301
|
Guardiola O, Iavarone F, Nicoletti C, Ventre M, Rodríguez C, Pisapia L, Andolfi G, Saccone V, Patriarca EJ, Puri PL, Minchiotti G. CRIPTO-based micro-heterogeneity of mouse muscle satellite cells enables adaptive response to regenerative microenvironment. Dev Cell 2023; 58:2896-2913.e6. [PMID: 38056454 PMCID: PMC10855569 DOI: 10.1016/j.devcel.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/01/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Skeletal muscle repair relies on heterogeneous populations of satellite cells (SCs). The mechanisms that regulate SC homeostasis and state transition during activation are currently unknown. Here, we investigated the emerging role of non-genetic micro-heterogeneity, i.e., intrinsic cell-to-cell variability of a population, in this process. We demonstrate that micro-heterogeneity of the membrane protein CRIPTO in mouse-activated SCs (ASCs) identifies metastable cell states that allow a rapid response of the population to environmental changes. Mechanistically, CRIPTO micro-heterogeneity is generated and maintained through a process of intracellular trafficking coupled with active shedding of CRIPTO from the plasma membrane. Irreversible perturbation of CRIPTO micro-heterogeneity affects the balance of proliferation, self-renewal, and myogenic commitment in ASCs, resulting in increased self-renewal in vivo. Our findings demonstrate that CRIPTO micro-heterogeneity regulates the adaptative response of ASCs to microenvironmental changes, providing insights into the role of intrinsic heterogeneity in preserving stem cell population diversity during tissue repair.
Collapse
Affiliation(s)
- Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy.
| | - Francescopaolo Iavarone
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples "Federico II", Naples 80125, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Cristina Rodríguez
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Gennaro Andolfi
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Valentina Saccone
- IRCCS Fondazione Santa Lucia, Rome 00143, Italy; Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Eduardo J Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy.
| |
Collapse
|
302
|
Ortuste Quiroga HP, Fujimaki S, Ono Y. Pax7 reporter mouse models: a pocket guide for satellite cell research. Eur J Transl Myol 2023; 33:12174. [PMID: 38112596 PMCID: PMC10811643 DOI: 10.4081/ejtm.2023.12174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Since their discovery, satellite cells have showcased their need as primary contributors to skeletal muscle maintenance and repair. Satellite cells lay dormant, but when needed, activate, differentiate, fuse to fibres and self-renew, that has bestowed satellite cells with the title of muscle stem cells. The satellite cell specific transcription factor Pax7 has enabled researchers to develop animal models against the Pax7 locus in order to isolate and characterise satellite cell-mediated events. This review focuses specifically on describing Pax7 reporter mouse models. Here we describe how each model was generated and the key findings obtained. The strengths and limitations of each model are also discussed. The aim is to provide new and current satellite cell enthusiasts with a basic understanding of the available Pax7 reporter mice and hopefully guide selection of the most appropriate Pax7 model to answer a specific research question.
Collapse
Affiliation(s)
- Huascar Pedro Ortuste Quiroga
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo, Chuo-ku, Kumamoto.
| | - Shin Fujimaki
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo, Chuo-ku, Kumamoto.
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan; Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Sakae-cho, Itabashi, Tokyo.
| |
Collapse
|
303
|
Ahmad N, Samoylenko A, Abene I, Abdelrady E, Zhyvolozhnyi A, Makieieva O, Bart G, Skovorodkin I, Vainio SJ. Generation of novel in vitro flexible kidney organoid model to investigate the role of extracellular vesicles in induction of nephrogenesis. Cell Commun Signal 2023; 21:358. [PMID: 38110951 PMCID: PMC10726558 DOI: 10.1186/s12964-023-01374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/29/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND During kidney organogenesis, metanephric mesenchyme (MM) and ureteric bud (UB) interact reciprocally to form nephrons. Signaling stimuli involved in these interactions include Wnts, growth factors and nano/micro particles. How UB and MM are interacting is not completely understood. Our study investigated the signaling and communication via extracellular vesicles (EVs) during nephrogenesis. Embryonic day (E) 11.5 mouse kidney UB and MM produce very low number of primary cells that have limited ability for proliferation in culture. Such limitations obstruct studying the role of EVs in induction of nephrogenesis. These issues necessitate to generate a nephrogenesis model allowing to study the comprehensive role of EVs during nephrogenesis. RESULTS Our study generated a UB derived cell line-based in vitro flexible model of nephrogenesis allowing expandable cell culturing, in addition to performing characterization, tracking and blocking of EVs. UB cell line aggregation with E11.5 MM cells induced the formation of segmented nephrons. Most efficient nephrogenesis was obtained by the co-culturing of 30,000 cells of UB cell line with 50,000 MM cells. Results revealed that both the UB and the MM secrete EVs during nephrogenesis. UB cell line derived EVs were characterized by their size, morphology and expression of markers (CD63, TSG101, CD9 and CD81). Furthermore, proteomics data of UB cell line-derived EVs revealed large number of proteins involved in nephrogenesis-related signaling pathways. Palmitoylated GFP-tagged EVs from UB cell line were found in the nephron formation zone in the developing kidney organoid. UB cell line derived EVs did not induce nephrogenesis in MM cells but significantly contributed to the survival and nephrogenesis-competency of MM cells. The secretion of EVs was continuously inhibited during the ongoing nephrogenesis by the knockdown of RalA and RalB gene expression using short hairpin RNAs. This inhibition partially impaired the ability of UB cell line to induce nephrogenesis. Moreover, impaired nephrogenesis was partially rescued by the addition of EVs. CONCLUSION Our study established a novel in vitro flexible model of nephrogenesis that solved the limitations of primary embryonic kidney cells and mouse embryonic stem cell kidney organoids for the EV research. EVs were found to be an integral part of nephrogenesis process. Video Abstract.
Collapse
Affiliation(s)
- Naveed Ahmad
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland.
| | - Anatoliy Samoylenko
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Ichrak Abene
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Eslam Abdelrady
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Artem Zhyvolozhnyi
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Olha Makieieva
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Geneviève Bart
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Ilya Skovorodkin
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland.
- Infotech Oulu, University of Oulu, 90014, Oulu, Finland.
- Flagship GeneCellNano, University of Oulu, 90220, Oulu, Finland.
- Kvantum Institute, University of Oulu, 90014, Oulu, Finland.
| |
Collapse
|
304
|
Matsumoto Y, Ikeda S, Kimura T, Ono K, Ashida N. Col1α2-Cre-mediated recombination occurs in various cell types due to Cre expression in epiblasts. Sci Rep 2023; 13:22483. [PMID: 38110549 PMCID: PMC10728165 DOI: 10.1038/s41598-023-50053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
The Cre-LoxP system has been commonly used for cell-specific genetic manipulation. However, many Cre strains exhibit excision activity in unexpected cell types or tissues. Therefore, it is important to identify the cell types in which recombination takes place. Fibroblasts are a cell type that is inadequately defined due to a lack of specific markers to detect the entire cell lineage. Here, we investigated the Cre recombination induced by Col1α2-iCre, one of the most common fibroblast-mesenchymal Cre driver lines, by using a double-fluorescent Cre reporter line in which GFP is expressed when recombination occurs. Our results indicated that Col1α2-iCre activity was more extensive across cell types than previously reported: Col1α2-iCre-mediated recombination was found in not only cells of mesenchymal origin but also those of other lineages, including haematopoietic cells, myocardial cells, lung and intestinal epithelial cells, and neural cells. In addition, study of embryos revealed that recombination by Col1α2-iCre was observed in the early developmental stage before gastrulation in epiblasts, which would account for the recombination across various cell types in adult mice. These results offer more insights into the activity of Col1α2-iCre and suggest that experimental results obtained using Col1α2-iCre should be carefully interpreted.
Collapse
Affiliation(s)
- Yuzuru Matsumoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinya Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Hirakata Kohsai Hospital, Osaka, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
305
|
Chen J, Xu Y, Zhou M, Xu S, Varley AJ, Golubovic A, Lu RXZ, Wang KC, Yeganeh M, Vosoughi D, Li B. Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects. Proc Natl Acad Sci U S A 2023; 120:e2309472120. [PMID: 38060560 PMCID: PMC10723144 DOI: 10.1073/pnas.2309472120] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Ionizable lipid nanoparticles (LNPs) pivotal to the success of COVID-19 mRNA (messenger RNA) vaccines hold substantial promise for expanding the landscape of mRNA-based therapies. Nevertheless, the risk of mRNA delivery to off-target tissues highlights the necessity for LNPs with enhanced tissue selectivity. The intricate nature of biological systems and inadequate knowledge of lipid structure-activity relationships emphasize the significance of high-throughput methods to produce chemically diverse lipid libraries for mRNA delivery screening. Here, we introduce a streamlined approach for the rapid design and synthesis of combinatorial libraries of biodegradable ionizable lipids. This led to the identification of iso-A11B5C1, an ionizable lipid uniquely apt for muscle-specific mRNA delivery. It manifested high transfection efficiencies in muscle tissues, while significantly diminishing off-targeting in organs like the liver and spleen. Moreover, iso-A11B5C1 also exhibited reduced mRNA transfection potency in lymph nodes and antigen-presenting cells, prompting investigation into the influence of direct immune cell transfection via LNPs on mRNA vaccine effectiveness. In comparison with SM-102, while iso-A11B5C1's limited immune transfection attenuated its ability to elicit humoral immunity, it remained highly effective in triggering cellular immune responses after intramuscular administration, which is further corroborated by its strong therapeutic performance as cancer vaccine in a melanoma model. Collectively, our study not only enriches the high-throughput toolkit for generating tissue-specific ionizable lipids but also encourages a reassessment of prevailing paradigms in mRNA vaccine design. This study encourages rethinking of mRNA vaccine design principles, suggesting that achieving high immune cell transfection might not be the sole criterion for developing effective mRNA vaccines.
Collapse
Affiliation(s)
- Jingan Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Yue Xu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Muye Zhou
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Shufen Xu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Andrew James Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Alex Golubovic
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Rick Xing Ze Lu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Kevin Chang Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Mina Yeganeh
- Institute of Medical Science, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Daniel Vosoughi
- Institute of Medical Science, University of Toronto, Toronto, ONM5G 1L7, Canada
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Bowen Li
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ONM5G 2C1, Canada
| |
Collapse
|
306
|
Nagase H, Shitara A, Ohno Y, Satoh K, Kashimata M. Loss of Cdc42 in Exocrine Acini Decreases Saliva Secretion but Increases Tear Secretion-A Potential Model of Exocrine Gland Senescence. Int J Mol Sci 2023; 24:17220. [PMID: 38139048 PMCID: PMC10743476 DOI: 10.3390/ijms242417220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cdc42 is a small GTPase essential for the cell cycle, morphogenesis, and cell adhesion, and it is involved in the polarity of epithelial cells. However, the functional roles of Cdc42 in exocrine glands, such as the maintenance of acini and water secretion, are not yet well understood. In this study, we generated acinar-cell-specific Cdc42 conditional knockout (Cdc42cKO) mice to assess their maintenance of acinar cells and physiological functions in the salivary glands (SGs) and lacrimal glands (LGs). Our data revealed that the loss of Cdc42 altered the luminal structures to bulging structures and induced acinar cell apoptosis in both the parotid glands (PGs) and LGs of Cdc42cKO mice. Interestingly, saliva secretion in response to pilocarpine stimulation was decreased in the Cdc42cKO group, whereas tear secretion was increased. Consistent with the water secretion results, protein expression of the water channel AQP5 in acinar cells was also decreased in the PGs but conversely increased in the LGs. Moreover, the changes that increased AQP5 expression in LGs occurred in the acinar cells rather than the duct cells. The present study demonstrates that Cdc42 is involved in the structural and survival maintenance of acinar cells in SGs and LGs. On the other hand, depletion of Cdc42 caused the opposite physiological phenomena between PGs and LGs.
Collapse
Affiliation(s)
- Haruna Nagase
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Akiko Shitara
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| |
Collapse
|
307
|
Polsani N, Yung T, Thomas E, Phung-Rojas M, Gupta I, Denker J, Feng X, Ibarra B, Hopyan S, Atit RP. Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570300. [PMID: 38106005 PMCID: PMC10723314 DOI: 10.1101/2023.12.05.570300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral for calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. During apical expansion, we found that mouse calvarial primordia have consistent cellular proliferation, density, and survival with complex tissue scale deformations, raising the possibility that morphogenetic movements underlie expansion. Time lapse light sheet imaging of mouse embryos revealed that calvarial progenitors intercalate in 3D to converge supraorbital arch mesenchyme mediolaterally and extend it apically. In contrast, progenitors located further apically exhibited protrusive and crawling activity. CM cells express non-canonical Wnt/Planar Cell Polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand, Wnt5a-/- mutants have less dynamic cell rearrangements, protrusive activity, and a flattened head shape. Loss of cranial mesenchyme-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of OSX+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin cytoskeleton protein along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis and provide tissue level cues for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.
Collapse
Affiliation(s)
- Nikaya Polsani
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evan Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Melissa Phung-Rojas
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Isha Gupta
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie Denker
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaotian Feng
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beatriz Ibarra
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Orthopedics, The Hospital for Sick Children and Departments of Molecular Genetics and Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Radhika P. Atit
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Dermatology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Genetics and Genome Sciences, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
308
|
Gao Z, Yu Y, Dai Y, Zhao Z, Eckel-Mahan K, Kolonin MG. Gene expression in mice with endothelium-specific telomerase knockout. Front Cell Dev Biol 2023; 11:1295072. [PMID: 38161328 PMCID: PMC10755458 DOI: 10.3389/fcell.2023.1295072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Yulin Dai
- Center for Precision Health, Cancer Genomics Core, University of Texas Health Science Center, Houston, TX, United States
| | - Zhongming Zhao
- Center for Precision Health, Cancer Genomics Core, University of Texas Health Science Center, Houston, TX, United States
| | - Kristin Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
309
|
de Boer LL, Vanes L, Melgrati S, Biggs O'May J, Hayward D, Driscoll PC, Day J, Griffiths A, Magueta R, Morrell A, MacRae JI, Köchl R, Tybulewicz VLJ. T cell migration requires ion and water influx to regulate actin polymerization. Nat Commun 2023; 14:7844. [PMID: 38057317 PMCID: PMC10700356 DOI: 10.1038/s41467-023-43423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Migration of T cells is essential for their ability to mount immune responses. Chemokine-induced T cell migration requires WNK1, a kinase that regulates ion influx into the cell. However, it is not known why ion entry is necessary for T cell movement. Here we show that signaling from the chemokine receptor CCR7 leads to activation of WNK1 and its downstream pathway at the leading edge of migrating CD4+ T cells, resulting in ion influx and water entry by osmosis. We propose that WNK1-induced water entry is required to swell the membrane at the leading edge, generating space into which actin filaments can polymerize, thereby facilitating forward movement of the cell. Given the broad expression of WNK1 pathway proteins, our study suggests that ion and water influx are likely to be essential for migration in many cell types, including leukocytes and metastatic tumor cells.
Collapse
Affiliation(s)
- Leonard L de Boer
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Lesley Vanes
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Serena Melgrati
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Darryl Hayward
- The Francis Crick Institute, London, NW1 1AT, UK
- GSK, Stevenage, SG1 2NY, UK
| | | | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Alexander Griffiths
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | - Renata Magueta
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | - Alexander Morrell
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | | | - Robert Köchl
- The Francis Crick Institute, London, NW1 1AT, UK
- Kings College London, London, SE1 9RT, UK
| | | |
Collapse
|
310
|
Sugiyama Y, Reed DA, Herrmann D, Lovicu FJ, Robinson ML, Timpson P, Masai I. Fibroblast Growth Factor-induced lens fiber cell elongation is driven by the stepwise activity of Rho and Rac. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569812. [PMID: 38106159 PMCID: PMC10723307 DOI: 10.1101/2023.12.03.569812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The spheroidal shape of the eye lens is critical for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating lamellipodium is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin, and actin reduced the height of both early and later fibers, indicating elongation of these fibers relies on actomyosin contractility. Consistently, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose it to do so through regulation of Rho activity.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Frank J. Lovicu
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael L. Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, USA
| | - Paul Timpson
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
311
|
Zhang AMY, Xia YH, Lin JSH, Chu KH, Wang WCK, Ruiter TJJ, Yang JCC, Chen N, Chhuor J, Patil S, Cen HH, Rideout EJ, Richard VR, Schaeffer DF, Zahedi RP, Borchers CH, Johnson JD, Kopp JL. Hyperinsulinemia acts via acinar insulin receptors to initiate pancreatic cancer by increasing digestive enzyme production and inflammation. Cell Metab 2023; 35:2119-2135.e5. [PMID: 37913768 DOI: 10.1016/j.cmet.2023.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/02/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
The rising pancreatic cancer incidence due to obesity and type 2 diabetes is closely tied to hyperinsulinemia, an independent cancer risk factor. Previous studies demonstrated reducing insulin production suppressed pancreatic intraepithelial neoplasia (PanIN) pre-cancerous lesions in Kras-mutant mice. However, the pathophysiological and molecular mechanisms remained unknown, and in particular it was unclear whether hyperinsulinemia affected PanIN precursor cells directly or indirectly. Here, we demonstrate that insulin receptors (Insr) in KrasG12D-expressing pancreatic acinar cells are dispensable for glucose homeostasis but necessary for hyperinsulinemia-driven PanIN formation in the context of diet-induced hyperinsulinemia and obesity. Mechanistically, this was attributed to amplified digestive enzyme protein translation, triggering of local inflammation, and PanIN metaplasia in vivo. In vitro, insulin dose-dependently increased acinar-to-ductal metaplasia formation in a trypsin- and Insr-dependent manner. Collectively, our data shed light on the mechanisms connecting obesity-driven hyperinsulinemia and pancreatic cancer development.
Collapse
Affiliation(s)
- Anni M Y Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jeffrey S H Lin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ken H Chu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wei Chuan K Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Titine J J Ruiter
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jenny C C Yang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nan Chen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Justin Chhuor
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shilpa Patil
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Rene P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3A 1R9, Canada; Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H4A 3T2, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
312
|
Guild J, Juul NH, Andalon A, Taenaka H, Coffey RJ, Matthay MA, Desai TJ. Evidence for lung barrier regeneration by differentiation prior to binucleated and stem cell division. J Cell Biol 2023; 222:e202212088. [PMID: 37843535 PMCID: PMC10579698 DOI: 10.1083/jcb.202212088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
With each breath, oxygen diffuses across remarkably thin alveolar type I (AT1) cells into underlying capillaries. Interspersed cuboidal AT2 cells produce surfactant and act as stem cells. Even transient disruption of this delicate barrier can promote capillary leak. Here, we selectively ablated AT1 cells, which uncovered rapid AT2 cell flattening with near-continuous barrier preservation, culminating in AT1 differentiation. Proliferation subsequently restored depleted AT2 cells in two phases, mitosis of binucleated AT2 cells followed by replication of mononucleated AT2 cells. M phase entry of binucleated and S phase entry of mononucleated cells were both triggered by AT1-produced hbEGF signaling via EGFR to Wnt-active AT2 cells. Repeated AT1 cell killing elicited exuberant AT2 proliferation, generating aberrant daughter cells that ceased surfactant function yet failed to achieve AT1 differentiation. This hyperplasia eventually resolved, yielding normal-appearing alveoli. Overall, this specialized regenerative program confers a delicate simple epithelium with functional resiliency on par with the physical durability of thicker, pseudostratified, or stratified epithelia.
Collapse
Affiliation(s)
- Joshua Guild
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas H. Juul
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andres Andalon
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
| | - Robert J. Coffey
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael A. Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
| | - Tushar J. Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
313
|
Manieri E, Tie G, Malagola E, Seruggia D, Madha S, Maglieri A, Huang K, Fujiwara Y, Zhang K, Orkin SH, Wang TC, He R, McCarthy N, Shivdasani RA. Role of PDGFRA + cells and a CD55 + PDGFRA Lo fraction in the gastric mesenchymal niche. Nat Commun 2023; 14:7978. [PMID: 38042929 PMCID: PMC10693581 DOI: 10.1038/s41467-023-43619-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023] Open
Abstract
PDGFRA-expressing mesenchyme supports intestinal stem cells. Stomach epithelia have related niche dependencies, but their enabling mesenchymal cell populations are unknown, in part because previous studies pooled the gastric antrum and corpus. Our high-resolution imaging, transcriptional profiling, and organoid assays identify regional subpopulations and supportive capacities of purified mouse corpus and antral PDGFRA+ cells. Sub-epithelial PDGFRAHi myofibroblasts are principal sources of BMP ligands and two molecularly distinct pools distribute asymmetrically along antral glands but together fail to support epithelial growth in vitro. In contrast, PDGFRALo CD55+ cells strategically positioned beneath gastric glands promote epithelial expansion in the absence of other cells or factors. This population encompasses a small fraction expressing the BMP antagonist Grem1. Although Grem1+ cell ablation in vivo impairs intestinal stem cells, gastric stem cells are spared, implying that CD55+ cell activity in epithelial self-renewal derives from other subpopulations. Our findings shed light on spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for epithelial support.
Collapse
Affiliation(s)
- Elisa Manieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Davide Seruggia
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adrianna Maglieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kun Huang
- Molecular Imaging Core and Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yuko Fujiwara
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Kevin Zhang
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stuart H Orkin
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
314
|
Zhang R, Pan S, Zheng S, Liao Q, Jiang Z, Wang D, Li X, Hu A, Li X, Zhu Y, Shen X, Lei J, Zhong S, Zhang X, Huang L, Wang X, Huang L, Shen L, Song BL, Zhao JW, Wang Z, Yang B, Guo X. Lipid-anchored proteasomes control membrane protein homeostasis. SCIENCE ADVANCES 2023; 9:eadj4605. [PMID: 38019907 PMCID: PMC10686573 DOI: 10.1126/sciadv.adj4605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here, we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system, and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation and membrane protein trafficking. Rpt2G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by myristoyl-anchored proteasomes in health and disease.
Collapse
Affiliation(s)
- Ruizhu Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuxian Pan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Suya Zheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Dixian Wang
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cryo-Electron Microscopy Center, Zhejiang University, Hangzhou 310058, China
| | - Xuemei Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430072, China
| | - Xinran Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Yezhang Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqi Shen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jing Lei
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Siming Zhong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining 314400, China
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lingyun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697, USA
| | - Li Shen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430072, China
| | - Jing-Wei Zhao
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cryo-Electron Microscopy Center, Zhejiang University, Hangzhou 310058, China
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
315
|
Chen Z, Kwan SY, Mir A, Hazeltine M, Shin M, Liang SQ, Chan IL, Kelly K, Ghanta KS, Gaston N, Cao Y, Xie J, Gao G, Xue W, Sontheimer EJ, Watts JK. A Fluorescent Reporter Mouse for In Vivo Assessment of Genome Editing with Diverse Cas Nucleases and Prime Editors. CRISPR J 2023; 6:570-582. [PMID: 38108517 PMCID: PMC10753986 DOI: 10.1089/crispr.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
CRISPR-based genome-editing technologies, including nuclease editing, base editing, and prime editing, have recently revolutionized the development of therapeutics targeting disease-causing mutations. To advance the assessment and development of genome editing tools, a robust mouse model is valuable, particularly for evaluating in vivo activity and delivery strategies. In this study, we successfully generated a knock-in mouse line carrying the Traffic Light Reporter design known as TLR-multi-Cas variant 1 (TLR-MCV1). We comprehensively validated the functionality of this mouse model for both in vitro and in vivo nuclease and prime editing. The TLR-MCV1 reporter mouse represents a versatile and powerful tool for expediting the development of editing technologies and their therapeutic applications.
Collapse
Affiliation(s)
- Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Suet-Yan Kwan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aamir Mir
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Max Hazeltine
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Minwook Shin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Shun-Qing Liang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Io Long Chan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Krishna S. Ghanta
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yueying Cao
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jun Xie
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Guangping Gao
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Erik J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
316
|
Kobialka P, Llena J, Deleyto-Seldas N, Munar-Gelabert M, Dengra JA, Villacampa P, Albinyà-Pedrós A, Muixi L, Andrade J, van Splunder H, Angulo-Urarte A, Potente M, Grego-Bessa J, Castillo SD, Vanhaesebroeck B, Efeyan A, Graupera M. PI3K-C2β limits mTORC1 signaling and angiogenic growth. Sci Signal 2023; 16:eadg1913. [PMID: 38015911 DOI: 10.1126/scisignal.adg1913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) phosphorylate intracellular inositol lipids to regulate signaling and intracellular vesicular trafficking. Mammals have eight PI3K isoforms, of which class I PI3Kα and class II PI3K-C2α are essential for vascular development. The class II PI3K-C2β is also abundant in endothelial cells. Using in vivo and in vitro approaches, we found that PI3K-C2β was a critical regulator of blood vessel growth by restricting endothelial mTORC1 signaling. Mice expressing a kinase-inactive form of PI3K-C2β displayed enlarged blood vessels without corresponding changes in endothelial cell proliferation or migration. Instead, inactivation of PI3K-C2β resulted in an increase in the size of endothelial cells, particularly in the sprouting zone of angiogenesis. Mechanistically, we showed that the aberrantly large size of PI3K-C2β mutant endothelial cells was caused by mTORC1 activation, which sustained growth in these cells. Consistently, pharmacological inhibition of mTORC1 with rapamycin normalized vascular morphogenesis in PI3K-C2β mutant mice. Together, these results identify PI3K-C2β as a crucial determinant of endothelial signaling and illustrate the importance of mTORC1 regulation during angiogenic growth.
Collapse
Affiliation(s)
- Piotr Kobialka
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Judith Llena
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Margalida Munar-Gelabert
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Jose A Dengra
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Pilar Villacampa
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Alba Albinyà-Pedrós
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Laia Muixi
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Jorge Andrade
- Angiogenesis & Metabolism Laboratory, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Hielke van Splunder
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Joaquim Grego-Bessa
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Bart Vanhaesebroeck
- Cancer Institute, Paul O'Gorman Building, University College London, WC1N 1EH London, UK
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| |
Collapse
|
317
|
Fang X, Nie L, Putluri S, Ni N, Bartholin L, Li Q. Sertoli Cell-Specific Activation of Transforming Growth Factor Beta Receptor 1 Leads to Testicular Granulosa Cell Tumor Formation. Cells 2023; 12:2717. [PMID: 38067144 PMCID: PMC10706251 DOI: 10.3390/cells12232717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The transforming growth factor β (TGFβ) superfamily, consisting of protein ligands, receptors, and intracellular SMAD transducers, regulates fundamental biological processes and cancer development. Our previous study has shown that sustained activation of TGFβ receptor 1 (TGFBR1) driven by anti-Mullerian hormone receptor type 2 (Amhr2)-Cre in the mouse testis induces the formation of testicular granulosa cell tumors (TGCTs). As Amhr2-Cre is expressed in both Sertoli cells and Leydig cells, it remains unclear whether the activation of TGFBR1 in Sertoli cells alone is sufficient to induce TGCT formation. Therefore, the objective of this study was to determine whether Sertoli cell-activation of TGFBR1 drives oncogenesis in the testis. Our hypothesis was that overactivation of TGFBR1 in Sertoli cells would promote their transdifferentiation into granulosa-like cells and the formation of TGCTs. To test this hypothesis, we generated mice harboring constitutive activation of TGFBR1 in Sertoli cells using anti-Mullerian hormone (Amh)-Cre. Disorganized seminiferous tubules and tumor nodules were found in TGFBR1CA; Amh-Cre mice. A histological analysis showed that Sertoli cell-specific activation of TGFBR1 led to the development of neoplasms resembling granulosa cell tumors, which derailed spermatogenesis. Moreover, TGCTs expressed granulosa cell markers including FOXL2, FOXO1, and INHA. Using a dual fluorescence reporter line, the membrane-targeted tdTomato (mT)/membrane-targeted EGFP (mG) mouse, we provided evidence that Sertoli cells transdifferentiated toward a granulosa cell fate during tumorigenesis. Thus, our findings indicate that Sertoli cell-specific activation of TGFBR1 leads to the formation of TGCTs, supporting a key contribution of Sertoli cell reprogramming to the development of this testicular malignancy in our model.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Linfeng Nie
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Satwikreddy Putluri
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Laurent Bartholin
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Lyon 1, F-69000 Lyon, France
- Centre Léon Bérard, F-69008 Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
318
|
López DA, Griffin A, Aguilar LM, Rice CD, Myers EJ, Warren KJ, Welner R, Beaudin AE. Prenatal inflammation reprograms hyperactive ILC2s that promote allergic lung inflammation and airway dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567899. [PMID: 38045298 PMCID: PMC10690173 DOI: 10.1101/2023.11.20.567899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Allergic asthma is a chronic respiratory disease that initiates in early life, but causal mechanisms are poorly understood. Here we examined how prenatal inflammation shapes allergic asthma susceptibility by reprogramming lung immunity from early development. Induction of Type I interferon-mediated inflammation during development provoked expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produced increased IL-5 and IL-13, and were associated with acute Th2 bias, eosinophilia, and decreased Tregs in the lung. The hyperactive ILC2 phenotype was recapitulated by adoptive transfer of a fetal liver precursor following exposure to prenatal inflammation, indicative of developmental programming. Programming of ILC2 function and subsequent lung immune remodeling by prenatal inflammation led to airway dysfunction at baseline and in response to papain, indicating increased asthma susceptibility. Our data provide a link by which developmental programming of progenitors by early-life inflammation drives lung immune remodeling and asthma susceptibility through hyperactivation of lung-resident ILC2s. One Sentence Summary Prenatal inflammation programs asthma susceptibility by inducing the production of hyperactivated ILC2s in the developing lung.
Collapse
|
319
|
Guo D, Jurek R, Beaumont KA, Sharp DS, Tan SY, Mariana A, Failes TW, Grootveld AK, Bhattacharyya ND, Phan TG, Arndt GM, Jain R, Weninger W, Tikoo S. Invasion-Block and S-MARVEL: A high-content screening and image analysis platform identifies ATM kinase as a modulator of melanoma invasion and metastasis. Proc Natl Acad Sci U S A 2023; 120:e2303978120. [PMID: 37963252 PMCID: PMC10666109 DOI: 10.1073/pnas.2303978120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/13/2023] [Indexed: 11/16/2023] Open
Abstract
Robust high-throughput assays are crucial for the effective functioning of a drug discovery pipeline. Herein, we report the development of Invasion-Block, an automated high-content screening platform for measuring invadopodia-mediated matrix degradation as a readout for the invasive capacity of cancer cells. Combined with Smoothen-Mask and Reveal, a custom-designed, automated image analysis pipeline, this platform allowed us to evaluate melanoma cell invasion capacity posttreatment with two libraries of compounds comprising 3840 U.S. Food and Drug Administration (FDA)-approved drugs with well-characterized safety and bioavailability profiles in humans as well as a kinase inhibitor library comprising 210 biologically active compounds. We found that Abl/Src, PKC, PI3K, and Ataxia-telangiectasia mutated (ATM) kinase inhibitors significantly reduced melanoma cell invadopodia formation and cell invasion. Abrogation of ATM expression in melanoma cells via CRISPR-mediated gene knockout reduced 3D invasion in vitro as well as spontaneous lymph node metastasis in vivo. Together, this study established a rapid screening assay coupled with a customized image-analysis pipeline for the identification of antimetastatic drugs. Our study implicates that ATM may serve as a potent therapeutic target for the treatment of melanoma cell spread in patients.
Collapse
Affiliation(s)
- Dajiang Guo
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW2050, Australia
| | - Russell Jurek
- Australia Telescope National Facility, The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Astronomy and Space Science, Australia Telescope National Facility, MarsfieldNSW2122, Australia
| | - Kimberley A. Beaumont
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW2050, Australia
| | - Danae S. Sharp
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
| | - Sioh-Yang Tan
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
| | - Anna Mariana
- The Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW2052, Australia
| | - Timothy W. Failes
- The Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW2052, Australia
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW2052, Australia
| | - Abigail K. Grootveld
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW2010, Australia
- St Vincent’s Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW2010, Australia
| | - Nayan D. Bhattacharyya
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW2010, Australia
- St Vincent’s Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW2010, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW2010, Australia
- St Vincent’s Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW2010, Australia
| | - Greg M. Arndt
- The Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW2052, Australia
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW2052, Australia
| | - Rohit Jain
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW2050, Australia
- Department of Dermatology, Medical University of Vienna, Vienna1090, Austria
| | - Wolfgang Weninger
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW2050, Australia
- Department of Dermatology, Medical University of Vienna, Vienna1090, Austria
| | - Shweta Tikoo
- Immune Imaging Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW2050, Australia
- Department of Dermatology, Medical University of Vienna, Vienna1090, Austria
| |
Collapse
|
320
|
Kozlowski C, Hadyniak SE, Kay JN. Retinal neurons establish mosaic patterning by excluding homotypic somata from their dendritic territory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567616. [PMID: 38014021 PMCID: PMC10680827 DOI: 10.1101/2023.11.17.567616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using newly-generated transgenic tools and single cell labeling, we identify a transient developmental period when starburst somata receive extensive contacts from neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor's dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing, and suggest that this could be a general mechanism for mosaic patterning across many cell types and species.
Collapse
Affiliation(s)
- Christopher Kozlowski
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Sarah E Hadyniak
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Jeremy N Kay
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 USA
| |
Collapse
|
321
|
Sun B, Reynolds K, Saha SK, Zhang S, McMahon M, Zhou CJ. Ezh2-dependent methylation in oral epithelia promotes secondary palatogenesis. Birth Defects Res 2023; 115:1851-1865. [PMID: 37435868 PMCID: PMC10784412 DOI: 10.1002/bdr2.2216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND In addition to genomic risk variants and environmental influences, increasing evidence suggests epigenetic modifications are important for orofacial development and their alterations can contribute to orofacial clefts. Ezh2 encodes a core catalytic component of the Polycomb repressive complex responsible for addition of methyl marks to Histone H3 as a mechanism of repressing target genes. The role of Ezh2 in orofacial clefts remains unknown. AIMS To investigate the epithelial role of Ezh2-dependent methylation in secondary palatogenesis. METHODS We used conditional gene-targeting methods to ablate Ezh2 in the surface ectoderm-derived oral epithelium of mouse embryos. We then performed single-cell RNA sequencing combined with immunofluorescence and RT-qPCR to investigate gene expression in conditional mutant palate. We also employed double knockout analyses of Ezh1 and Ezh2 to address if they have synergistic roles in palatogenesis. RESULTS We found that conditional inactivation of Ezh2 in oral epithelia results in partially penetrant cleft palate. Double knockout analyses revealed that another family member Ezh1 is dispensable in orofacial development, and it does not have synergistic roles with Ezh2 in palatogenesis. Histochemistry and single-cell RNA-seq analyses revealed dysregulation of cell cycle regulators in the palatal epithelia of Ezh2 mutant mouse embryos disrupts palatogenesis. CONCLUSION Ezh2-dependent histone H3K27 methylation represses expression of cell cycle regulator Cdkn1a and promotes proliferation in the epithelium of the developing palatal shelves. Loss of this regulation may perturb movement of the palatal shelves, causing a delay in palate elevation which may result in failure of the secondary palate to close altogether.
Collapse
Affiliation(s)
| | | | - Subbroto Kuma Saha
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Shuwen Zhang
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
322
|
Liu NN, Yi CX, Wei LQ, Zhou JA, Jiang T, Hu CC, Wang L, Wang YY, Zou Y, Zhao YK, Zhang LL, Nie YT, Zhu YJ, Yi XY, Zeng LB, Li JQ, Huang XT, Ji HB, Kozlakidis Z, Zhong L, Heeschen C, Zheng XQ, Chen C, Zhang P, Wang H. The intratumor mycobiome promotes lung cancer progression via myeloid-derived suppressor cells. Cancer Cell 2023; 41:1927-1944.e9. [PMID: 37738973 DOI: 10.1016/j.ccell.2023.08.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Although polymorphic microbiomes have emerged as hallmarks of cancer, far less is known about the role of the intratumor mycobiome as living microorganisms in cancer progression. Here, using fungi-enriched DNA extraction and deep shotgun metagenomic sequencing, we have identified enriched tumor-resident Aspergillus sydowii in patients with lung adenocarcinoma (LUAD). By three different syngeneic lung cancer mice models, we find that A. sydowii promotes lung tumor progression via IL-1β-mediated expansion and activation of MDSCs, resulting in suppressed activity of cytotoxic T lymphocyte cells and accumulation of PD-1+ CD8+ T cells. This is mediated by IL-1β secretion via β-glucan/Dectin-1/CARD9 pathway. Analysis of human samples confirms that enriched A. sydowii is associated with immunosuppression and poor patient outcome. Our findings suggest that intratumor mycobiome, albeit at low biomass, promotes lung cancer progression and could be targeted at the strain level to improve patients with LUAD outcome.
Collapse
Affiliation(s)
- Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Cheng-Xiang Yi
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lu-Qi Wei
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China; Laboratory Services and Biobanking, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Cong-Cong Hu
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Lu Wang
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Yuan-Yuan Wang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China
| | - Yun Zou
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China
| | - Yi-Kai Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Le-Le Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ya-Ting Nie
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Jing Zhu
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Xin-Yao Yi
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Ling-Bing Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Jing-Quan Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Tian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330052, China
| | - Hong-Bin Ji
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobanking, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Christopher Heeschen
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Qi Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing 211135, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
323
|
Bayard C, Segna E, Taverne M, Fraissenon A, Hennocq Q, Periou B, Zerbib L, Ladraa S, Chapelle C, Hoguin C, Kaltenbach S, Villarese P, Asnafi V, Broissand C, Nemazanyy I, Autret G, Goudin N, Legendre C, Authier FJ, Viel T, Tavitian B, Gitiaux C, Fraitag S, Duong JP, Delcros C, Sergent B, Picard A, Dussiot M, Guibaud L, Khonsari R, Canaud G. Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition. J Exp Med 2023; 220:e20230926. [PMID: 37712948 PMCID: PMC10503430 DOI: 10.1084/jem.20230926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Hemifacial myohyperplasia (HFMH) is a rare cause of facial asymmetry exclusively involving facial muscles. The underlying cause and the mechanism of disease progression are unknown. Here, we identified a somatic gain-of-function mutation of PIK3CA in five pediatric patients with HFMH. To understand the physiopathology of muscle hypertrophy in this context, we created a mouse model carrying specifically a PIK3CA mutation in skeletal muscles. PIK3CA gain-of-function mutation led to striated muscle cell hypertrophy, mitochondria dysfunction, and hypoglycemia with low circulating insulin levels. Alpelisib treatment, an approved PIK3CA inhibitor, was able to prevent and reduce muscle hypertrophy in the mouse model with correction of endocrine anomalies. Based on these findings, we treated the five HFMH patients. All patients demonstrated clinical, esthetical, and radiological improvement with proof of target engagement. In conclusion, we show that HFMH is due to somatic alteration of PIK3CA and is accessible to pharmacological intervention.
Collapse
Affiliation(s)
- Charles Bayard
- Université Paris Cité, Paris, France
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Eleonora Segna
- Service De Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Maxime Taverne
- Laboratoire Forme et Croissance du Crâne, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
- Service d’Imagerie Pédiatrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France
- CREATIS Unité mixte de recherche 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
| | - Quentin Hennocq
- Laboratoire Forme et Croissance du Crâne, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Baptiste Periou
- Service d’anatomie Pathologique, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- Université Paris Cité, Paris, France
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Sophia Ladraa
- Université Paris Cité, Paris, France
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
| | - Célia Chapelle
- Université Paris Cité, Paris, France
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
| | - Clément Hoguin
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d’Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Patrick Villarese
- Laboratoire d’Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- Université Paris Cité, Paris, France
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
- Laboratoire d’Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Christine Broissand
- Pharmacie, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, Institut national de la santé et de la recherche médicale Paris, France
| | - Gwennhael Autret
- Plateforme Imageries du Vivant, Université Paris Cité, Paris Cardiovascular Research Center, Institut national de la santé et de la recherche médicale, Paris, France
| | - Nicolas Goudin
- Necker Bio-Image Analysis, Institut national de la santé et de la recherche médicale, Paris, France
| | - Christophe Legendre
- Université Paris Cité, Paris, France
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
- Service de Néphrologie, Transplantation Adultes, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - François-Jérôme Authier
- Service d’anatomie Pathologique, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Thomas Viel
- Plateforme Imageries du Vivant, Université Paris Cité, Paris Cardiovascular Research Center, Institut national de la santé et de la recherche médicale, Paris, France
| | - Bertrand Tavitian
- Université Paris Cité, Paris, France
- Plateforme Imageries du Vivant, Université Paris Cité, Paris Cardiovascular Research Center, Institut national de la santé et de la recherche médicale, Paris, France
| | - Cyril Gitiaux
- Université Paris Cité, Paris, France
- Service de Neurophysiologie Clinique Pédiatrique, Centre de Référence des Pathologies Neuromusculaires, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Sylvie Fraitag
- Service d’Anatomie Pathologique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Paul Duong
- Université Paris Cité, Paris, France
- Service d’Anatomie Pathologique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Clarisse Delcros
- Université Paris Cité, Paris, France
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
| | - Bernard Sergent
- Service De Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Arnaud Picard
- Université Paris Cité, Paris, France
- Service De Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Michael Dussiot
- Institut national de la santé et de la recherche médicale U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratoire d’Excellence GR-Ex, Paris, France
| | - Laurent Guibaud
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
- Service d’Imagerie Pédiatrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Roman Khonsari
- Université Paris Cité, Paris, France
- Service De Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratoire Forme et Croissance du Crâne, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- Université Paris Cité, Paris, France
- Institut national de la santé et de la recherche médicale U1151, Institut Necker-Enfants Malades, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
324
|
Rao J, Djeffal Y, Chal J, Marchianò F, Wang CH, Al Tanoury Z, Gapon S, Mayeuf-Louchart A, Glass I, Sefton EM, Habermann B, Kardon G, Watt FM, Tseng YH, Pourquié O. Reconstructing human brown fat developmental trajectory in vitro. Dev Cell 2023; 58:2359-2375.e8. [PMID: 37647896 PMCID: PMC10873093 DOI: 10.1016/j.devcel.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/23/2022] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Brown adipocytes (BAs) represent a specialized cell type that is able to uncouple nutrient catabolism from ATP generation to dissipate energy as heat. In humans, the brown fat tissue is composed of discrete depots found throughout the neck and trunk region. BAs originate from a precursor common to skeletal muscle, but their developmental trajectory remains poorly understood. Here, we used single-cell RNA sequencing to characterize the development of interscapular brown fat in mice. Our analysis identified a transient stage of BA differentiation characterized by the expression of the transcription factor GATA6. We show that recapitulating the sequence of signaling cues identified in mice can lead to efficient differentiation of BAs in vitro from human pluripotent stem cells. These precursors can in turn be efficiently converted into functional BAs that can respond to signals mimicking adrenergic stimuli by increasing their metabolism, resulting in heat production.
Collapse
Affiliation(s)
- Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Yannis Djeffal
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jerome Chal
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Fabio Marchianò
- Aix-Marseille University, CNRS, IBDM, The Turing Center for Living Systems, 13009 Marseille, France
| | - Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ziad Al Tanoury
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Svetlana Gapon
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Ian Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth M Sefton
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Bianca Habermann
- Aix-Marseille University, CNRS, IBDM, The Turing Center for Living Systems, 13009 Marseille, France
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Great Maze Pond, London SE1 9RT, UK
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
325
|
Bernheim S, Borgel A, Le Garrec JF, Perthame E, Desgrange A, Michel C, Guillemot L, Sart S, Baroud CN, Krezel W, Raimondi F, Bonnet D, Zaffran S, Houyel L, Meilhac SM. Identification of Greb1l as a genetic determinant of crisscross heart in mice showing torsion of the heart tube by shortage of progenitor cells. Dev Cell 2023; 58:2217-2234.e8. [PMID: 37852253 DOI: 10.1016/j.devcel.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Despite their burden, most congenital defects remain poorly understood, due to lack of knowledge of embryological mechanisms. Here, we identify Greb1l mutants as a mouse model of crisscross heart. Based on 3D quantifications of shape changes, we demonstrate that torsion of the atrioventricular canal occurs together with supero-inferior ventricles at E10.5, after heart looping. Mutants phenocopy partial deficiency in retinoic acid signaling, which reflect overlapping pathways in cardiac precursors. Spatiotemporal gene mapping and cross-correlated transcriptomic analyses further reveal the role of Greb1l in maintaining a pool of dorsal pericardial wall precursor cells during heart tube elongation, likely by controlling ribosome biogenesis and cell differentiation. Consequently, we observe growth arrest and malposition of the outflow tract, which are predictive of abnormal tube remodeling in mutants. Our work on a rare cardiac malformation opens novel perspectives on the origin of a broader spectrum of congenital defects associated with GREB1L in humans.
Collapse
Affiliation(s)
- Ségolène Bernheim
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Adrien Borgel
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Jean-François Le Garrec
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Emeline Perthame
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Audrey Desgrange
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Cindy Michel
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Laurent Guillemot
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Sébastien Sart
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, 75015 Paris, France
| | - Charles N Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, 75015 Paris, France; Laboratoire d'Hydrodynamique, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale (U1258), Centre National de la Recherche Scientifique (UMR7104), Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404 Illkirch, France
| | - Francesca Raimondi
- Pediatric Radiology Unit, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France; M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Damien Bonnet
- M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | | | - Lucile Houyel
- M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Sigolène M Meilhac
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France.
| |
Collapse
|
326
|
Liu CY, Girish N, Gomez ML, Kalski M, Bernard JK, Simons BD, Polk DB. Wound-healing plasticity enables clonal expansion of founder progenitor cells in colitis. Dev Cell 2023; 58:2309-2325.e7. [PMID: 37652012 PMCID: PMC10872951 DOI: 10.1016/j.devcel.2023.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2023] [Accepted: 08/05/2023] [Indexed: 09/02/2023]
Abstract
Chronic colonic injury and inflammation pose high risks for field cancerization, wherein injury-associated mutations promote stem cell fitness and gradual clonal expansion. However, the long-term stability of some colitis-associated mutational fields could suggest alternate origins. Here, studies of acute murine colitis reveal a punctuated mechanism of massive, neutral clonal expansion during normal wound healing. Through three-dimensional (3D) imaging, quantitative fate mapping, and single-cell transcriptomics, we show that epithelial wound repair begins with the loss of structural constraints on regeneration, forming fused labyrinthine channels containing epithelial cells reprogrammed to a non-proliferative plastic state. A small but highly proliferative set of epithelial founder progenitor cells (FPCs) subsequently emerges and undergoes extensive cell division, enabling fluid-like lineage mixing and spreading across the colonic surface. Crypt budding restores the glandular organization, imprinting the pattern of clonal expansion. The emergence and functions of FPCs within a critical window of plasticity represent regenerative targets with implications for preneoplasia.
Collapse
Affiliation(s)
- Cambrian Y Liu
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | - Nandini Girish
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Marie L Gomez
- Program in Biomedical and Biological Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Martin Kalski
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jessica K Bernard
- Program in Craniofacial Biology, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA 90033, USA
| | - Benjamin D Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - D Brent Polk
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
327
|
Granger K, Fitch S, Shen M, Lloyd J, Bhurke A, Hancock J, Ye X, Arora R. Murine uterine gland branching is necessary for gland function in implantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565233. [PMID: 37961508 PMCID: PMC10635073 DOI: 10.1101/2023.11.01.565233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation, however contribution of uterine gland structure to gland secretions such as LIF is not known. Here we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation. We observed that deletion of ESR1 in neonatal uterine epithelium, stroma and muscle using the progesterone receptor PgrCre causes a block in uterine gland development at the gland bud stage. Embryonic epithelial deletion of ESR1 using a mullerian duct Cre line - Pax2Cre, displays gland bud elongation but a failure in gland branching. Surprisingly, adult uterine epithelial deletion of ESR1 using the lactoferrin-Cre (LtfCre) displays normally branched uterine glands. Intriguingly, unbranched glands from Pax2Cre Esr1flox/flox uteri fail to express glandular pre-implantation Lif, preventing implantation chamber formation and embryo alignment along the uterine mesometrial-antimesometrial axis. In contrast, branched glands from LtfCre Esr1flox/flox uteri display reduced expression of glandular Lif resulting in delayed implantation chamber formation and embryo-uterine axes alignment but deliver a normal number of pups. Finally, pre-pubertal unbranched glands in control mice express Lif in the luminal epithelium but fail to express Lif in the glandular epithelium even in the presence of estrogen. These data strongly suggest that branched glands are necessary for pre-implantation glandular Lif expression for implantation success. Our study is the first to identify a relationship between the branched structure and secretory function of uterine glands and provides a framework for understanding how uterine gland structure-function contributes to pregnancy success.
Collapse
Affiliation(s)
- Katrina Granger
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - May Shen
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Jarrett Lloyd
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Aishwarya Bhurke
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| | - Jonathan Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia
- Interdisciplinary Toxicology Program, University of Georgia
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia
- Interdisciplinary Toxicology Program, University of Georgia
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
| |
Collapse
|
328
|
Chen L, Qiu X, Dupre A, Pellon-Cardenas O, Fan X, Xu X, Rout P, Walton KD, Burclaff J, Zhang R, Fang W, Ofer R, Logerfo A, Vemuri K, Bandyopadhyay S, Wang J, Barbet G, Wang Y, Gao N, Perekatt AO, Hu W, Magness ST, Spence JR, Verzi MP. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell 2023; 30:1520-1537.e8. [PMID: 37865088 PMCID: PMC10841757 DOI: 10.1016/j.stem.2023.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/03/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
The gut epithelium has a remarkable ability to recover from damage. We employed a combination of high-throughput sequencing approaches, mouse genetics, and murine and human organoids and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. The depletion of macrophages or genetic disruption of TGFB signaling significantly impaired the regenerative response. Intestinal regeneration is characterized by the induction of a fetal-like transcriptional signature during repair. In organoid culture, TGFB1 treatment was necessary and sufficient to induce the fetal-like/regenerative state. Mesenchymal cells were also responsive to TGFB1 and enhanced the regenerative response. Mechanistically, pro-regenerative factors, YAP/TEAD and SOX9, are activated in the epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for cellular therapy.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.
| | - Xia Qiu
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Xiaojiao Fan
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Prateeksha Rout
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Katherine D Walton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenxin Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Rachel Ofer
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Sheila Bandyopadhyay
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Gaetan Barbet
- Child Health Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nan Gao
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Ansu O Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA; Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI, Piscataway, NJ 08854, USA.
| |
Collapse
|
329
|
Limaye A, Cho K, Hall B, Khillan JS, Kulkarni AB. Genotyping Protocols for Genetically Engineered Mice. Curr Protoc 2023; 3:e929. [PMID: 37984376 PMCID: PMC10754054 DOI: 10.1002/cpz1.929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Historically, the laboratory mouse has been the mammalian species of choice for studying gene function and for modeling diseases in humans. This was mainly due to their availability from mouse fanciers. In addition, their short generation time, small size, and minimal food consumption compared to that of larger mammals were definite advantages. This led to the establishment of large hubs for the development of genetically modified mouse models, such as the Jackson Laboratory. Initial research into inbred mouse strains in the early 1900s revolved around coat color genetics and cancer studies, but gene targeting in embryonic stem cells and the introduction of transgenes through pronuclear injection of a mouse zygote, along with current clustered regularly interspaced short palindromic repeat (CRISPR) RNA gene editing, have allowed easy manipulation of the mouse genome. Originally, to distribute a mouse model to other facilities, standard methods had to be developed to ensure that each modified mouse trait could be consistently identified no matter which laboratory requested it. The task of establishing uniform protocols became easier with the development of the polymerase chain reaction (PCR). This chapter will provide guidelines for identifying genetically modified mouse models, mainly using endpoint PCR. In addition, we will discuss strategies to identify genetically modified mouse models that have been established using newer gene-editing technology such as CRISPR. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Digestion with proteinase K followed by purification of genomic DNA using phenol/chloroform Alternate Protocol: Digestion with proteinase K followed by crude isopropanol extraction of genomic DNA for tail biopsy and ear punch samples Basic Protocol 2: Purification of genomic DNA using a semi-automated system Basic Protocol 3: Purification of genomic DNA from semen, blood, or buccal swabs Basic Protocol 4: Purification of genomic DNA from mouse blastocysts to assess CRISPR gene editing Basic Protocol 5: Routine endpoint-PCR-based genotyping using DNA polymerase and thermal cycler Basic Protocol 6: T7E1/Surveyor assays to detect insertion or deletions following CRISPR editing Basic Protocol 7: Detecting off-target mutations following CRISPR editing Basic Protocol 8: Detecting genomic sequence deletion after CRISPR editing using a pair of guide RNAs Basic Protocol 9: Detecting gene knock-in events following CRISPR editing Basic Protocol 10: Screening of conditional knockout floxed mice.
Collapse
Affiliation(s)
- Advait Limaye
- National Institute of Dental and Craniofacial Research
| | - Kyoungin Cho
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bradford Hall
- National Institute of Dental and Craniofacial Research
| | - Jaspal S. Khillan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
330
|
Cristante E, Liyanage SE, Smith AJ, Ali RR, Bainbridge JWB. Role of HIF1α and HIF2α in Cre Recombinase-Induced Retinal Pigment Epithelium Pathology and Its Secondary Effect on Choroidal Neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1694-1705. [PMID: 37330004 DOI: 10.1016/j.ajpath.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023]
Abstract
CreTrp1 mice are widely used for conditional retinal pigment epithelium (RPE) gene function studies. Like other Cre/LoxP models, phenotypes in CreTrp1 mice can be affected by Cre-mediated cellular toxicity, leading to RPE dysfunction, altered morphology and atrophy, activation of innate immunity, and consequent impairment of photoreceptor function. These effects are common among the age-related alterations of RPE that feature in early/intermediate forms of age-related macular degeneration. This article characterizes Cre-mediated pathology in the CreTrp1 line to elucidate the impact of RPE degeneration on both developmental and pathologic choroidal neovascularization. Nonredundant roles of the two major components of the hypoxia-inducible factor (HIF) family of transcription regulators, HIF1α and HIF2α, were identified. Genetic ablation of Hif1a protected against Cre-induced degeneration of RPE and choroid, whereas ablation of Hif2a exacerbated this degeneration. Furthermore, HIF1α deficiency protected CreTrp1 mice against laser-induced choroidal neovascularization, whereas HIF2α deficiency exacerbated the phenotype. Cre-mediated degeneration of the RPE in CreTrp1 mice offers an opportunity to investigate the impact of hypoxia signaling in the context of RPE degeneration. These findings indicate that HIF1α promotes Cre recombinase-mediated RPE degeneration and laser-induced choroidal neovascularization, whereas HIF2α is protective.
Collapse
Affiliation(s)
| | | | - Alexander J Smith
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, United Kingdom
| | - Robin R Ali
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, United Kingdom
| | - James W B Bainbridge
- UCL Institute of Ophthalmology London, United Kingdom; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
331
|
Navaridas R, Vidal‐Sabanés M, Ruiz‐Mitjana A, Altés G, Perramon‐Güell A, Yeramian A, Egea J, Encinas M, Gatius S, Matias‐Guiu X, Dolcet X. In Vivo Intra-Uterine Delivery of TAT-Fused Cre Recombinase and CRISPR/Cas9 Editing System in Mice Unveil Histopathology of Pten/p53-Deficient Endometrial Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303134. [PMID: 37749866 PMCID: PMC10646277 DOI: 10.1002/advs.202303134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Indexed: 09/27/2023]
Abstract
Phosphatase and TENsin homolog (Pten) and p53 are two of the most frequently mutated tumor suppressor genes in endometrial cancer. However, the functional consequences and histopathological manifestation of concomitant p53 and Pten loss of function alterations in the development of endometrial cancer is still controversial. Here, it is demonstrated that simultaneous Pten and p53 deletion is sufficient to cause epithelial to mesenchymal transition phenotype in endometrial organoids. By a novel intravaginal delivery method using HIV1 trans-activator of transcription cell penetrating peptide fused with a Cre recombinase protein (TAT-Cre), local ablation of both p53 and Pten is achieved specifically in the uterus. These mice developed high-grade endometrial carcinomas and a high percentage of uterine carcinosarcomas resembling those found in humans. To further demonstrate that carcinosarcomas arise from epithelium, double Pten/p53 deficient epithelial cells are mixed with wild type stromal and myometrial cells and subcutaneously transplanted to Scid mice. All xenotransplants resulted in the development of uterine carcinosarcomas displaying high nuclear pleomorphism and metastatic potential. Accordingly, in vivo CRISPR/Cas9 disruption of Pten and p53 also triggered the development of metastatic carcinosarcomas. The results unfadingly demonstrate that simultaneous deletion of p53 and Pten in endometrial epithelial cells is enough to trigger epithelial to mesenchymal transition that is consistently translated to the formation of uterine carcinosarcomas in vivo.
Collapse
Affiliation(s)
- Raúl Navaridas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Maria Vidal‐Sabanés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Anna Ruiz‐Mitjana
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Gisela Altés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Aida Perramon‐Güell
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Andree Yeramian
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Sonia Gatius
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Matias‐Guiu
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Dolcet
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| |
Collapse
|
332
|
Banerji R, Grifno GN, Shi L, Smolen D, LeBourdais R, Muhvich J, Eberman C, Hiller BE, Lee J, Regan K, Zheng S, Zhang S, Jiang J, Raslan AA, Breda JC, Pihl R, Traber K, Mazzilli S, Ligresti G, Mizgerd JP, Suki B, Nia HT. Crystal ribcage: a platform for probing real-time lung function at cellular resolution. Nat Methods 2023; 20:1790-1801. [PMID: 37710017 PMCID: PMC10860663 DOI: 10.1038/s41592-023-02004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Understanding the dynamic pathogenesis and treatment response in pulmonary diseases requires probing the lung at cellular resolution in real time. Despite advances in intravital imaging, optical imaging of the lung during active respiration and circulation has remained challenging. Here, we introduce the crystal ribcage: a transparent ribcage that allows multiscale optical imaging of the functioning lung from whole-organ to single-cell level. It enables the modulation of lung biophysics and immunity through intravascular, intrapulmonary, intraparenchymal and optogenetic interventions, and it preserves the three-dimensional architecture, air-liquid interface, cellular diversity and respiratory-circulatory functions of the lung. Utilizing these capabilities on murine models of pulmonary pathologies we probed remodeling of respiratory-circulatory functions at the single-alveolus and capillary levels during disease progression. The crystal ribcage and its broad applications presented here will facilitate further studies of nearly any pulmonary disease as well as lead to the identification of new targets for treatment strategies.
Collapse
Affiliation(s)
- Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gabrielle N Grifno
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Linzheng Shi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Dylan Smolen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rob LeBourdais
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Johnathan Muhvich
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cate Eberman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Bradley E Hiller
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Siyi Zheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ahmed A Raslan
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Julia C Breda
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Riley Pihl
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Katrina Traber
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah Mazzilli
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
333
|
Iyyanar PPR, Qin C, Adhikari N, Liu H, Hu YC, Jiang R, Lan Y. Developmental origin of the mammalian premaxilla. Dev Biol 2023; 503:1-9. [PMID: 37524195 PMCID: PMC10528123 DOI: 10.1016/j.ydbio.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The evolution of jaws has played a major role in the success of vertebrate expansion into a wide variety of ecological niches. A fundamental, yet unresolved, question in craniofacial biology is about the origin of the premaxilla, the most distal bone present in the upper jaw of all amniotes. Recent reports have suggested that the mammalian premaxilla is derived from embryonic maxillary prominences rather than the frontonasal ectomesenchyme as previously shown in studies of chicken embryos. However, whether mammalian embryonic frontonasal ectomesenchyme contributes to the premaxillary bone has not been investigated and a tool to trace the contributions of the frontonasal ectomesenchyme to facial structures in mammals is lacking. The expression of the Alx3 gene is activated highly specifically in the frontonasal ectomesenchyme, but not in the maxillary mesenchyme, from the beginning of facial morphogenesis in mice. Here, we report the generation and characterization of a novel Alx3CreERT2 knock-in mouse line that express tamoxifen-inducible Cre DNA recombinase from the Alx3 locus. Tamoxifen treatment of Alx3CreERT2/+;Rosa26mTmG/+ embryos at E7.5, E8.5, E9.5, and E10.5, each induced specific labeling of the embryonic medial nasal and lateral nasal mesenchyme but not the maxillary mesenchyme. Lineage tracing of Alx3CreERT2-labeled frontonasal mesenchyme from E9.5 to E16.5 clearly showed that the frontonasal mesenchyme cells give rise to the osteoblasts generating the premaxillary bone. Furthermore, we characterize a Dlx1-Cre BAC transgenic mouse line that expresses Cre activity in the embryonic maxillary but not the frontonasal mesenchyme and show that the Dlx1-Cre labeled embryonic maxillary mesenchyme cells contribute to the maxillary bone as well as the soft tissues lateral to both the premaxillary and maxillary bones but not to the premaxillary bone. These results clearly demonstrate the developmental origin of the premaxillary bone from embryonic frontonasal ectomesenchyme cells in mice and confirm the evolutionary homology of the premaxilla across amniotes.
Collapse
Affiliation(s)
- Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chuanqi Qin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education Key Laboratory of Oral Biomedicine, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Nirpesh Adhikari
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
334
|
Barbazan J, Pérez-González C, Gómez-González M, Dedenon M, Richon S, Latorre E, Serra M, Mariani P, Descroix S, Sens P, Trepat X, Vignjevic DM. Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction. Nat Commun 2023; 14:6966. [PMID: 37907483 PMCID: PMC10618488 DOI: 10.1038/s41467-023-42382-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce an excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule acts as a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro, we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP and a decrease in proliferation. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.
Collapse
Affiliation(s)
- Jorge Barbazan
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), 15706, Santiago de Compostela, Spain
| | | | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
| | - Mathieu Dedenon
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France
| | - Ernest Latorre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
| | - Marco Serra
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Pascale Mariani
- Institut Curie, Department of surgical oncology, Curie Institute, F-75005, Paris, France
| | - Stéphanie Descroix
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain.
- Facutltat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain.
| | | |
Collapse
|
335
|
Zhang S, Grifno G, Passaro R, Regan K, Zheng S, Hadzipasic M, Banerji R, O'Connor L, Chu V, Kim SY, Yang J, Shi L, Karrobi K, Roblyer D, Grinstaff MW, Nia HT. Intravital measurements of solid stresses in tumours reveal length-scale and microenvironmentally dependent force transmission. Nat Biomed Eng 2023; 7:1473-1492. [PMID: 37640900 PMCID: PMC10836235 DOI: 10.1038/s41551-023-01080-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
In cancer, solid stresses impede the delivery of therapeutics to tumours and the trafficking and tumour infiltration of immune cells. Understanding such consequences and the origin of solid stresses requires their probing in vivo at the cellular scale. Here we report a method for performing volumetric and longitudinal measurements of solid stresses in vivo, and findings from its applicability to tumours. We used multimodal intravital microscopy of fluorescently labelled polyacrylamide beads injected in breast tumours in mice as well as mathematical modelling to compare solid stresses at the single-cell and tissue scales, in primary and metastatic tumours, in vitro and in mice, and in live mice and post-mortem tissue. We found that solid-stress transmission is scale dependent, with tumour cells experiencing lower stresses than their embedding tissue, and that tumour cells in lung metastases experience substantially higher solid stresses than those in the primary tumours. The dependence of solid stresses on length scale and the microenvironment may inform the development of therapeutics that sensitize cancer cells to such mechanical forces.
Collapse
Affiliation(s)
- Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gabrielle Grifno
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rachel Passaro
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Siyi Zheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Muhamed Hadzipasic
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Logan O'Connor
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Vinson Chu
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sung Yeon Kim
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Linzheng Shi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kavon Karrobi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
336
|
Ben-Chetrit N, Niu X, Sotelo J, Swett AD, Rajasekhar VK, Jiao MS, Stewart CM, Bhardwaj P, Kottapalli S, Ganesan S, Loyher PL, Potenski C, Hannuna A, Brown KA, Iyengar NM, Giri DD, Lowe SW, Healey JH, Geissmann F, Sagi I, Joyce JA, Landau DA. Breast Cancer Macrophage Heterogeneity and Self-renewal are Determined by Spatial Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563749. [PMID: 37961223 PMCID: PMC10634790 DOI: 10.1101/2023.10.24.563749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Tumor-infiltrating macrophages support critical steps in tumor progression, and their accumulation in the tumor microenvironment (TME) is associated with adverse outcomes and therapeutic resistance across human cancers. In the TME, macrophages adopt diverse phenotypic alterations, giving rise to heterogeneous immune activation states and induction of cell cycle. While the transcriptional profiles of these activation states are well-annotated across human cancers, the underlying signals that regulate macrophage heterogeneity and accumulation remain incompletely understood. Here, we leveraged a novel ex vivo organotypic TME (oTME) model of breast cancer, in vivo murine models, and human samples to map the determinants of functional heterogeneity of TME macrophages. We identified a subset of F4/80highSca-1+ self-renewing macrophages maintained by type-I interferon (IFN) signaling and requiring physical contact with cancer-associated fibroblasts. We discovered that the contact-dependent self-renewal of TME macrophages is mediated via Notch4, and its inhibition abrogated tumor growth of breast and ovarian carcinomas in vivo, as well as lung dissemination in a PDX model of triple-negative breast cancer (TNBC). Through spatial multi-omic profiling of protein markers and transcriptomes, we found that the localization of macrophages further dictates functionally distinct but reversible phenotypes, regardless of their ontogeny. Whereas immune-stimulatory macrophages (CD11C+CD86+) populated the tumor epithelial nests, the stroma-associated macrophages (SAMs) were proliferative, immunosuppressive (Sca-1+CD206+PD-L1+), resistant to CSF-1R depletion, and associated with worse patient outcomes. Notably, following cessation of CSF-1R depletion, macrophages rebounded primarily to the SAM phenotype, which was associated with accelerated growth of mammary tumors. Our work reveals the spatial determinants of macrophage heterogeneity in breast cancer and highlights the disruption of macrophage self-renewal as a potential new therapeutic strategy.
Collapse
Affiliation(s)
- Nir Ben-Chetrit
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- These authors contributed equally
| | - Xiang Niu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- These authors contributed equally
- Present address: Genentech, Inc., South San Francisco, CA, USA
| | - Jesus Sotelo
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ariel D. Swett
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Vinagolu K. Rajasekhar
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria S. Jiao
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caitlin M. Stewart
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Priya Bhardwaj
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sanjay Kottapalli
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Saravanan Ganesan
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Pierre-Louis Loyher
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Catherine Potenski
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Assaf Hannuna
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neil M. Iyengar
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dilip D. Giri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - John H. Healey
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Johanna A. Joyce
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
| | - Dan A. Landau
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| |
Collapse
|
337
|
Scaria SM, Frumm SM, Vikram EP, Easow SA, Sheth AH, Shamir ER, Yu SK, Tward AD. Epimorphic regeneration in the mammalian tympanic membrane. NPJ Regen Med 2023; 8:58. [PMID: 37852984 PMCID: PMC10584978 DOI: 10.1038/s41536-023-00332-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Adult mammals are generally believed to have limited ability to regenerate complex tissues and instead, repair wounds by forming scars. In humans and across mammalian species, the tympanic membrane (TM) rapidly repairs perforations without intervention. Using mouse models, we demonstrate that the TM repairs itself through a process that bears many hallmarks of epimorphic regeneration rather than typical wound healing. Following injury, the TM forms a wound epidermis characterized by EGFR ligand expression and signaling. After the expansion of the wound epidermis that emerges from known stem cell regions of the TM, a multi-lineage blastema-like cellular mass is recruited. After two weeks, the tissue architecture of the TM is largely restored, but with disorganized collagen. In the months that follow, the organized and patterned collagen framework of the TM is restored resulting in scar-free repair. Finally, we demonstrate that deletion of Egfr in the epidermis results in failure to expand the wound epidermis, recruit the blastema-like cells, and regenerate normal TM structure. This work establishes the TM as a model of mammalian complex tissue regeneration.
Collapse
Affiliation(s)
- Sonia M Scaria
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, 94143, USA
| | - Stacey M Frumm
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, 94143, USA
| | - Ellee P Vikram
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, 94143, USA
| | - Sarah A Easow
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, 94143, USA
| | - Amar H Sheth
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, 94143, USA
| | - Eliah R Shamir
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Shengyang Kevin Yu
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, 94143, USA
| | - Aaron D Tward
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
338
|
Shen H, Chen W, Liu Y, Castaldi A, Castillo J, Horie M, Flodby P, Sundar S, Li C, Ji Y, Minoo P, Marconett CN, Zhou B, Borok Z. GRAMD2 + alveolar type I cell plasticity facilitates cell state transitions in organoid culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.560801. [PMID: 37905051 PMCID: PMC10614891 DOI: 10.1101/2023.10.17.560801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Alveolar epithelial regeneration is critical for normal lung function and becomes dysregulated in disease. While alveolar type 2 (AT2) and club cells are known distal lung epithelial progenitors, determining if alveolar epithelial type 1 (AT1) cells also contribute to alveolar regeneration has been hampered by lack of highly specific mouse models labeling AT1 cells. To address this, the Gramd2 CreERT2 transgenic strain was generated and crossed to Rosa mTmG mice. Extensive cellular characterization, including distal lung immunofluorescence and cytospin staining, confirmed that GRAMD2 + AT1 cells are highly enriched for green fluorescent protein (GFP). Interestingly, Gramd2 CreERT2 GFP + cells were able to form organoids in organoid co-culture with Mlg fibroblasts. Temporal scRNAseq revealed that Gramd2 + AT1 cells transition through numerous intermediate lung epithelial cell states including basal, secretory and AT2 cell in organoids while acquiring proliferative capacity. Our results indicate that Gramd2 + AT1 cells are highly plastic suggesting they may contribute to alveolar regeneration.
Collapse
|
339
|
Marinho Y, Villarreal ES, Aboagye SY, Williams DL, Sun J, Silva CLM, Lutz SE, Oliveira SD. Schistosomiasis-associated pulmonary hypertension unveils disrupted murine gut-lung microbiome and reduced endoprotective Caveolin-1/BMPR2 expression. Front Immunol 2023; 14:1254762. [PMID: 37908354 PMCID: PMC10613683 DOI: 10.3389/fimmu.2023.1254762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Schistosomiasis-associated Pulmonary Arterial Hypertension (Sch-PAH) is a life-threatening complication of chronic S. mansoni infection that can lead to heart failure and death. During PAH, the expansion of apoptosis-resistant endothelial cells (ECs) has been extensively reported; however, therapeutic approaches to prevent the progression or reversal of this pathological phenotype remain clinically challenging. Previously, we showed that depletion of the anti-apoptotic protein Caveolin-1 (Cav-1) by shedding extracellular vesicles contributes to shifting endoprotective bone morphogenetic protein receptor 2 (BMPR2) towards transforming growth factor beta (TGF-β)-mediated survival of an abnormal EC phenotype. However, the mechanism underlying the reduced endoprotection in PAH remains unclear. Interestingly, recent findings indicate that, similar to the gut, healthy human lungs are populated by diverse microbiota, and their composition depends significantly on intrinsic and extrinsic host factors, including infection. Despite the current knowledge that the disruption of the gut microbiome contributes to the development of PAH, the role of the lung microbiome remains unclear. Thus, using a preclinical animal model of Sch-PAH, we tested whether S. mansoni infection alters the gut-lung microbiome composition and causes EC injury, initiating the expansion of an abnormal EC phenotype observed in PAH. Indeed, in vivo stimulation with S. mansoni eggs significantly altered the gut-lung microbiome profile, in addition to promoting injury to the lung vasculature, characterized by increased apoptotic markers and loss of endoprotective expression of lung Cav-1 and BMPR2. Moreover, S. mansoni egg stimulus induced severe pulmonary vascular remodeling, leading to elevated right ventricular systolic pressure and hypertrophy, characteristic of PAH. In vitro, exposure to the immunodominant S. mansoni egg antigen p40 activated TLR4/CD14-mediated transient phosphorylation of Cav-1 at Tyr14 in human lung microvascular EC (HMVEC-L), culminating in a mild reduction of Cav-1 expression, but failed to promote death and shedding of extracellular vesicles observed in vivo. Altogether, these data suggest that disruption of the host-associated gut-lung microbiota may be essential for the emergence and expansion of the abnormal lung endothelial phenotype observed in PAH, in addition to S. mansoni eggs and antigens.
Collapse
Affiliation(s)
- Ygor Marinho
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Elizabeth S. Villarreal
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Sammy Y. Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Claudia L. M. Silva
- Molecular and Biochemical Pharmacology Lab, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sarah E. Lutz
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Suellen D. Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
- Vascular Immunobiology Lab, Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
340
|
Dubail M, Heinrich S, Portier L, Bastian J, Giuliano L, Aggar L, Berthault N, Londoño-Vallejo JA, Vilalta M, Boivin G, Sharma RA, Dutreix M, Fouillade C. Lung Organotypic Slices Enable Rapid Quantification of Acute Radiotherapy Induced Toxicity. Cells 2023; 12:2435. [PMID: 37887279 PMCID: PMC10605600 DOI: 10.3390/cells12202435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
To rapidly assess healthy tissue toxicities induced by new anti-cancer therapies (i.e., radiation alone or in combination with drugs), there is a critical need for relevant and easy-to-use models. Consistent with the ethical desire to reduce the use of animals in medical research, we propose to monitor lung toxicity using an ex vivo model. Briefly, freshly prepared organotypic lung slices from mice were irradiated, with or without being previously exposed to chemotherapy, and treatment toxicity was evaluated by analysis of cell division and viability of the slices. When exposed to different doses of radiation, this ex vivo model showed a dose-dependent decrease in cell division and viability. Interestingly, monitoring cell division was sensitive enough to detect a sparing effect induced by FLASH radiotherapy as well as the effect of combined treatment. Altogether, the organotypic lung slices can be used as a screening platform to rapidly determine in a quantitative manner the level of lung toxicity induced by different treatments alone or in combination with chemotherapy while drastically reducing the number of animals. Translated to human lung samples, this ex vivo assay could serve as an innovative method to investigate patients' sensitivity to radiation and drugs.
Collapse
Affiliation(s)
- Maxime Dubail
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
- Institut Curie, PSL Research University, 75006 Paris, France
| | - Sophie Heinrich
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
- Institut Curie, PSL Research University, 75006 Paris, France
| | - Lucie Portier
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
- Institut Curie, PSL Research University, 75006 Paris, France
| | - Jessica Bastian
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
- Institut Curie, PSL Research University, 75006 Paris, France
| | - Lucia Giuliano
- SBAI Department, Sapienza University of Rome, 00161 Rome, Italy
| | - Lilia Aggar
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
- Institut Curie, PSL Research University, 75006 Paris, France
| | - Nathalie Berthault
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
- Institut Curie, PSL Research University, 75006 Paris, France
| | - José-Arturo Londoño-Vallejo
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
- Institut Curie, PSL Research University, 75006 Paris, France
| | - Marta Vilalta
- Global Translational Science, Varian, a Siemens Healthineers Company, Palo Alto, CA 94304, USA
| | - Gael Boivin
- Global Translational Science, Varian, a Siemens Healthineers Company, Palo Alto, CA 94304, USA
| | - Ricky A. Sharma
- Global Translational Science, Varian, a Siemens Healthineers Company, Palo Alto, CA 94304, USA
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Marie Dutreix
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
- Institut Curie, PSL Research University, 75006 Paris, France
| | - Charles Fouillade
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
- Institut Curie, PSL Research University, 75006 Paris, France
| |
Collapse
|
341
|
Cash A, de Jager C, Brickler T, Soliman E, Ladner L, Kaloss AM, Zhu Y, Pridham KJ, Mills J, Ju J, Basso EKG, Chen M, Johnson Z, Sotiropoulos Y, Wang X, Xie H, Matson JB, Marvin EA, Theus MH. Endothelial deletion of EPH receptor A4 alters single-cell profile and Tie2/Akap12 signaling to preserve blood-brain barrier integrity. Proc Natl Acad Sci U S A 2023; 120:e2204700120. [PMID: 37796990 PMCID: PMC10576133 DOI: 10.1073/pnas.2204700120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Neurobiological consequences of traumatic brain injury (TBI) result from a complex interplay of secondary injury responses and sequela that mediates chronic disability. Endothelial cells are important regulators of the cerebrovascular response to TBI. Our work demonstrates that genetic deletion of endothelial cell (EC)-specific EPH receptor A4 (EphA4) using conditional EphA4f/f/Tie2-Cre and EphA4f/f/VE-Cadherin-CreERT2 knockout (KO) mice promotes blood-brain barrier (BBB) integrity and tissue protection, which correlates with improved motor function and cerebral blood flow recovery following controlled cortical impact (CCI) injury. scRNAseq of capillary-derived KO ECs showed increased differential gene expression of BBB-related junctional and actin cytoskeletal regulators, namely, A-kinase anchor protein 12, Akap12, whose presence at Tie2 clustering domains is enhanced in KO microvessels. Transcript and protein analysis of CCI-injured whole cortical tissue or cortical-derived ECs suggests that EphA4 limits the expression of Cldn5, Akt, and Akap12 and promotes Ang2. Blocking Tie2 using sTie2-Fc attenuated protection and reversed Akap12 mRNA and protein levels cortical-derived ECs. Direct stimulation of Tie2 using Vasculotide, angiopoietin-1 memetic peptide, phenocopied the neuroprotection. Finally, we report a noteworthy rise in soluble Ang2 in the sera of individuals with acute TBI, highlighting its promising role as a vascular biomarker for early detection of BBB disruption. These findings describe a contribution of the axon guidance molecule, EphA4, in mediating TBI microvascular dysfunction through negative regulation of Tie2/Akap12 signaling.
Collapse
Affiliation(s)
- Alison Cash
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA24061
| | - Thomas Brickler
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Liliana Ladner
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA24016
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Yumeng Zhu
- Department of Chemistry, Virginia Tech, Blacksburg, VA24061
| | - Kevin J. Pridham
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Jatia Mills
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | | | - Michael Chen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Zachary Johnson
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA24061
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Yianni Sotiropoulos
- Summer Veterinary Student Research Program, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24061
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA24061
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
- Center for Engineered Health, Virginia Tech, Blacksburg, VA24061
| | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, VA24061
| | - Eric A. Marvin
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA24016
| | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
- Summer Veterinary Student Research Program, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
342
|
Chiang IKN, Humphrey D, Mills RJ, Kaltzis P, Pachauri S, Graus M, Saha D, Wu Z, Young P, Sim CB, Davidson T, Hernandez‐Garcia A, Shaw CA, Renwick A, Scott DA, Porrello ER, Wong ES, Hudson JE, Red‐Horse K, del Monte‐Nieto G, Francois M. Sox7-positive endothelial progenitors establish coronary arteries and govern ventricular compaction. EMBO Rep 2023; 24:e55043. [PMID: 37551717 PMCID: PMC10561369 DOI: 10.15252/embr.202255043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.
Collapse
Affiliation(s)
- Ivy KN Chiang
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - David Humphrey
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Richard J Mills
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Peter Kaltzis
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Shikha Pachauri
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - Matthew Graus
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - Diptarka Saha
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Zhijian Wu
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Paul Young
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Choon Boon Sim
- The Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
| | - Tara Davidson
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | | | - Chad A Shaw
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Alexander Renwick
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Daryl A Scott
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Enzo R Porrello
- The Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
- Melbourne Centre for Cardiovascular Genomics and Regenerative MedicineThe Royal Children's HospitalMelbourneVICAustralia
- Department of Anatomy and Physiology, School of Biomedical SciencesThe University of MelbourneMelbourneVICAustralia
| | - Emily S Wong
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - James E Hudson
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | | | - Mathias Francois
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| |
Collapse
|
343
|
Mays KC, Haiman JH, Janušonis S. An experimental platform for stochastic analyses of single serotonergic fibers in the mouse brain. Front Neurosci 2023; 17:1241919. [PMID: 37869509 PMCID: PMC10587471 DOI: 10.3389/fnins.2023.1241919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
The self-organization of the serotonergic matrix, a massive axon meshwork in all vertebrate brains, is driven by the structural and dynamical properties of its constitutive elements. Each of these elements, a single serotonergic axon (fiber), has a unique trajectory and can be supported by a soma that executes one of the many available transcriptional programs. This "individuality" of serotonergic neurons necessitates the development of specialized methods for single-fiber analyses, both at the experimental and theoretical levels. We developed an integrated platform that facilitates experimental isolation of single serotonergic fibers in brain tissue, including regions with high fiber densities, and demonstrated the potential of their quantitative analyses based on stochastic modeling. Single fibers were visualized using two transgenic mouse models, one of which is the first implementation of the Brainbow toolbox in this system. The trajectories of serotonergic fibers were automatically traced in the three spatial dimensions with a novel algorithm, and their properties were captured with a single parameter associated with the directional von Mises-Fisher probability distribution. The system represents an end-to-end workflow that can be imported into various studies, including those investigating serotonergic dysfunction in brain disorders. It also supports new research directions inspired by single-fiber analyses in the serotonergic matrix, including supercomputing simulations and modeling in physics.
Collapse
Affiliation(s)
| | | | - Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
344
|
Liu H, Ishikawa-Ankerhold H, Winterhalter J, Lorenz M, Vladymyrov M, Massberg S, Schulz C, Orban M. Multiphoton In Vivo Microscopy of Embryonic Thrombopoiesis Reveals the Generation of Platelets through Budding. Cells 2023; 12:2411. [PMID: 37830625 PMCID: PMC10572188 DOI: 10.3390/cells12192411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Platelets are generated by specialized cells called megakaryocytes (MKs). However, MK's origin and platelet release mode have remained incompletely understood. Here, we established direct visualization of embryonic thrombopoiesis in vivo by combining multiphoton intravital microscopy (MP-IVM) with a fluorescence switch reporter mouse model under control of the platelet factor 4 promoter (Pf4CreRosa26mTmG). Using this microscopy tool, we discovered that fetal liver MKs provide higher thrombopoietic activity than yolk sac MKs. Mechanistically, fetal platelets were released from MKs either by membrane buds or the formation of proplatelets, with the former constituting the key process. In E14.5 c-Myb-deficient embryos that lack definitive hematopoiesis, MK and platelet numbers were similar to wild-type embryos, indicating the independence of embryonic thrombopoiesis from definitive hematopoiesis at this stage of development. In summary, our novel MP-IVM protocol allows the characterization of thrombopoiesis with high spatio-temporal resolution in the mouse embryo and has identified membrane budding as the main mechanism of fetal platelet production.
Collapse
Affiliation(s)
- Huan Liu
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Hellen Ishikawa-Ankerhold
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Julia Winterhalter
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Michael Lorenz
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Mykhailo Vladymyrov
- Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, University of Bern, 3012 Bern, Switzerland;
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
- Data Science Lab, Mathematical Institute, University of Bern, 3012 Bern, Switzerland
| | - Steffen Massberg
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Christian Schulz
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Mathias Orban
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
345
|
Li W, Lin A, Hutton M, Dhaliwal H, Nadel J, Rodor J, Tumanov S, Örd T, Hadden M, Mokry M, Mol BM, Pasterkamp G, Padula MP, Geczy CL, Ramaswamy Y, Sluimer JC, Kaikkonen MU, Stocker R, Baker AH, Fisher EA, Patel S, Misra A. Colchicine promotes atherosclerotic plaque stability independently of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560632. [PMID: 37873248 PMCID: PMC10592948 DOI: 10.1101/2023.10.03.560632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease which is driven in part by the aberrant trans -differentiation of vascular smooth muscle cells (SMCs). No therapeutic drug has been shown to reverse detrimental SMC-derived cell phenotypes into protective phenotypes, a hypothesized enabler of plaque regression and improved patient outcome. Herein, we describe a novel function of colchicine in the beneficial modulation of SMC-derived cell phenotype, independent of its conventional anti-inflammatory effects. Using SMC fate mapping in an advanced atherosclerotic lesion model, colchicine induced plaque regression by converting pathogenic SMC-derived macrophage-like and osteoblast-like cells into protective myofibroblast-like cells which thickened, and thereby stabilized, the fibrous cap. This was dependent on Notch3 signaling in SMC-derived plaque cells. These findings may help explain the success of colchicine in clinical trials relative to other anti-inflammatory drugs. Thus, we demonstrate the potential of regulating SMC phenotype in advanced plaque regression through Notch3 signaling, in addition to the canonical anti-inflammatory actions of drugs to treat atherosclerosis.
Collapse
|
346
|
Maniou E, Farah F, Marshall AR, Crane-Smith Z, Krstevski A, Stathopoulou A, Greene NDE, Copp AJ, Galea GL. Caudal Fgfr1 disruption produces localised spinal mis-patterning and a terminal myelocystocele-like phenotype in mice. Development 2023; 150:dev202139. [PMID: 37756583 PMCID: PMC10617625 DOI: 10.1242/dev.202139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Closed spinal dysraphisms are poorly understood malformations classified as neural tube (NT) defects. Several, including terminal myelocystocele, affect the distal spine. We have previously identified a NT closure-initiating point, Closure 5, in the distal spine of mice. Here, we document equivalent morphology of the caudal-most closing posterior neuropore (PNP) in mice and humans. Closure 5 forms in a region of active FGF signalling, and pharmacological FGF receptor blockade impairs its formation in cultured mouse embryos. Conditional genetic deletion of Fgfr1 in caudal embryonic tissues with Cdx2Cre diminishes neuroepithelial proliferation, impairs Closure 5 formation and delays PNP closure. After closure, the distal NT of Fgfr1-disrupted embryos dilates to form a fluid-filled sac overlying ventrally flattened spinal cord. This phenotype resembles terminal myelocystocele. Histological analysis reveals regional and progressive loss of SHH- and FOXA2-positive ventral NT domains, resulting in OLIG2 labelling of the ventral-most NT. The OLIG2 domain is also subsequently lost, eventually producing a NT that is entirely positive for the dorsal marker PAX3. Thus, a terminal myelocystocele-like phenotype can arise after completion of NT closure with localised spinal mis-patterning caused by disruption of FGFR1 signalling.
Collapse
Affiliation(s)
- Eirini Maniou
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Faduma Farah
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Abigail R. Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Zoe Crane-Smith
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrea Krstevski
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Athanasia Stathopoulou
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Nicholas D. E. Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J. Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L. Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
347
|
Sweat ME, Cao Y, Zhang X, Burnicka-Turek O, Perez-Cervantes C, Arulsamy K, Lu F, Keating EM, Akerberg BN, Ma Q, Wakimoto H, Gorham JM, Hill LD, Kyoung Song M, Trembley MA, Wang P, Gianeselli M, Prondzynski M, Bortolin RH, Bezzerides VJ, Chen K, Seidman JG, Seidman CE, Moskowitz IP, Pu WT. Tbx5 maintains atrial identity in post-natal cardiomyocytes by regulating an atrial-specific enhancer network. NATURE CARDIOVASCULAR RESEARCH 2023; 2:881-898. [PMID: 38344303 PMCID: PMC10854392 DOI: 10.1038/s44161-023-00334-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/21/2023] [Indexed: 02/15/2024]
Abstract
Understanding how the atrial and ventricular heart chambers maintain distinct identities is a prerequisite for treating chamber-specific diseases. Here, we selectively knocked out (KO) the transcription factor Tbx5 in the atrial working myocardium to evaluate its requirement for atrial identity. Atrial Tbx5 inactivation downregulated atrial cardiomyocyte (aCM) selective gene expression. Using concurrent single nucleus transcriptome and open chromatin profiling, genomic accessibility differences were identified between control and Tbx5 KO aCMs, revealing that 69% of the control-enriched ATAC regions were bound by TBX5. Genes associated with these regions were downregulated in KO aCMs, suggesting they function as TBX5-dependent enhancers. Comparing enhancer chromatin looping using H3K27ac HiChIP identified 510 chromatin loops sensitive to TBX5 dosage, and 74.8% of control-enriched loops contained anchors in control-enriched ATAC regions. Together, these data demonstrate TBX5 maintains the atrial gene expression program by binding to and preserving the tissue-specific chromatin architecture of atrial enhancers.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Yangpo Cao
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Ozanna Burnicka-Turek
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Carlos Perez-Cervantes
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Kulandai Arulsamy
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Fujian Lu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Erin M. Keating
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Brynn N. Akerberg
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Hill
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Mi Kyoung Song
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Michael A. Trembley
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Peizhe Wang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Matteo Gianeselli
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | | | - Raul H. Bortolin
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | | | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Jonathan G. Seidman
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Christine E. Seidman
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Ivan P. Moskowitz
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| |
Collapse
|
348
|
Khatun A, Wu X, Qi F, Gai K, Kharel A, Kudek MR, Fraser L, Ceicko A, Kasmani MY, Majnik A, Burns R, Chen Y, Salzman N, Taparowsky EJ, Fang D, Williams CB, Cui W. BATF is Required for Treg Homeostasis and Stability to Prevent Autoimmune Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206692. [PMID: 37587835 PMCID: PMC10558681 DOI: 10.1002/advs.202206692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Regulatory T (Treg) cells are inevitable to prevent deleterious immune responses to self and commensal microorganisms. Treg function requires continuous expression of the transcription factor (TF) FOXP3 and is divided into two major subsets: resting (rTregs) and activated (aTregs). Continuous T cell receptor (TCR) signaling plays a vital role in the differentiation of aTregs from their resting state, and in their immune homeostasis. The process by which Tregs differentiate, adapt tissue specificity, and maintain stable phenotypic expression at the transcriptional level is still inconclusivei. In this work, the role of BATF is investigated, which is induced in response to TCR stimulation in naïve T cells and during aTreg differentiation. Mice lacking BATF in Tregs developed multiorgan autoimmune pathology. As a transcriptional regulator, BATF is required for Treg differentiation, homeostasis, and stabilization of FOXP3 expression in different lymphoid and non-lymphoid tissues. Epigenetically, BATF showed direct regulation of Treg-specific genes involved in differentiation, maturation, and tissue accumulation. Most importantly, FOXP3 expression and Treg stability require continuous BATF expression in Tregs, as it regulates demethylation and accessibility of the CNS2 region of the Foxp3 locus. Considering its role in Treg stability, BATF should be considered an important therapeutic target in autoimmune disease.
Collapse
Affiliation(s)
- Achia Khatun
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Xiaopeng Wu
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Fu Qi
- Children's Mercy Hospital in Kansas City2401 Gillham RdKansas CityMO64108USA
| | - Kexin Gai
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Arjun Kharel
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Matthew R. Kudek
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Lisa Fraser
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
| | - Ashley Ceicko
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
| | - Moujtaba Y. Kasmani
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Amber Majnik
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Children's Mercy Hospital in Kansas City2401 Gillham RdKansas CityMO64108USA
| | - Robert Burns
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Yi‐Guang Chen
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Max McGee National Research Center for Juvenile DiabetesMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Nita Salzman
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | | | - Dayu Fang
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Calvin B. Williams
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Weiguo Cui
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| |
Collapse
|
349
|
Singh P, Ali SA. Mature white adipocyte plasticity during mammary gland remodelling and cancer. CELL INSIGHT 2023; 2:100123. [PMID: 37771567 PMCID: PMC10522874 DOI: 10.1016/j.cellin.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Mammary gland growth and differentiation predominantly rely on stromal-epithelial cellular communication. Specifically, mammary adipocytes play a crucial role in ductal morphogenesis, as well as in the proliferation and differentiation of mammary epithelial cells. The process of lactation entails a reduction in the levels of white adipose tissue associated with the MG, allowing for the expansion of milk-producing epithelial cells. Subsequently, during involution and the regression of the milk-producing unit, adipocyte layers resurface, occupying the vacated space. This dynamic phenomenon underscores the remarkable plasticity and expansion of adipose tissue. Traditionally considered terminally differentiated, adipocytes have recently been found to exhibit plasticity in certain contexts. Unraveling the significance of this cell type within the MG could pave the way for novel approaches to reduce the risk of breast cancer and enhance lactation performance. Moreover, a comprehensive understanding of adipocyte trans- and de-differentiation processes holds promise for the development of innovative therapeutic interventions targeting cancer, fibrosis, obesity, type 2 diabetes, and other related diseases. Additionally, adipocytes may find utility in the realm of regenerative medicine. This review article provides a comprehensive examination of recent advancements in our understanding of MG remodelling, with a specific focus on the tissue-specific functions of adipocytes and their role in the development of cancer. By synthesizing current knowledge in this field, it aims to consolidate our understanding of adipocyte biology within the context of mammary gland biology, thereby fostering further research and discovery in this vital area.
Collapse
Affiliation(s)
- Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120, Heidelberg, Germany
| |
Collapse
|
350
|
Faust TE, Feinberg PA, O'Connor C, Kawaguchi R, Chan A, Strasburger H, Frosch M, Boyle MA, Masuda T, Amann L, Knobeloch KP, Prinz M, Schaefer A, Schafer DP. A comparative analysis of microglial inducible Cre lines. Cell Rep 2023; 42:113031. [PMID: 37635351 PMCID: PMC10591718 DOI: 10.1016/j.celrep.2023.113031] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Cre/loxP technology has revolutionized genetic studies and allowed for spatial and temporal control of gene expression in specific cell types. Microglial biology has particularly benefited because microglia historically have been difficult to transduce with virus or electroporation methods for gene delivery. Here, we investigate five of the most widely available microglial inducible Cre lines. We demonstrate varying degrees of recombination efficiency, cell-type specificity, and spontaneous recombination, depending on the Cre line and inter-loxP distance. We also establish best practice guidelines and protocols to measure recombination efficiency, particularly in microglia. There is increasing evidence that microglia are key regulators of neural circuits and major drivers of a broad range of neurological diseases. Reliable manipulation of their function in vivo is of utmost importance. Identifying caveats and benefits of all tools and implementing the most rigorous protocols are crucial to the growth of the field and the development of microglia-based therapeutics.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Philip A Feinberg
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ciara O'Connor
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Neurology, UCLA, Los Angeles, CA 90095, USA
| | - Andrew Chan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hayley Strasburger
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maximilian Frosch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Margaret A Boyle
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Takahiro Masuda
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany; Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Lukas Amann
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Schaefer
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|