3201
|
Genome-scale neurogenetics: methodology and meaning. Nat Neurosci 2014; 17:756-63. [PMID: 24866041 DOI: 10.1038/nn.3716] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/09/2014] [Indexed: 02/07/2023]
Abstract
Genetic analysis is currently offering glimpses into molecular mechanisms underlying such neuropsychiatric disorders as schizophrenia, bipolar disorder and autism. After years of frustration, success in identifying disease-associated DNA sequence variation has followed from new genomic technologies, new genome data resources, and global collaborations that could achieve the scale necessary to find the genes underlying highly polygenic disorders. Here we describe early results from genome-scale studies of large numbers of subjects and the emerging significance of these results for neurobiology.
Collapse
|
3202
|
Davis BA, Isles AR. Modelling the genetic contribution to mental illness: a timely end for the psychiatric rodent? Eur J Neurosci 2014; 39:1933-42. [DOI: 10.1111/ejn.12607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/11/2014] [Accepted: 04/01/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Brittany A. Davis
- MRC Centre for Neuropsychiatric Genetics and Genomics; Neuroscience and Mental Health Research Institute; Cardiff University; Hadyn Ellis Building Maindy Road Cardiff CF24 4HQ UK
| | - Anthony R. Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics; Neuroscience and Mental Health Research Institute; Cardiff University; Hadyn Ellis Building Maindy Road Cardiff CF24 4HQ UK
| |
Collapse
|
3203
|
Affiliation(s)
- Patrick Devos
- Department of Research, Lille University Hospital, Lille, France
| | | | | | | | - Joël Ménard
- Fondation Plan Alzheimer, 75013 Paris, France.
| |
Collapse
|
3204
|
Wang XB, Cui NH, Gao JJ, Qiu XP, Yang N, Zheng F. Angiotensin-converting enzyme gene polymorphisms and risk for sporadic Alzheimer’s disease: a meta-analysis. J Neural Transm (Vienna) 2014; 122:211-24. [DOI: 10.1007/s00702-014-1235-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 04/29/2014] [Indexed: 12/21/2022]
|
3205
|
Angata T. Associations of genetic polymorphisms of Siglecs with human diseases. Glycobiology 2014; 24:785-93. [PMID: 24841380 DOI: 10.1093/glycob/cwu043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic polymorphism studies in humans provide unique opportunities to understand human biology and the mechanisms of diseases. Correlations between polymorphisms in the genes encoding human Siglecs and various diseases have been reported. Leading examples, such as the CD33 polymorphism associated with late-onset Alzheimer's disease, are well supported by genetic replication and mechanistic studies, while some others (such as SIGLEC8 polymorphism associated with bronchial asthma and SIGLEC14 polymorphism associated with exacerbation of chronic obstructive pulmonary disease) may benefit reinforcement by independent genetic replication or mechanistic studies. In a few cases, such as MAG polymorphism associated with psychological disorder and CD22 polymorphism associated with autoimmune disease, the phenotype associated with a genetic polymorphism of a Siglec gene and that of an enzyme gene involved in the biosynthesis of Siglec ligand show some overlap, providing indirect support for the observed genotype-phenotype association. Although studies using engineered mutant mice have provided invaluable insights into the biological functions and mechanisms of diseases, it is not always possible to develop appropriate mouse model to replicate human situations because of significant species-to-species differences, which can be a major obstacle in understanding the biology of some of human CD33/Siglec-3-related Siglecs. Further studies in genetic polymorphisms of human Siglecs, combined with appropriate functional studies, may reveal unexpected biological roles of human Siglecs, and identify possible targets for prevention and/or treatment of certain diseases.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
| |
Collapse
|
3206
|
Dekosky ST, Gandy S. Environmental exposures and the risk for Alzheimer disease: can we identify the smoking guns? JAMA Neurol 2014; 71:273-5. [PMID: 24473699 DOI: 10.1001/jamaneurol.2013.6031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Steven T Dekosky
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia2Department of Neurology, University of Virginia School of Medicine, Charlottesville3Department of Psychiatry and Neurobehavioral Sciences
| | - Sam Gandy
- Department of Neurology and Psychiatry (Dual Primaries), Center for Cognitive Health and NFL Neurological Care, Mount Sinai Alzheimer's Disease Research Center, New York, New York
| |
Collapse
|
3207
|
Liao YC, Lee WJ, Hwang JP, Wang YF, Tsai CF, Wang PN, Wang SJ, Fuh JL. ABCA7 gene and the risk of Alzheimer's disease in Han Chinese in Taiwan. Neurobiol Aging 2014; 35:2423.e7-2423.e13. [PMID: 24908168 DOI: 10.1016/j.neurobiolaging.2014.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
The ATP-binding cassette, subfamily A, member 7 gene (ABCA7) was recently identified as a susceptible gene of Alzheimer's disease (AD) in the Caucasian population and African Americans. To test its genetic effect in the Han-Chinese population, 536 AD cases and 307 cognitive-intact, elder controls were genotyped for ABCA7 rs3764650 and apolipoprotein E (APOE) ε2/ε3/ε4 alleles. Global cognitive performance was assessed by the Mini-Mental State Examination in both AD patients and controls. For AD patients, comprehensive evaluation of each cognitive domain was further conducted as the following: (1) attention (forward and backward digit span); (2) memory (12-item word recall test); (3) executive function (category verbal fluency); (4) processing speed (Trail making test, part A); and (5) naming task (Boston naming test). ABCA7 rs3764650 was significantly associated with AD and the GG genotype carried a reduced risk for AD (odds ratio = 0.52, p = 0.0026). The association was further confirmed in 1802 population-based, healthy controls from Taiwan Biobank as a replicate (odds ratio = 0.70, p = 0.032). After adjustment of age, sex, and APOE ε4 allele, rs3764650 remained to be an independent predictor of AD (p = 0.001). The influence of ABCA7 was only evident in individuals without APOE ε4 alleles (p = 0.0004) but absent in ε4 carriers (p = 0.91). None of the cognitive tests was related to ABCA7 rs3764650 genotypes. The minor allele frequency and effect size of rs3764650 disclosed in the Han-Chinese population differed from those reported in the Caucasians and African Americans. Further studies were warranted to elucidate ABCA7's effect among different ethnic groups.
Collapse
Affiliation(s)
- Yi-Chu Liao
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Ju Lee
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Ping Hwang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Fen Tsai
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
3208
|
Zou Z, Liu C, Che C, Huang H. Clinical genetics of Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:291862. [PMID: 24955352 PMCID: PMC4052685 DOI: 10.1155/2014/291862] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease and the most common form of dementia in the elderly. It is a complex disorder with environmental and genetic components. There are two major types of AD, early onset and the more common late onset. The genetics of early-onset AD are largely understood with mutations in three different genes leading to the disease. In contrast, while susceptibility loci and alleles associated with late-onset AD have been identified using genetic association studies, the genetics of late-onset Alzheimer's disease are not fully understood. Here we review the known genetics of early- and late-onset AD, the clinical features of EOAD according to genotypes, and the clinical implications of the genetics of AD.
Collapse
Affiliation(s)
- Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Changyun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chunhui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
3209
|
Abstract
The complement component receptor 1 gene (CR1), which encodes a type-I transmembrane glycoprotein, has recently been identified as one of the most important risk genes for late-onset Alzheimer's disease (LOAD). In this article, we reviewed the recent evidence concerning the role of CR1 in LOAD. First, we introduced the structure, localization and physiological function of CR1 in humans. Afterward, we summarized the relation of CR1 polymorphisms with LOAD risk. Finally, we discussed the possible impact of CR1 on the pathogenesis of AD including amyloid-β pathology, tauopathy, immune dysfunction and glial-mediated neuroinflammation. We hope that a more comprehensive understanding of the role that CR1 played in AD may lead to the development of novel therapeutics for the prevention and treatment of AD.
Collapse
|
3210
|
Bosco P, Spada R, Caniglia S, Salluzzo MG, Salemi M. Cerebellar degeneration-related autoantigen 1 (CDR1) gene expression in Alzheimer's disease. Neurol Sci 2014; 35:1613-4. [PMID: 24777548 DOI: 10.1007/s10072-014-1805-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/15/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Paolo Bosco
- Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | | | | | | | | |
Collapse
|
3211
|
Nelson PT, Estus S, Abner EL, Parikh I, Malik M, Neltner JH, Ighodaro E, Wang WX, Wilfred BR, Wang LS, Kukull WA, Nandakumar K, Farman ML, Poon WW, Corrada MM, Kawas CH, Cribbs DH, Bennett DA, Schneider JA, Larson EB, Crane PK, Valladares O, Schmitt FA, Kryscio RJ, Jicha GA, Smith CD, Scheff SW, Sonnen JA, Haines JL, Pericak-Vance MA, Mayeux R, Farrer LA, Van Eldik LJ, Horbinski C, Green RC, Gearing M, Poon LW, Kramer PL, Woltjer RL, Montine TJ, Partch AB, Rajic AJ, Richmire K, Monsell SE, Alzheimer’ Disease Genetic Consortium, Schellenberg GD, Fardo DW. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol 2014; 127:825-43. [PMID: 24770881 PMCID: PMC4113197 DOI: 10.1007/s00401-014-1282-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 12/13/2022]
Abstract
Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer's Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer's Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer's Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically confirmed, provided statistical power to test for risk alleles with large effect size. A two-tier study design included GWAS from cohorts #1-3 (Stage I) to identify promising SNP candidates, followed by focused evaluation of particular SNPs in cohorts #4-5 (Stage II). Polymorphism in the ATP-binding cassette, sub-family C member 9 (ABCC9) gene, also known as sulfonylurea receptor 2, was associated with HS-Aging pathology. In the meta-analyzed Stage I GWAS, ABCC9 polymorphisms yielded the lowest p values, and factoring in the Stage II results, the meta-analyzed risk SNP (rs704178:G) attained genome-wide statistical significance (p = 1.4 × 10(-9)), with odds ratio (OR) of 2.13 (recessive mode of inheritance). For SNPs previously linked to hippocampal sclerosis, meta-analyses of Stage I results show OR = 1.16 for rs5848 (GRN) and OR = 1.22 rs1990622 (TMEM106B), with the risk alleles as previously described. Sulfonylureas, a widely prescribed drug class used to treat diabetes, also modify human ABCC9 protein function. A subsample of patients from the NACC database (n = 624) were identified who were older than age 85 at death with known drug history. Controlling for important confounders such as diabetes itself, exposure to a sulfonylurea drug was associated with risk for HS-Aging pathology (p = 0.03). Thus, we describe a novel and targetable dementia risk factor.
Collapse
Affiliation(s)
- Peter T. Nelson
- Department of Pathology, Division of Neuropathology, Rm 311, Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Avenue, Lexington, KY 40536-0230, USA
| | | | | | | | | | | | | | | | | | - Li-San Wang
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Leonard W. Poon
- Institute of Gerontology, University of Georgia, Athens, GA, USA
| | | | | | | | | | | | | | | | | | | | - David W. Fardo
- Department of Biostatistics, University of Kentucky, 205E Multidisciplinary Science Building, 725 Rose Street, Lexington, KY 40536-0082, USA
| |
Collapse
|
3212
|
Overrepresentation of glutamate signaling in Alzheimer's disease: network-based pathway enrichment using meta-analysis of genome-wide association studies. PLoS One 2014; 9:e95413. [PMID: 24755620 PMCID: PMC3995778 DOI: 10.1371/journal.pone.0095413] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 03/26/2014] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have successfully identified several risk loci for Alzheimer's disease (AD). Nonetheless, these loci do not explain the entire susceptibility of the disease, suggesting that other genetic contributions remain to be identified. Here, we performed a meta-analysis combining data of 4,569 individuals (2,540 cases and 2,029 healthy controls) derived from three publicly available GWAS in AD and replicated a broad genomic region (>248,000 bp) associated with the disease near the APOE/TOMM40 locus in chromosome 19. To detect minor effect size contributions that could help to explain the remaining genetic risk, we conducted network-based pathway analyses either by extracting gene-wise p-values (GW), defined as the single strongest association signal within a gene, or calculated a more stringent gene-based association p-value using the extended Simes (GATES) procedure. Comparison of these strategies revealed that ontological sub-networks (SNs) involved in glutamate signaling were significantly overrepresented in AD (p<2.7×10−11, p<1.9×10−11; GW and GATES, respectively). Notably, glutamate signaling SNs were also found to be significantly overrepresented (p<5.1×10−8) in the Alzheimer's disease Neuroimaging Initiative (ADNI) study, which was used as a targeted replication sample. Interestingly, components of the glutamate signaling SNs are coordinately expressed in disease-related tissues, which are tightly related to known pathological hallmarks of AD. Our findings suggest that genetic variation within glutamate signaling contributes to the remaining genetic risk of AD and support the notion that functional biological networks should be targeted in future therapies aimed to prevent or treat this devastating neurological disorder.
Collapse
|
3213
|
Abstract
The vast majority of Alzheimer's disease (AD) cases are late onset (LOAD), which is genetically complex with heritability estimates up to 80%. Apolipoprotein E (APOE) has been irrefutably recognized as the major genetic risk factor, with semidominant inheritance, for LOAD. Although the mechanisms that underlie the pathogenic nature of APOE in AD are still not completely understood, emerging data suggest that APOE contributes to AD pathogenesis through both amyloid-β (Aβ)-dependent and Aβ-independent pathways. Given the central role for APOE in the modulation of AD pathogenesis, many therapeutic strategies have emerged, including converting APOE conformation, regulating APOE expression, mimicking APOE peptides, blocking the APOE/Aβ interaction, modulating APOE lipidation state, and gene therapy. Accumulating evidence also suggests the utility of APOE genotyping in AD diagnosis, risk assessment, prevention, and treatment response.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China; ,
| | | | | |
Collapse
|
3214
|
Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM. Is Alzheimer's disease a systemic disease? Biochim Biophys Acta Mol Basis Dis 2014; 1842:1340-9. [PMID: 24747741 DOI: 10.1016/j.bbadis.2014.04.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022]
Abstract
Although Alzheimer's disease (AD) is the most common neurodegenerative disease, the etiology of AD is not well understood. In some cases, genetic factors explain AD risk, but a high percentage of late-onset AD is unexplained. The fact that AD is associated with a number of physical and systemic manifestations suggests that AD is a multifactorial disease that affects both the CNS and periphery. Interestingly, a common feature of many systemic processes linked to AD is involvement in energy metabolism. The goals of this review are to 1) explore the evidence that peripheral processes contribute to AD risk, 2) explore ways that AD modulates whole-body changes, and 3) discuss the role of genetics, mitochondria, and vascular mechanisms as underlying factors that could mediate both central and peripheral manifestations of AD. Despite efforts to strictly define AD as a homogeneous CNS disease, there may be no single etiologic pathway leading to the syndrome of AD dementia. Rather, the neurodegenerative process may involve some degree of baseline genetic risk that is modified by external risk factors. Continued research into the diverse but related processes linked to AD risk is necessary for successful development of disease-modifying therapies.
Collapse
Affiliation(s)
- Jill K Morris
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Robyn A Honea
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Eric D Vidoni
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Russell H Swerdlow
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Jeffrey M Burns
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| |
Collapse
|
3215
|
Rosenthal SL, Barmada MM, Wang X, Demirci FY, Kamboh MI. Connecting the dots: potential of data integration to identify regulatory SNPs in late-onset Alzheimer's disease GWAS findings. PLoS One 2014; 9:e95152. [PMID: 24743338 PMCID: PMC3990600 DOI: 10.1371/journal.pone.0095152] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/24/2014] [Indexed: 02/05/2023] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a multifactorial disorder with over twenty loci associated with disease risk. Given the number of genome-wide significant variants that fall outside of coding regions, it is possible that some of these variants alter some function of gene expression rather than tagging coding variants that alter protein structure and/or function. RegulomeDB is a database that annotates regulatory functions of genetic variants. In this study, we utilized RegulomeDB to investigate potential regulatory functions of lead single nucleotide polymorphisms (SNPs) identified in five genome-wide association studies (GWAS) of risk and age-at onset (AAO) of LOAD, as well as SNPs in LD (r2≥0.80) with the lead GWAS SNPs. Of a total 614 SNPs examined, 394 returned RegulomeDB scores of 1–6. Of those 394 variants, 34 showed strong evidence of regulatory function (RegulomeDB score <3), and only 3 of them were genome-wide significant SNPs (ZCWPW1/rs1476679, CLU/rs1532278 and ABCA7/rs3764650). This study further supports the assumption that some of the non-coding GWAS SNPs are true associations rather than tagged associations and demonstrates the application of RegulomeDB to GWAS data.
Collapse
Affiliation(s)
- Samantha L. Rosenthal
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Michael Barmada
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xingbin Wang
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - F. Yesim Demirci
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
3216
|
Bouter Y, Kacprowski T, Weissmann R, Dietrich K, Borgers H, Brauß A, Sperling C, Wirths O, Albrecht M, Jensen LR, Kuss AW, Bayer TA. Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer's disease by deep sequencing. Front Aging Neurosci 2014; 6:75. [PMID: 24795628 PMCID: PMC3997018 DOI: 10.3389/fnagi.2014.00075] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
One of the central research questions on the etiology of Alzheimer’s disease (AD) is the elucidation of the molecular signatures triggered by the amyloid cascade of pathological events. Next-generation sequencing allows the identification of genes involved in disease processes in an unbiased manner. We have combined this technique with the analysis of two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneuronal Aβ aggregation, neuron loss, and behavioral deficits. (2) The Tg4–42 model expresses N-truncated Aβ4–42 and develops neuron loss and behavioral deficits albeit without plaque formation. Our results show that learning and memory deficits in the Morris water maze and fear conditioning tasks in Tg4–42 mice at 12 months of age are similar to the deficits in 5XFAD animals. This suggested that comparative gene expression analysis between the models would allow the dissection of plaque-related and -unrelated disease relevant factors. Using deep sequencing differentially expressed genes (DEGs) were identified and subsequently verified by quantitative PCR. Nineteen DEGs were identified in pre-symptomatic young 5XFAD mice, and none in young Tg4–42 mice. In the aged cohort, 131 DEGs were found in 5XFAD and 56 DEGs in Tg4–42 mice. Many of the DEGs specific to the 5XFAD model belong to neuroinflammatory processes typically associated with plaques. Interestingly, 36 DEGs were identified in both mouse models indicating common disease pathways associated with behavioral deficits and neuron loss.
Collapse
Affiliation(s)
- Yvonne Bouter
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Tim Kacprowski
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald , Greifswald , Germany ; Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald , Germany
| | - Robert Weissmann
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Katharina Dietrich
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Henning Borgers
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Andreas Brauß
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Christian Sperling
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Mario Albrecht
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald , Greifswald , Germany ; Institute for Knowledge Discovery, Graz University of Technology , Graz , Austria
| | - Lars R Jensen
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Andreas W Kuss
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| |
Collapse
|
3217
|
Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 2014; 88:594-604. [PMID: 24445162 PMCID: PMC3972294 DOI: 10.1016/j.bcp.2014.01.008] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/23/2022]
Abstract
Microglia, the immune cells of the central nervous system, have long been a subject of study in the Alzheimer's disease (AD) field due to their dramatic responses to the pathophysiology of the disease. With several large-scale genetic studies in the past year implicating microglial molecules in AD, the potential significance of these cells has become more prominent than ever before. As a disease that is tightly linked to aging, it is perhaps not entirely surprising that microglia of the AD brain share some phenotypes with aging microglia. Yet the relative impacts of both conditions on microglia are less frequently considered in concert. Furthermore, microglial "activation" and "neuroinflammation" are commonly analyzed in studies of neurodegeneration but are somewhat ill-defined concepts that in fact encompass multiple cellular processes. In this review, we have enumerated six distinct functions of microglia and discuss the specific effects of both aging and AD. By calling attention to the commonalities of these two states, we hope to inspire new approaches for dissecting microglial mechanisms.
Collapse
Affiliation(s)
- Kira Irving Mosher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA; Neuroscience IDP Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Administration Palo Alto Health Care System, Palo Alto, California 94304, USA.
| |
Collapse
|
3218
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease exhibiting amyloid beta (Aβ) peptide accumulation as a key characteristic. Autophagy, which is dysregulated in AD, participates in the metabolism of Aβ. Unexpectedly, we recently found that autophagy, in addition to its degradative function, also mediates the secretion of Aβ. This finding adds Aβ to an increasing number of biomolecules, the secretion of which is mediated by autophagy. We also showed that inhibition of Aβ secretion through genetic deletion of autophagy leads to intracellular Aβ accumulation, which enhanced neurodegeneration induced by autophagy deficiency. Hence, autophagy may play a central role in two pathological hallmarks of AD: Aβ amyloidosis and neurodegeneration. Herein, we summarize the role of autophagy in AD with focus on Aβ metabolism in light of the recently established role of autophagy in protein secretion. We discuss potential routes for autophagy-mediated Aβ secretion and suggest experimental approaches to further elucidate its mechanisms.
Collapse
Affiliation(s)
- Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan; KI-Alzheimer's Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum, Huddinge, Sweden
| | | |
Collapse
|
3219
|
Hunter S, Brayne C. Integrating the molecular and the population approaches to dementia research to help guide the future development of appropriate therapeutics. Biochem Pharmacol 2014; 88:652-60. [DOI: 10.1016/j.bcp.2013.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
|
3220
|
Doege CA, Abeliovich A. Dementia in a dish. Biol Psychiatry 2014; 75:558-64. [PMID: 24629668 DOI: 10.1016/j.biopsych.2014.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders of aging represent a growing public health concern. In the United States alone, there are now >5 million patients with Alzheimer's disease (AD), the most common form of dementia. No therapeutic approaches are available that alter the relentless course of AD or other dementias of aging. A major hurdle to the development of effective therapeutics has been the lack of predictive model systems in which to develop and validate candidate therapies. Animal model studies based on the analysis of transgenic mice that overexpress rare familial AD-associated mutant genes have been informative about mechanisms of familial disease, but they have not proven predictive for drug development. New approaches to disease modeling are of particular interest. Methods such as epigenetic reprogramming of patient skin fibroblasts to human induced pluripotent stem cells, which can be differentiated into patient-derived neuron subtypes, have generated significant excitement because of their potential to model more accurately aspects of human neurodegeneration. Studies focused on the generation of human neuron models of AD and frontotemporal dementia have pointed to pathologic pathways and potential therapeutic venues. This article discusses the promise and potential pitfalls of modeling of dementia disorders based on somatic cell reprogramming.
Collapse
Affiliation(s)
- Claudia A Doege
- Departments of Pathology, Cell Biology, and Neurology and Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York
| | - Asa Abeliovich
- Departments of Pathology, Cell Biology, and Neurology and Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York.
| |
Collapse
|
3221
|
Pierrot N, Octave JN. [Cholesterol, neuronal activity and Alzheimer disease]. Med Sci (Paris) 2014; 30:244-6. [PMID: 24685211 DOI: 10.1051/medsci/20143003008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nathalie Pierrot
- Université catholique de Louvain, Institute of neuroscience, avenue Hippocrate 54, Bte 1.5410, B-1200 Bruxelles, Belgique
| | - Jean-Noël Octave
- Université catholique de Louvain, Institute of neuroscience, avenue Hippocrate 54, Bte 1.5410, B-1200 Bruxelles, Belgique
| |
Collapse
|
3222
|
Humphries C, Kohli MA. Rare Variants and Transcriptomics in Alzheimer disease. CURRENT GENETIC MEDICINE REPORTS 2014; 2:75-84. [PMID: 25045597 DOI: 10.1007/s40142-014-0035-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer disease (AD) is the most common dementia in the elderly, still without effective treatment. Early-onset AD (EOAD) is caused by mutations in the genes APP, PSEN1 and PSEN2. Genome-wide association studies have identified >20 late-onset AD (LOAD) susceptibility genes with common variants of small risk, with the exception of APOE. We review rare susceptibility variants in LOAD with larger effects that have been recently identified in the EOAD gene APP and the newly discovered AD genes TREM2 and PLD3. Human genetic studies now consistently support the amyloid hypothesis of AD for both EOAD and LOAD. Moreover, they identified biological processes that overlap with human transcriptomics studies in AD across different tissues, such as inflammation, cytoskeletal organization, synaptic functions, etc. Transcriptomic profiles of pre-symptomatic AD-associated variant carriers already reflect specific molecular mechanisms reminiscent to those of AD patients. This might provide an avenue for personalized medicine.
Collapse
Affiliation(s)
- Crystal Humphries
- Department of Human Genetics, John T. Macdonald Foundation, University of Miami, Miller School of Medicine, 1501 NW 10th Avenue (BRB-531), Miami, FL 33136, USA ; John P. Hussman Institute for Human Genomics (HIHG), University of Miami, Miller School of Medicine, 1501 NW 10th Avenue (BRB-531), Miami, FL 33136, USA
| | - Martin A Kohli
- John P. Hussman Institute for Human Genomics (HIHG), University of Miami, Miller School of Medicine, 1501 NW 10th Avenue (BRB-531), Miami, FL 33136, USA
| |
Collapse
|
3223
|
Analyzing large-scale samples confirms the association between the ABCA7 rs3764650 polymorphism and Alzheimer's disease susceptibility. Mol Neurobiol 2014; 50:757-64. [PMID: 24643655 DOI: 10.1007/s12035-014-8670-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
Large-scale genome-wide association studies (GWAS) have revealed that the ABCA7 rs3764650 polymorphism (or its proxies, namely rs115550680, rs3752246, and rs4147929) is associated with Alzheimer's disease (AD) susceptibility in individuals of Caucasian ancestry. The following studies have investigated this finding in Chinese (N = 633 and N = 1,224), Japanese (N = 1,735), Korean (N = 844), African American (N = 5,896), and Canadian (N = 1,104) populations. However, these studies reported a weak or negligible association. We hypothesized that these negative results may have been caused by either relatively small sample sizes compared with those used for the previous GWAS in individuals of Caucasian ancestry or the genetic heterogeneity of the rs3764650 polymorphism (or its proxies) in different populations. Here, we reevaluated the association between rs3764650 and AD using large-scale samples from 18 previous studies (N = 79,381-30,590 cases and 48,791 controls) by searching PubMed, AlzGene, and Google Scholar databases. Using allele, dominant, recessive, and additive models, we did not identify significant heterogeneity among the 18 studies. We observed a significant association between rs3764650 and AD using the allele (P = 1.76E - 26, odds ratio (OR) = 1.21, 95 % confidence interval (CI) 1.17-1.26), dominant (P = 4.00E - 04, OR = 1.17, 95 % CI 1.07-1.28), recessive (P = 3.00E - 03, OR = 1.43, 95 % CI 1.13-1.81), and additive models (P = 3.00E - 03, OR = 1.49, 95 % CI 1.16-1.91). Collectively, our analysis further supports previous findings that the ABCA7 rs3764650 polymorphism is associated with AD susceptibility. We believe that our findings will be very useful for future genetic studies on AD.
Collapse
|
3224
|
Hancock-Cerutti W, Rader DJ. Opposing effects of ABCG5/8 function on myocardial infarction and gallstone disease. J Am Coll Cardiol 2014; 63:2129-2130. [PMID: 24657684 DOI: 10.1016/j.jacc.2014.02.553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 11/26/2022]
Affiliation(s)
- William Hancock-Cerutti
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Rader
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
3225
|
Argyri L, Dafnis I, Theodossiou TA, Gantz D, Stratikos E, Chroni A. Molecular basis for increased risk for late-onset Alzheimer disease due to the naturally occurring L28P mutation in apolipoprotein E4. J Biol Chem 2014; 289:12931-45. [PMID: 24644280 DOI: 10.1074/jbc.m113.538124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apolipoprotein (apo) E4 isoform has consistently emerged as a susceptibility factor for late-onset Alzheimer disease (AD), although the exact mechanism is not clear. A rare apoE4 mutant, apoE4[L28P] Pittsburgh, burdens carriers with an added risk for late-onset AD and may be a useful tool for gaining insights into the role of apoE4 in disease pathogenesis. Toward this end, we evaluated the effect of the L28P mutation on the structural and functional properties of apoE4. ApoE4[L28P] was found to have significantly perturbed thermodynamic properties, to have reduced helical content, and to expose a larger portion of the hydrophobic surface to the solvent. Furthermore, this mutant is thermodynamically destabilized and more prone to proteolysis. When interacting with lipids, apoE4[L28P] formed populations of lipoprotein particles with structural defects. The structural perturbations brought about by the mutation were accompanied by aberrant functions associated with the pathogenesis of AD. Specifically, apoE4[L28P] promoted the cellular uptake of extracellular amyloid β peptide 42 (Aβ42) by human neuroblastoma SK-N-SH cells as well as by primary mouse neuronal cells and led to increased formation of intracellular reactive oxygen species that persisted for at least 24 h. Furthermore, lipoprotein particles containing apoE4[L28P] induced intracellular reactive oxygen species formation and reduced SK-N-SH cell viability. Overall, our findings suggest that the L28P mutation leads to significant structural and conformational perturbations in apoE4 and can induce functional defects associated with neuronal Aβ42 accumulation and oxidative stress. We propose that these structural and functional changes underlie the observed added risk for AD development in carriers of apoE4[L28P].
Collapse
Affiliation(s)
- Letta Argyri
- From the Institute of Biosciences and Applications
| | | | | | | | | | | |
Collapse
|
3226
|
Talwar P, Silla Y, Grover S, Gupta M, Agarwal R, Kushwaha S, Kukreti R. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease. BMC Genomics 2014; 15:199. [PMID: 24628925 PMCID: PMC4028079 DOI: 10.1186/1471-2164-15-199] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/21/2014] [Indexed: 01/28/2023] Open
Abstract
Background Alzheimer’s disease (AD) is one of the leading genetically complex and heterogeneous disorder that is influenced by both genetic and environmental factors. The underlying risk factors remain largely unclear for this heterogeneous disorder. In recent years, high throughput methodologies, such as genome-wide linkage analysis (GWL), genome-wide association (GWA) studies, and genome-wide expression profiling (GWE), have led to the identification of several candidate genes associated with AD. However, due to lack of consistency within their findings, an integrative approach is warranted. Here, we have designed a rank based gene prioritization approach involving convergent analysis of multi-dimensional data and protein-protein interaction (PPI) network modelling. Results Our approach employs integration of three different AD datasets- GWL,GWA and GWE to identify overlapping candidate genes ranked using a novel cumulative rank score (SR) based method followed by prioritization using clusters derived from PPI network. SR for each gene is calculated by addition of rank assigned to individual gene based on either p value or score in three datasets. This analysis yielded 108 plausible AD genes. Network modelling by creating PPI using proteins encoded by these genes and their direct interactors resulted in a layered network of 640 proteins. Clustering of these proteins further helped us in identifying 6 significant clusters with 7 proteins (EGFR, ACTB, CDC2, IRAK1, APOE, ABCA1 and AMPH) forming the central hub nodes. Functional annotation of 108 genes revealed their role in several biological activities such as neurogenesis, regulation of MAP kinase activity, response to calcium ion, endocytosis paralleling the AD specific attributes. Finally, 3 potential biochemical biomarkers were found from the overlap of 108 AD proteins with proteins from CSF and plasma proteome. EGFR and ACTB were found to be the two most significant AD risk genes. Conclusions With the assumption that common genetic signals obtained from different methodological platforms might serve as robust AD risk markers than candidates identified using single dimension approach, here we demonstrated an integrated genomic convergence approach for disease candidate gene prioritization from heterogeneous data sources linked to AD. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-199) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110 007, India.
| |
Collapse
|
3227
|
Amphiphysin 2 (BIN1) in physiology and diseases. J Mol Med (Berl) 2014; 92:453-63. [DOI: 10.1007/s00109-014-1138-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 12/15/2022]
|
3228
|
Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci U S A 2014; 111:4013-8. [PMID: 24591589 DOI: 10.1073/pnas.1402228111] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a common, progressive neurodegenerative disorder without effective disease-modifying therapies. The accumulation of amyloid-β peptide (Aβ) is associated with AD. However, identifying new compounds that antagonize the underlying cellular pathologies caused by Aβ has been hindered by a lack of cellular models amenable to high-throughput chemical screening. To address this gap, we use a robust and scalable yeast model of Aβ toxicity where the Aβ peptide transits through the secretory and endocytic compartments as it does in neurons. The pathogenic Aβ 1-42 peptide forms more oligomers and is more toxic than Aβ 1-40 and genome-wide genetic screens identified genes that are known risk factors for AD. Here, we report an unbiased screen of ∼140,000 compounds for rescue of Aβ toxicity. Of ∼30 hits, several were 8-hydroxyquinolines (8-OHQs). Clioquinol (CQ), an 8-OHQ previously reported to reduce Aβ burden, restore metal homeostasis, and improve cognition in mouse AD models, was also effective and rescued the toxicity of Aβ secreted from glutamatergic neurons in Caenorhabditis elegans. In yeast, CQ dramatically reduced Aβ peptide levels in a copper-dependent manner by increasing degradation, ultimately restoring endocytic function. This mirrored its effects on copper-dependent oligomer formation in vitro, which was also reversed by CQ. This unbiased screen indicates that copper-dependent Aβ oligomer formation contributes to Aβ toxicity within the secretory/endosomal pathways where it can be targeted with selective metal binding compounds. Establishing the ability of the Aβ yeast model to identify disease-relevant compounds supports its further exploitation as a validated early discovery platform.
Collapse
|
3229
|
Abstract
The article by Lambert et al. reports the identification of 11 novel susceptibility loci for late-onset Alzheimer's disease. The observations of this study significantly enhance the field since they further disentangle the genetic causes and pathways underlying Alzheimer's disease by identifying novel disease-associated variants clustering in specific pathways. These pathways include APP processing, lipid metabolism, inflammation/immune response, intracellular trafficking/endocytosis, tau metabolism, synaptic function. All of the newly identified disease-associated variants have small effect sizes with increases in risk of 10-20%. The cumulative population attributable fraction associated with known genetic variants amounts now to approximately 80%. This article also underlines the ongoing value of genome-wide association studies for identification of causative common variants in the era of whole-exome and whole-genome sequencing studies.
Collapse
Affiliation(s)
- Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease & the Aging Brain, Columbia University, New York, NY, USA and Gertrude H Sergievsky Center, 630 West 168th Street, Columbia University, New York, NY 10032, USA and The Department of Neurology, Columbia University, New York, NY, USA Tel.: +1 212 305 0865; ;
| |
Collapse
|
3230
|
Kanatsu K, Morohashi Y, Suzuki M, Kuroda H, Watanabe T, Tomita T, Iwatsubo T. Decreased CALM expression reduces Aβ42 to total Aβ ratio through clathrin-mediated endocytosis of γ-secretase. Nat Commun 2014; 5:3386. [PMID: 24577224 DOI: 10.1038/ncomms4386] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/05/2014] [Indexed: 01/08/2023] Open
Abstract
A body of evidence suggests that aberrant metabolism of amyloid-β peptide (Aβ) underlies the aetiology of Alzheimer disease (AD). Recently, a single-nucleotide polymorphism in phosphatidylinositol binding clathrin assembly protein (PICALM/CALM) gene, which encodes a protein implicated in the clathrin-mediated endocytosis, was identified as a genetic protective factor for AD, although its mechanistic details have little been explored. Here we show that loss of CALM leads to the selective decrease in the production ratio of the pathogenic Aβ species, Aβ42. Active form of γ-secretase is constitutively endocytosed via the clathrin-mediated pathway in a CALM dependent manner. Alteration in the rate of clathrin-mediated endocytosis of γ-secretase causes a shift in its steady-state localization, which consequently impacts on the production ratio of Aβ42. Our study identifies CALM as an endogenous modulator of γ-secretase activity by regulating its endocytosis and also as an excellent target for Aβ42-lowering AD therapeutics.
Collapse
Affiliation(s)
- Kunihiko Kanatsu
- 1] Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan [2]
| | - Yuichi Morohashi
- 1] Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 113-0033, Japan [3]
| | - Mai Suzuki
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Hiromasa Kuroda
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Taisuke Tomita
- 1] Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 113-0033, Japan
| | - Takeshi Iwatsubo
- 1] Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 113-0033, Japan [3] Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
3231
|
Ruiz A, Heilmann S, Becker T, Hernández I, Wagner H, Thelen M, Mauleón A, Rosende-Roca M, Bellenguez C, Bis JC, Harold D, Gerrish A, Sims R, Sotolongo-Grau O, Espinosa A, Alegret M, Arrieta JL, Lacour A, Leber M, Becker J, Lafuente A, Ruiz S, Vargas L, Rodríguez O, Ortega G, Dominguez MA, IGAP 33, Mayeux R, Haines JL, Pericak-Vance MA, Farrer LA, Schellenberg GD, Chouraki V, Launer LJ, van Duijn C, Seshadri S, Antúnez C, Breteler MM, Serrano-Ríos M, Jessen F, Tárraga L, Nöthen MM, Maier W, Boada M, Ramírez A. Follow-up of loci from the International Genomics of Alzheimer's Disease Project identifies TRIP4 as a novel susceptibility gene. Transl Psychiatry 2014; 4:e358. [PMID: 24495969 PMCID: PMC3944635 DOI: 10.1038/tp.2014.2] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 12/14/2022] Open
Abstract
To follow-up loci discovered by the International Genomics of Alzheimer's Disease Project, we attempted independent replication of 19 single nucleotide polymorphisms (SNPs) in a large Spanish sample (Fundació ACE data set; 1808 patients and 2564 controls). Our results corroborate association with four SNPs located in the genes INPP5D, MEF2C, ZCWPW1 and FERMT2, respectively. Of these, ZCWPW1 was the only SNP to withstand correction for multiple testing (P=0.000655). Furthermore, we identify TRIP4 (rs74615166) as a novel genome-wide significant locus for Alzheimer's disease risk (odds ratio=1.31; confidence interval 95% (1.19-1.44); P=9.74 × 10(-)(9)).
Collapse
Affiliation(s)
- A Ruiz
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - S Heilmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - T Becker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
| | - I Hernández
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - H Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - M Thelen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - A Mauleón
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - M Rosende-Roca
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - C Bellenguez
- Inserm, U744, Lille, France
- Université Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - J C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - D Harold
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - A Gerrish
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - R Sims
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - O Sotolongo-Grau
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - A Espinosa
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - M Alegret
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - J L Arrieta
- Memory Unit, University Hospital La Paz-Cantoblanco, Madrid, Spain
| | - A Lacour
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - M Leber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - J Becker
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - A Lafuente
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - S Ruiz
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - L Vargas
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - O Rodríguez
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - G Ortega
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - M-A Dominguez
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - IGAP33
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Inserm, U744, Lille, France
- Université Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
- Memory Unit, University Hospital La Paz-Cantoblanco, Madrid, Spain
- Department of Neurology, Taub Institute on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York, NY, USA
- Department of Neurology, Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Public Health, Boston, MA, USA
- Department of Ophthalmology, Boston University School of Public Health, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Laboratory of Epidemiology, Demography, and Biometry, National Institute of Health, Bethesda, MD, USA
- Departments of Epidemiology, Neurology and Radiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden, The Netherlands
- Center for Medical Systems Biology, Leiden, The Netherlands
- Dementia Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Spain, Hospital Clínico San Carlos, Madrid, Spain
- Hospital Universitari Vall d'Hebron–Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - R Mayeux
- Department of Neurology, Taub Institute on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York, NY, USA
- Department of Neurology, Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
| | - J L Haines
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| | - M A Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - L A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Public Health, Boston, MA, USA
- Department of Ophthalmology, Boston University School of Public Health, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - G D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - V Chouraki
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - L J Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute of Health, Bethesda, MD, USA
| | - C van Duijn
- Departments of Epidemiology, Neurology and Radiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden, The Netherlands
- Center for Medical Systems Biology, Leiden, The Netherlands
| | - S Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - C Antúnez
- Dementia Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - M M Breteler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - M Serrano-Ríos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Spain, Hospital Clínico San Carlos, Madrid, Spain
| | - F Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - L Tárraga
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - M M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - W Maier
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - M Boada
- Memory Clinic of Fundaciò ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
- Hospital Universitari Vall d'Hebron–Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - A Ramírez
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| |
Collapse
|
3232
|
Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, Harari O, Norton J, Budde J, Bertelsen S, Jeng AT, Cooper B, Skorupa T, Carrell D, Levitch D, Hsu S, Choi J, Ryten M, Sassi C, Bras J, Gibbs RJ, Hernandez DG, Lupton MK, Powell J, Forabosco P, Ridge PG, Corcoran CD, Tschanz JT, Norton MC, Munger RG, Schmutz C, Leary M, Demirci FY, Bamne MN, Wang X, Lopez OL, Ganguli M, Medway C, Turton J, Lord J, Braae A, Barber I, Brown K, The Alzheimer's Research UK (ARUK) Consortium, Pastor P, Lorenzo-Betancor O, Brkanac Z, Scott E, Topol E, Morgan K, Rogaeva E, Singleton A, Hardy J, Kamboh MI, George-Hyslop PS, Cairns N, Morris JC, Kauwe JS, Goate AM. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature 2014; 505:550-554. [PMID: 24336208 PMCID: PMC4050701 DOI: 10.1038/nature12825] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/31/2013] [Indexed: 01/18/2023]
Abstract
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
Collapse
Affiliation(s)
- Carlos Cruchaga
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
- Hope Center Program on Protein Aggregation and
Neurodegeneration, Washington University St. Louis, MO, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
- Hope Center Program on Protein Aggregation and
Neurodegeneration, Washington University St. Louis, MO, USA
| | - Sheng Chih Jin
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Bruno A. Benitez
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Yefei Cai
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Rita Guerreiro
- Department of Molecular Neuroscience, UCL Institute of
Neurology, London WC1N 3BG, UK
- Laboratory of Neurogenetics, National Institute on Aging,
National Institutes of Health, Bethesda, Maryland, United States of America
| | - Oscar Harari
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - John Budde
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Sarah Bertelsen
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Amanda T. Jeng
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Breanna Cooper
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Tara Skorupa
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - David Carrell
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Denise Levitch
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Simon Hsu
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Jiyoon Choi
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL Institute of
Neurology, London WC1N 3BG, UK
- on behalf of UKBEC (UK Brain Expression Consortium)
| | - Celeste Sassi
- Department of Molecular Neuroscience, UCL Institute of
Neurology, London WC1N 3BG, UK
- Laboratory of Neurogenetics, National Institute on Aging,
National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jose Bras
- Department of Molecular Neuroscience, UCL Institute of
Neurology, London WC1N 3BG, UK
| | - Raphael J. Gibbs
- Department of Molecular Neuroscience, UCL Institute of
Neurology, London WC1N 3BG, UK
- Laboratory of Neurogenetics, National Institute on Aging,
National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dena G. Hernandez
- Department of Molecular Neuroscience, UCL Institute of
Neurology, London WC1N 3BG, UK
- Laboratory of Neurogenetics, National Institute on Aging,
National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michelle K. Lupton
- Institute of Psychiatry, King's College London, London,
UK
- Neuroimaging Genetics, QIMR Berghofer Medical Research
Institute, Brisbane, Australia
| | - John Powell
- Institute of Psychiatry, King's College London, London,
UK
| | - Paola Forabosco
- Istituto di Genetica delle Popolazioni – CNR,
Sassari, Italy
| | - Perry G. Ridge
- Department of Biology, Brigham Young University, Provo,
UT, 84602
| | - Christopher D. Corcoran
- Department of Mathematics and Statistics, Utah State
University, Logan, UT
- Center for Epidemiologic Studies, Utah State University,
Logan, UT
| | - JoAnn T. Tschanz
- Center for Epidemiologic Studies, Utah State University,
Logan, UT
- Department of Psychology, Utah State University, Logan,
UT
| | - Maria C. Norton
- Center for Epidemiologic Studies, Utah State University,
Logan, UT
- Department of Psychology, Utah State University, Logan,
UT
- Department of Family Consumer and Human Development,
Utah State University, Logan, UT
| | - Ronald G. Munger
- Department of Family Consumer and Human Development,
Utah State University, Logan, UT
- Department of Nutrition, Dietetics, and Food Sciences,
Utah State University, Logan, UT
| | - Cameron Schmutz
- Department of Biology, Brigham Young University, Provo,
UT, 84602
| | - Maegan Leary
- Department of Biology, Brigham Young University, Provo,
UT, 84602
| | - F. Yesim Demirci
- Department of Human Genetics, University of Pittsburgh,
Pittsburgh, PA
| | - Mikhil N. Bamne
- Department of Human Genetics, University of Pittsburgh,
Pittsburgh, PA
| | - Xingbin Wang
- Department of Human Genetics, University of Pittsburgh,
Pittsburgh, PA
| | - Oscar L. Lopez
- Alzheimer's Disease Research Center, University of
Pittsburgh, Pittsburgh, PA
- Department of Neurology, University of Pittsburgh,
Pittsburgh, PA
| | - Mary Ganguli
- Department of Psychiatry, University of Pittsburgh,
Pittsburgh, PA
| | - Christopher Medway
- Human Genetics, School of Molecular Medical Sciences,
University of Nottingham, Nottingham, NG7 2UH, UK
| | - James Turton
- Human Genetics, School of Molecular Medical Sciences,
University of Nottingham, Nottingham, NG7 2UH, UK
| | - Jenny Lord
- Human Genetics, School of Molecular Medical Sciences,
University of Nottingham, Nottingham, NG7 2UH, UK
| | - Anne Braae
- Human Genetics, School of Molecular Medical Sciences,
University of Nottingham, Nottingham, NG7 2UH, UK
| | - Imelda Barber
- Human Genetics, School of Molecular Medical Sciences,
University of Nottingham, Nottingham, NG7 2UH, UK
| | - Kristelle Brown
- Human Genetics, School of Molecular Medical Sciences,
University of Nottingham, Nottingham, NG7 2UH, UK
| | | | - Pau Pastor
- Neurogenetics Laboratory, Division of Neurosciences,
Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Department of Neurology, Clínica Universidad de
Navarra, School of Medicine, University of Navarra, Pamplona, Spain
- CIBERNED, Centro de Investigación
Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud
Carlos III, Spain
| | - Oswaldo Lorenzo-Betancor
- Neurogenetics Laboratory, Division of Neurosciences,
Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - Erick Scott
- The Scripps Research Institute, La Jolla, CA, US
| | - Eric Topol
- The Scripps Research Institute, La Jolla, CA, US
| | - Kevin Morgan
- Human Genetics, School of Molecular Medical Sciences,
University of Nottingham, Nottingham, NG7 2UH, UK
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases,
University of Toronto
| | - Andy Singleton
- Laboratory of Neurogenetics, National Institute on Aging,
National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of
Neurology, London WC1N 3BG, UK
| | - M. Ilyas Kamboh
- Alzheimer's Disease Research Center, University of
Pittsburgh, Pittsburgh, PA
- Department of Psychiatry, University of Pittsburgh,
Pittsburgh, PA
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases,
University of Toronto
- Cambridge Institute for Medical Research, and the
Department of Clinical Neurosciences, University of Cambridge
| | - Nigel Cairns
- Hope Center Program on Protein Aggregation and
Neurodegeneration, Washington University St. Louis, MO, USA
- Pathology and Immunology, Washington University, St.
Louis, MO, USA
| | - John C. Morris
- Pathology and Immunology, Washington University, St.
Louis, MO, USA
- Department of Neurology, Washington University, St. Louis,
MO, USA
- Knight ADRC, Washington University, St. Louis, MO,
USA
| | - John S.K. Kauwe
- Department of Biology, Brigham Young University, Provo,
UT, 84602
| | - Alison M. Goate
- Department of Psychiatry, Washington University, St.
Louis, MO, USA
- Hope Center Program on Protein Aggregation and
Neurodegeneration, Washington University St. Louis, MO, USA
- Department of Neurology, Washington University, St. Louis,
MO, USA
- Knight ADRC, Washington University, St. Louis, MO,
USA
- Department of Genetics, Washington University, St. Louis,
MO, USA
| |
Collapse
|
3233
|
Cruchaga C, Ebbert MTW, Kauwe JSK. Genetic discoveries in AD using CSF amyloid and tau. CURRENT GENETIC MEDICINE REPORTS 2014; 2:23-29. [PMID: 24729949 DOI: 10.1007/s40142-014-0031-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The use of cerebrospinal fluid levels of Aβ42 and pTau181 as endophenotypes for genetic studies of Alzheimer's disease (AD) has led to successful identification of both rare and common AD risk variants. In addition, this approach has provided meaningful hypotheses for the biological mechanisms by which known AD risk variants modulate the disease process. In this article we discuss these successes and outline challenges to effective and continued applications of this approach. We contrast the statistical power of this approach with traditional case-control designs and discuss solutions to address challenges in quality control and data analysis for these phenotypes. Finally, we discuss the potential for the use of this approach with larger samples as well as the incorporation of next generation sequencing and for future work with other endophenotypes for AD.
Collapse
Affiliation(s)
- Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri ; The Hope Center Program on Protein Aggregation and Neurodegeneration (HPAN), Washington University School of Medicine, St. Louis, Missouri
| | - Mark T W Ebbert
- Department of Biology, Brigham Young University, Provo, Utah ; The ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, Utah
| |
Collapse
|
3234
|
Castellani RJ, Perry G. The complexities of the pathology-pathogenesis relationship in Alzheimer disease. Biochem Pharmacol 2014; 88:671-6. [PMID: 24447936 DOI: 10.1016/j.bcp.2014.01.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/01/2022]
Abstract
Current pathogenic theories for Alzheimer disease (AD) and aging favor the notion that lesions and their constituent proteins are the initiators of disease due to toxicity. Whether this is because structural pathology is traditionally viewed as deleterious, and whether this, in turn, is a fundamental misinterpretation of the relationship between pathology and pathogenesis across the spectrum of chronic diseases, remains to be determined. As more and more detailed information about the biochemical constituents of AD lesions becomes available, it may also be argued that just as much knowledge of cellular physiology as pathophysiology has been gained. Indeed, essentially all major proteins in AD lesions are derived from molecular cascades, which are in turn highly conserved across cells, tissues, and species. Moreover, the lesions themselves are observed in the cognitively intact, and sometimes in large numbers, while major consensus criteria indicate that an extent of pathology is normal with advanced age. As the medical science community continues to pursue lesion targeting for therapeutic purposes, the notion that AD pathology is indicative of an active host response or environmental adaptation, and therefore a poor target, is becoming clearer.
Collapse
Affiliation(s)
- Rudy J Castellani
- Division of Neuropathology University of Maryland School of Medicine Baltimore, MD, USA.
| | - George Perry
- College of Sciences University of Texas, San Antonio San Antonio, TX, USA
| |
Collapse
|
3235
|
Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88:640-51. [PMID: 24398425 DOI: 10.1016/j.bcp.2013.12.024] [Citation(s) in RCA: 795] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 12/20/2022]
Abstract
The global prevalence of dementia is as high as 24 million, and has been predicted to quadruple by the year 2050. In the US alone, Alzheimer disease (AD) - the most frequent cause of dementia characterized by a progressive decline in cognitive function in particular the memory domain - causes estimated health-care costs of $ 172 billion per year. Key neuropathological hallmarks of the AD brain are diffuse and neuritic extracellular amyloid plaques - often surrounded by dystrophic neurites - and intracellular neurofibrillary tangles. These pathological changes are frequently accompanied by reactive microgliosis and loss of neurons, white matter and synapses. The etiological mechanisms underlying these neuropathological changes remain unclear, but are probably caused by both environmental and genetic factors. In this review article, we provide an overview of the epidemiology of AD, review the biomarkers that may be used for risk assessment and in diagnosis, and give suggestions for future research.
Collapse
Affiliation(s)
- Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, United States; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
3236
|
Avila J, Gómez-Ramos A, Soriano E. Variations in brain DNA. Front Aging Neurosci 2014; 6:323. [PMID: 25505410 PMCID: PMC4243573 DOI: 10.3389/fnagi.2014.00323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/06/2014] [Indexed: 12/16/2022] Open
Abstract
It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain) of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology LaboratoryMadrid, Spain
- *Correspondence: Jesús Avila, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, 208, C/ Nicolás Cabrera no. 1, Madrid, 28049, Spain e-mail: ; Eduardo Soriano, Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de Barcelona, Baldiri i Reixac, 10, Barcelona 08028, Spain e-mail:
| | - Alberto Gómez-Ramos
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology LaboratoryMadrid, Spain
| | - Eduardo Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de BarcelonaBarcelona, Spain
- Vall d’Hebrón Institut de Recerca (VHIR)Barcelona, Spain
- *Correspondence: Jesús Avila, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, 208, C/ Nicolás Cabrera no. 1, Madrid, 28049, Spain e-mail: ; Eduardo Soriano, Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de Barcelona, Baldiri i Reixac, 10, Barcelona 08028, Spain e-mail:
| |
Collapse
|
3237
|
|
3238
|
|
3239
|
T. Vollert C, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA, L. Eriksen J. Microglia in the Alzheimers brain: a help or a hindrance? AIMS Neurosci 2014. [DOI: 10.3934/neuroscience.2014.3.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
3240
|
Combarros O. Genetic Risk Factors for Alzheimer’s Disease. NEURODEGENER DIS 2014. [DOI: 10.1007/978-1-4471-6380-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
3241
|
Mok KY, Jones EL, Hanney M, Harold D, Sims R, Williams J, Ballard C, Hardy J. Polymorphisms in BACE2 may affect the age of onset Alzheimer's dementia in Down syndrome. Neurobiol Aging 2013; 35:1513.e1-5. [PMID: 24462566 PMCID: PMC3969241 DOI: 10.1016/j.neurobiolaging.2013.12.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/03/2013] [Accepted: 12/19/2013] [Indexed: 02/01/2023]
Abstract
It is known that Alzheimer's disease (AD) presents at an early age in people with Down syndrome (DS). The trisomy 21 in DS provides an opportunity to study the effect of duplicated genes in AD. APP and BACE2 are 2 genes located in chromosome 21 and related to AD. We looked into our cohort of 67 DS cases with dementia for the effect of BACE2 variants in age of onset of dementia. Of the 83 single-nucleotide polymorphisms (SNPs), 6 were associated with age of onset and another 8 SNPs were borderline associated. Our finding also replicated a previous study showing association of rs2252576 with AD.
Collapse
Affiliation(s)
- Kin Y Mok
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; Reta Lila Weston Institute, UCL Institute of Neurology, London, UK.
| | - Emma L Jones
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Denise Harold
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Henry Wellcome Building for Biomedical Research, Heath Park, Cardiff, UK
| | - Rebecca Sims
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Henry Wellcome Building for Biomedical Research, Heath Park, Cardiff, UK
| | - Julie Williams
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Henry Wellcome Building for Biomedical Research, Heath Park, Cardiff, UK
| | - Clive Ballard
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; Reta Lila Weston Institute, UCL Institute of Neurology, London, UK; The London Down Syndrome (LonDownS) Consortium, UK
| |
Collapse
|
3242
|
Zhang C, Pierce BL. Genetic susceptibility to accelerated cognitive decline in the US Health and Retirement Study. Neurobiol Aging 2013; 35:1512.e11-8. [PMID: 24468470 DOI: 10.1016/j.neurobiolaging.2013.12.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 01/15/2023]
Abstract
Age-related cognitive decline is a major public health concern facing a large segment of the US population. To identify genetic risk factors related to cognitive decline, we used nationally representative longitudinal data from the US Health and Retirement Study to conduct genome-wide association studies with 5765 participants of European ancestry, and 890 participants of African ancestry. Mixed effects models were used to derive cognitive decline phenotypes from data on repeated cognitive assessments and to perform single nucleotide polymorphism-based heritability estimation. We found 2 independent associations among European-Americans in the 19q13.32 region: rs769449 (APOE intron; p = 3.1 × 10(-20)) and rs115881343 (TOMM40 intron; p = 6.6 × 10(-11)). rs769449 was also associated with cognitive decline among African-Americans (p = 0.005), but rs115881343 was not. Cross-sectional cognitive function showed moderate heritability (15%-32%) across several age strata (50-59, 60-69, 70-79 years), but the cognitive decline heritability estimate was low (∼5%). These results indicate that despite multiple association signals for cognitive decline in the 19q13.32 region, inter-individual variation is likely influenced substantially by environmental factors.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Health Studies, University of Chicago, Chicago, IL, USA
| | - Brandon L Pierce
- Department of Health Studies, University of Chicago, Chicago, IL, USA; University of Chicago Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
3243
|
|
3244
|
Matthews PM, Edison P, Geraghty OC, Johnson MR. The emerging agenda of stratified medicine in neurology. Nat Rev Neurol 2013; 10:15-26. [DOI: 10.1038/nrneurol.2013.245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3245
|
Mayne J, Starr AE, Ning Z, Chen R, Chiang CK, Figeys D. Fine Tuning of Proteomic Technologies to Improve Biological Findings: Advancements in 2011–2013. Anal Chem 2013; 86:176-95. [DOI: 10.1021/ac403551f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Amanda E. Starr
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Zhibin Ning
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Rui Chen
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Daniel Figeys
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| |
Collapse
|