRNA-124a were prepared and characterized. We found that the pretreatment of this exosome was able to inhibit the proliferation and migration of fibroblast-like synoviocyte cell line and promote the apoptosis of this cell during the co-incubation. CONCLUSIONS Exosomes derived from MSCs were proved to be a suitable vector for the delivery of therapeutic miRNA-124a, and such miRNA-124a overexpression exosomes were expected to provide a new medicine and strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Hong-Yan Meng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, P.R. China
| | - Li-Qing Chen
- Health Management Center of Shandong Sunshine Union Hospital Co.,Ltd., Shandong, P.R. China
| | - Li-Hui Chen
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
289
|
Harrell CR, Markovic BS, Fellabaum C, Arsenijevic N, Djonov V, Volarevic V. The role of Interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. Biofactors 2020; 46:263-275. [PMID: 31755595 DOI: 10.1002/biof.1587] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-1 receptor antagonist (IL-1Ra), a naturally occurring antagonist of IL-1α/IL-1β signaling pathways, has been attributed to the immunosuppressive effects of mesenchymal stem cells (MSCs). MSCs, in IL-1Ra-dependent manner, suppressed production of IL-1β in dermal macrophages, induced their polarization in anti-inflammatory M2 phenotype, attenuated antigen-presenting properties of dendritic cells (DCs), and promoted expansion of immunosuppressive T regulatory cells in the skin, which resulted in enhanced repair of the nonhealing wounds. Reduced activation of inflammasome and suppressed production of IL-1β in macrophages were mainly responsible for beneficial effects of MSC-derived IL-1Ra in alleviation of acute lung injury, dry eye syndrome, and corneal injury. Through the production of IL-1Ra, MSCs reduced migration of DCs to the draining lymph nodes and attenuated generation of inflammatory Th1 and Th17 cells that resulted in alleviation of fulminant hepatitis and rheumatoid arthritis. MSCs, in IL-1Ra-dependent manner, reduced liver fibrosis by suppressing production of Type I collagen in hepatic stellate cells. IL-1Ra was, at least partially, responsible for enhanced proliferation of hepatocytes and chondrocytes in MSC-treated animals with partial hepatectomy and osteoarthritis. Despite of these beneficial effects, IL-1Ra-dependent inhibition of IL-1α/IL-1β-signaling significantly increased risk of infections. Therefore, future experimental and clinical studies should delineate potential side effects of MSC-derived IL-1Ra before IL-1Ra-overexpressing MSCs could be used as a potentially new therapeutic agent for the treatment of acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Bojana Simovic Markovic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | | - Vladislav Volarevic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
290
|
Boulestreau J, Maumus M, Rozier P, Jorgensen C, Noël D. Mesenchymal Stem Cell Derived Extracellular Vesicles in Aging. Front Cell Dev Biol 2020; 8:107. [PMID: 32154253 PMCID: PMC7047768 DOI: 10.3389/fcell.2020.00107] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Aging is associated with high prevalence of chronic degenerative diseases that take a large part of the increasing burden of morbidities in a growing demographic of elderly people. Aging is a complex process that involves cell autonomous and cell non-autonomous mechanisms where senescence plays an important role. Senescence is characterized by the loss of proliferative potential, resistance to cell death by apoptosis and expression of a senescence-associated secretory phenotype (SASP). SASP includes pro-inflammatory cytokines and chemokines, tissue-damaging proteases, growth factors; all contributing to tissue microenvironment alteration and loss of tissue homeostasis. Emerging evidence suggests that the changes in the number and composition of extracellular vesicles (EVs) released by senescent cells contribute to the adverse effects of senescence in aging. In addition, age-related alterations in mesenchymal stem/stromal cells (MSCs) have been associated to dysregulated functions. The loss of functional stem cells necessary to maintain tissue homeostasis likely directly contributes to aging. In this review, we will focus on the characteristics and role of EVs isolated from senescent MSCs, the potential effect of MSC-derived EVs in aging and discuss their therapeutic potential to improve age-related diseases.
Collapse
Affiliation(s)
- Jérémy Boulestreau
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Marie Maumus
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Pauline Rozier
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Danièle Noël
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| |
Collapse
|
291
|
Kim YH, Cho KA, Lee HJ, Park M, Shin SJ, Park JW, Woo SY, Ryu KH. Conditioned Medium from Human Tonsil-Derived Mesenchymal Stem Cells Enhances Bone Marrow Engraftment via Endothelial Cell Restoration by Pleiotrophin. Cells 2020; 9:cells9010221. [PMID: 31952360 PMCID: PMC7017309 DOI: 10.3390/cells9010221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cotransplantation of mesenchymal stem cells (MSCs) with hematopoietic stem cells (HSCs) has been widely reported to promote HSC engraftment and enhance marrow stromal regeneration. The present study aimed to define whether MSC conditioned medium could recapitulate the effects of MSC cotransplantation. Mouse bone marrow (BM) was partially ablated by the administration of a busulfan and cyclophosphamide (Bu–Cy)-conditioning regimen in BALB/c recipient mice. BM cells (BMCs) isolated from C57BL/6 mice were transplanted via tail vein with or without tonsil-derived MSC conditioned medium (T-MSC CM). Histological analysis of femurs showed increased BM cellularity when T-MSC CM or recombinant human pleiotrophin (rhPTN), a cytokine readily secreted from T-MSCs with a function in hematopoiesis, was injected with BMCs. Microstructural impairment in mesenteric and BM arteriole endothelial cells (ECs) were observed after treatment with Bu–Cy-conditioning regimen; however, T-MSC CM or rhPTN treatment restored the defects. These effects by T-MSC CM were disrupted in the presence of an anti-PTN antibody, indicating that PTN is a key mediator of EC restoration and enhanced BM engraftment. In conclusion, T-MSC CM administration enhances BM engraftment, in part by restoring vasculature via PTN production. These findings highlight the potential therapeutic relevance of T-MSC CM for increasing HSC transplantation efficacy.
Collapse
Affiliation(s)
- Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Hyun-Ji Lee
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Minhwa Park
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Sang-Jin Shin
- Department of Orthopaedic Surgery, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea;
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea;
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea
- Correspondence: ; Tel.: +82-2-6986-1666; Fax: +82-2-6986-7000
| |
Collapse
|
292
|
Shima A, Itou A, Takeuchi S. Cell fibers promote proliferation of co-cultured cells on a dish. Sci Rep 2020; 10:288. [PMID: 31937888 PMCID: PMC6959263 DOI: 10.1038/s41598-019-57213-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
This paper describes a co-culture method using cell fiber technology. Cell fibers are cell-laden hydrogel microfibers, in which cells are cultured three-dimensionally and allowed to reach more mature state than the conventional two-dimensional cell culture. Cells in the cell fibers are encapsulated by alginate shell. Only cellular secretome is released into the surrounding environment through the shell while the cells were retained by the fiber. With their high handleability and retrievability, we propose to use the cell fibers for co-culture to ensure steady supply of cellular secretome. We cultured mouse C2C12 myoblasts with mouse 3T3 fibroblasts encapsulated in the cell fibers for two days. The number of C2C12 cells increased proportionally to the number of co-cultured 3T3 fibers, suggesting that the secretome of 3T3 fibers promoted survival and proliferation of C2C12 cells. We believe that cell fiber technology is a useful tool for co-culturing cells, and it will contribute to both basic cell biology and tissue engineering with its unique features.
Collapse
Affiliation(s)
- Ai Shima
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akane Itou
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
293
|
Lin M, Liu X, Zheng H, Huang X, Wu Y, Huang A, Zhu H, Hu Y, Mai W, Huang Y. IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway. Stem Cell Res Ther 2020; 11:22. [PMID: 31918758 PMCID: PMC6953226 DOI: 10.1186/s13287-019-1544-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/16/2019] [Accepted: 12/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bone marrow mesenchymal stem cell (BMSC) transplantation represents a promising therapeutic strategy for ischemic heart disease. However, its effects are hampered by the poor viability of transplanted cells and the hostile microenvironment of the ischemic region. Insulin-like growth factor-1 (IGF-1) is an important paracrine growth factor of BMSC and plays an important role in the properties of BMSC. Here, we investigated whether overexpressing IGF-1 could enhance the BMSC viability, migration, anti-apoptosis, and protective effects of cardiomyocytes, and explore the underlying mechanisms’ focus on the role of the AKT/secreted frizzled-related protein 2 (SFRP2)/β-catenin pathway. Methods We constructed BMSCs overexpressing insulin-like growth factor-1 (BMSCs-IGF-1) or empty vector (BMSCs-NC) using lentivirus, and evaluated cell survival, proliferation, and migration under normoxic and hypoxic conditions. Co-culture of rat cardiomyoblasts with BMSCs was performed to explore the paracrine effect of BMSCs-IGF-1 for rescuing cardiomyoblasts under hypoxia. Transplantation of BMSCs in acute myocardial infarction rats was used to explore the effect of BMSCs-IGF-1 therapy. Results BMSCs-IGF-1 exhibited a higher cell proliferation rate, migration capacity, and stemness, and were more resistant to apoptosis under hypoxia. Overexpression of IGF-1 upregulated the expression of total and nuclear β-catenin via the AKT-secreted frizzled-related protein 2 (SFRP2) pathway, which enhanced cell survival. Inhibition of AKT or SFRP2 knockdown by siRNA significantly antagonized the effect of IGF-1 and decreased the expression of β-catenin. The expression of β-catenin target genes, including cyclin D1 and c-Myc, were accordingly decreased. Moreover, BMSCs-IGF-1 could rescue cardiomyoblasts from hypoxia-induced apoptosis and preserve cell viability under hypoxia. Transplantation of BMSCs-IGF-1 into myocardial infarction rats greatly reduced infarct volume than BMSCs-NC, with significantly greater expression of SFRP2 and β-catenin. Conclusions These results suggest that in BMSCs overexpressing IGF-1, SFRP2 is an important mediator for the enhancement of stem cell viability via activating, rather than antagonizing, the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Mingzhuo Lin
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Xinyue Liu
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Yu Wu
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Anqing Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Hailan Zhu
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Weiyi Mai
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China. .,The George Institute for Global Health, Sydney, Australia.
| |
Collapse
|
294
|
Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells 2019; 8:cells8121605. [PMID: 31835680 PMCID: PMC6952783 DOI: 10.3390/cells8121605] [Citation(s) in RCA: 469] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
There is growing evidence that mesenchymal stem cell (MSC)-based immunosuppression was mainly attributed to the effects of MSC-derived extracellular vesicles (MSC-EVs). MSC-EVs are enriched with MSC-sourced bioactive molecules (messenger RNA (mRNA), microRNAs (miRNAs), cytokines, chemokines, immunomodulatory factors) that regulate phenotype, function and homing of immune cells. In this review article we emphasized current knowledge regarding molecular mechanisms responsible for the therapeutic effects of MSC-EVs in attenuation of autoimmune and inflammatory diseases. We described the disease-specific cellular targets of MSC-EVs and defined MSC-sourced molecules, which were responsible for MSC-EV-based immunosuppression. Results obtained in a large number of experimental studies revealed that both local and systemic administration of MSC-EVs efficiently suppressed detrimental immune response in inflamed tissues and promoted survival and regeneration of injured parenchymal cells. MSC-EVs-based anti-inflammatory effects were relied on the delivery of immunoregulatory miRNAs and immunomodulatory proteins in inflammatory immune cells (M1 macrophages, dendritic cells (DCs), CD4+Th1 and Th17 cells), enabling their phenotypic conversion into immunosuppressive M2 macrophages, tolerogenic DCs and T regulatory cells. Additionally, through the delivery of mRNAs and miRNAs, MSC-EVs activated autophagy and/or inhibited apoptosis, necrosis and oxidative stress in injured hepatocytes, neurons, retinal cells, lung, gut and renal epithelial cells, promoting their survival and regeneration.
Collapse
|
295
|
Baldari S, Di Rocco G, Magenta A, Picozza M, Toietta G. Extracellular Vesicles-Encapsulated MicroRNA-125b Produced in Genetically Modified Mesenchymal Stromal Cells Inhibits Hepatocellular Carcinoma Cell Proliferation. Cells 2019; 8:cells8121560. [PMID: 31816923 PMCID: PMC6952965 DOI: 10.3390/cells8121560] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and one of the prominent causes of cancer mortality, leading to approximately 780,000 deaths per year worldwide. Down-regulation of microRNA-125b (miR-125b) is a prognostic indicator in HCC patients. Conversely, over-expression of miR-125b in HCC cells induces cell cycle arrest, inhibits proliferation, migration and invasion. Extracellular vesicles (EVs) function as intercellular messengers transferring proteins, RNAs, DNAs, carbohydrates, and lipids. Since EVs protect their cargo from degradation, delivery of therapeutic bioactive molecules, in particular miRNAs, through EVs represents an innovative avenue for cancer therapy. In this study, we evaluated a replacement strategy for the treatment of HCC via delivery of EVs secreted from human adipose tissue-derived mesenchymal stromal/medicinal signaling cells (ASCs) genetically modified with a lentiviral vector expressing miR-125b with a specific ExoMotif sequence tag to enhance the loading into extracellular vesicles. In particular, we determined that the delivery of miR-125b-loaded EVs produced in engineered ASCs specifically reduces HCC cell proliferation in vitro modulating a series of miR-125b targets, which belong to the p53 signaling pathway. This proof-of-concept study supports the development of innovative therapeutic strategies for HCC via EV-mediated miRNA delivery.
Collapse
Affiliation(s)
- Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
- Department of Medical Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
| | - Alessandra Magenta
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy;
| | - Mario Picozza
- Laboratory of Neuroimmunology, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
- Correspondence: ; Tel.: +39-06-5266-2604
| |
Collapse
|
296
|
Peng C, Lu L, Li Y, Hu J. Neurospheres Induced from Human Adipose-Derived Stem Cells as a New Source of Neural Progenitor Cells. Cell Transplant 2019; 28:66S-75S. [PMID: 31813268 PMCID: PMC7016463 DOI: 10.1177/0963689719888619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Human adipose-derived stem cells are used in regenerative medicine for treating various diseases including osteoarthritis, degenerative arthritis, cartilage or tendon injury, etc. However, their use in neurological disorders is limited, probably due to the lack of a quick and efficient induction method of transforming these cells into neural stem or progenitor cells. In this study, we reported a highly efficient and simple method to induce adipose-derived stem cells into neural progenitor cells within 12 hours, using serum-free culture combined with a well-defined induction medium (epidermal growth factor 20 ng/ml and basic fibroblast growth factor, both at 20 ng/ml, with N2 and B27 supplements). These adipose-derived stem cell-derived neural progenitor cells grow as neurospheres, can self-renew to form secondary neurospheres, and can be induced to become neurons and glial cells. Real-time polymerase chain reaction showed significantly upregulated expression of neurogenic genes Sox2 and Nestin with a moderate increase in stemness gene expression. Raybio human growth factor analysis showed a significantly upregulated expression of multiple neurogenic and angiogenic cytokines such as brain-derived neurotrophic factor, glial cell line-derived neurotrophic growth factor, nerve growth factor, basic fibroblast growth factor and vascular endothelial growth factor etc. Therefore, adipose-derived stem cell-derived neurospheres can be a new source of neural progenitor cells and hold great potential for future cell replacement therapy for treatment of various refractory neurological diseases.
Collapse
Affiliation(s)
- Chunyang Peng
- Emergency Internal Medicine Department, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Stem Cell Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Lu
- Stem Cell Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yajiao Li
- Stem Cell Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Oncology, Xiangfan Central Hospital, Xiangfan, Hubei, China
| | - Jingqiong Hu
- Stem Cell Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
297
|
Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front Bioeng Biotechnol 2019; 7:352. [PMID: 31828066 PMCID: PMC6890555 DOI: 10.3389/fbioe.2019.00352] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Effective regeneration of bone defects often presents significant challenges, particularly in patients with decreased tissue regeneration capacity due to extensive trauma, disease, and/or advanced age. A number of studies have focused on enhancing bone regeneration by applying mesenchymal stromal cells (MSCs) or MSC-based bone tissue engineering strategies. However, translation of these approaches from basic research findings to clinical use has been hampered by the limited understanding of MSC therapeutic actions and complexities, as well as costs related to the manufacturing, regulatory approval, and clinical use of living cells and engineered tissues. More recently, a shift from the view of MSCs directly contributing to tissue regeneration toward appreciating MSCs as "cell factories" that secrete a variety of bioactive molecules and extracellular vesicles with trophic and immunomodulatory activities has steered research into new MSC-based, "cell-free" therapeutic modalities. The current review recapitulates recent developments, challenges, and future perspectives of these various MSC-based bone tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Traweger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Spinal Cord Injury & Tissue Regeneration Center Salzburg, Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
298
|
Trubiani O, Marconi GD, Pierdomenico SD, Piattelli A, Diomede F, Pizzicannella J. Human Oral Stem Cells, Biomaterials and Extracellular Vesicles: A Promising Tool in Bone Tissue Repair. Int J Mol Sci 2019; 20:E4987. [PMID: 31600975 PMCID: PMC6834314 DOI: 10.3390/ijms20204987] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and/or regenerative medicine are fields of life science exploiting both engineering and biological fundamentals to originate new tissues and organs and to induce the regeneration of damaged or diseased tissues and organs. In particular, de novo bone tissue regeneration requires a mechanically competent osteo-conductive/inductive 3D biomaterial scaffold that guarantees the cell adhesion, proliferation, angiogenesis and differentiation into osteogenic lineage. Cellular components represent a key factor in tissue engineering and bone growth strategies take advantage from employment of mesenchymal stem cells (MSCs), an ideal cell source for tissue repair. Recently, the application of extracellular vesicles (EVs), isolated from stem cells, as cell-free therapy has emerged as a promising therapeutic strategy. This review aims at summarizing the recent and representative research on the bone tissue engineering field using a 3D scaffold enriched with human oral stem cells and their derivatives, EVs, as a promising therapeutic potential in the reconstructing of bone tissue defects.
Collapse
Affiliation(s)
- Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Guya D Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Sante D Pierdomenico
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
- ASL02 Lanciano-Vasto-Chieti, Ss. Annunziata Hospital, 66100 Chieti, Italy.
| |
Collapse
|