251
|
Fuerniss LK, Kreikemeier KK, Reed LD, Cravey MD, Johnson BJ. Cecal microbiota of feedlot cattle fed a four-species Bacillus supplement. J Anim Sci 2022; 100:skac258. [PMID: 35953238 PMCID: PMC9576023 DOI: 10.1093/jas/skac258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
As commercial fed cattle consume large amounts of concentrate feedstuffs, hindgut health can be challenged. The objective of this study was to evaluate the effects of a commercially available Bacillus feed additive on cattle health outcomes and cecal microbiota of fed cattle at the time of harvest. Commercial cattle from a single feedlot were identified for characterization of cecal microbial communities using 16S ribosomal ribonucleic acid gene sequencing. All cattle were fed a common corn-based finishing diet. Control cattle (CON) were administered no treatment while treated cattle (TRT) were supplemented daily with 0.050 g of MicroSaf 4C 40 (2 billion colony forming units of Bacillus spp.; Phileo by Lesaffre, Milwaukee, WI). Immediately after harvest and evisceration, the cecal contents of cattle were sampled. After DNA extraction, amplification, and sequencing, reads from CON samples (N = 12) and TRT samples (N = 12) were assigned taxonomy using the SILVA 138 database. Total morbidity, first treatment of atypical interstitial pneumonia, and early shipments for harvest were decreased among TRT cattle compared to CON cattle (P ≤ 0.021). On average, cecal microbiota from TRT cattle had greater alpha diversity than microbiota from CON cattle as measured by Shannon diversity, Pielou's evenness, and feature richness (P < 0.010). Additionally, TRT microbial communities were different (P = 0.001) and less variable (P < 0.001) than CON microbial communities when evaluated by unweighted UniFrac distances. By relative abundance across all samples, the most prevalent phyla were Firmicutes (55.40%, SD = 15.97) and Bacteroidetes (28.17%, SD = 17.74) followed by Proteobacteria (6.75%, SD = 10.98), Spirochaetes (4.54%, SD = 4.85), and Euryarchaeota (1.77%, SD = 3.00). Spirochaetes relative abundance in TRT communities was greater than that in CON communities and was differentially abundant between treatments by ANCOM testing (W = 11); Monoglobaceae was the only family-level taxon identified as differentially abundant (W = 59; greater mean relative abundance in TRT group by 2.12 percentage points). Half (N = 6) of the CON samples clustered away from all other samples based on principal coordinates and represented cecal dysbiosis among CON cattle. The results of this study indicated that administering a four-species blend of Bacillus positively supported the cecal microbial communities of finishing cattle. Further research is needed to explore potential mechanisms of action of Bacillus DFM products in feedlot cattle.
Collapse
Affiliation(s)
- Luke K Fuerniss
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Lynn D Reed
- Phileo by Lesaffre, Milwaukee, WI 52404, USA
| | | | - Bradley J Johnson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
252
|
Hernandez AR, Watson C, Federico QP, Fletcher R, Brotgandel A, Buford TW, Carter CS, Burke SN. Twelve Months of Time-Restricted Feeding Improves Cognition and Alters Microbiome Composition Independent of Macronutrient Composition. Nutrients 2022; 14:3977. [PMID: 36235630 PMCID: PMC9572159 DOI: 10.3390/nu14193977] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 02/01/2023] Open
Abstract
Declining health, gut dysbiosis, and cognitive impairments are hallmarks of advanced age. While caloric restriction is known to robustly extend the healthspan and alter gut microbiome composition, it is difficult maintain. Time-restricted feeding or changes in dietary macronutrient composition could be feasible alternatives for enhancing late life cognitive and physical health that are easier to comply with for extended periods of time. To investigate this possibility, 8-month-old rats were placed on time-restricted feeding with a ketogenic or micronutrient- and calorically matched control diet for 13 months. A third group of rats was permitted to eat standard chow ad libitum during this time. At 22 months, all rats were tested on a biconditional association task and fecal samples were collected for microbiome composition analysis. Regardless of dietary composition, time-restricted-fed rats had better cognitive performance than ad libitum-fed rats. This observation could not be accounted for by differences in motivation, procedural or sensorimotor impairments. Additionally, there were significant differences in gut microbiome diversity and composition between all diet conditions. Allobaculum abundance was associated with cognitive task performance, indicating a link between gut health and cognitive outcomes in aged subjects. Overall, time restricted feeding had the largest influence on cognitive performance in aged rats.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Cory Watson
- Department of Neuroscience and McKnight, Brain Institute College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Quinten P. Federico
- Department of Neuroscience and McKnight, Brain Institute College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rachel Fletcher
- Department of Neuroscience and McKnight, Brain Institute College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Armen Brotgandel
- Department of Neuroscience and McKnight, Brain Institute College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Thomas W. Buford
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
- Birmingham/Atlanta Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center, Birmingham, AL 35205, USA
| | - Christy S. Carter
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Sara N. Burke
- Department of Neuroscience and McKnight, Brain Institute College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
253
|
Two modes of evolution shape bacterial strain diversity in the mammalian gut for thousands of generations. Nat Commun 2022; 13:5604. [PMID: 36153389 PMCID: PMC9509342 DOI: 10.1038/s41467-022-33412-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
How and at what pace bacteria evolve when colonizing healthy hosts remains unclear. Here, by monitoring evolution for more than six thousand generations in the mouse gut, we show that the successful colonization of an invader Escherichia coli depends on the diversity of the existing microbiota and the presence of a closely related strain. Following colonization, two modes of evolution were observed: one in which diversifying selection leads to long-term coexistence of ecotypes and a second in which directional selection propels selective sweeps. These modes can be quantitatively distinguished by the statistics of mutation trajectories. In our experiments, diversifying selection was marked by the emergence of metabolic mutations, and directional selection by acquisition of prophages, which bring their own benefits and costs. In both modes, we observed parallel evolution, with mutation accumulation rates comparable to those typically observed in vitro on similar time scales. Our results show how rapid ecotype formation and phage domestication can be in the mammalian gut. Here, the authors show that a colonizing bacterial strain evolves in the gut by either generating ecotypes or continuously fixing beneficial mutations. They associate the first mode to metabolic mutations and the second to domestication of bacteriophages that are incorporated into the bacterial genome.
Collapse
|
254
|
Liu Y, Zeng Y, Liu Y, Wang X, Chen Y, Lepp D, Tsao R, Sadakiyo T, Zhang H, Mine Y. Regulatory Effect of Isomaltodextrin on a High-Fat Diet Mouse Model with LPS-Induced Low-Grade Chronic Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11258-11273. [PMID: 36041062 DOI: 10.1021/acs.jafc.2c03391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to identify the effects of isomaltodextrin (IMD) on sustaining the gut integrity and microbiota composition in a high-fat diet (HFD) with a lipopolysaccharide (LPS)-induced low-grade inflammation mouse model. The homeostasis of the immune response is important to reduce the risk of developing metabolic syndromes. The results of this study showed that pre-treatment of IMD at 5% (w/v) suppressed the concentration of endotoxin and pro-inflammatory mediators TNF-α, MCP-1, and IL-6 while increasing the adiponectin level in the plasma. Subsequently, IMD supplementation maintained the structural integrity and intestinal permeability by upregulating the tight junction protein expressions, leading to reducing D-mannitol concentration in the blood. In addition, dysbiosis was observed in mice induced by HFD plus LPS, suggesting that unhealthy dietary factors elicit metabolic endotoxemia and associated dysbiosis to impair the barrier function. However, IMD supplementation was shown to restore the microbial diversity, promote the growth of Bacteroides-Prevotella, and upregulate the related d-glucarate and d-galactarate degradation pathways, together demonstrating the benefits of IMD as a prebiotic able to promote energy homeostasis. Our results also showed that the blood lipid profile and glucose level in the low-grade inflammation mouse model were modulated by IMD. Moreover, IMD supplementation effectively prevented the metabolic disorder and modulated immune responses in inflamed white adipose tissues by inhibiting the macrophage infiltration and restoring the adiponectin, PPAR-γ, and IRS-1 expression. These findings provide strong evidence for IMD to be a potential prebiotic that acts to sustain a healthy gut microbiota composition and barrier function. By protecting against an unhealthy diet-impaired metabolic balance and maintaining immune homeostasis, IMD may affect the development of metabolic disorders.
Collapse
Affiliation(s)
- Yijun Liu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yuhan Zeng
- Department of Food Science, University of Guelph, Guelph Ontario N1G2W1, Canada
| | - Yixin Liu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Wang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yuhuan Chen
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dion Lepp
- Guelph Food Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph Ontario N1G 5C9, Canada
| | - Rong Tsao
- Guelph Food Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph Ontario N1G 5C9, Canada
| | - Tsuyoshi Sadakiyo
- Food System Solutions Division, Hayashibara CO., LTD., 525-3 Kuwano, Naka-ku, Okayama 702-8002, Japan
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph Ontario N1G2W1, Canada
| |
Collapse
|
255
|
Wang H, Dong P, Liu X, Zhang Z, Li H, Li Y, Zhang J, Dai L, Wang S. Active Peptide AR-9 From Eupolyphaga sinensis Reduces Blood Lipid and Hepatic Lipid Accumulation by Restoring Gut Flora and Its Metabolites in a High Fat Diet–Induced Hyperlipidemia Rat. Front Pharmacol 2022; 13:918505. [PMID: 36176455 PMCID: PMC9514323 DOI: 10.3389/fphar.2022.918505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The dysbiosis of gut flora and its metabolites plays important roles in the progression of hyperlipidemia (HL), and some bioactive peptides are available for HL treatment. In this study, we aimed to isolate an active peptide (AR-9) from active peptides of E. sinensis (APE) and determine whether AR-9 could improve many symptoms of a HL rat induced by a high-fat diet (HFD) by modulating gut flora and its metabolites. Above all, AR-9 was derived from APE using ion-exchange chromatography, and its structure was deconstructed by Fourier transform infrared spectrometer (FT-IR), circular dichroism (CD) spectroscopy, and UHPLC-Q-Exactive-Orbitrap MS. Then, an HFD-induced HL model in SD rats was established and used to clarify the regulatory effects of AR-9 (dose of 3 mg/kg) on HL. Normal diet–fed rats were taken as the control. The plasma samples and liver were harvested for biochemical and histopathological examinations. 16S rRNA gene sequencing and untargeted metabolomics were sequenced to assess changes in gut flora and its metabolites from rat fecal samples. Finally, Spearman’s correlation analysis was used to assess the relationship between lipid-related factors, gut flora, and its metabolites so as to evaluate the mechanism of AR-9 against HL. The results of the separation experiments showed that the amino acid sequence of AR-9 was AVFPSIVGR, which was a fragment of the actin protein from Blattaria insects. Moreover, HFD rats developed exaltation of index factors, liver lipid accumulation, and simple fibrosis for 8 weeks, and the profiles of gut flora and its metabolites were significantly altered. After treatment, AR-9 decreased the levels of lipid factors in plasma and the extent of liver damage. 16S rRNA gene sequencing results indicated that AR-9 significantly increased the relative abundance of beneficial bacteria Bacteroidetes and reduced the relative abundance of the obesity-associated bacteria Firmicutes. Furthermore, AR-9 changed gut microbiota composition and increased the relative abundance of beneficial bacteria: Lactobacillus, Clostridium, Dehalobacterium, and Candidatus arthromitus. Fecal metabolomics showed that the pathway regulated by AR-9 was “arginine biosynthesis”, in which the contents were citrulline and ornithine. Spearman’s correlation analysis revealed that two metabolites (ornithine and citrulline) showed significantly negative correlations with obesity-related parameters and positive correlations with the gut genera (Clostridium) enriched by AR-9. Overall, our results suggested interactions between gut microbial shifts and fecal amino acid/lipid metabolism and revealed the mechanisms underlying the anti-HL effect of AR-9. The abovementioned results not only reveal the initial anti-HL mechanism of AR-9 but also provide a theoretical basis for the continued development of AR-9.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Macao SAR, China
| | - Xin Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhen Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Huajian Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| |
Collapse
|
256
|
Longitudinal Changes in Campylobacter and the Litter Microbiome throughout the Broiler Production Cycle. Appl Environ Microbiol 2022; 88:e0066722. [PMID: 35943254 PMCID: PMC9469715 DOI: 10.1128/aem.00667-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broiler chickens are an important source of Campylobacter to humans and become colonized on the farm, but the role of the litter in the ecology of Campylobacter is still not clear. The aim of this study was to examine the relationship between Campylobacter and the changes in the litter microbiome throughout the broiler production cycle. Twenty-six commercial broiler flocks representing two production types (small and big broilers) were followed from 1 to 2 weeks after placement to the end of the production cycle. Composite litter samples from the broiler chicken house were collected weekly. Litter DNA was extracted and used for Campylobacter jejuni and Campylobacter coli qPCR as well as for 16S rRNA gene V4 region sequencing. Campylobacter jejuni concentration in litter significantly differed by production type and flock age. Campylobacter jejuni concentration in litter from big broilers was 2.4 log10 units higher, on average, than that of small broilers at 3 weeks of age. Sixteen amplicon sequence variants (ASVs) differentially abundant over time were detected in both production types. A negative correlation of Campylobacter with Bogoriella and Pseudogracilibacillus was observed in the litter microbiome network at 6 weeks of flock age. Dynamic Bayesian networks provided evidence of negative associations between Campylobacter and two bacterial genera, Ornithinibacillus and Oceanobacillus, at 2 and 4 weeks of flock age, respectively. In conclusion, dynamic associations between Campylobacter and the litter microbiome were observed during grow-out, suggesting a potential role of the litter microbiome in the ecology of Campylobacter colonization and persistence on farm. IMPORTANCE This study interrogated the longitudinal association between Campylobacter and broiler litter microbiome in commercial broiler flocks. The results of this investigation highlighted differences in Campylobacter dynamics in the litter throughout the broiler production cycle and between small and big broilers. Besides documenting the changing nature of the microbial networks in broiler litter during grow-out, we detected bacterial genera (Oceanobacillus and Ornithinibacillus) negatively associated with Campylobacter abundance and concentration in litter via the Bayesian network framework. These bacteria should be investigated as possible antagonists to Campylobacter colonization of the broiler environment.
Collapse
|
257
|
Prat M, Guenezan J, Drugeon B, Burucoa C, Mimoz O, Pichon M. Impact of Skin Disinfection on Cutaneous Microbiota, before and after Peripheral Venous Catheter Insertion. Antibiotics (Basel) 2022; 11:antibiotics11091209. [PMID: 36139988 PMCID: PMC9495181 DOI: 10.3390/antibiotics11091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction. Patients with invasive medical devices are at high risk for infection. Skin colonization is the initial stage of these infections, leading to the recommendation of practices requiring disinfection using antiseptics. Microbial communities playing a major role in skin health could be impacted by antiseptic procedures. Aim. To characterize and compare the bacterial communities of skin samples from patients before an antisepsis procedure, and after removal of the medical device itself, according to the nature of the antiseptic molecule (povidone iodine or chlorhexidine). Methods. The study focused on alterations in bacterial communities depending on the nature of the antiseptic procedure and type of intravascular device. After amplification of 16S rDNA, libraries (n = 498 samples) were sequenced using MiSeq platform. Results. Using an in-house pipeline (QIIME2 modules), while no alteration in skin microbiota diversity was associated with antiseptic procedure or PVC type, according to culture results (p < 0.05), alterations were at times associated with restricted diversity and higher dissimilarity (p < 0.05). Antiseptic procedures and PVC types were associated with the modification of specific bacterial representations with modulation of the Bacillota/Bacteroidota (Firmicutes/Bacteroidetes) ratio (modulation of C. acnes, Prevotella, Lagierella, and Actinomyces spp.) (p < 0.05). At baseline, the microbiota shows certain bacteria that are significantly associated with future PVC colonization and/or bacteremia (p < 0.05). All of these modulations were associated with altered expression of metabolic pathways (p < 0.05). Discussion. Finally, this work highlights the need to optimize the management of patients requiring intravascular devices, possibly by modulating the skin microbiota.
Collapse
Affiliation(s)
- Manon Prat
- CHU Poitiers, Bacteriology Laboratory, Infectious Agents Department, 86021 Poitiers, France
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
| | - Jeremy Guenezan
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
- CHU Poitiers, Emergency Room Department, 86021 Poitiers, France
| | - Bertrand Drugeon
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
| | - Christophe Burucoa
- CHU Poitiers, Bacteriology Laboratory, Infectious Agents Department, 86021 Poitiers, France
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
| | - Olivier Mimoz
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
- CHU Poitiers, Emergency Room Department, 86021 Poitiers, France
| | - Maxime Pichon
- INSERM U1070, Pharmacology of Antimicrobial Agents and Antibiotic Resistance, University of Poitiers, 86073 Poitiers, France
- CHU Poitiers, Emergency Room Department, 86021 Poitiers, France
- Correspondence: ; Tel.: +33-(0)5-4944-4143
| |
Collapse
|
258
|
Ke S, Weiss ST, Liu YY. Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes. Nat Commun 2022; 13:5235. [PMID: 36068270 PMCID: PMC9446638 DOI: 10.1038/s41467-022-32991-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 11/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), primarily a respiratory disease caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is often accompanied by gastrointestinal symptoms. However, little is known about the relation between the human microbiome and COVID-19, largely due to the fact that most previous studies fail to provide high taxonomic resolution to identify microbes that likely interact with SARS-CoV-2 infection. Here we used whole-metagenome shotgun sequencing data together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from 514 COVID-19 related nasopharyngeal and fecal samples in six independent cohorts. We reconstructed a total of 11,584 medium-and high-quality microbial MAGs and obtained 5403 non-redundant MAGs (nrMAGs) with strain-level resolution. We found that there is a significant reduction of strain richness for many species in the gut microbiome of COVID-19 patients. The gut microbiome signatures can accurately distinguish COVID-19 cases from healthy controls and predict the progression of COVID-19. Moreover, we identified a set of nrMAGs with a putative causal role in the clinical manifestations of COVID-19 and revealed their functional pathways that potentially interact with SARS-CoV-2 infection. Finally, we demonstrated that the main findings of our study can be largely validated in three independent cohorts. The presented results highlight the importance of incorporating the human gut microbiome in our understanding of SARS-CoV-2 infection and disease progression.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
259
|
Sandeu MM, Maffo CGT, Dada N, Njiokou F, Hughes GL, Wondji CS. Seasonal variation of microbiota composition in Anopheles gambiae and Anopheles coluzzii in two different eco-geographical localities in Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:269-282. [PMID: 35579271 DOI: 10.1111/mve.12583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Understanding the environmental factors affecting the microbiota in malaria vectors may help in the development of novel vector control interventions, similar to paratransgenesis. This study evaluated seasonal and geographical variations in the microbial community of the two major malaria vectors. Adult Anopheles mosquitoes were collected across two different eco-geographical settings in Cameroon, during the dry and wet seasons. DNA was extracted from the whole individual mosquitoes from each group and processed for microbial analysis using Illumina Miseq sequencing of the V3-V4 region of the 16S rRNA gene. Data analysis was performed using QIIME2 and R software programs. A total of 1985 mosquitoes were collected and among them, 120 were selected randomly corresponding to 30 mosquitoes per season and locality. Overall, 97 bacterial taxa were detected across all mosquito samples, with 86 of these shared between dry and wet seasons in both localities and species. There were significant differences in bacterial composition between both seasons, with a clear separation observed between the dry and wet seasons (PERMANOVA comparisons of beta diversity, Pseudo-F = 10.45; q-value = 0.01). This study highlights the influence of seasonal variation on microbial communities and this variation's impact on mosquito biology and vectorial capacity should be further investigated.
Collapse
Affiliation(s)
- Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Claudine Grâce Tatsinkou Maffo
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Nsa Dada
- Faculty of Science and Technology, Norwegian University of Life Science, Aas, Norway
- Tropical Infectious Disease Research Center, University of Abomey-Calavi, Cotonou, Benin
| | - Flobert Njiokou
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Charles S Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
260
|
Wessel GM, Kiyomoto M, Reitzel AM, Carrier TJ. Pigmentation biosynthesis influences the microbiome in sea urchins. Proc Biol Sci 2022; 289:20221088. [PMID: 35975446 PMCID: PMC9382222 DOI: 10.1098/rspb.2022.1088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
Organisms living on the seafloor are subject to encrustations by a wide variety of animals, plants and microbes. Sea urchins, however, thwart this covering. Despite having a sophisticated immune system, there is no clear molecular mechanism that allows sea urchins to remain free of epibiotic microorganisms. Here, we test the hypothesis that pigmentation biosynthesis in sea urchin spines influences their interactions with microbes in vivo using CRISPR/Cas9. We report three primary findings. First, the microbiome of sea urchin spines is species-specific and much of this community is lost in captivity. Second, different colour morphs associate with bacterial communities that are similar in taxonomic composition, diversity and evenness. Lastly, loss of the pigmentation biosynthesis genes polyketide synthase and flavin-dependent monooxygenase induces a shift in which bacterial taxa colonize sea urchin spines. Therefore, our results are consistent with the hypothesis that host pigmentation biosynthesis can, but may not always, influence the microbiome in sea urchin spines.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Masato Kiyomoto
- Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Tateyama, Japan
| | - Adam M. Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Tyler J. Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
261
|
Limnospira indica PCC 8005 or Lacticaseibacillus rhamnosus GG Dietary Supplementation Modulate the Gut Microbiome in Mice. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While dietary supplements can have beneficial effects on the health of the intestine, these effects can come with unresolved issues in terms of therapeutic efficacy and mechanisms of action. In this study, the model probiotic Lacticaseibacillus rhamnosus GG ATCC 53103 and the anciently used dietary supplement Limnospira indica strain PCC 8005 were compared for their effects on murine intestinal ecology. Healthy male mice received either saline or suspensions of living cells of L. indica PCC 8005 or L. rhamnosus GG daily along a two-week intervention period, followed by a two-week washout period. Both bacteria-based solutions appeared able to transiently shift the microbial community, which were characterized by a higher relative abundance of members of the butyrate producing Lachnospiraceae and Porphyromonadaceae families.
Collapse
|
262
|
Distinct colon mucosa microbiomes associated with tubular adenomas and serrated polyps. NPJ Biofilms Microbiomes 2022; 8:69. [PMID: 36038569 PMCID: PMC9424272 DOI: 10.1038/s41522-022-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer is the second most deadly and third most common cancer in the world. Its development is heterogenous, with multiple mechanisms of carcinogenesis. Two distinct mechanisms include the adenoma-carcinoma sequence and the serrated pathway. The gut microbiome has been identified as a key player in the adenoma-carcinoma sequence, but its role in serrated carcinogenesis is less clear. In this study, we characterized the gut microbiome of 140 polyp-free and polyp-bearing individuals using colon mucosa and fecal samples to determine if microbiome composition was associated with each of the two key pathways. We discovered significant differences between the microbiomes of colon mucosa and fecal samples, with sample type explaining 10–15% of the variation observed in the microbiome. Multiple mucosal brushings were collected from each individual to investigate whether the gut microbiome differed between polyp and healthy intestinal tissue, but no differences were found. Mucosal aspirate sampling revealed that the microbiomes of individuals with tubular adenomas and serrated polyps were significantly different from each other and polyp-free individuals, explaining 1–4% of the variance in the microbiome. Microbiome composition also enabled the accurate prediction of subject polyp types using Random Forest, which produced an area under curve values of 0.87–0.99. By directly sampling the colon mucosa and distinguishing between the different developmental pathways of colorectal cancer, our study helps characterize potential mechanistic targets for serrated carcinogenesis. This research also provides insight into multiple microbiome sampling strategies by assessing each method’s practicality and effect on microbial community composition.
Collapse
|
263
|
Longitudinal Study of Fecal Microbiota in Calves with or without Diarrhea Episodes before Weaning. Vet Sci 2022; 9:vetsci9090463. [PMID: 36136679 PMCID: PMC9503950 DOI: 10.3390/vetsci9090463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Animal production is searching for ways to reduce antimicrobial use, and the best way is to avoid their use by maintaining the health of the animals. The microbiota is involved in the host health, and when the fecal microbiota was analyzed in calves that developed or not diarrhea, differences linked to the health status were detected. While changes in the fecal microbiota were observed with time (during the first 2 months of age) in all the calves, the microbiota from the healthy animals presented an earlier stabilization and some changes in low abundant bacteria, which may play a role in the subsequent health status of the animals. Bacteria classified in the families Coriobacteriaceae and Phyllobacteriaceae, and the bacterium Epulopiscium were found in the core of the microbiota of the healthy calves (calves that did not have diarrhea) possibly with a protective probiotic effect. On the other hand, several bacteria, such as Lachnospira, Neisseria and Solibacillus, were found only in the core of the microbiota obtained from calves that had diarrhea, indicating that they could be linked to a higher predisposition to suffer diarrhea. These results can help in the development of new probiotics to promote gut health in calves. Abstract The microbiota plays an important role in the development of diarrhea in pre-weaned calves. The characterization of the fecal microbiota in health and disease can be critical to unravel the bacterial dynamics associated with diarrhea and help with its prevention and control. In this study, we aimed to detect changes in the fecal microbiota of calves that experienced early-life diarrhea episodes. Fecal samples were taken from calves remaining healthy and calves with an episode of diarrhea during the study. We sampled at arrival (12 days of age) and after one and two months of life; also, at the time of the diarrhea episode for the diarrheic calves (day 17). Samples were processed to extract total DNA, submitted to 16S rRNA gene sequencing, and bioinformatically analyzed to infer the bacterial populations. Microbiota changes through time were reported for both groups. However, we detected an earlier stabilization in the healthy group. Moreover, we detected changes within low abundant taxa that may play a role in the subsequent health status of the animals. The fecal microbiota of healthy and diarrheic calves showed different dynamics in the diversity through time that may be the reflections of the variations within low-abundant taxa.
Collapse
|
264
|
Vientós-Plotts AI, Ericsson AC, McAdams ZL, Rindt H, Reinero CR. Temporal changes of the respiratory microbiota as cats transition from health to experimental acute and chronic allergic asthma. Front Vet Sci 2022; 9:983375. [PMID: 36090168 PMCID: PMC9453837 DOI: 10.3389/fvets.2022.983375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 01/04/2023] Open
Abstract
In humans, deviation from a core airway microbiota may predispose to development, exacerbation, or progression of asthma. We proposed to describe microbiota changes using 16 rRNA sequencing in samples from the upper and lower airways, and rectal swabs of 8 cats after experimental induction of asthma using Bermuda grass allergen, in acute (6 weeks) and chronic (36 weeks) stages. We hypothesized that asthma induction would decrease richness and diversity and alter microbiota composition and structure in the lower airways, without significantly impacting other sites. After asthma induction, richness decreased in rectal (p = 0.014) and lower airway (p = 0.016) samples. B diversity was significantly different between health and chronic asthma in all sites, and between all time points for lower airways. In healthy lower airways Pseudomonadaceae comprised 80.4 ± 1.3% whereas Sphingobacteriaceae and Xanthobacteraceae predominated (52.4 ± 2.2% and 33.5 ± 2.1%, respectively), and Pseudomonadaceae was absent, in 6/8 cats with chronic asthma. This study provides evidence that experimental induction of asthma leads to dysbiosis in the airways and distant sites in both the acute and chronic stages of disease. This article has been published alongside "Respiratory dysbiosis in cats with spontaneous allergic asthma" (1).
Collapse
Affiliation(s)
- Aida I. Vientós-Plotts
- College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Comparative Internal Medicine Laboratory, University of Missouri, Columbia, MO, United States
| | - Aaron C. Ericsson
- College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, United States
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Zachary L. McAdams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Hansjorg Rindt
- College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Comparative Internal Medicine Laboratory, University of Missouri, Columbia, MO, United States
| | - Carol R. Reinero
- College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Comparative Internal Medicine Laboratory, University of Missouri, Columbia, MO, United States
| |
Collapse
|
265
|
Lin H, Eggesbø M, Peddada SD. Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data. Nat Commun 2022; 13:4946. [PMID: 35999204 PMCID: PMC9399263 DOI: 10.1038/s41467-022-32243-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
It is well-known that human gut microbiota form an ecosystem where microbes interact with each other. Due to complex underlying interactions, some microbes may correlate nonlinearly. There are no measures in the microbiome literature we know of that quantify these nonlinear relationships. Here, we develop a methodology called Sparse Estimation of Correlations among Microbiomes (SECOM) for estimating linear and nonlinear relationships among microbes while maintaining the sparsity. SECOM accounts for both sample and taxon-specific biases in its model. Its statistical properties are evaluated analytically and by comprehensive simulation studies. We test SECOM in two real data sets, namely, forehead and palm microbiome data from college-age adults, and Norwegian infant gut microbiome data. Given that forehead and palm are related to skin, as desired, SECOM discovers each genus to be highly correlated between the two sites, but that is not the case with any of the competing methods. It is well-known that infant gut evolves as the child grows. Using SECOM, for the first time in the literature, we characterize temporal changes in correlations among bacterial families during a baby's first year after birth.
Collapse
Affiliation(s)
- Huang Lin
- Biostatistics and Bioinformatics Branch, Eunice Shriver Kennedy NICHD, NIH, Bethesda, MD, USA
| | | | - Shyamal Das Peddada
- Biostatistics and Bioinformatics Branch, Eunice Shriver Kennedy NICHD, NIH, Bethesda, MD, USA.
| |
Collapse
|
266
|
Yang L, Chen J. A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions. MICROBIOME 2022; 10:130. [PMID: 35986393 PMCID: PMC9392415 DOI: 10.1186/s40168-022-01320-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/04/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Differential abundance analysis (DAA) is one central statistical task in microbiome data analysis. A robust and powerful DAA tool can help identify highly confident microbial candidates for further biological validation. Numerous DAA tools have been proposed in the past decade addressing the special characteristics of microbiome data such as zero inflation and compositional effects. Disturbingly, different DAA tools could sometimes produce quite discordant results, opening to the possibility of cherry-picking the tool in favor of one's own hypothesis. To recommend the best DAA tool or practice to the field, a comprehensive evaluation, which covers as many biologically relevant scenarios as possible, is critically needed. RESULTS We performed by far the most comprehensive evaluation of existing DAA tools using real data-based simulations. We found that DAA methods explicitly addressing compositional effects such as ANCOM-BC, Aldex2, metagenomeSeq (fitFeatureModel), and DACOMP did have improved performance in false-positive control. But they are still not optimal: type 1 error inflation or low statistical power has been observed in many settings. The recent LDM method generally had the best power, but its false-positive control in the presence of strong compositional effects was not satisfactory. Overall, none of the evaluated methods is simultaneously robust, powerful, and flexible, which makes the selection of the best DAA tool difficult. To meet the analysis needs, we designed an optimized procedure, ZicoSeq, drawing on the strength of the existing DAA methods. We show that ZicoSeq generally controlled for false positives across settings, and the power was among the highest. Application of DAA methods to a large collection of real datasets revealed a similar pattern observed in simulation studies. CONCLUSIONS Based on the benchmarking study, we conclude that none of the existing DAA methods evaluated can be applied blindly to any real microbiome dataset. The applicability of an existing DAA method depends on specific settings, which are usually unknown a priori. To circumvent the difficulty of selecting the best DAA tool in practice, we design ZicoSeq, which addresses the major challenges in DAA and remedies the drawbacks of existing DAA methods. ZicoSeq can be applied to microbiome datasets from diverse settings and is a useful DAA tool for robust microbiome biomarker discovery. Video Abstract.
Collapse
Affiliation(s)
- Lu Yang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
267
|
Apple Pomace Modulates the Microbiota and Increases the Propionate Ratio in an In Vitro Piglet Gastrointestinal Model. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Apple pomace (AP) contains biomolecules that induce changes in intestinal fermentation of monogastrics with positive expected health effects. The weaning of piglets can induce economic losses due to intestinal disturbances; new weaning strategies are, thus, welcome. The purpose of this study was to test the effect of AP on fermentation products by using baby-SPIME, an in vitro multi-compartment model dedicated to piglet weaning. A comparison was done on short chain fatty acid (SCFA) ratio and the microbiota induced in bioreactors between a control culture medium vs. an AP culture medium. The results of 2 preliminary runs showed that AP medium increased the molar ratio of propionate (p = 0.021) and decreased the molar ratio of butyrate (p = 0.009). Moreover, this medium increased the cumulative relative abundance of Prevotella sp. and Akkermansia sp. in bioreactors. AP could promote an ecosystem enriched with bacteria known as next-generation probiotics (NGP)—likely influencing the energy metabolism of piglets by their fermentation metabolites. AP could be used as a dietary strategy to influence bacterial changes in the intestine by stimulating the growth of bacteria identified as NGP.
Collapse
|
268
|
Rodrigues PB, Gomes GF, Angelim MKSC, Souza GF, Muraro SP, Toledo-Teixeira DA, Rattis BAC, Passos AS, Pral LP, de Rezende Rodovalho V, dos Santos P. Gomes AB, Matheus VA, Antunes ASLM, Crunfli F, Antunes KH, de Souza APD, Consonni SR, Leiria LO, Alves-Filho JC, Cunha TM, Moraes-Vieira PMM, Proença-Módena JL, R. Vinolo MA. Impact of Microbiota Depletion by Antibiotics on SARS-CoV-2 Infection of K18-hACE2 Mice. Cells 2022; 11:2572. [PMID: 36010648 PMCID: PMC9406363 DOI: 10.3390/cells11162572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
Clinical and experimental data indicate that severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection is associated with significant changes in the composition and function of intestinal microbiota. However, the relevance of these effects for SARS-CoV-2 pathophysiology is unknown. In this study, we analyzed the impact of microbiota depletion after antibiotic treatment on the clinical and immunological responses of K18-hACE2 mice to SARS-CoV-2 infection. Mice were treated with a combination of antibiotics (kanamycin, gentamicin, metronidazole, vancomycin, and colistin, Abx) for 3 days, and 24 h later, they were infected with SARS-CoV-2 B lineage. Here, we show that more than 80% of mice succumbed to infection by day 11 post-infection. Treatment with Abx had no impact on mortality. However, Abx-treated mice presented better clinical symptoms, with similar weight loss between infected-treated and non-treated groups. We observed no differences in lung and colon histopathological scores or lung, colon, heart, brain and kidney viral load between groups on day 5 of infection. Despite some minor differences in the expression of antiviral and inflammatory markers in the lungs and colon, no robust change was observed in Abx-treated mice. Together, these findings indicate that microbiota depletion has no impact on SARS-CoV-2 infection in mice.
Collapse
Affiliation(s)
- Patrícia Brito Rodrigues
- Laboratory of Immunoinflammation, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Giovanni Freitas Gomes
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14000-000, Brazil
| | - Monara K. S. C. Angelim
- Laboratory of Immunometabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Gabriela F. Souza
- Laboratory of Emerging Viruses, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil or
| | - Stefanie Primon Muraro
- Laboratory of Emerging Viruses, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil or
| | - Daniel A. Toledo-Teixeira
- Laboratory of Emerging Viruses, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil or
| | - Bruna Amanda Cruz Rattis
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14000-000, Brazil
| | - Amanda Stephane Passos
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14000-000, Brazil
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14000-000, Brazil
| | - Laís Passarielo Pral
- Laboratory of Immunoinflammation, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Vinícius de Rezende Rodovalho
- Laboratory of Immunoinflammation, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | | | - Valquíria Aparecida Matheus
- Laboratory of Immunoinflammation, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | | | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90000-000, Brazil
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90000-000, Brazil
| | - Sílvio Roberto Consonni
- Laboratory of Citochemistry and Immunocitochemistry, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Luiz Osório Leiria
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14000-000, Brazil
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14000-000, Brazil
| | - José Carlos Alves-Filho
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14000-000, Brazil
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14000-000, Brazil
| | - Thiago M. Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14000-000, Brazil
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14000-000, Brazil
| | - Pedro M. M. Moraes-Vieira
- Laboratory of Immunometabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas 13000-000, Brazil
- Experimental Medicine Research Cluster, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - José Luiz Proença-Módena
- Laboratory of Emerging Viruses, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil or
- Experimental Medicine Research Cluster, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Marco Aurélio R. Vinolo
- Laboratory of Immunoinflammation, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas 13000-000, Brazil
- Experimental Medicine Research Cluster, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| |
Collapse
|
269
|
Russell BJ, Brown SD, Siguenza N, Mai I, Saran AR, Lingaraju A, Maissy ES, Dantas Machado AC, Pinto AFM, Sanchez C, Rossitto LA, Miyamoto Y, Richter RA, Ho SB, Eckmann L, Hasty J, Gonzalez DJ, Saghatelian A, Knight R, Zarrinpar A. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes. Cell 2022; 185:3263-3277.e15. [PMID: 35931082 PMCID: PMC9464905 DOI: 10.1016/j.cell.2022.06.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/15/2022] [Accepted: 06/25/2022] [Indexed: 12/26/2022]
Abstract
Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to “knock in” specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent. Native E. coli strains isolated from mouse stool are genetically engineered for long-term engraftment in the conventional mouse gut and enable long-term systemic effects on the host, such as improvements in insulin sensitivity in mouse models of type 2 diabetes.
Collapse
Affiliation(s)
- Baylee J Russell
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven D Brown
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Siguenza
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irene Mai
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand R Saran
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amulya Lingaraju
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Erica S Maissy
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ana C Dantas Machado
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Concepcion Sanchez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yukiko Miyamoto
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - R Alexander Richter
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samuel B Ho
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA; VA Health Sciences San Diego, La Jolla, CA 92161, USA
| | - Lars Eckmann
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA; VA Health Sciences San Diego, La Jolla, CA 92161, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
270
|
Nel Van Zyl K, Whitelaw AC, Hesseling AC, Seddon JA, Demers AM, Newton-Foot M. Fungal diversity in the gut microbiome of young South African children. BMC Microbiol 2022; 22:201. [PMID: 35978282 PMCID: PMC9387017 DOI: 10.1186/s12866-022-02615-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungal microbiome, or mycobiome, is a poorly described component of the gut ecosystem and little is known about its structure and development in children. In South Africa, there have been no culture-independent evaluations of the child gut mycobiota. This study aimed to characterise the gut mycobiota and explore the relationships between fungi and bacteria in the gut microbiome of children from Cape Town communities. METHODS Stool samples were collected from children enrolled in the TB-CHAMP clinical trial. Internal transcribed spacer 1 (ITS1) gene sequencing was performed on a total of 115 stool samples using the Illumina MiSeq platform. Differences in fungal diversity and composition in relation to demographic, clinical, and environmental factors were investigated, and correlations between fungi and previously described bacterial populations in the same samples were described. RESULTS Taxa from the genera Candida and Saccharomyces were detected in all participants. Differential abundance analysis showed that Candida spp. were significantly more abundant in children younger than 2 years compared to older children. The gut mycobiota was less diverse than the bacterial microbiota of the same participants, consistent with the findings of other human microbiome studies. The variation in richness and evenness of fungi was substantial, even between individuals of the same age. There was significant association between vitamin A supplementation and higher fungal alpha diversity (p = 0.047), and girls were shown to have lower fungal alpha diversity (p = 0.003). Co-occurrence between several bacterial taxa and Candida albicans was observed. CONCLUSIONS The dominant fungal taxa in our study population were similar to those reported in other paediatric studies; however, it remains difficult to identify the true core gut mycobiota due to the challenges set by the low abundance of gut fungi and the lack of true gut colonising species. The connection between the microbiota, vitamin A supplementation, and growth and immunity warrants exploration, especially in populations at risk for micronutrient deficiencies. While we were able to provide insight into the gut mycobiota of young South African children, further functional studies are necessary to explain the role of the mycobiota and the correlations between bacteria and fungi in human health.
Collapse
Affiliation(s)
- K Nel Van Zyl
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa.
| | - A C Whitelaw
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- African Microbiome Institute, Stellenbosch University, Stellenbosch, South Africa
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - J A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Department of Infectious Diseases, Imperial College London, London, UK
| | - A-M Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Service de Microbiologie, Département Clinique de Médecine de Laboratoire, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada
| | - M Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
271
|
Pham VT, Greppi A, Chassard C, Braegger C, Lacroix C. Stepwise establishment of functional microbial groups in the infant gut between 6 months and 2 years: A prospective cohort study. Front Nutr 2022; 9:948131. [PMID: 35967780 PMCID: PMC9366138 DOI: 10.3389/fnut.2022.948131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The early intestinal colonization of functional microbial groups plays an essential role in infant gut health, with most studies targeting the initial colonization period from birth to 6 months of age. In a previous report, we demonstrated the metabolic cross-feeding of lactate and identified keystone species specified for lactate utilization in fecal samples of 40 healthy infants. We present here the extension of our longitudinal study for the period from 6 months to 2 years, with a focus on the colonization of functional groups involved in lactate metabolism and butyrate production. We captured the dynamic changes of the gut microbiota and reported a switch in the predominant lactate-producing and lactate-utilizing bacteria, from Veillonella producing propionate in the first year to Anaerobutyrycum hallii producing butyrate in the second year of life. The significant increase in butyrate producers and fecal butyrate concentration was also pinpointed to the weaning period between 6 and 10 months. Correlation analyses further suggested, for the first time, the metabolic cross-feeding of hydrogen in infants. In conclusion, our longitudinal study of 40 Swiss infants provides important insights into the colonization of functional groups involved in lactate metabolism and butyrate production in the first 2 years of life.
Collapse
Affiliation(s)
- Van T Pham
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.,Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anna Greppi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
272
|
Oliveira MET, Paulino GVB, Dos Santos Júnior ED, da Silva Oliveira FA, Melo VMM, Ursulino JS, de Aquino TM, Shetty AK, Landell MF, Gitaí DLG. Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Mol Neurobiol 2022; 59:6429-6446. [PMID: 35962889 DOI: 10.1007/s12035-022-02984-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Evidence supports that the gut microbiota and bacteria-dependent metabolites influence the maintenance of epileptic brain activity. However, the alterations in the gut microbiota between epileptic versus healthy individuals are poorly understood. We used a multi-omic approach to evaluate the changes in the composition of gut metagenome as well in the fecal metabolomic profile in rats before and after being submitted to status epilepticus (SE)-induced temporal lobe epilepsy (TLE). The 16S ribosomal RNA (rRNA) sequencing of fecal samples coupled to bioinformatic analysis revealed taxonomic, compositional, and functional shifts in epileptic rats. The species richness (Chao1 index) was significantly lower in the post-TLE group, and the β-diversity analysis revealed clustering separated from the pre-TLE group. The taxonomic abundance analysis showed a significant increase of phylum Desulfobacterota and a decrease of Patescibacteria in the post-TLE group. The DESEq2 and LEfSe analysis resulted in 18 genera significantly enriched between post-TLE and pre-TLE groups at the genus level. We observed that epileptic rats present a peculiar metabolic phenotype, including a lower concentration of D-glucose and L-lactic acid and a higher concentration of L-glutamic acid and glycine. The microbiota-host metabolic correlation analysis showed that the genera differentially abundant in post-TLE rats are associated with the altered metabolites, especially the proinflammatory Desulfovibrio and Marvinbryantia, which were enriched in epileptic animals and positively correlated with these excitatory neurotransmitters and carbohydrate metabolites. Therefore, our data revealed a correlation between dysbacteriosis in epileptic animals and fecal metabolites that are known to be relevant for maintaining epileptic brain activity by enhancing chronic inflammation, an excitatory-inhibitory imbalance, and/or a metabolic disturbance. These data are promising and suggest that targeting the gut microbiota could provide a novel avenue for preventing and treating acquired epilepsy. However, the causal relationship between these microbial/metabolite components and the SRS occurrence still needs further exploration.
Collapse
Affiliation(s)
- Maria Eduarda T Oliveira
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Gustavo V B Paulino
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Erivaldo D Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Francisca A da Silva Oliveira
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Vânia M M Melo
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Jeferson S Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Thiago M de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Melissa Fontes Landell
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| |
Collapse
|
273
|
Wang C, Segal LN, Hu J, Zhou B, Hayes RB, Ahn J, Li H. Microbial risk score for capturing microbial characteristics, integrating multi-omics data, and predicting disease risk. MICROBIOME 2022; 10:121. [PMID: 35932029 PMCID: PMC9354433 DOI: 10.1186/s40168-022-01310-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/20/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND With the rapid accumulation of microbiome-wide association studies, a great amount of microbiome data are available to study the microbiome's role in human disease and advance the microbiome's potential use for disease prediction. However, the unique features of microbiome data hinder its utility for disease prediction. METHODS Motivated from the polygenic risk score framework, we propose a microbial risk score (MRS) framework to aggregate the complicated microbial profile into a summarized risk score that can be used to measure and predict disease susceptibility. Specifically, the MRS algorithm involves two steps: (1) identifying a sub-community consisting of the signature microbial taxa associated with disease and (2) integrating the identified microbial taxa into a continuous score. The first step is carried out using the existing sophisticated microbial association tests and pruning and thresholding method in the discovery samples. The second step constructs a community-based MRS by calculating alpha diversity on the identified sub-community in the validation samples. Moreover, we propose a multi-omics data integration method by jointly modeling the proposed MRS and other risk scores constructed from other omics data in disease prediction. RESULTS Through three comprehensive real-data analyses using the NYU Langone Health COVID-19 cohort, the gut microbiome health index (GMHI) multi-study cohort, and a large type 1 diabetes cohort separately, we exhibit and evaluate the utility of the proposed MRS framework for disease prediction and multi-omics data integration. In addition, the disease-specific MRSs for colorectal adenoma, colorectal cancer, Crohn's disease, and rheumatoid arthritis based on the relative abundances of 5, 6, 12, and 6 microbial taxa, respectively, are created and validated using the GMHI multi-study cohort. Especially, Crohn's disease MRS achieves AUCs of 0.88 (0.85-0.91) and 0.86 (0.78-0.95) in the discovery and validation cohorts, respectively. CONCLUSIONS The proposed MRS framework sheds light on the utility of the microbiome data for disease prediction and multi-omics integration and provides a great potential in understanding the microbiome's role in disease diagnosis and prognosis. Video Abstract.
Collapse
Affiliation(s)
- Chan Wang
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Leopoldo N. Segal
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, New York, NY 10017 USA
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Boyan Zhou
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Richard B. Hayes
- Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Jiyoung Ahn
- Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Huilin Li
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016 USA
| |
Collapse
|
274
|
Crovetto F, Selma-Royo M, Crispi F, Carbonetto B, Pascal R, Larroya M, Casas I, Tortajada M, Escudero N, Muñoz-Almagro C, Gomez-Roig MD, González-Torres P, Collado MC, Gratacos E. Nasopharyngeal microbiota profiling of pregnant women with SARS-CoV-2 infection. Sci Rep 2022; 12:13404. [PMID: 35927569 PMCID: PMC9352760 DOI: 10.1038/s41598-022-17542-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
We aimed to analyze the nasopharyngeal microbiota profiles in pregnant women with and without SARS-CoV-2 infection, considered a vulnerable population during COVID-19 pandemic. Pregnant women were enrolled from a multicenter prospective population-based cohort during the first SARS-CoV-2 wave in Spain (March-June 2020 in Barcelona, Spain) in which the status of SARS-CoV-2 infection was determined by nasopharyngeal RT–PCR and antibodies in peripheral blood. Women were randomly selected for this cross-sectional study on microbiota. DNA was extracted from nasopharyngeal swab samples, and the V3-V4 region of the 16S rRNA of bacteria was amplified using region-specific primers. The differential abundance of taxa was tested, and alpha/beta diversity was evaluated. Among 76 women, 38 were classified as positive and 38 as negative for SARS-CoV-2 infection. All positive women were diagnosed by SARS-CoV-2 IgG and IgM/IgA antibodies, and 14 (37%) also had a positive RT–PCR. The overall composition of the nasopharyngeal microbiota differ in pregnant women with SARS-CoV-2 infection (positive SARS-CoV-2 antibodies), compared to those without the infection (negative SARS-CoV-2 antibodies) (p = 0.001), with a higher relative abundance of the Tenericutes and Bacteroidetes phyla and a higher abundance of the Prevotellaceae family. Infected women presented a different pattern of microbiota profiling due to beta diversity and higher richness (observed ASV < 0.001) and evenness (Shannon index < 0.001) at alpha diversity. These changes were also present in women after acute infection, as revealed by negative RT–PCR but positive SARS-CoV-2 antibodies, suggesting a potential association between SARS-CoV-2 infection and long-lasting shift in the nasopharyngeal microbiota. No significant differences were reported in mild vs. severe cases. This is the first study on nasopharyngeal microbiota during pregnancy. Pregnant women with SARS-CoV-2 infection had a different nasopharyngeal microbiota profile compared to negative cases.
Collapse
Affiliation(s)
- Francesca Crovetto
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain. .,Institut de Recerca Sant Joan de Deu, Barcelona, Spain. .,Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Fàtima Crispi
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca August Pi Sunyer, Barcelona, Spain.,Center for Biomedical Network Research on Rare Diseases, Barcelona, Spain
| | | | - Rosalia Pascal
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Larroya
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Irene Casas
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Marta Tortajada
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | | | - Carmen Muñoz-Almagro
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Ciber of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maria Dolores Gomez-Roig
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Eduard Gratacos
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Institut de Recerca August Pi Sunyer, Barcelona, Spain.,Center for Biomedical Network Research on Rare Diseases, Barcelona, Spain
| |
Collapse
|
275
|
Hickmott AJ, Boose KJ, Wakefield ML, Brand CM, Snodgrass JJ, Ting N, White FJ. A comparison of faecal glucocorticoid metabolite concentration and gut microbiota diversity in bonobos ( Pan paniscus). MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35960548 DOI: 10.1099/mic.0.001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex, age, diet, stress and social environment have all been shown to influence the gut microbiota. In several mammals, including humans, increased stress is related to decreasing gut microbial diversity and may differentially impact specific taxa. Recent evidence from gorillas shows faecal glucocorticoid metabolite concentration (FGMC) did not significantly explain gut microbial diversity, but it was significantly associated with the abundance of the family Anaerolineaceae. These patterns have yet to be examined in other primates, like bonobos (Pan paniscus). We compared FGMC to 16S rRNA amplicons for 202 bonobo faecal samples collected across 5 months to evaluate the impact of stress, measured with FGMC, on the gut microbiota. Alpha diversity measures (Chao's and Shannon's indexes) were not significantly related to FGMC. FGMC explained 0.80 % of the variation in beta diversity for Jensen-Shannon and 1.2% for weighted UniFrac but was not significant for unweighted UniFrac. We found that genus SHD-231, a member of the family Anaerolinaceae had a significant positive relationship with FGMC. These results suggest that bonobos are relatively similar to gorillas in alpha diversity and family Anaerolinaceae responses to FGMC, but different from gorillas in beta diversity. Members of the family Anaerolinaceae may be differentially affected by FGMC across great apes. FGMC appears to be context dependent and may be species-specific for alpha and beta diversity but this study provides an example of consistent change in two African apes. Thus, the relationship between physiological stress and the gut microbiome may be difficult to predict, even among closely related species.
Collapse
Affiliation(s)
- Alexana J Hickmott
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA.,Texas Biomedical Research Institute, San Antonio, TX 78227, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Klaree J Boose
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Monica L Wakefield
- Sociology, Anthropology, and Philosophy, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA.,Bakar Computational Health Sciences Institute, University of California, San Francisco, USA
| | - J Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA.,Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Frances J White
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
276
|
Viral biogeography of the mammalian gut and parenchymal organs. Nat Microbiol 2022; 7:1301-1311. [PMID: 35918425 PMCID: PMC7614033 DOI: 10.1038/s41564-022-01178-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/21/2022] [Indexed: 01/13/2023]
Abstract
The mammalian virome has been linked to health and disease but our understanding of how it is structured along the longitudinal axis of the mammalian gastrointestinal tract (GIT) and other organs is limited. Here, we report a metagenomic analysis of the prokaryotic and eukaryotic virome occupying luminal and mucosa-associated habitats along the GIT, as well as parenchymal organs (liver, lung and spleen), in two representative mammalian species, the domestic pig and rhesus macaque (six animals per species). Luminal samples from the large intestine of both mammals harboured the highest loads and diversity of bacteriophages (class Caudoviricetes, family Microviridae and others). Mucosal samples contained much lower viral loads but a higher proportion of eukaryotic viruses (families Astroviridae, Caliciviridae, Parvoviridae). Parenchymal organs contained bacteriophages of gut origin, in addition to some eukaryotic viruses. Overall, GIT virome composition was specific to anatomical region and host species. Upper GIT and mucosa-specific viruses were greatly under-represented in distal colon samples (a proxy for faeces). Nonetheless, certain viral and phage species were ubiquitous in all samples from the oral cavity to the distal colon. The dataset and its accompanying methodology may provide an important resource for future work investigating the biogeography of the mammalian gut virome.
Collapse
|
277
|
Testerman T, Li Z, Galuppo B, Graf J, Santoro N. Insights from shotgun metagenomics into bacterial species and metabolic pathways associated with NAFLD in obese youth. Hepatol Commun 2022; 6:1962-1974. [PMID: 35344283 PMCID: PMC9315112 DOI: 10.1002/hep4.1944] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease and is often the precursor for more serious liver conditions such as nonalcoholic steatohepatitis and cirrhosis. Although the gut microbiome has been implicated in the development of NAFLD, the strong association of obesity with NAFLD and its effect on microbiome structure has made interpreting study outcomes difficult. In the present study, we examined the taxonomic and functional differences between the microbiomes of youth with obesity and with and without NAFLD. Shotgun metagenome sequencing was performed to profile the microbiomes of 36 subjects, half of whom were diagnosed with NAFLD using abdominal magnetic resonance imaging. Beta diversity analysis showed community-wide differences between the groups (p = 0.002). Specific taxonomic differences included increased relative abundances of the species Fusicatenibacter saccharivorans (p = 0.042), Romboutsia ilealis (p = 0.046), and Actinomyces sp. ICM47 (p = 0.0009), and a decrease of Bacteroides thetaiotamicron (p = 0.0002), in the NAFLD group as compared with the non-NAFLD group. At the phylum level, Bacteroidetes (p < 0.0001) was decreased in the NAFLD group. Functionally, branched-chain amino acid (p = 0.01343) and aromatic amino acid (p = 0.01343) synthesis pathways had increased relative abundances in the NAFLD group along with numerous energy use pathways, including pyruvate fermentation to acetate (p = 0.01318). Conclusion: Community-wide differences were noted based on NAFLD status, and individual bacterial species along with specific metabolic pathways were identified as potential drivers of these differences. The results of the present study support the idea that the NAFLD phenotype displays a differentiated microbial and functional signature from the obesity phenotype.
Collapse
Affiliation(s)
- Todd Testerman
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Zhongyao Li
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Brittany Galuppo
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Joerg Graf
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Nicola Santoro
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
- Department of Medicine and Health Sciences"V. Tiberio" University of MoliseCampobassoItaly
| |
Collapse
|
278
|
Wang Z, Peters BA, Usyk M, Xing J, Hanna DB, Wang T, Post WS, Landay AL, Hodis HN, Weber K, French A, Golub ET, Lazar J, Gustafson D, Kassaye S, Aouizerat B, Haberlen S, Malvestutto C, Budoff M, Wolinsky SM, Sharma A, Anastos K, Clish CB, Kaplan RC, Burk RD, Qi Q. Gut Microbiota, Plasma Metabolomic Profiles, and Carotid Artery Atherosclerosis in HIV Infection. Arterioscler Thromb Vasc Biol 2022; 42:1081-1093. [PMID: 35678187 PMCID: PMC9339474 DOI: 10.1161/atvbaha.121.317276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Alterations in gut microbiota and blood metabolomic profiles have been implicated in HIV infection and cardiovascular disease. However, it remains unclear whether alterations in gut microbiota may contribute to disrupted host blood metabolomic profiles in relation to atherosclerosis, especially in the context of HIV infection. METHODS We analyzed cross-sectional associations between gut microbiota features and carotid artery plaque in 361 women with or at high risk of HIV (67% HIV+), and further integrated plaque-associated microbial features with plasma lipidomic/metabolomic profiles. Furthermore, in 737 women and men, we examined prospective associations of baseline gut bacteria-associated lipidomic and metabolomic profiles with incident carotid artery plaque over 7-year follow-up. RESULTS We found 2 potentially pathogenic bacteria, Fusobacterium and Proteus, were associated with carotid artery plaque; while the beneficial butyrate producer Odoribacter was inversely associated with plaque. Fusobacterium and Proteus were associated with multiple lipids/metabolites which were clustered into 8 modules in network. A module comprised of 9 lysophosphatidylcholines and lysophosphatidylethanolamines and a module comprised of 9 diglycerides were associated with increased risk of carotid artery plaque (risk ratio [95% CI], 1.34 [1.09-1.64] and 1.24 [1.02-1.51] per SD increment, respectively). Functional analyses identified bacterial enzymes in lipid metabolism associated with these plasma lipids. In particular, phospholipase A1 and A2 are the key enzymes in the reactions producing lysophosphatidylcholines and lysophosphatidylethanolamines. CONCLUSIONS Among individuals with or at high risk of HIV infection, we identified altered gut microbiota and related functional capacities in the lipid metabolism associated with disrupted plasma lipidomic profiles and carotid artery atherosclerosis.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health (Z.W., B.A.P., J.X., D.B.H., T.W., K.A., R.C.K., R.D.B., Q.Q.), Albert Einstein College of Medicine, Bronx, New York
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health (Z.W., B.A.P., J.X., D.B.H., T.W., K.A., R.C.K., R.D.B., Q.Q.), Albert Einstein College of Medicine, Bronx, New York
| | - Mykhaylo Usyk
- Department of Pediatrics (M.U., R.D.B.), Albert Einstein College of Medicine, Bronx, New York
| | - Jiaqian Xing
- Department of Epidemiology and Population Health (Z.W., B.A.P., J.X., D.B.H., T.W., K.A., R.C.K., R.D.B., Q.Q.), Albert Einstein College of Medicine, Bronx, New York
| | - David B Hanna
- Department of Epidemiology and Population Health (Z.W., B.A.P., J.X., D.B.H., T.W., K.A., R.C.K., R.D.B., Q.Q.), Albert Einstein College of Medicine, Bronx, New York
| | - Tao Wang
- Department of Epidemiology and Population Health (Z.W., B.A.P., J.X., D.B.H., T.W., K.A., R.C.K., R.D.B., Q.Q.), Albert Einstein College of Medicine, Bronx, New York
| | - Wendy S Post
- Department of Medicine, Johns Hopkins University, Baltimore, MD (W.S.P.)
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL (A.L.L)
| | - Howard N Hodis
- Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles (H.N.H.)
| | | | - Audrey French
- Department of Internal Medicine, John H. Stroger Jr Hospital of Cook County, Chicago, IL (A.F.)
| | - Elizabeth T Golub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (E.T.G., S.H.)
| | - Jason Lazar
- Department of Medicine (J.L.), State University of New York Downstate Medical Center, Brooklyn
| | - Deborah Gustafson
- Department of Neurology (D.G.), State University of New York Downstate Medical Center, Brooklyn
| | - Seble Kassaye
- Department of Medicine, Georgetown University, Washington DC (S.K.)
| | | | - Sabina Haberlen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (E.T.G., S.H.)
| | | | - Matthew Budoff
- David Geffen School of Medicine, University of California, Los Angeles (M.B.)
| | - Steven M Wolinsky
- Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago, IL (S.M.W.)
| | - Anjali Sharma
- Department of Medicine (A.S., K.A.), Albert Einstein College of Medicine, Bronx, New York
| | - Kathryn Anastos
- Department of Epidemiology and Population Health (Z.W., B.A.P., J.X., D.B.H., T.W., K.A., R.C.K., R.D.B., Q.Q.), Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine (A.S., K.A.), Albert Einstein College of Medicine, Bronx, New York
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA (C.B.C.)
| | - Robert C Kaplan
- Department of Epidemiology and Population Health (Z.W., B.A.P., J.X., D.B.H., T.W., K.A., R.C.K., R.D.B., Q.Q.), Albert Einstein College of Medicine, Bronx, New York.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (R.C.K.)
| | - Robert D Burk
- Department of Epidemiology and Population Health (Z.W., B.A.P., J.X., D.B.H., T.W., K.A., R.C.K., R.D.B., Q.Q.), Albert Einstein College of Medicine, Bronx, New York.,Department of Pediatrics (M.U., R.D.B.), Albert Einstein College of Medicine, Bronx, New York.,Department of Microbiology & Immunology (R.D.B.), Albert Einstein College of Medicine, Bronx, New York
| | - Qibin Qi
- Department of Epidemiology and Population Health (Z.W., B.A.P., J.X., D.B.H., T.W., K.A., R.C.K., R.D.B., Q.Q.), Albert Einstein College of Medicine, Bronx, New York.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (Q.Q.)
| |
Collapse
|
279
|
Dietrich A, Matchado MS, Zwiebel M, Ölke B, Lauber M, Lagkouvardos I, Baumbach J, Haller D, Brandl B, Skurk T, Hauner H, Reitmeier S, List M. Namco: a microbiome explorer. Microb Genom 2022; 8:mgen000852. [PMID: 35917163 PMCID: PMC9484756 DOI: 10.1099/mgen.0.000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
16S rRNA gene profiling is currently the most widely used technique in microbiome research and allows the study of microbial diversity, taxonomic profiling, phylogenetics, functional and network analysis. While a plethora of tools have been developed for the analysis of 16S rRNA gene data, only a few platforms offer a user-friendly interface and none comprehensively covers the whole analysis pipeline from raw data processing down to complex analysis. We introduce Namco, an R shiny application that offers a streamlined interface and serves as a one-stop solution for microbiome analysis. We demonstrate Namco's capabilities by studying the association between a rich fibre diet and the gut microbiota composition. Namco helped to prove the hypothesis that butyrate-producing bacteria are prompted by fibre-enriched intervention. Namco provides a broad range of features from raw data processing and basic statistics down to machine learning and network analysis, thus covering complex data analysis tasks that are not comprehensively covered elsewhere. Namco is freely available at https://exbio.wzw.tum.de/namco/.
Collapse
Affiliation(s)
- Alexander Dietrich
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Monica Steffi Matchado
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Maximilian Zwiebel
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Benjamin Ölke
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Michael Lauber
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ilias Lagkouvardos
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Dirk Haller
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Beate Brandl
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Thomas Skurk
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Hans Hauner
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- Institute of Nutritional Medicine, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sandra Reitmeier
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
280
|
Proximate Drivers of Population-Level Lizard Gut Microbial Diversity: Impacts of Diet, Insularity, and Local Environment. Microorganisms 2022; 10:microorganisms10081550. [PMID: 36013968 PMCID: PMC9413874 DOI: 10.3390/microorganisms10081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Diet has been suggested to be an important driver of variation in microbiota composition in mammals. However, whether this is a more general phenomenon and how fast changes in gut microbiota occur with changes in diet remains poorly understood. Forty-nine years ago, ten lizards of the species Podarcis siculus were taken from the island of Pod Kopište and introduced onto the island of Pod Mrčaru (Croatia). The introduced population underwent a significant dietary shift, and their descendants became omnivorous (consuming up to 80% plant material during summer). Variation in their gut microbiota has never been investigated. To elucidate the possible impact on the gut microbiota of this rapid change in diet, we compared the microbiota (V4 region of the 16S rRNA gene) of P. siculus from Pod Mrčaru, Pod Kopište, and the mainland. In addition, we explored other drivers of variation in gut microbiota including insularity, the population of origin, and the year of sampling. Alpha-diversity analyses showed that the microbial diversity of omnivorous lizards was higher than the microbial diversity of insectivorous lizards. Moreover, omnivorous individuals harbored significantly more Methanobrevibacter. The gut microbial diversity of insectivorous lizards was nonetheless more heterogeneous. Insectivorous lizards on the mainland had different gut microbial communities than their counterparts on the island of Pod Kopište. Bacillus and Desulfovibrio were more abundant in the gut microbiota from insular lizards compared to mainland lizards. Finally, we showed that the population of origin was also an important driver of the composition of the gut microbiota. The dietary shift that occurred in the introduced population of P. siculus has had a detectable impact on the gut microbiota, but other factors such as insularity and the population of origin also contributed to differences in the gut microbial composition of these lizards, illustrating the multifactorial nature of the drivers of variation in gut microbiota. Overall, our data show that changes in gut microbiota may take place on ecological timescales. Yet, diet is only one of many factors driving variation in gut microbiota across populations.
Collapse
|
281
|
Bouzid F, Gtif I, Alfadhli S, Charfeddine S, Ghorbel W, Abdelhédi R, Benmarzoug R, Abid L, Bouayed Abdelmoula N, Elloumi I, Masmoudi S, Rebai A, Kharrat N. A potential oral microbiome signature associated with coronary artery disease in Tunisia. Biosci Rep 2022; 42:BSR20220583. [PMID: 35695679 PMCID: PMC9251586 DOI: 10.1042/bsr20220583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
The coronary artery disease (CAD) is a chronic inflammatory disease involving genetic as well as environmental factors. Recent evidence suggests that the oral microbiome has a significant role in triggering atherosclerosis. The present study assessed the oral microbiome composition variation between coronary patients and healthy subjects in order to identify a potential pathogenic signature associated with CAD. We performed metagenomic profiling of salivary microbiomes by 16S ribosomal RNA (rRNA) next-generation sequencing. Oral microbiota profiling was performed for 30 individuals including 20 patients with CAD and ten healthy individuals without carotid plaques or previous stroke or myocardial infarction. We found that oral microbial communities in patients and healthy controls are represented by similar global core oral microbiome. The predominant taxa belonged to Firmicutes (genus Streptococcus, Veillonella, Granulicatella, Selenomonas), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Rothia), Bacteroidetes (genus Prevotella, Porphyromonas), and Fusobacteria (genus Fusobacterium, Leptotrichia). More than 60% relative abundance of each sample for both CAD patients and controls is represented by three major genera including Streptococcus (24.97 and 26.33%), Veillonella (21.43 and 19.91%), and Neisseria (14.23 and 15.33%). Using penalized regression analysis, the bacterial genus Eikenella was involved as the major discriminant genus for both status and Syntax score of CAD. We also reported a significant negative correlation between Syntax score and Eikenella abundance in coronary patients' group (Spearman rho = -0.68, P=0.00094). In conclusion, the abundance of Eikenella in oral coronary patient samples compared with controls could be a prominent pathological indicator for the development of CAD.
Collapse
Affiliation(s)
- Fériel Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Imen Gtif
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Suad Alfadhli
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat 90805, State of Kuwait
| | - Salma Charfeddine
- Department of Cardiology, Hédi Chaker University Hospital, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Walid Ghorbel
- Department of Dentistry, Hédi Chaker University Hospital, Faculty of Dental Medicine of Monastir, University of Monastir, Tunisia
| | - Rania Abdelhédi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Riadh Benmarzoug
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Leila Abid
- Department of Cardiology, Hédi Chaker University Hospital, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Nouha Bouayed Abdelmoula
- Department of Histology: UR17ES36 Genomics of Signalopathies in the Service of Medicine, University of Sfax, Tunisia
| | - Inés Elloumi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Najla Kharrat
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
282
|
Eason J, Mason L. Characterization of Microbial Communities from the Alimentary Canal of Typhaea stercorea (L.) (Coleoptera: Mycetophagidae). INSECTS 2022; 13:insects13080685. [PMID: 36005310 PMCID: PMC9408915 DOI: 10.3390/insects13080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Hairy fungus beetle, Typhaea stercorea, is a secondary post-harvest pest of stored grains that thrives by feeding on mytoxigenic fungi. Bacterial communities residing in the alimentary canal of most insects contribute to their host’s development. While there are many examples, little is known about the role of bacterial communities in the alimentary canal of T. stercorea. The objectives of this study were to (1) characterize the microbial communities residing in T. stercorea and (2) compare the microbial compositions of field-collected and laboratory-reared populations. In this study, we were able to identify bacterial communities that possess mycolytic properties and track mark changes in the microbiota profiles associated with development. The genus Pseudomonas was enriched in T. stercorea larvae compared to adults. Furthermore, field-collected T. sterocrea adults had a lower species richness than both larva and adult laboratory-reared T. sterocrea. Moreover, the gut microbial compositions of field-collected and laboratory-reared populations were vastly different. Overall, our results suggest that the environment and physiology can shift the microbial composition in the alimentary canal of T. stercorea. Abstract The gut microbiomes of symbiotic insects typically mediate essential functions lacking in their hosts. Here, we describe the composition of microbes residing in the alimentary canal of the hairy fungus beetle, Typhaea stercorea (L.), at various life stages. This beetle is a post-harvest pest of stored grains that feeds on fungi and serves as a vector of mycotoxigenic fungi. It has been reported that the bacterial communities found in most insects’ alimentary canals contribute to nutrition, immune defenses, and protection from pathogens. Hence, bacterial symbionts may play a key role in the digestive system of T. stercorea. Using 16S rRNA amplicon sequencing, we examined the microbiota of T. stercorea. We found no difference in bacterial species richness between larvae and adults, but there were compositional differences across life stages (PERMANOVA:pseudo-F(8,2) = 8.22; p = 0.026). The three most abundant bacteria found in the alimentary canal of the larvae and adults included Pseudomonas (47.67% and 0.21%, respectively), an unspecified genus of the Enterobacteriaceae family (46.60 % and 90.97%, respectively), and Enterobacter (3.89% and 5.75%, respectively). Furthermore, Pseudomonas spp. are the predominant bacteria in the larval stage. Our data indicated that field-collected T. stercorea tended to have lower species richness than laboratory-reared beetles (Shannon: H = 5.72; p = 0.057). Furthermore, the microbial communities of laboratory-reared insects resembled one another, whereas field-collected adults exhibited variability (PERMANOVA:pseudo-F(10,3) = 4.41; p = 0.006). We provide evidence that the environment and physiology can shift the microbial composition in the alimentary canal of T. stercorea.
Collapse
|
283
|
Changes in intestinal microbiota in postmenopausal oestrogen receptor-positive breast cancer patients treated with (neo)adjuvant chemotherapy. NPJ Breast Cancer 2022; 8:89. [PMID: 35906259 PMCID: PMC9338016 DOI: 10.1038/s41523-022-00455-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
This clinical study explored the associations between the intestinal microbiota, chemotherapy toxicity, and treatment response in postmenopausal oestrogen receptor positive breast cancer patients.Oestrogen receptor positive postmenopausal breast cancer patients were prospectively enroled in a multicentre cohort study and treated with 4 cycles of (neo)adjuvant adriamycin, cyclophosphamide (AC) followed by 4 cycles of docetaxel (D). Patients collected a faecal sample and completed a questionnaire before treatment, during AC, during D, and after completing AC-D. Chemotherapy toxicity and tumour response were determined. Intestinal microbiota was analysed by amplicon sequencing of the 16 S rRNA V4 gene-region. In total, 44 patients, including 18 neoadjuvant patients, were included, and 153 faecal samples were collected before AC-D (n = 44), during AC (n = 43), during D (n = 29), and after AC-D treatment (n = 37), 28 participants provided all four samples. In the whole group, observed species richness reduced during treatment (p = 0.042). The abundance of Proteobacteria, unclassified Enterobacterales, Lactobacillus, Ruminococcaceae NK4A214 group, Marvinbryantia, Christensenellaceae R7 group, and Ruminococcaceae UCG-005 changed significantly over time. Patients with any grade diarrhoea during docetaxel treatment had a significantly lower observed species richness compared to patients without diarrhoea. In the small group neoadjuvant treated patients, pathologic response was unrelated to baseline intestinal microbiota richness, diversity and composition. While the baseline microbiota was not predictive for pathologic response in a rather small group of neoadjuvant treated patients in our study, subsequent shifts in microbial richness, as well as the abundance of specific bacterial taxa, were observed during AC-D treatment in the whole group and the neoadjuvant group.
Collapse
|
284
|
Kautzman AM, Mobulakani JMF, Marrero Cofino G, Quenum AJI, Cayarga AA, Asselin C, Fortier LC, Ilangumaran S, Menendez A, Ramanathan S. Interleukin 15 in murine models of colitis. Anat Rec (Hoboken) 2022; 306:1111-1130. [PMID: 35899872 DOI: 10.1002/ar.25044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by abnormal, non-antigen specific chronic inflammation of unknown etiology. Genome-wide association studies show that many IBD genetic susceptibility loci map to immune function genes and compelling evidence indicate that environmental factors play a critical role in IBD pathogenesis. Clinical and experimental evidence implicate the pro-inflammatory cytokine IL-15 in the pathogenesis of IBD. IL-15 and IL-15α expression is increased in the inflamed mucosa of IBD patients. IL-15 contributes to the maintenance of different cell subsets in the intestinal mucosa. However, very few studies have addressed the role of IL-15 in pre-clinical models of colitis. In this study, we use three well-characterized models of experimental colitis to determine the contribution of IL-15 to pathological intestinal inflammation.
Collapse
Affiliation(s)
- Alicia Molina Kautzman
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Gisela Marrero Cofino
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
285
|
Romo Bechara N, Wasserberg G, Raymann K. Microbial ecology of sand fly breeding sites: aging and larval conditioning alter the bacterial community composition of rearing substrates. Parasit Vectors 2022; 15:265. [PMID: 35883112 PMCID: PMC9327230 DOI: 10.1186/s13071-022-05381-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Sand flies vector several human pathogens, including Leishmania species, which cause leishmaniases. A leishmaniasis vaccine does not yet exist, so the most common prevention strategies involve personal protection and insecticide spraying. However, insecticides can impact non-target organisms and are becoming less effective because of the evolution of resistance. An alternative control strategy is the attract-and-kill approach, where the vector is lured to a lethal trap, ideally located in oviposition sites that will attract gravid females. Oviposition traps containing attractive microbes have proven successful for the control of some mosquito populations but have not been developed for sand flies. Gravid female sand flies lay their eggs in decomposing organic matter on which the larvae feed and develop. Studies have demonstrated that gravid females are particularly attracted to larval conditioned (containing eggs and larvae) and aged rearing substrates. An isolate-based study has provided some evidence that bacteria play a role in the attraction of sand flies to conditioned substrates. However, the overall bacterial community structure of conditioned and aged substrates and how they change over time has not been investigated. METHODS The goal of this study was to characterize the bacterial communities of rearing and oviposition substrates that have been shown to vary in attractiveness to gravid sand flies in previous behavioral studies. Using 16S rRNA amplicon sequencing we determined the bacterial composition in fresh, aged, and larval-conditioned substrates at four time points representing the main life-cycle stages of developing sand flies. We compared the diversity, presence, and abundance of taxa across substrate types and time points in order to identify how aging and larval-conditioning impact bacterial community structure. RESULTS We found that the bacterial communities significantly change within and between substrates over time. We also identified bacteria that might be responsible for attraction to conditioned and aged substrates, which could be potential candidates for the development of attract-and-kill strategies for sand flies. CONCLUSION This study demonstrated that both aging and larval conditioning induce shifts in the bacterial communities of sand fly oviposition and rearing substrates, which may explain the previously observed preference of gravid female sand flies to substrates containing second/third-instar larvae (conditioned) and substrates aged the same amount of time without larvae (aged).
Collapse
Affiliation(s)
| | | | - Kasie Raymann
- University of North Carolina at Greensboro, Greensboro, NC USA
| |
Collapse
|
286
|
Knobloch S, Skírnisdóttir S, Dubois M, Kolypczuk L, Leroi F, Leeper A, Passerini D, Marteinsson VÞ. Impact of Putative Probiotics on Growth, Behavior, and the Gut Microbiome of Farmed Arctic Char (Salvelinus alpinus). Front Microbiol 2022; 13:912473. [PMID: 35928148 PMCID: PMC9343752 DOI: 10.3389/fmicb.2022.912473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Beneficial bacteria promise to promote the health and productivity of farmed fish species. However, the impact on host physiology is largely strain-dependent, and studies on Arctic char (Salvelinus alpinus), a commercially farmed salmonid species, are lacking. In this study, 10 candidate probiotic strains were subjected to in vitro assays, small-scale growth trials, and behavioral analysis with juvenile Arctic char to examine the impact of probiotic supplementation on fish growth, behavior and the gut microbiome. Most strains showed high tolerance to gastric juice and fish bile acid, as well as high auto-aggregation activity, which are important probiotic characteristics. However, they neither markedly altered the core gut microbiome, which was dominated by three bacterial species, nor detectably colonized the gut environment after the 4-week probiotic treatment. Despite a lack of long-term colonization, the presence of the bacterial strains showed either beneficial or detrimental effects on the host through growth rate enhancement or reduction, as well as changes in fish motility under confinement. This study offers insights into the effect of bacterial strains on a salmonid host and highlights three strains, Carnobacterium divergens V41, Pediococcus acidilactici ASG16, and Lactiplantibacillus plantarum ISCAR-07436, for future research into growth promotion of salmonid fish through probiotic supplementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Leeper
- Microbiology Research Group, Matís ohf., Reykjavík, Iceland
- Faculty of Biosciences, Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Viggó Þ. Marteinsson
- Microbiology Research Group, Matís ohf., Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
- *Correspondence: Viggó Þ. Marteinsson,
| |
Collapse
|
287
|
Varriale L, Coretti L, Dipineto L, Green BD, Pace A, Lembo F, Menna LF, Fioretti A, Borrelli L. An Outdoor Access Period Improves Chicken Cecal Microbiota and Potentially Increases Micronutrient Biosynthesis. Front Vet Sci 2022; 9:904522. [PMID: 35909674 PMCID: PMC9330014 DOI: 10.3389/fvets.2022.904522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Characterizing the gut microbiota of free-range and alternative poultry production systems provides information, which can be used to improve poultry welfare, performance, and environmental sustainability. Gut microbiota influence not only the health and metabolism of the host but also the presence of zoonotic agents contaminating food of animal origin. In this study, the composition and diversity of the cecal microbiota community of free-range grown chickens were characterized by 16S rDNA high-throughput Illumina sequencing. Significant differences were observed in the composition of chicken cecal microbiota at the time points of 28 days of age (Indoor group) and 56 days of age (Outdoor group), i.e., before and after the outdoor access period of chicken groups. The Outdoor group showed a richer and more complex microbial community, characterized by the onset of new phyla such as Deferribacterota and Synergistota, while the Indoor group showed an increase in Campylobacterota. At the species level, it is noteworthy that the occurrence of Mucispirillum schaedleri in Outdoor group is known to potentially stimulate mucus layer formation in the distal intestinal tract, thus being associated with a healthy gut. We also report a significant decrease in the Outdoor group of Helicobacter pullorum, highlighting that the lower abundance at the age of slaughter reduced the possibility to contaminate chickens' carcasses and, consequently, its zoonotic potential. As revealed by a mutual exclusion study in network analysis, H. pullorum was present only if Bacteroides barnesiae, an uncultured organism of the genus Synergistes, and Bacteroides gallinaceum were absent. Finally, microbiome predictive analysis revealed an increase of vitamins and micronutrient biosyntheses such as queuosine (Q) and its precursor pre Q0, in the Outdoor group, suggesting that the outdoor evolved microbiota of chickens do contribute to the vitamin pool of the gut and the biosynthesis of micronutrients involved in vital cell processes.
Collapse
Affiliation(s)
- Lorena Varriale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
- *Correspondence: Lorena Varriale
| | - Lorena Coretti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- TaskForce on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Lorena Coretti
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
- TaskForce on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Brian D. Green
- The Institute for Global Food Security, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Antonino Pace
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- TaskForce on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Lucia Francesca Menna
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
- TaskForce on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Luca Borrelli
| |
Collapse
|
288
|
McClymont E, Albert AY, Wang C, Dos Santos SJ, Coutlée F, Lee M, Walmsley S, Lipsky N, Loutfy M, Trottier S, Smaill F, Klein MB, Yudin MH, Harris M, Wobeser W, Hill JE, Money DM. Vaginal microbiota associated with oncogenic HPV in a cohort of HPV-vaccinated women living with HIV. Int J STD AIDS 2022; 33:847-855. [PMID: 35775280 PMCID: PMC9388949 DOI: 10.1177/09564624221109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Women living with HIV (WLWH) experience higher rates of human papillomavirus
(HPV) infection and cervical cancer than women without HIV. Changes in the
vaginal microbiome have been implicated in HPV-related disease processes
such as persistence of high-risk HPV infection but this has not been well
defined in a population living with HIV. Methods Four hundred and 20 girls and WLWH, age ≥9, across 14 clinical sites in
Canada were enrolled to receive three doses of quadrivalent HPV vaccine for
assessment of vaccine immunogenicity. Blood, cervical cytology, and
cervico-vaginal swabs were collected. Cervico-vaginal samples were tested
for HPV DNA and underwent microbiota sequencing. Results Principal component analysis (PCA) and hierarchical clustering generated
community state types (CSTs). Relationships between taxa and CSTs with HPV
infection were examined using mixed-effects logistic regressions, Poisson
regressions, or generalized linear mixed-effects models, as appropriate.
Three hundred and fifty-six cervico-vaginal microbiota samples from 172
women were sequenced. Human papillomavirus DNA was detected in 211 (59%)
samples; 110 (31%) contained oncogenic HPV. Sixty-five samples (18%) were
taken concurrently with incident oncogenic HPV infection and 56 (16%) were
collected from women with concurrent persistent oncogenic HPV infection. Conclusions No significant associations between taxa, CST, or microbial diversity and
HPV-related outcomes were found. However, we observed weak associations
between a dysbiotic microbiome and specific species, including
Gardnerella, Porphyromonas, and
Prevotella species, with incident HPV infection.
Collapse
Affiliation(s)
- Elisabeth McClymont
- Department of Obstetrics and Gynecology, 8166University of British Columbia, Vancouver, BC, Canada.,469220Canadian HIV Trials Network, Vancouver, BC, Canada
| | | | - Christine Wang
- Faculty of Medicine, 12358University of British Columbia, Vancouver, BC, Canada
| | - Scott J Dos Santos
- Department of Veterinary Microbiology, 70399University of Saskatchewan, Saskatoon, SK, Canada
| | - François Coutlée
- Département de Microbiologie Médicale et Infectiologie, 5622l'Université de Montréal, Montréal, QC, Canada
| | - Marette Lee
- Department of Obstetrics and Gynecology, 8166University of British Columbia, Vancouver, BC, Canada
| | - Sharon Walmsley
- Toronto General Hospital Research Institute, University of Toronto, 7989University Health Network, Toronto, ON, Canada.,Dalla Lana School of Public Health, 274071University of Toronto, Toronto, ON, Canada
| | - Nancy Lipsky
- 574117Women's Health Research Institute, Vancouver, BC, Canada
| | - Mona Loutfy
- Women's College Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sylvie Trottier
- Infectious Diseases Research Centre, 4440Université Laval, Québec City, QC, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, 3710McMaster University, Hamilton, ON, Canada
| | - Marina B Klein
- 54473McGill University Health Centre, Montreal, QC, Canada
| | - Mark H Yudin
- Women's College Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, 574538St. Michael's Hospital, Toronto, ON, Canada
| | - Marianne Harris
- Faculty of Medicine, 12358University of British Columbia, Vancouver, BC, Canada.,198129British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Wendy Wobeser
- Departments of Public Health and Molecular & Biomedical Sciences, 4257Queen's University, Kingston, ON, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, 70399University of Saskatchewan, Saskatoon, SK, Canada
| | - Deborah M Money
- Department of Obstetrics and Gynecology, 8166University of British Columbia, Vancouver, BC, Canada.,574117Women's Health Research Institute, Vancouver, BC, Canada
| | | |
Collapse
|
289
|
Pickel L, Lee JH, Maughan H, Shi IQ, Verma N, Yeung C, Guttman D, Sung H. Circadian rhythms in metabolic organs and the microbiota during acute fasting in mice. Physiol Rep 2022; 10:e15393. [PMID: 35851583 PMCID: PMC9295129 DOI: 10.14814/phy2.15393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 04/16/2023] Open
Abstract
The circadian clock regulates metabolism in anticipation of regular changes in the environment. It is found throughout the body, including in key metabolic organs such as the liver, adipose tissues, and intestine, where the timing of the clock is set largely by nutrient signaling. However, the circadian clocks of these tissues during the fasted state have not been completely characterized. Moreover, the sufficiency of a functioning host clock to produce diurnal rhythms in the composition of the microbiome in fasted animals has not been explored. To this end, mice were fasted 24 h prior to collection of key metabolic tissues and fecal samples for the analysis of circadian clock gene expression and microbiome composition. Rhythm characteristics were determined using CircaCompare software. We identify tissue-specific changes to circadian clock rhythms upon fasting, particularly in the brown adipose tissue, and for the first time demonstrate the rhythmicity of the microbiome in fasted animals.
Collapse
Affiliation(s)
- Lauren Pickel
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | | | - Irisa Qianwen Shi
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
| | - Navkiran Verma
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | - Christy Yeung
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | - David Guttman
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoOntarioUSA
| | - Hoon‐Ki Sung
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| |
Collapse
|
290
|
Bilinski J, Dziurzynski M, Grzesiowski P, Podsiadly E, Stelmaszczyk-Emmel A, Dzieciatkowski T, Lis K, Tyszka M, Ozieranski K, Dziewit Ł, Basak GW. Fresh Versus Frozen Stool for Fecal Microbiota Transplantation—Assessment by Multimethod Approach Combining Culturing, Flow Cytometry, and Next-Generation Sequencing. Front Microbiol 2022; 13:872735. [PMID: 35847075 PMCID: PMC9284506 DOI: 10.3389/fmicb.2022.872735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this work was to compare the quality of FMT preparations made from fresh feces with those made from feces frozen at –30°C without any pre-processing or cryopreservation additives. The research hypothesis was that such preservation protocol (frozen whole stool, then thawed and processed) is equipotent to classical fresh FMT preparation. For that, three complementary methods were applied, including: (i) culturing in aerobic and anaerobic conditions, (ii) measuring viability by flow cytometry, and (iii) next-generation sequencing. Flow cytometry with cell staining showed that the applied freezing protocol causes significant changes in all of the observed bacterial fractions. Alive cell counts dropped four times, from around 70% to 15%, while the other two fractions, dead and unknown cell counts quadrupled and doubled, with the unknown fraction becoming the dominant one, with an average contribution of 57.47% per sample. It will be very interesting to uncover what this unknown fraction is (e.g., bacterial spores), as this may change our conclusions (if these are spores, the viability could be even higher after freezing). Freezing had a huge impact on the structure of cultivable bacterial communities. The biggest drop after freezing in the number of cultivable species was observed for Actinobacteria and Bacilli. In most cases, selected biodiversity indices were slightly lower for frozen samples. PCoA visualization built using weighted UniFrac index showed no donor-wise clusters, but a clear split between fresh and frozen samples. This split can be in part attributed to the changes in the relative abundance of Bacteroidales and Clostridiales orders. Our results clearly show that whole stool freezing without any cryoprotectants has a great impact on the cultivability and biodiversity of the bacterial community, and possibly also on the viability of bacterial cells.
Collapse
Affiliation(s)
- Jaroslaw Bilinski
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Jaroslaw Bilinski,
| | - Mikolaj Dziurzynski
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
- Mikolaj Dziurzynski,
| | | | - Edyta Podsiadly
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | - Karol Lis
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Martyna Tyszka
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Łukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
291
|
Kato S, Nagasawa T, Uehara O, Shimizu S, Sugiyama N, Hasegawa-Nakamura K, Noguchi K, Hatae M, Kakinoki H, Furuichi Y. Increase in Bifidobacterium is a characteristic of the difference in the salivary microbiota of pregnant and non-pregnant women. BMC Oral Health 2022; 22:260. [PMID: 35764953 PMCID: PMC9238123 DOI: 10.1186/s12903-022-02293-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background The establishment of symbiotic microbiota in pregnant women is important for both the mother and her offspring. Little is known about the salivary symbiotic bacteria in pregnancy, and analysis of composition of microbiome (ANCOM) is useful to detect small differences in the number of bacteria. The aim of this study was to investigate the differences in the salivary bacteria between healthy pregnant and non-pregnant women using ANCOM. Methods Unstimulated saliva samples were collected from 35 healthy pregnant women at 35 weeks gestation and 30 healthy non-pregnant women during menstruation. All participants underwent a periodontal examination. Estradiol and progesterone levels were examined by enzyme-linked immunosorbent assay. DNA extracted from the saliva was assessed by 16S ribosomal RNA amplicon sequencing and real-time PCR. Results Salivary estradiol and progesterone levels were significantly increased in pregnant women. The alpha and beta diversities were higher in pregnant women than in non-pregnant women. The largest effect size difference noted when the microbiota of the pregnant and non-pregnant women were analyzed was that for Bifidobacteriales. Levels of Bifidobacterium dentium, but not of Bifidobacterium adolescentis, were significantly increased in pregnant women, and the levels were significantly correlated with progesterone concentration. Conclusion The results suggest that Bifidobacterium and progesterone levels are elevated in the saliva of healthy pregnant women compared with non-pregnant women.
Collapse
|
292
|
Menopause Is Associated with an Altered Gut Microbiome and Estrobolome, with Implications for Adverse Cardiometabolic Risk in the Hispanic Community Health Study/Study of Latinos. mSystems 2022; 7:e0027322. [PMID: 35675542 PMCID: PMC9239235 DOI: 10.1128/msystems.00273-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Menopause is a pivotal period during which loss of ovarian hormones increases cardiometabolic risk and may also influence the gut microbiome. However, the menopause-microbiome relationship has not been examined in a large study, and its implications for cardiometabolic disease are unknown. In the Hispanic Community Health Study/Study of Latinos, a population with high burden of cardiometabolic risk factors, shotgun metagenomic sequencing was performed on stool from 2,300 participants (295 premenopausal women, 1,027 postmenopausal women, and 978 men), and serum metabolomics was available on a subset. Postmenopausal women trended toward lower gut microbiome diversity and altered overall composition compared to premenopausal women, while differing less from men, in models adjusted for age and other demographic/behavioral covariates. Differentially abundant taxa for post- versus premenopausal women included Bacteroides sp. strain Ga6A1, Prevotella marshii, and Sutterella wadsworthensis (enriched in postmenopause) and Escherichia coli-Shigella spp., Oscillibacter sp. strain KLE1745, Akkermansia muciniphila, Clostridium lactatifermentans, Parabacteroides johnsonii, and Veillonella seminalis (depleted in postmenopause); these taxa similarly differed between men and women. Postmenopausal women had higher abundance of the microbial sulfate transport system and decreased abundance of microbial β-glucuronidase; these functions correlated with serum progestin metabolites, suggesting involvement of postmenopausal gut microbes in sex hormone retention. In postmenopausal women, menopause-related microbiome alterations were associated with adverse cardiometabolic profiles. In summary, in a large U.S. Hispanic/Latino population, menopause is associated with a gut microbiome more similar to that of men, perhaps related to the common condition of a low estrogen/progesterone state. Future work should examine similarity of results in other racial/ethnic groups. IMPORTANCE The menopausal transition, marked by declining ovarian hormones, is recognized as a pivotal period of cardiometabolic risk. Gut microbiota metabolically interact with sex hormones, but large population studies associating menopause with the gut microbiome are lacking. Our results from a large study of Hispanic/Latino women and men suggest that the postmenopausal gut microbiome in women is slightly more similar to the gut microbiome in men and that menopause depletes specific gut pathogens and decreases the hormone-related metabolic potential of the gut microbiome. At the same time, gut microbes may participate in sex hormone reactivation and retention in postmenopausal women. Menopause-related gut microbiome changes were associated with adverse cardiometabolic risk in postmenopausal women, indicating that the gut microbiome contributes to changes in cardiometabolic health during menopause.
Collapse
|
293
|
Lin Z, Rao W, Xiang Z, Zeng Q, Liu S, Yu K, Zhou J, Wang J, Chen W, Chen Y, Peng X, Hu Z. Characteristics and interplay of esophageal microbiota in esophageal squamous cell carcinoma. BMC Cancer 2022; 22:696. [PMID: 35739509 PMCID: PMC9229141 DOI: 10.1186/s12885-022-09771-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Background Esophageal microbiota may influence esophageal squamous cell carcinoma (ESCC) pathobiology. Therefore, we investigated the characteristics and interplay of the esophageal microbiota in ESCC. Methods We performed 16S ribosomal RNA sequencing on paired esophageal tumor and tumor-adjacent samples obtained from 120 primarily ESCC patients. Analyses were performed using quantitative insights into microbial 2 (QIIME2) and phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2). Species found to be associated with ESCC were validated using quantitative PCR. Results The microbial diversity and composition of ESCC tumor tissues significantly differed from tumor-adjacent tissues; this variation between subjects beta diversity is mainly explained by regions and sampling seasons. A total of 56 taxa were detected with differential abundance between the two groups, such as R. mucilaginosa, P. endodontalis, N. subflava, H. Pylori, A. Parahaemolyticus, and A. Rhizosphaerae. Quantitative PCR confirmed the enrichment of the species P. endodontalis and the reduction of H. Pylori in tumor-adjacent tissues. Compared with tumor tissue, a denser and more complex association network was formed in tumor-adjacent tissue. The above differential taxa, such as H. Pylori, an unclassified species in the genera Sphingomonas, Haemophilus, Phyllobacterium, and Campylobacter, also participated in both co-occurrence networks but played quite different roles. Most of the differentially abundant taxa in tumor-adjacent tissues were negatively associated with the epidermal growth factor receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (ERBB2), erb-b2 receptor tyrosine kinase 4 (ERBB4), and fibroblast growth factor receptor 1 (FGFR1) signaling pathways, and positively associated with the MET proto-oncogene, receptor tyrosine kinase (MET) and phosphatase and tensin homolog (PTEN) signaling pathways in tumors. Conclusion Alterations in the microbial co-occurrence network and functional pathways in ESCC tissues may be involved in carcinogenesis and the maintenance of the local microenvironment for ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09771-2.
Collapse
Affiliation(s)
- Zheng Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wenqing Rao
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhisheng Xiang
- Department of Epidemiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Qiaoyan Zeng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Shuang Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Kaili Yu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jinsong Zhou
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jianwen Wang
- Department of Digestive Endoscopy, Anxi County Hospital, Anxi, 362400, China
| | - Weilin Chen
- Department of Radiation Oncology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, China
| | - Yuanmei Chen
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xiane Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China. .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
294
|
Jafari M, Juanson Arabit JG, Courville R, Kiani D, Chaston JM, Nguyen CD, Jena N, Liu ZY, Tata P, Van Etten RA. The impact of Rhodiola rosea on biomarkers of diabetes, inflammation, and microbiota in a leptin receptor-knockout mouse model. Sci Rep 2022; 12:10581. [PMID: 35732671 PMCID: PMC9217815 DOI: 10.1038/s41598-022-14241-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes is the most prevalent endocrine disease in the world, and recently the gut microbiota have become a potential target for its management. Recent studies have illustrated that this disease may predispose individuals to certain microbiome compositions, and treatments like metformin have been shown to change gut microbiota and their associated metabolic pathways. However, given the limitations and side effects associated with pharmaceuticals currently being used for therapy of diabetes, there is a significant need for alternative treatments. In this study, we investigated the effects of a root extract from Rhodiola rosea in a Leptin receptor knockout (db/db) mouse model of type 2 diabetes. Our previous work showed that Rhodiola rosea had anti-inflammatory and gut microbiome-modulating properties, while extending lifespan in several animal models. In this study, treatment with Rhodiola rosea improved fasting blood glucose levels, altered the response to exogenous insulin, and decreased circulating lipopolysaccharide and hepatic C-reactive protein transcript levels. We hypothesize that these changes may in part reflect the modulation of the microbiota, resulting in improved gut barrier integrity and decreasing the translocation of inflammatory biomolecules into the bloodstream. These findings indicate that Rhodiola rosea is an attractive candidate for further research in the management of type 2 diabetes.
Collapse
Affiliation(s)
- Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| | | | - Robert Courville
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Dara Kiani
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - John M Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Cindy Duy Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Nilamani Jena
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Zhong-Ying Liu
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Prasanthi Tata
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | | |
Collapse
|
295
|
Weinert-Nelson JR, Biddle AS, Williams CA. Fecal microbiome of horses transitioning between warm-season and cool-season grass pasture within integrated rotational grazing systems. Anim Microbiome 2022; 4:41. [PMID: 35729677 PMCID: PMC9210719 DOI: 10.1186/s42523-022-00192-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/10/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Diet is a key driver of equine hindgut microbial community structure and composition. The aim of this study was to characterize shifts in the fecal microbiota of grazing horses during transitions between forage types within integrated warm- (WSG) and cool-season grass (CSG) rotational grazing systems (IRS). Eight mares were randomly assigned to two IRS containing mixed cool-season grass and one of two warm-season grasses: bermudagrass [Cynodon dactylon (L.) Pers.] or crabgrass [Digitaria sanguinalis (L.) Scop.]. Fecal samples were collected during transitions from CSG to WSG pasture sections (C-W) and WSG to CSG (W-C) on days 0, 2, 4, and 6 following pasture rotation and compared using 16S rRNA gene sequencing. RESULTS Regardless of IRS or transition (C-W vs. W-C), species richness was greater on day 4 and 6 in comparison to day 0 (P < 0.05). Evenness, however, did not differ by day. Weighted UniFrac also did not differ by day, and the most influential factor impacting β-diversity was the individual horse (R2 ≥ 0.24; P = 0.0001). Random forest modeling was unable to accurately predict days within C-W and W-C, but could predict the individual horse based on microbial composition (accuracy: 0.92 ± 0.05). Only three differentially abundant bacterial co-abundance groups (BCG) were identified across days within all C-W and W-C for both IRS (W ≥ 126). The BCG differing by day for all transitions included amplicon sequence variants (ASV) assigned to bacterial groups with known fibrolytic and butyrate-producing functions including members of Lachnospiraceae, Clostridium sensu stricto 1, Anaerovorax the NK4A214 group of Oscillospiraceae, and Sarcina maxima. In comparison, 38 BCG were identified as differentially abundant by horse (W ≥ 704). The ASV in these groups were most commonly assigned to genera associated with degradation of structural carbohydrates included Rikenellaceae RC9 gut group, Treponema, Christensenellaceae R-7 group, and the NK4A214 group of Oscillospiraceae. Fecal pH also did not differ by day. CONCLUSIONS Overall, these results demonstrated a strong influence of individual horse on the fecal microbial community, particularly on the specific composition of fiber-degraders. The equine fecal microbiota were largely stable across transitions between forages within IRS suggesting that the equine gut microbiota adjusted at the individual level to the subtle dietary changes imposed by these transitions. This adaptive capacity indicates that horses can be managed in IRS without inducing gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Jennifer R. Weinert-Nelson
- grid.430387.b0000 0004 1936 8796Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Amy S. Biddle
- grid.33489.350000 0001 0454 4791Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19711 USA
| | - Carey A. Williams
- grid.430387.b0000 0004 1936 8796Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| |
Collapse
|
296
|
Nguyen QA, Vu HP, McDonald JA, Nguyen LN, Leusch FDL, Neale PA, Khan SJ, Nghiem LD. Chiral Inversion of 2-Arylpropionic Acid Enantiomers under Anaerobic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8197-8208. [PMID: 35675163 DOI: 10.1021/acs.est.2c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work examined the chiral inversion of 2-arylpropionic acids (2-APAs) under anaerobic conditions and the associated microbial community. The anaerobic condition was simulated by two identical anaerobic digesters. Each digester was fed with the substrate containing 11 either pure (R)- or pure (S)-2-APA enantiomers. Chiral inversion was evidenced by the concentration increase of the other enantiomer in the digestate and the changes in the enantiomeric fraction between the two enantiomers. Both digesters showed similar and poor removal of 2-APAs (≤30%, except for naproxen) and diverse chiral inversion behaviors under anaerobic conditions. Four compounds exhibited (S → R) unidirectional inversion [flurbiprofen, ketoprofen, naproxen, and 2-(4-tert-butylphenyl)propionic acid], and the remaining seven compounds showed bidirectional inversion. Several aerobic and facultative anaerobic bacterial genera (Candidatus Microthrix, Rhodococcus, Mycobacterium, Gordonia, and Sphingobium) were identified in both digesters and predicted to harbor the 2-arylpropionyl-CoA epimerase (enzyme involved in chiral inversion) encoding gene. These genera presented at low abundances, <0.5% in the digester dosed with (R)-2-APAs and <0.2% in the digester dosed with (S)-2-APAs. The low abundances of these genera explain the limited extent of chiral inversion observed in this study.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - James A McDonald
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| |
Collapse
|
297
|
Korgan AC, Foxx CL, Hashmi H, Sago SA, Stamper CE, Heinze JD, O'Leary E, King JL, Perrot TS, Lowry CA, Weaver ICG. Effects of paternal high-fat diet and maternal rearing environment on the gut microbiota and behavior. Sci Rep 2022; 12:10179. [PMID: 35715467 PMCID: PMC9205913 DOI: 10.1038/s41598-022-14095-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Exposing a male rat to an obesogenic high-fat diet (HFD) influences attractiveness to potential female mates, the subsequent interaction of female mates with infant offspring, and the development of stress-related behavioral and neural responses in offspring. To examine the stomach and fecal microbiome's potential roles, fecal samples from 44 offspring and stomach samples from offspring and their fathers were collected and bacterial community composition was studied by 16 small subunit ribosomal RNA (16S rRNA) gene sequencing. Paternal diet (control, high-fat), maternal housing conditions (standard or semi-naturalistic housing), and maternal care (quality of nursing and other maternal behaviors) affected the within-subjects alpha-diversity of the offspring stomach and fecal microbiomes. We provide evidence from beta-diversity analyses that paternal diet and maternal behavior induced community-wide shifts to the adult offspring gut microbiome. Additionally, we show that paternal HFD significantly altered the adult offspring Firmicutes to Bacteroidetes ratio, an indicator of obesogenic potential in the gut microbiome. Additional machine-learning analyses indicated that microbial species driving these differences converged on Bifidobacterium pseudolongum. These results suggest that differences in early-life care induced by paternal diet and maternal care significantly influence the microbiota composition of offspring through the microbiota-gut-brain axis, having implications for adult stress reactivity.
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Christine L Foxx
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Oak Ridge Institute for Science and Education Research Participation Program, Oak Ridge, TN, 37830, USA
- U.S. Department of Agriculture (USDA), National Animal Health Laboratory Network (NAHLN), Animal and Plant Health Inspection Service (APHIS), Ames, IA, 50010, USA
| | - Heraa Hashmi
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Saydie A Sago
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Rocky Mountain MIRECC for Veteran Suicide Prevention, 1700 N Wheeling St, G-3-116M, Aurora, CO, 80045, USA
| | - Jared D Heinze
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Elizabeth O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jillian L King
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
298
|
Escherichia/ Shigella, SCFAs, and Metabolic Pathways-The Triad That Orchestrates Intestinal Dysbiosis in Patients with Decompensated Alcoholic Cirrhosis from Western Mexico. Microorganisms 2022; 10:microorganisms10061231. [PMID: 35744749 PMCID: PMC9229093 DOI: 10.3390/microorganisms10061231] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbiota undergoes profound alterations in alcohol cirrhosis. Microbiota-derived products, e.g., short chain fatty acids (SCFA), regulate the homeostasis of the gut-liver axis. The objective was to evaluate the composition and functions of the intestinal microbiota in patients with alcohol-decompensated cirrhosis. Fecal samples of 18 patients and 18 healthy controls (HC) were obtained. Microbial composition was characterized by 16S rRNA amplicon sequencing, SCFA quantification was performed by gas chromatography (GC), and metagenomic predictive profiles were analyzed by PICRUSt2. Gut microbiota in the cirrhosis group revealed a significant increase in the pathogenic/pathobionts genera Escherichia/Shigella and Prevotella, a decrease in beneficial bacteria, such as Blautia, Faecalibacterium, and a decreased α-diversity (p < 0.001) compared to HC. Fecal SCFA concentrations were significantly reduced in the cirrhosis group (p < 0.001). PICRUSt2 analysis indicated a decrease in acetyl-CoA fermentation to butyrate, as well as an increase in pathways related to antibiotics resistance, and aromatic amino acid biosynthesis. These metabolic pathways have been poorly described in the progression of alcohol-related decompensated cirrhosis. The gut microbiota of these patients possesses a pathogenic/inflammatory environment; therefore, future strategies to balance intestinal dysbiosis should be implemented. These findings are described for the first time in the population of western Mexico.
Collapse
|
299
|
Palmieri O, Castellana S, Bevilacqua A, Latiano A, Latiano T, Panza A, Fontana R, Ippolito AM, Biscaglia G, Gentile A, Gioffreda D, Decina I, Tricarico M, Sinigaglia M, Corbo MR, Mazza T, Perri F, Lamacchia C. Adherence to Gluten-Free Diet Restores Alpha Diversity in Celiac People but the Microbiome Composition Is Different to Healthy People. Nutrients 2022; 14:nu14122452. [PMID: 35745182 PMCID: PMC9228530 DOI: 10.3390/nu14122452] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is an autoimmune disease with the destruction of small intestinal villi, which occurs in genetically predisposed individuals. At the present moment, a gluten-free diet (GFD) is the only way to restore the functionality of gut mucosa. However, there is an open debate on the effects of long-term supplementation through a GFD, because some authors report an unbalance in microbial taxa composition. Methods: For microbiome analysis, fecal specimens were collected from 46 CD individuals in GFD for at least 2 years and 30 specimens from the healthy controls (HC). Data were analyzed using an ensemble of software packages: QIIME2, Coda-lasso, Clr-lasso, Selbal, PICRUSt2, ALDEx2, dissimilarity-overlap analysis, and dysbiosis detection tests. Results: The adherence to GFD restored the alpha biodiversity of the gut microbiota in celiac people but microbial composition at beta diversity resulted as different to HC. The microbial composition of the CD subjects was decreased in a number of taxa, namely Bifidobacterium longum and several belonging to Lachnospiraceae family, whereas Bacteroides genus was found to be more abundant. Predicted metabolic pathways among the CD bacterial communities revealed an important role in tetrapyrrole biosynthesis. Conclusions: CD patients in GFD had a non-dysbiotic microbial composition for the crude alpha diversity metrics. We found significant differences in beta diversity, in certain taxon, and pathways between subjects with inactive CD in GFD and controls. Collectively, our data may suggest the development of new GFD products by modulating the gut microbiota through diet, supplements of vitamins, and the addition of specific prebiotics.
Collapse
Affiliation(s)
- Orazio Palmieri
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.L.); (T.L.); (A.P.); (R.F.); (A.M.I.); (G.B.); (A.G.); (D.G.); (F.P.)
- Correspondence:
| | - Stefano Castellana
- Bioinformatics Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (S.C.); (T.M.)
| | - Antonio Bevilacqua
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (A.B.); (M.S.); (M.R.C.); (C.L.)
| | - Anna Latiano
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.L.); (T.L.); (A.P.); (R.F.); (A.M.I.); (G.B.); (A.G.); (D.G.); (F.P.)
| | - Tiziana Latiano
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.L.); (T.L.); (A.P.); (R.F.); (A.M.I.); (G.B.); (A.G.); (D.G.); (F.P.)
| | - Anna Panza
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.L.); (T.L.); (A.P.); (R.F.); (A.M.I.); (G.B.); (A.G.); (D.G.); (F.P.)
| | - Rosanna Fontana
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.L.); (T.L.); (A.P.); (R.F.); (A.M.I.); (G.B.); (A.G.); (D.G.); (F.P.)
| | - Antonio Massimo Ippolito
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.L.); (T.L.); (A.P.); (R.F.); (A.M.I.); (G.B.); (A.G.); (D.G.); (F.P.)
| | - Giuseppe Biscaglia
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.L.); (T.L.); (A.P.); (R.F.); (A.M.I.); (G.B.); (A.G.); (D.G.); (F.P.)
| | - Annamaria Gentile
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.L.); (T.L.); (A.P.); (R.F.); (A.M.I.); (G.B.); (A.G.); (D.G.); (F.P.)
| | - Domenica Gioffreda
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.L.); (T.L.); (A.P.); (R.F.); (A.M.I.); (G.B.); (A.G.); (D.G.); (F.P.)
| | - Ivana Decina
- New Gluten World s.r.l., 71121 Foggia, Italy; (I.D.); (M.T.)
| | | | - Milena Sinigaglia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (A.B.); (M.S.); (M.R.C.); (C.L.)
| | - Maria Rosaria Corbo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (A.B.); (M.S.); (M.R.C.); (C.L.)
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (S.C.); (T.M.)
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.L.); (T.L.); (A.P.); (R.F.); (A.M.I.); (G.B.); (A.G.); (D.G.); (F.P.)
| | - Carmela Lamacchia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (A.B.); (M.S.); (M.R.C.); (C.L.)
- New Gluten World s.r.l., 71121 Foggia, Italy; (I.D.); (M.T.)
| |
Collapse
|
300
|
Analysis of Gut Microbiome Structure Based on GMPR+Spectrum. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The gut microbiome is related to many major human diseases, and it is of great significance to study the structure of the gut microbiome under different conditions. Multivariate statistics or pattern recognition methods were often used to identify different structural patterns in gut microbiome data. However, these methods have some limitations. Minimal hepatic encephalopathy (MHE) datasets were taken as an example. Due to the physical lack or insufficient sampling of the gut microbiome in the sequencing process, the microbiome data contains many zeros. Therefore, the geometric mean of pairwise ratios (GMPR) was used to normalize gut microbiome data, then Spectrum was used to analyze the structure of the gut microbiome, and lastly, the structure of core microflora was compared with Network analysis. GMPR calculates the Intraclass correlation coefficient (ICC), whose reproducibility was significantly better than other normalization methods. In addition, running-time, Normalized Mutual Information (NMI), Davies-Boulding Index (DBI), and Calinski-Harabasz index (CH) of GMPR+Spectrum were far superior to other clustering algorithms such as M3C, iClusterPlus. GMPR+Spectrum can not only perform better but also effectively identify the structural differences of intestinal microbiota in different patients and excavate the unique critical bacteria such as Akkermansia, and Lactobacillus in MHE patients, which may provide a new reference for the study of the gut microbiome in disease.
Collapse
|