301
|
Hosp JA, Molina-Luna K, Hertler B, Atiemo CO, Stett A, Luft AR. Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat. J Neurosci Methods 2008; 172:255-62. [PMID: 18582949 DOI: 10.1016/j.jneumeth.2008.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/18/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
Assessments of somatosensory and motor cortical somatotopy in vivo can provide important information on sensorimotor physiology. Here, novel polyimide-based thin-film microelectrode arrays (72 contacts) implanted epidurally, were used for recording of somatosensory evoked potentials (SEPs) and somatosensory cortex somatotopic maps of the rat. The objective was to evaluate this method with respect to precision and reliability. SEPs and somatosensory maps were measured twice within one session and again after 8 days of rest. Additionally, motor cortex maps were acquired once to assess the spatial relationship between somatosensory and motor representations of fore- and hindlimb within one individual. Somatosensory maps were well reproduced within and between sessions. SEP amplitudes and latencies were highly reliable within one recording session (combined intraclass correlation 90.5%), but less so between sessions (21.0%). Somatosensory map geometry was stable within and between sessions. For the forelimb the somatosensory representation had a 30% overlap with the corresponding motor area. No significant overlap was found for the hindlimb. No evidence for cortical injury was found on histology (Nissl). Thin-film epidural electrode array technology enables a detailed assessment of sensorimotor cortex physiology in vivo and can be used in longitudinal designs enabling studies of learning and plasticity processes.
Collapse
Affiliation(s)
- Jonas A Hosp
- Neuroplasticity Laboratory, Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Strasse 3, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
302
|
Leung BK, Biran R, Underwood CJ, Tresco PA. Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials 2008; 29:3289-97. [PMID: 18485471 DOI: 10.1016/j.biomaterials.2008.03.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 03/26/2008] [Indexed: 11/16/2022]
Abstract
The clinical usefulness of central nervous system recording electrodes is currently limited by inconsistent long-term performance that is believed to be governed by the brain tissue response to the implant. In this study, we observed persistent macrophage biomarker expression at the biotic-abiotic interface surrounding implanted electrodes over a 12-week indwelling period. Using the cell type-specific marker CD11b to examine the cells attached to electrodes retrieved over the indwelling period, we found that most of the cells were activated microglia, the resident macrophage of brain tissue, indicating that the implanted electrodes behave as a persistent inflammatory stimulus. To determine the potential usefulness of different materials as coatings for implanted electrodes, we examined brain-derived microglial cell attachment and cytokine release on a number of medically relevant materials. Our results suggest that activated microglia attach to many of the materials used as external coatings for electrode manufacture, and likely serve as a source of pro-inflammatory and neurotoxic cytokines that may be responsible for reducing the biocompatibility of such implants. Our results also indicate that low protein-binding coatings may be useful in reducing microglial attachment upon implantation in brain tissue and may provide a means of improving electrode biocompatibility.
Collapse
Affiliation(s)
- Braden K Leung
- The Keck Center for Tissue Engineering, Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
303
|
Bjornsson CS, Lin G, Al-Kofahi Y, Narayanaswamy A, Smith KL, Shain W, Roysam B. Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue. J Neurosci Methods 2008; 170:165-78. [PMID: 18294697 PMCID: PMC2700351 DOI: 10.1016/j.jneumeth.2007.12.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 12/06/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic 'divide and conquer' methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick ( approximately 100 microm) slices of rat brain tissue were labeled using three to five fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81 to 92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system.
Collapse
Affiliation(s)
- Christopher S Bjornsson
- Center for Neural Communication Technology, New York State Department of Health, Wadsworth Center, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
304
|
Jang JH, Jhaveri SJ, Rasin B, Koh C, Ober CK, Thomas EL. Three-dimensionally-patterned submicrometer-scale hydrogel/air networks that offer a new platform for biomedical applications. NANO LETTERS 2008; 8:1456-1460. [PMID: 18393470 DOI: 10.1021/nl080444+] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phase mask interference lithography was employed to fabricate three-dimensional (3D) hydrogel structures with high surface area on neural prosthetic devices. A random terpolymer of poly(hydroxyethyl methacrylate- ran-methyl methacrylate- ran-methacrylic acid) was synthesized and used as a negative-tone photoresist to generate bicontinuous 3D hydrogel structures at the submicrometer scale. We demonstrated that the fully open 3D hydrogel/air networks can be used as a pH-responsive polymeric drug-release system for the delivery of neurotrophins to enhance the performance of neural prosthetic devices. Additionally an open hydrogel structure will provide direct access of neuronal growth to the device for improved electrical coupling.
Collapse
Affiliation(s)
- Ji-Hyun Jang
- Institute for Soldier Nanotechnologies, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
305
|
Lleixà Calvet J, Grafahrend D, Klee D, Möller M. Sterilization effects on starPEG coated polymer surfaces: characterization and cell viability. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1631-1636. [PMID: 18228118 DOI: 10.1007/s10856-008-3381-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/04/2008] [Indexed: 05/25/2023]
Abstract
Sterilization is frequently an issue for polymeric biomaterials including hydrogels, where autoclaving needs to be discarded, and gamma-irradiation and low temperature hydrogen peroxide gas plasma sterilization are already important alternatives. Coatings based on poly(ethylene glycol) are a well-known strategy to reduce unspecific protein interactions on biomaterial surfaces. Dense, ultrathin coatings of isocyanate terminated star-shaped poly(ethylene glycol) (starPEG) molecules have proven to be resistant to unspecific adsorption of proteins and enable direct biofunctionalization. The effectivity and stability of the starPEG coatings on poly(vinylidene fluoride) (PVDF) were studied after gamma-irradiation (normed dosis 25 kGy) and plasma sterilization (Sterrad 100S). The selected surface properties determined were: surface composition (X-ray photoelectron spectroscopy, XPS), wettability (sessile drop contact angle) and protein adsorption by fluorescence microscopy (Avidin-TexasRed, Bovine Serum Albumin-Rhodamin). Preliminary cell experiments with the cell line L929 were performed prior and after sterilization to investigate the cell repellence of the starPEG coatings as well as cell viability and specific cell adhesion on GRGDS-modified coatings. The starPEG coating undergoes a slight oxidation due to plasma and gamma-sterilization; this represents a minor variation confirmed by XPS and contact angle results. The non-sterilized starPEG and the plasma-sterilized coatings are protein repellent, however the protein adsorption on starPEG coated substrates is much stronger after gamma-sterilization for both avidin and bovine serum albumin. The cell experiments indicate that the starPEG coatings are appliable homogeneously by incubation and are non-cell adherent. Moreover, after both sterilization processes the starPEG coatings remain cell repellent and the GRGDS-modified coatings presented vital cells. Thus we conclude that the plasma sterilization is more convenient for the starPEG coatings and GRGDS-modified starPEG coatings.
Collapse
Affiliation(s)
- Júlia Lleixà Calvet
- DWI e. V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen Pauwelsstr. 8, 52056 Aachen, Germany
| | | | | | | |
Collapse
|
306
|
Giugliano M, Prato M, Ballerini L. Nanomaterial/neuronal hybrid system for functional recovery of the CNS. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.ddmod.2008.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
307
|
McCluskey L, Campbell S, Anthony D, Allan SM. Inflammatory responses in the rat brain in response to different methods of intra-cerebral administration. J Neuroimmunol 2008; 194:27-33. [PMID: 18191461 DOI: 10.1016/j.jneuroim.2007.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 12/21/2022]
Abstract
Direct intra-cerebral administration of substances into the brain parenchyma is a common technique used by researchers in neuroscience. However, inflammatory responses to the needle may confound the results obtained following injection of these substances. In this paper we show that the use of a glass micro-needle for intra-cerebral injection reduces mechanical injury, blood-brain barrier breakdown and neutrophil recruitment in response to the injection of vehicle or interleukin-1, compared to using a 26-gauge Hamilton syringe. Therefore, the use of a glass micro-needle to inject substances intra-cerebrally appears to cause minimal injection artefact and should be the method of choice.
Collapse
Affiliation(s)
- Lisa McCluskey
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
308
|
Auditory midbrain implant: histomorphologic effects of long-term implantation and electric stimulation of a new deep brain stimulation array. Otol Neurotol 2008; 28:1045-52. [PMID: 18043431 DOI: 10.1097/mao.0b013e318159e74f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Chronic implantation and electric stimulation with a human prototype auditory midbrain implant (AMI) array within the inferior colliculus achieves minimal neuronal damage and does not cause any severe complications. BACKGROUND An AMI array has been developed for patients with neural deafness and, based on animal studies, has shown to possess potential as an auditory prosthesis in humans. To investigate the safety of the AMI for clinical use, we characterized the histomorphologic effects of chronic implantation and stimulation within its target structure, the inferior colliculus. METHODS Eight cats were chronically implanted for 3 months, and histologic sections were analyzed to assess long-term tissue effects. Four of the 8 cats were additionally stimulated for 60 days (4 h/d) starting 4 weeks after implantation to assess if clinically relevant stimuli further affected the tissue response. RESULTS In general, both neurons and neuropil surrounding the implant track were apparently unaffected, whereas a fibrillary sheath (approximately 50 microm thick) developed around the array. There was a significant decrease in neuron density 50 to 100 microm away from the track with a significantly elevated number of glial cells out to approximately 250 to 350 microm. Chronic stimulation seemed to improve the tissue response and neuronal survival around the implant, although further studies are needed to confirm this finding. CONCLUSION The histomorphologic effects and extent of neuronal damage observed for our AMI array are similar to those of other neural implants currently and safely used in humans. The minimal tissue damage surrounding the implanted array is encouraging with regard to the safety of the array for human use.
Collapse
|
309
|
Moxon KA, Hallman S, Aslani A, Kalkhoran NM, Lelkes PI. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 18:1263-81. [PMID: 17939885 DOI: 10.1163/156856207782177882] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many different types of microelectrodes have been developed for use as a direct brain-machine interface (BMI) to chronically recording single-neuron action potentials from ensembles of neurons. Unfortunately, the recordings from these microelectrode devices are not consistent and often last for only on the order of months. For most microelectrode types, the loss of these recordings is not due to failure of the electrodes, but most likely due to damage to surrounding tissue that results in the formation of non-conductive glial scar. Since the extracellular matrix consists of nanostructured fibrous protein assemblies, we have postulated that neurons may prefer a more complex surface structure than the smooth surface typical of thin-film microelectrodes. This porous structure could then act as a drug-delivery reservoir to deliver bioactive agents to aid in the repair or survival of cells around the microelectrode, further reducing the glial scar. We, therefore, investigated the suitability of a nanoporous silicon surface layer to increase the biocompatibility of our thin film ceramic-insulated multisite electrodes. In vitro testing demonstrated increased extension of neurites from PC12 pheochromocytoma cells on porous silicon surfaces compared to smooth silicon surfaces. Moreover, the size of the pores and the pore coverage did not interfere with this bioactive surface property, suggesting that large highly porous nanostructured surfaces can be used for drug delivery. The most porous nanoporous surfaces were then tested in vivo and found to be more biocompatible than smooth surface, producing less glial activation and allowing more neurons to remain close to the device. Collectively, these results support our hypothesis that nanoporous silicon may be an ideal material to improve biocompatibility of chronically implanted microelectrodes. The next step in this work will be to apply these surfaces to active microelectrodes, use them to deliver bioactive agents, and test that they do improve neural recordings.
Collapse
Affiliation(s)
- K A Moxon
- Drexel, University, School of Biomedical Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
310
|
Cheran LE, Benvenuto P, Thompson M. Coupling of neurons with biosensor devices for detection of the properties of neuronal populations. Chem Soc Rev 2008; 37:1229-42. [DOI: 10.1039/b712830b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
311
|
|
312
|
Frampton JP, Hynd MR, Williams JC, Shuler ML, Shain W. Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes. J Neural Eng 2007; 4:399-409. [PMID: 18057507 DOI: 10.1088/1741-2560/4/4/006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
One limitation to the use of neuroprosthestic devices for chronic application, in the treatment of disease, is the reactive cell responses that occur surrounding the device after insertion. These cell and tissue responses result in increases in device impedance and failure of the device to interact with target populations of neurons. However, few tools are available to assess which components of the reactive response contribute most to changes in tissue impedance. An in vitro culture system has been developed that is capable of assessing individual components of the reactive response. The system utilizes alginate cell encapsulation to construct three-dimensional architectures that approach the cell densities found in rat cortex. The system was constructed around neuroNexus acute probes with on-board circuitry capable of monitoring the electrical properties of the surrounding tissue. This study demonstrates the utility of the system by demonstrating that differences in cell density within the three-dimensional alginate constructs result in differences in resistance and capacitance as measured by electrochemical impedance spectroscopy. We propose that this system can be used to model components of the reactive responses in brain tissue, and that the measurements recorded in vitro are comparable to measurements recorded in vivo.
Collapse
Affiliation(s)
- J P Frampton
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| | | | | | | | | |
Collapse
|
313
|
Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng 2007; 4:410-23. [PMID: 18057508 DOI: 10.1088/1741-2560/4/4/007] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of animal experiments was conducted to characterize changes in the complex impedance of chronically implanted electrodes in neural tissue. Consistent trends in impedance changes were observed across all animals, characterized as a general increase in the measured impedance magnitude at 1 kHz. Impedance changes reach a peak approximately 7 days post-implant. Reactive responses around individual electrodes were described using immuno- and histo-chemistry and confocal microscopy. These observations were compared to measured impedance changes. Several features of impedance changes were able to differentiate between confined and extensive histological reactions. In general, impedance magnitude at 1 kHz was significantly increased in extensive reactions, starting about 4 days post-implant. Electrodes with extensive reactions also displayed impedance spectra with a characteristic change at high frequencies. This change was manifested in the formation of a semi-circular arc in the Nyquist space, suggestive of increased cellular density in close proximity to the electrode site. These results suggest that changes in impedance spectra are directly influenced by cellular distributions around implanted electrodes over time and that impedance measurements may provide an online assessment of cellular reactions to implanted devices.
Collapse
Affiliation(s)
- Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA.
| | | | | | | | | |
Collapse
|
314
|
Mercanzini A, Reddy S, Velluto D, Colin P, Maillard A, Bensadoun JC, Bertsch A, Hubbell JA, Renaud P. Controlled release drug coatings on flexible neural probes. ACTA ACUST UNITED AC 2007; 2007:6613-6. [PMID: 18003541 DOI: 10.1109/iembs.2007.4353875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present the development, characterization and in vivo validation of a novel drug eluting coating that has been applied to flexible neural probes. The coating consists of drug eluting nanoparticles loaded with an anti-inflammatory drug embedded in a biodegradable polymer. The drug eluting coating is applied to flexible polymer neural probes with platinum electrodes. The drug eluting device is implanted in one hemisphere of a rat, while a control device is implanted in the opposite hemisphere. Impedance measurements are performed to determine the effect of the drug eluting coating on the tissue reaction surrounding the probe and the electrical characteristics of the devices. Probes that are coated with drug eluting coatings show better long term impedance characteristics over control probes. These coatings can be used to increase the reliability and long term success of neural prostheses.
Collapse
|
315
|
Abstract
How do neurons encode and store information for long periods of time? Recurring patterns of activity have been reported in various cortical structures and were suggested to play a role in information processing and memory. To study the potential role of bursts of action potentials in memory mechanisms, we investigated patterns of spontaneous multi-single-unit activity in dissociated rat cortical cultures in vitro. Spontaneous spikes were recorded from networks of approximately 50 000 neurons and glia cultured on a grid of 60 extracellular substrate- embedded electrodes (multi-electrode arrays). These networks expressed spontaneous culture- wide bursting from approximately one week in vitro. During bursts, a large portion of the active electrodes showed elevated levels of firing. Spatiotemporal activity patterns within spontaneous bursts were clustered using a correlation-based clustering algorithm, and the occurrences of these burst clusters were tracked over several hours. This analysis revealed spatiotemporally diverse bursts occurring in well-defined patterns, which remained stable for several hours. Activity evoked by strong local tetanic stimulation resulted in significant changes in the occurrences of spontaneous bursts belonging to different clusters, indicating that the dynamical flow of information in the neuronal network had been altered. The diversity of spatiotemporal structure and long-term stability of spontaneous bursts together with their plastic nature strongly suggests that such network patterns could be used as codes for information transfer and the expression of memories stored in cortical networks.
Collapse
Affiliation(s)
- Radhika Madhavan
- Laboratory for Neuroengineering, Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
316
|
Johnson MD, Otto KJ, Williams JC, Kipke DR. Bias voltages at microelectrodes change neural interface properties in vivo. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:4103-6. [PMID: 17271203 DOI: 10.1109/iembs.2004.1404145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rejuvenation of iridium microelectrode sites, which involves applying a 1.5 V bias for 4 s, has been shown to reduce site impedances of chronically implanted microelectrode arrays. This study applied complex impedance spectroscopy measurements to an equivalent circuit model of the electrode-tissue interface. Rejuvenation was found to cause a transient increase in electrode conductivity through an IrO2 layer and a decrease in the surrounding extracellular resistance by 85 +/- 1% (n=73, t-test p < 0.001) and a decrease in the immediate site resistance by 44 +/- 7% (n=73, t-test p<0.001). These findings may be useful as an intervention strategy to prolong the lifetime of chronic microelectrode implants for neuroprostheses.
Collapse
Affiliation(s)
- M D Johnson
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | | | | | | |
Collapse
|
317
|
Liao W, Cui XT. Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF. Biosens Bioelectron 2007; 23:218-24. [PMID: 17512185 DOI: 10.1016/j.bios.2007.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 02/06/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Neural prostheses often suffer from undesired chronic inflammatory tissue response. This can lead to neuronal loss and formation of glial scar tissue, which would serve as a barrier to neural signal transduction. In situ monitoring of neuro-inflammatory cytokines may improve our understanding of device induced inflammatory responses. Furthermore, early detection of the onset and degree of inflammation and releasing drugs accordingly may lead to improved long term performance of such implanted devices. For this reason, biosensor applying aptamer as probe and non-faradic electrochemical impedance spectroscopy (NIS) as the detection method has been developed. Aptamers, certain kinds of DNA or RNA molecules which can bind variety of molecules at high specificity, have the overwhelming advantages over antibodies of low cost and ease of use. Platelet-derived growth factor BB (PDGF-BB), one of the important cytokines involved in neural inflammation, has been selected as our detection target. Binding of PDGF to its aptamer immobilized on the silicon electrode surface lead to a decrease in capacitance measured by NIS. A good linear relationship between the decrease of capacitance and the logarithm of protein concentration was obtained, which proves the feasibility of quantitative measurements. By sweeping the applied electrode potential of potentiostatic EIS, -0.1 V to +0.1 V was determined to be the optimal range for achieving best discrimination between specific target binding and non-specific protein adsorption on aptamer-modified silicon surface. Under such conditions, the specificity of the detection measured by the ratio of the positive to negative control is around 10:1 and the detection limit is approximately 1 microg/ml (40 nM). The online measurement result exhibited negligible response for non-specific adsorption but significant signal changes for the specific target. Since the non-faradic strategy does not require any reagent to be loaded when performing the test, together with the ability of online measurements, this biosensor design is promising for in vivo monitoring.
Collapse
Affiliation(s)
- Wei Liao
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
318
|
|
319
|
Greger B, Kateb B, Gruen P, Patterson PH. A chronically implantable, hybrid cannula-electrode device for assessing the effects of molecules on electrophysiological signals in freely behaving animals. J Neurosci Methods 2007; 163:321-5. [PMID: 17499854 PMCID: PMC2683260 DOI: 10.1016/j.jneumeth.2007.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 11/18/2022]
Abstract
We describe a device for assessing the effects of diffusible molecules on electrophysiological recordings from multiple neurons. This device allows for the infusion of reagents through a cannula located among an array of micro-electrodes. The device can easily be customized to target specific neural structures. It is designed to be chronically implanted so that isolated neural units and local field potentials are recorded over the course of several weeks or months. Multivariate statistical and spectral analysis of electrophysiological signals acquired using this system could quantitatively identify electrical "signatures" of therapeutically useful drugs.
Collapse
Affiliation(s)
- Bradley Greger
- University of Utah, Department of Bioengineering, Salt Lake City, UT 84112, United States.
| | | | | | | |
Collapse
|
320
|
McCreery D, Lossinsky A, Pikov V. Performance of multisite silicon microprobes implanted chronically in the ventral cochlear nucleus of the cat. IEEE Trans Biomed Eng 2007; 54:1042-52. [PMID: 17554823 DOI: 10.1109/tbme.2007.891167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A central auditory prosthesis based on microstimulation within the ventral cochlear nucleus (VCN) offers a means of restoring hearing to persons whose auditory nerve has been destroyed bilaterally and cannot benefit from cochlear implants. Arrays of silicon probes with 16 stimulating sites were implanted into the VCN of adult cats, for up to 314 days. Compound neuronal responses evoked from the sites in the VCN were recorded periodically in the central nucleus of the contralateral inferior colliculus (ICC). The threshold and growth of most of the responses were stable for at least 250 days after implantation of the arrays. The responses evoked from the deepest and shallowest electrode sites did exhibit some changes over time but none of the thresholds exceeded 10 microA. The thresholds and growth of the compound responses from most of the stimulating sites were very stable over time, and comparable to those of chronically implanted single-site iridium microelectrodes. Multiunit neuronal activity evoked from the stimulating sites in the VCN was recorded along the dorsolateral-ventromedial (DLVM) axis of the ICC. The distribution, span and degree of overlap of the multiunit activity demonstrated the utility of the multisite, multishank array configuration as a means of accessing the neuronal populations in the VCN that encode various acoustic frequencies. These findings are encouraging for the prospects of developing an auditory prosthesis employing multi-site silicon microprobes.
Collapse
Affiliation(s)
- Douglas McCreery
- Huntington Medical Research Institutes, Neural Engineering Program, 734 Fairmount Ave., Pasadena, CA 91105, USA.
| | | | | |
Collapse
|
321
|
McConnell GC, Schneider TM, Owens DJ, Bellamkonda RV. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain. IEEE Trans Biomed Eng 2007; 54:1097-107. [PMID: 17554828 DOI: 10.1109/tbme.2007.895373] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Micromotion of implanted silicon multielectrode arrays (Si MEAs) is thought to influence the inflammatory response they elicit. The degree of strain that micromotion imparts on surrounding tissue is related to the extent of mechanical integration of the implanted electrodes with the brain. In this study, we quantified the force of extraction of implanted four shank Michigan electrodes in adult rat brains and investigated potential cellular and extracellular matrix contributors to tissue-electrode adhesion using immunohistochemical markers for microglia, astrocytes and extracellular matrix deposition in the immediate vicinity of the electrodes. Our results suggest that the peak extraction force of the implanted electrodes increases significantly from the day of implantation (day 0) to the day of extraction (day 7 and day 28 postimplantation) (1.68 +/- 0.54 g, 3.99 +/- 1.31 g, and 4.86 +/- 1.49 g, respectively; mean +/- SD; n = 4). For an additional group of four shank electrode implants with a closer intershank spacing we observed a significant increase in peak extraction force on day 28 postimplantation compared to day 0 and day 7 postimplantation (5.56 +/- 0.76 g, 0.37 +/- 0.12 g and 1.87 +/- 0.88 g, respectively; n = 4). Significantly, only glial fibrillary acidic protein (GFAP) expression was correlated with peak extraction force in both electrode designs of all the markers of astroglial scar studied. For studies that try to model micromotion-induced strain, our data implies that adhesion between tissue and electrode increases after implantation and sheds light on the nature of implanted electrode-elicited brain tissue reaction.
Collapse
Affiliation(s)
- George C McConnell
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
322
|
Andersen RA, Burdick JW, Musallam S, Scherberger H, Pesaran B, Meeker D, Corneil BD, Fineman I, Nenadic Z, Branchaud E, Cham JG, Greger B, Tai YC, Mojarradi MM. Recording advances for neural prosthetics. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:5352-5. [PMID: 17271551 DOI: 10.1109/iembs.2004.1404494] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An important challenge for neural prosthetics research is to record from populations of neurons over long periods of time, ideally for the lifetime of the patient. Two new advances toward this goal are described, the use of local field potentials (LFPs) and autonomously positioned recording electrodes. LFPs are the composite extracellular potential field from several hundreds of neurons around the electrode tip. LFP recordings can be maintained for longer periods of time than single cell recordings. We find that similar information can be decoded from LFP and spike recordings, with better performance for state decodes with LFPs and, depending on the area, equivalent or slightly less than equivalent performance for signaling the direction of planned movements. Movable electrodes in microdrives can be adjusted in the tissue to optimize recordings, but their movements must be automated to be a practical benefit to patients. We have developed automation algorithms and a meso-scale autonomous electrode testbed, and demonstrated that this system can autonomously isolate and maintain the recorded signal quality of single cells in the cortex of awake, behaving monkeys. These two advances show promise for developing very long term recording for neural prosthetic applications.
Collapse
Affiliation(s)
- R A Andersen
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Rennaker RL, Miller J, Tang H, Wilson DA. Minocycline increases quality and longevity of chronic neural recordings. J Neural Eng 2007; 4:L1-5. [PMID: 17409469 PMCID: PMC2291199 DOI: 10.1088/1741-2560/4/2/l01] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brain/machine interfaces could potentially be used in the treatment of a host of neurological disorders ranging from paralysis to sensory deficits. Insertion of chronic micro-electrode arrays into neural tissue initiates a host of immunological responses, which typically leads to the formation of a cellular sheath around the implant, resulting in the loss of useful signals. Minocycline has been shown to have neuroprotective and neurorestorative effects in certain neural injury and neurodegenerative disease models. This study examined the effects of minocycline administration on the quality and longevity of chronic multi-channel microwire neural implants 1 week and 1 month post-implantation in auditory cortex. The mean signal-to-noise ratio for the minocycline group stabilized at the end of week 1 and remained above 4.6 throughout the following 3 weeks. The control group signal-to-noise ratio dropped throughout the duration of the study and at the end of 4 weeks was 2.6. Furthermore, 68% of electrodes from the minocycline group showed significant stimulus-driven activity at week 4 compared to 12.5% of electrodes in the control group. There was a significant reduction in the number of activated astrocytes around the implant in minocycline subjects, as well as a reduction in total area occupied by activated astrocytes at 1 and 4 weeks.
Collapse
Affiliation(s)
- R L Rennaker
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave Felgar Hall 210, Norman, OK 73019, USA.
| | | | | | | |
Collapse
|
324
|
Zhong Y, Bellamkonda RV. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res 2007; 1148:15-27. [PMID: 17376408 PMCID: PMC1950487 DOI: 10.1016/j.brainres.2007.02.024] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 02/09/2007] [Accepted: 02/11/2007] [Indexed: 10/23/2022]
Abstract
Glial scar formation around implanted silicon neural probes compromises their ability to facilitate long-term recordings. One approach to modulate the tissue reaction around implanted probes in the brain is to develop probe coatings that locally release anti-inflammatory drugs. In this study, we developed a nitrocellulose-based coating for the local delivery of the anti-inflammatory drug dexamethasone (DEX). Silicon neural probes with and without nitrocellulose-DEX coatings were implanted into rat brains, and inflammatory response was evaluated 1 week and 4 weeks post implantation. DEX coatings significantly reduced the reactivity of microglia and macrophages 1 week post implantation as evidenced by ED1 immunostaining. CS56 staining demonstrated that DEX treatment significantly reduced chondroitin sulfate proteoglycan (CSPG) expression 1 week post implantation. Both at 1-week and at 4-week time points, GFAP staining for reactive astrocytes and neurofilament (NF) staining revealed that local DEX treatment significantly attenuated astroglial response and reduced neuronal loss in the vicinity of the probes. Weak ED1, neurocan, and NG2-positive signal was detected 4 weeks post implantation for both coated and uncoated probes, suggesting a stabilization of the inflammatory response over time in this implant model. In conclusion, this study demonstrates that the nitrocellulose-DEX coating can effectively attenuate the inflammatory response to the implanted neural probes, and reduce neuronal loss in the vicinity of the coated probes. Thus anti-inflammatory probe coatings may represent a promising approach to attenuate astroglial scar and reduce neural loss around implanted neural probes.
Collapse
Affiliation(s)
- Yinghui Zhong
- Neurological Biomaterials and Therapeutics, Laboratory for Neuroengineering, Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332
| | - Ravi V. Bellamkonda
- Neurological Biomaterials and Therapeutics, Laboratory for Neuroengineering, Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332
| |
Collapse
|
325
|
Frumberg DB, Fernando MS, Lee DE, Biegon A, Schiffer WK. Metabolic and behavioral deficits following a routine surgical procedure in rats. Brain Res 2007; 1144:209-18. [PMID: 17346680 PMCID: PMC2720638 DOI: 10.1016/j.brainres.2007.01.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 11/23/2022]
Abstract
To test the hypothesis that functional metabolic deficits observed following surgical brain injury are associated with changes in cognitive performance in rodents, we performed serial imaging studies in parallel with behavioral measures in control animals and in animals with surgical implants. Memory function was assessed using the novel object recognition (NOR) test, administered 3 days prior to and 3, 7, 14 and 56 days after surgery. At each time point, general locomotion was also measured. Metabolic imaging with 18F-fluorodeoxyglucose ([18F]FDG) occurred 28 and 58 days after surgery. Animals with surgical implants performed significantly worse on tests of object recognition, while general locomotion was unaffected by the implant. There was a significant decrease in glucose uptake after surgery in most of the hemisphere ipsilateral to the implant relative to the contralateral hemisphere. At both time points, the most significant metabolic deficits occurred in the primary motor cortex (-25%; p<0.001), sensory cortex (-15%, p<0.001) and frontal cortex (-12%; p<0.001). Ipsilateral areas further from the site of insertion became progressively worse, including the sensory cortex, dorsal striatum and thalamus. These data was supported by a voxel-based analysis of the PET data, which revealed again a unilateral decrease in [18F]FDG uptake that extended throughout the ipsilateral cortex and persisted for the duration of the 58-day study. Probe implantation in the striatum results in a widespread and long-lasting decline in cortical glucose metabolism together with a persistent, injury-related deficit in the performance of a cognitive (object recognition) task in rats.
Collapse
Affiliation(s)
- David B. Frumberg
- Cornell University, Ithaca NY, 14853
- Medical Department, Brookhaven National Laboratory, Upton NY 11973
| | | | - Dianne E. Lee
- Medical Department, Brookhaven National Laboratory, Upton NY 11973
| | - Anat Biegon
- Medical Department, Brookhaven National Laboratory, Upton NY 11973
| | | |
Collapse
|
326
|
Holguin A, Frank MG, Biedenkapp JC, Nelson K, Lippert D, Watkins LR, Rudy JW, Maier SF. Characterization of the temporo-spatial effects of chronic bilateral intrahippocampal cannulae on interleukin-1beta. J Neurosci Methods 2007; 161:265-72. [PMID: 17241670 PMCID: PMC2464278 DOI: 10.1016/j.jneumeth.2006.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 11/18/2006] [Accepted: 11/28/2006] [Indexed: 11/23/2022]
Abstract
The implantation of a foreign object in the brain produces an acute neuroinflammatory state in which glia (astrocytes and microglia) may remain chronically activated in response to the inert foreign object. Activated glia can exhibit a sensitized pro-inflammatory response to immunogenic stimuli. This may be relevant to intracranial cannula implantation, which is commonly used to administer substances directly into the brain. If intracranial cannulation activates glia, a subsequent neuroinflammatory stimulus might induce a potentiated pro-inflammatory response, thereby introducing a potential experimental confound. We tested the temporal and spatial responses of interleukin-1beta (IL-1beta) to an acute immune challenge produced by lipopolysaccharide (LPS) in animals with chronic bilateral intrahippocampal cannulae implants (stainless steel). Cannulation increased the gene expression of the microglia activation antigens MHC II and CD11b, but not the astrocyte antigen GFAP. Moreover, this activation was temporally and spatially dependent. In addition, IL-1beta mRNA, but not IL-1beta protein, was significantly elevated in cannulated animals. Administration of LPS, however, significantly potentiated the brain IL-1beta response in cannulated animals, but not in stab wounded or naïve animals. This IL-1beta response was also temporo-spatially dependent. Thus, the pro-inflammatory sequelae of intracranial cannulation should be considered when designing studies of neuroinflammatory processes.
Collapse
Affiliation(s)
- Adelina Holguin
- Department of Psychology, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Patz T, Doraiswamy A, Narayan R, Menegazzo N, Kranz C, Mizaikoff B, Zhong Y, Bellamkonda R, Bumgardner J, Elder S, Walboomers X, Modi R, Chrisey D. Matrix assisted pulsed laser evaporation of biomaterial thin films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2007. [DOI: 10.1016/j.msec.2006.05.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
328
|
Lago N, Yoshida K, Koch KP, Navarro X. Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans Biomed Eng 2007; 54:281-90. [PMID: 17278585 DOI: 10.1109/tbme.2006.886617] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Longitudinal intrafascicular electrodes (LIFEs) are electrodes designed to be placed inside the peripheral nerve to improve stimulation selectivity and to increase the recording signal-to-noise ratio. We evaluated the functional and morphological effects of either Pt wire LIFEs or polyimide-based thin-film LIFEs implanted in the rat sciatic nerve for 3 mo. The newly designed thin-film LIFEs are more flexible, can be micromachined and allow placement of more active electrode sites than conventional Pt LIFEs. Functional results at 1 mo indicated an initial decline in the nerve conduction velocity and in the amplitude of muscle responses, which recovered during the following 2 mo towards normal values. Morphological results showed that both types of LIFEs induced a mild scar response and a focal but chronic inflammatory reaction, which were limited to a small area around the electrode placed in the nerve. Both types of LIFEs can be considered biocompatible and cause reversible, minimal nerve damage.
Collapse
Affiliation(s)
- Natalia Lago
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autónoma de Barcelona, E08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
329
|
Abstract
Nanotechnology is being used to mimic structural components of our tissues in synthetic materials intended for various implant applications. Recent studies have highlighted that when compared to flat or micron rough surfaces, surfaces with nanofeatures promote optimal initial protein interactions necessary to mediate cell adhesion and subsequent tissue regrowth. This has been demonstrated for a wide range of implant chemistries (from ceramics to metals to polymers) and for a wide range of tissues (including bone, vascular, cartilage, bladder, and the central and peripheral nervous system). Importantly, these results have been seen at the in vitro and in vivo level. This short review paper will cover some of the more significant advancements in creating better implants through nanotechnology efforts.
Collapse
|
330
|
Singh A, Zhu H, He J. Improving mechanical stiffness of coated benzocyclobutene (BCB) based neural implant. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:4298-301. [PMID: 17271255 DOI: 10.1109/iembs.2004.1404197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We briefly report recent results of a simple alternate method to improve mechanical stiffness of BCB polymer neural implant for surgical insertion into brain tissue, which uses coatings dissolvable in bio-fluids. We have studied three different coating materials such as thermo-reversible gel Poloxamer 407, glucose (C6H12O6) and regular table sugar that were applied by dip coating onto the implant surface. The preliminary results of this study have shown that coating BCB probes with Poloxamer 407 polymer, a thermo-reversible gel, or table sugar significantly improves the buckling strength. However, the table sugar coating provides the greatest increase in stiffness, which is sufficient to penetrate both the preserved and live brain tissues without buckling.
Collapse
Affiliation(s)
- Amarjit Singh
- Center for Neural Interface Design, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
331
|
Richardson-Burns SM, Hendricks JL, Martin DC. Electrochemical polymerization of conducting polymers in living neural tissue. J Neural Eng 2007; 4:L6-L13. [PMID: 17409471 DOI: 10.1088/1741-2560/4/2/l02] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A number of biomedical devices require extended electrical communication with surrounding tissue. Significant improvements in device performance would be achieved if it were possible to maintain communication with target cells despite the reactive, insulating scar tissue that forms at the device-tissue interface. Here, we report that the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) can be polymerized directly within living neural tissue resulting in an electrically conductive network that is integrated within the tissue. Nano and microscale PEDOT filaments extend out from electrode sites, presumably forming within extracellular spaces. The cloud of PEDOT filaments penetrates out into the tissue far enough that it should be possible to bypass fibrous scar tissue and contact surrounding healthy neurons. These electrically functional, diffuse conducting polymer networks grown directly within tissue signify a new paradigm for creating soft, low impedance implantable electrodes.
Collapse
|
332
|
Stice P, Gilletti A, Panitch A, Muthuswamy J. Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex. J Neural Eng 2007; 4:42-53. [PMID: 17409479 DOI: 10.1088/1741-2560/4/2/005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to test the hypothesis that neural implants with reduced cross-sectional areas will have less glial scarring associated with implantation injury in long-term experiments. In this study, we implanted nine adult rats with two different implants of 12 microm (n = 6), and 25 microm (n = 6) diameters (cross-sectional areas of 68 microm(2), 232 microm(2) respectively) and the expression of glial fibrilliary acidic protein (GFAP) was assessed after 2 weeks and 4 weeks of implantation. In order to facilitate implantation, the 12 microm diameter implants were coated with poly-glycolic acid (PGA), a biodegradable polymer that degraded within minutes of implantation. In n = 3 animals, 25 microm diameter implants also coated with PGA were implanted and assessed for GFAP expression at the end of 4 weeks of implantation. Statistical analysis of the GFAP expression around the different implants demonstrated that after 2 weeks of implantation there is no statistically significant difference in GFAP expression between the 12 microm and the 25 microm diameter implants. However, after 4 weeks of implantation the implant site of 12 microm diameter implants exhibited a statistically significant reduction in GFAP expression when compared to the implant sites of the 25 microm diameter implants (both with and without the PGA coating). We conclude that in neural implants that are tethered to the skull, implant cross-sectional areas of 68 microm(2) and smaller could lead to a reduced glial scarring under chronic conditions. Future studies with longer implant durations can confirm if this observation remains consistent beyond 4 weeks.
Collapse
Affiliation(s)
- Paula Stice
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | | | | | | |
Collapse
|
333
|
Pappas TC, Wickramanyake WMS, Jan E, Motamedi M, Brodwick M, Kotov NA. Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. NANO LETTERS 2007; 7:513-9. [PMID: 17298018 DOI: 10.1021/nl062513v] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The remarkable optical and electrical properties of nanostructured materials are considered now as a source for a variety of biomaterials, biosensing, and cell interface applications. In this study, we report the first example of hybrid bionanodevice where absorption of light by thin films of quantum confined semiconductor nanoparticles of HgTe produced by the layer-by-layer assembly stimulate adherent neural cells via a sequence of photochemical and charge-transfer reactions. We also demonstrate an example of nanoscale engineering of the material driven by biological functionalities.
Collapse
Affiliation(s)
- Todd C Pappas
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas 77555-0456, USA
| | | | | | | | | | | |
Collapse
|
334
|
Abstract
Implantable neural microsystems provide an interface to the nervous system, giving cellular resolution to physiological processes unattainable today with non-invasive methods. Such implantable microelectrode arrays are being developed to simultaneously sample signals at many points in the tissue, providing insight into processes such as movement control, memory formation, and perception. These electrode arrays have been microfabricated on a variety of substrates, including silicon, using both surface and bulk micromachining techniques, and more recently, polymers. Current approaches to achieving a stable long-term tissue interface focus on engineering the surface properties of the implant, including coatings that discourage protein adsorption or release bioactive molecules. The implementation of a wireless interface requires consideration of the necessary data flow, amplification, signal processing, and packaging. In future, the realization of a fully implantable neural microsystem will contribute to both diagnostic and therapeutic applications, such as a neuroprosthetic interface to restore motor functions in paralyzed patients.
Collapse
Affiliation(s)
- Karen C Cheung
- Department of Electrical & Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
335
|
Biran R, Martin DC, Tresco PA. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J Biomed Mater Res A 2007; 82:169-78. [PMID: 17266019 DOI: 10.1002/jbm.a.31138] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The influence of tethering silicon microelectrode arrays on the cortical brain tissue reaction was compared with that of untethered implants placed in the same location by identical means using immunoflourescent methods and cell type specific markers over indwelling periods of 1-4 weeks. Compared with untethered, freely floating implants, tethered microelectrodes elicited significantly greater reactivity to antibodies against ED1 and GFAP over time. Regardless of implantation method or indwelling time, retrieved microelectrodes contained a layer of attached macrophages identified by positive immunoreactivity against ED1. In the tethered condition and in cases where the tissue surrounding untethered implants had the highest levels of ED1+ and GFAP+ immunoreactivity, the neuronal markers for neurofilament 160 and NeuN were reduced. Although the precise mechanisms are unclear, the present study indicates that simply tethering silicon microelectrode arrays to the skull increases the cortical brain tissue response in the recording zone immediately surrounding the microelectrode array, which signals the importance of identifying this important variable when evaluating the tissue response of different device designs, and suggests that untethered or wireless devices may elicit less of a foreign body response.
Collapse
Affiliation(s)
- Roy Biran
- The Keck Center for Tissue Engineering, Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
336
|
He W, McConnell GC, Bellamkonda RV. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J Neural Eng 2006; 3:316-26. [PMID: 17124336 DOI: 10.1088/1741-2560/3/4/009] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural electrodes could significantly enhance the quality of life for patients with sensory and/or motor deficits as well as improve our understanding of brain functions. However, long-term electrical connectivity between neural tissue and recording sites is compromised by the development of astroglial scar around the recording probes. In this study we investigate the effect of a nanoscale laminin (LN) coating on Si-based neural probes on chronic cortical tissue reaction in a rat model. Tissue reaction was evaluated after 1 day, 1 week, and 4 weeks post-implant for coated and uncoated probes using immunohistochemical techniques to evaluate activated microglia/macrophages (ED-1), astrocytes (GFAP) and neurons (NeuN). The coating did not have an observable effect on neuronal density or proximity to the electrode surface. However, the response of microglia/macrophages and astrocytes was altered by the coating. One day post-implant, we observed an approximately 60% increase in ED-1 expression near LN-coated probe sites compared with control uncoated probe sites. Four weeks post-implant, we observed an approximately 20% reduction in ED-1 expression along with an approximately 50% reduction in GFAP expression at coated relative to uncoated probe sites. These results suggest that LN has a stimulatory effect on early microglia activation, accelerating the phagocytic function of these cells. This hypothesis is further supported by the increased mRNA expression of several pro-inflammatory cytokines (TNF-alpha, IL-1 and IL-6) in cultured microglia on LN-bound Si substrates. LN immunostaining of coated probes immediately after insertion and retrieval demonstrates that the coating integrity is not compromised by the shear force during insertion. We speculate, based on these encouraging results, that LN coating of Si neural probes could potentially improve chronic neural recordings through dispersion of the astroglial scar.
Collapse
Affiliation(s)
- Wei He
- Neurological Biomaterials and Therapeutics, Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
337
|
Johnson MD, Kao OE, Kipke DR. Spatiotemporal pH dynamics following insertion of neural microelectrode arrays. J Neurosci Methods 2006; 160:276-87. [PMID: 17084461 DOI: 10.1016/j.jneumeth.2006.09.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/19/2006] [Accepted: 09/22/2006] [Indexed: 12/18/2022]
Abstract
Insertion trauma is a critical issue when assessing intracortical electrophysiological and neurochemical recordings. Previous reports document a wide variety of insertion techniques with speeds ranging from 10 microm/s to 10 m/s. We hypothesize that insertion speed has an effect on tissue trauma induced by implantation of a neural probe. In order to monitor the neural interface during and after probe insertion, we have developed a silicon-substrate array with hydrous iridium oxide microelectrodes for potentiometric recording of extracellular pH (pH(e)), a measure of brain homeostasis. Microelectrode sites were sensitive to pH in the super-Nernstian range (-85.9 mV/pH unit) and selective over other analytes including ascorbic acid, Na(+), K(+), Ca(2+), and Mg(2+). Following insertion, arrays recorded either triphasic or biphasic pH(e) responses, with a greater degree of prolonged acidosis for insertions at 50 microm/s than at 0.5 mm/s or 1.0 mm/s (p<0.05). Spatiotemporal analysis of the recordings also revealed micro-scale variability in the pH(e) response along the array, even when using the same insertion technique. Implants with more intense acidosis were often associated histologically with blood along the probe tract. The potentiometric microsensor array has implications not only as a useful tool to measure extracellular pH, but also as a feedback tool for delivery of pharmacological agents to treat surgical brain trauma.
Collapse
Affiliation(s)
- Matthew D Johnson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
338
|
Kim P, Jeong HE, Khademhosseini A, Suh KY. Fabrication of non-biofouling polyethylene glycol micro- and nanochannels by ultraviolet-assisted irreversible sealing. LAB ON A CHIP 2006; 6:1432-7. [PMID: 17066166 DOI: 10.1039/b610503c] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a simple and widely applicable method to fabricate micro- and nanochannels comprised entirely of crosslinked polyethylene glycol (PEG) by using UV-assisted irreversible sealing to bond partially crosslinked PEG surfaces. The method developed here can be used to form channels as small as approximately 50 nm in diameter without using a sophisticated experimental setup. The manufactured channel is a homogeneous conduit made completely from non-biofouling PEG, exhibits robust sealing with minimal swelling and can be used without additional surface modification chemistries, thus significantly enhancing reliability and durability of microfluidic devices. Furthermore, we demonstrate simple analytical assays using PEG microchannels combined with patterned arrays of supported lipid bilayers (SLBs) to detect ligand (biotin)-receptor (streptavidin) interactions.
Collapse
Affiliation(s)
- Pilnam Kim
- School of Mechanical and Aerospace Engineering and Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
339
|
Sharp AA, Panchawagh HV, Ortega A, Artale R, Richardson-Burns S, Finch DS, Gall K, Mahajan RL, Restrepo D. Toward a self-deploying shape memory polymer neuronal electrode. J Neural Eng 2006; 3:L23-30. [PMID: 17124327 DOI: 10.1088/1741-2560/3/4/l02] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The widespread application of neuronal probes for chronic recording of brain activity and functional stimulation has been slow to develop partially due to long-term biocompatibility problems with existing metallic and ceramic probes and the tissue damage caused during probe insertion. Stiff probes are easily inserted into soft brain tissue but cause astrocytic scars that become insulating sheaths between electrodes and neurons. In this communication, we explore the feasibility of a new approach to the composition and implantation of chronic electrode arrays. We demonstrate that softer polymer-based probes can be inserted into the olfactory bulb of a mouse and that slow insertion of the probes reduces astrocytic scarring. We further present the development of a micromachined shape memory polymer probe, which provides a vehicle to self-deploy an electrode at suitably slow rates and which can provide sufficient force to penetrate the brain. The deployment rate and composition of shape memory polymer probes can be tailored by polymer chemistry and actuator design. We conclude that it is feasible to fabricate shape memory polymer-based electrodes that would slowly self-implant compliant conductors into the brain, and both decrease initial trauma resulting from implantation and enhance long-term biocompatibility for long-term neuronal measurement and stimulation.
Collapse
Affiliation(s)
- Andrew A Sharp
- Rocky Mountain Taste and Smell Center, Neuroscience Program and Department of Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Schwartz AB, Cui XT, Weber DJ, Moran DW. Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics. Neuron 2006; 52:205-20. [PMID: 17015237 DOI: 10.1016/j.neuron.2006.09.019] [Citation(s) in RCA: 425] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain-controlled interfaces are devices that capture brain transmissions involved in a subject's intention to act, with the potential to restore communication and movement to those who are immobilized. Current devices record electrical activity from the scalp, on the surface of the brain, and within the cerebral cortex. These signals are being translated to command signals driving prosthetic limbs and computer displays. Somatosensory feedback is being added to this control as generated behaviors become more complex. New technology to engineer the tissue-electrode interface, electrode design, and extraction algorithms to transform the recorded signal to movement will help translate exciting laboratory demonstrations to patient practice in the near future.
Collapse
Affiliation(s)
- Andrew B Schwartz
- Department of Neurobiology, Center for the Neural Basis of Cognition, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
341
|
Griffith RW, Humphrey DR. Long-term gliosis around chronically implanted platinum electrodes in the Rhesus macaque motor cortex. Neurosci Lett 2006; 406:81-6. [PMID: 16905255 DOI: 10.1016/j.neulet.2006.07.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 06/30/2006] [Accepted: 07/07/2006] [Indexed: 11/16/2022]
Abstract
Chronically implanted microelectrodes have been an important tool used by neuroscientists for many years and are critical for the development of neural prostheses designed to restore function after traumatic central nervous system (CNS) injury. It is well established that a variety of mammals, including non-human primates (NHP), tolerate noble metal electrodes in the cortex for extended periods of time, but little is known about the long-term effects of electrode implantation at the cellular level. While data from rodents have clearly shown gliosis around such implants, there have been difficulties in demonstrating these reactions in NHP. Glial reactions are to be expected in NHP, since any trauma to the mammalian CNS is believed to result in the formation of a glial scar consisting of reactive astrocytes and microglia around the injury site. Because a glial scar can potentially affect the quality of recordings or stimulations from implanted electrodes, it is important to determine the extent of gliosis around implants in NHP. We studied the response of cortical glial cells to chronic electrode implantation in the motor cortices of Rhesus macaques (Macaca mulatta) after 3 months and 3 years duration. Antibodies specific for astrocytes and microglia were used to detect the presence of glial reactions around electrode implant sites. Reactive glia were found within the cortical neuropil surrounding the chronically implanted noble metal electrodes. Reactive gliosis persisted over the time periods studied and demonstrates the importance of developing strategies to minimize this event, even around noble metal implants.
Collapse
Affiliation(s)
- Ronald W Griffith
- Emory University School of Medicine, Department of Physiology, Whitehead Biomedical Research Center, Suite 605S, 615 Michael St., Atlanta, GA 30322, USA.
| | | |
Collapse
|
342
|
Sanchez JC, Alba N, Nishida T, Batich C, Carney PR. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study. IEEE Trans Neural Syst Rehabil Eng 2006; 14:217-21. [PMID: 16792298 DOI: 10.1109/tnsre.2006.875581] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Long-term viability of chronic invasive neural probes is a necessary condition for extracting robust control signals directly from neural tissue. Although immune/tissue response is a leading factor in the degradation of single neuron recording, we investigate a second component of signal degradation connected to the structural changes associated with microwire electrodes chronically exposed to extracelluar environments in vivo. Scanning electron microscopy is used to assess the surface modifications to the electrodes after an implantation duration of four weeks in rats. The electrode developed a smooth fracture surface, a reduction of the metal diameter, and pitting in the insulation of the electrode structure. Over the duration of implantation, recording properties of the electrode were marked by a reduction in the peak-to-peak amplitude in neuronal firing.
Collapse
Affiliation(s)
- Justin C Sanchez
- Department of Pediatrics, Division of Neurology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | |
Collapse
|
343
|
Polikov VS, Block ML, Fellous JM, Hong JS, Reichert WM. In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS. Biomaterials 2006; 27:5368-76. [PMID: 16842846 DOI: 10.1016/j.biomaterials.2006.06.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 06/22/2006] [Indexed: 11/17/2022]
Abstract
A novel in vitro model of glial scarring was developed by adapting a primary cell-based system previously used for studying neuroinflammatory processes in neurodegenerative disease. Midbrains from embryonic day 14 Fischer 344 rats were mechanically dissociated and grown on poly-D-lysine coated 24 well plates to a confluent layer of neurons, astrocytes, and microglia. The culture was injured with either a mechanical scrape or foreign-body placement (segments of 50 microm diameter stainless steel microwire), fixed at time points from 6 h to 10 days, and assessed by immunocytochemistry. Microglia invaded the scraped wound area at early time points and hypertrophied activated astrocytes repopulated the wound after 7 days. The chronic presence of microwire resulted in a glial scar forming at 10 days, with microglia forming an inner layer of cells coating the microwire, while astrocytes surrounded the microglial core with a network of cellular processes containing upregulated GFAP. Vimentin expressing cells and processes were present in the scrape at early times and within the astrocyte processes forming the glial scar. Neurons within the culture did not repopulate the scrape wound and did not respond to the microwire, although they were determined to be electrically active through patch clamp recording. The time course and relative positions of the glia in response to the different injury paradigms correlated well with stereotypical in vivo responses and warrant further work in the development of a functional in vitro test bed.
Collapse
Affiliation(s)
- Vadim S Polikov
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | | | | | | | | |
Collapse
|
344
|
Bjornsson CS, Oh SJ, Al-Kofahi YA, Lim YJ, Smith KL, Turner JN, De S, Roysam B, Shain W, Kim SJ. Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J Neural Eng 2006; 3:196-207. [PMID: 16921203 DOI: 10.1088/1741-2560/3/3/002] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Long-term integration of neuroprosthetic devices is challenged by reactive responses that compromise the brain-device interface. The contribution of physical insertion parameters to immediate damage is not well described. We have developed an ex vivo preparation to capture real-time images of tissue deformation during device insertion using thick tissue slices from rat brains prepared with fluorescently labeled vasculature. Qualitative and quantitative assessments of damage were made for insertions using devices with different tip shapes inserted at different speeds. Direct damage to the vasculature included severing, rupturing and dragging, and was often observed several hundred micrometers from the insertion site. Slower insertions generally resulted in more vascular damage. Cortical surface features greatly affected insertion success; insertions attempted through pial blood vessels resulted in severe tissue compression. Automated image analysis techniques were developed to quantify tissue deformation and calculate mean effective strain. Quantitative measures demonstrated that, within the range of experimental conditions studied, faster insertion of sharp devices resulted in lower mean effective strain. Variability within each insertion condition indicates that multiple biological factors may influence insertion success. Multiple biological factors may contribute to tissue distortion, thus a wide variability was observed among insertions made under the same conditions.
Collapse
Affiliation(s)
- C S Bjornsson
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Wolpaw JR, Loeb GE, Allison BZ, Donchin E, do Nascimento OF, Heetderks WJ, Nijboer F, Shain WG, Turner JN. BCI meeting 2005-workshop on signals and recording methods. IEEE Trans Neural Syst Rehabil Eng 2006; 14:138-41. [PMID: 16792279 DOI: 10.1109/tnsre.2006.875583] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper describes the highlights of presentations and discussions during the Third International BCI Meeting in a workshop that evaluated potential brain-computer interface (BCI) signals and currently available recording methods. It defined the main potential user populations and their needs, addressed the relative advantages and disadvantages of noninvasive and implanted (i.e., invasive) methodologies, considered ethical issues, and focused on the challenges involved in translating BCI systems from the laboratory to widespread clinical use. The workshop stressed the critical importance of developing useful applications that establish the practical value of BCI technology.
Collapse
|
346
|
Purushothaman G, Scott BB, Bradley DC. An acute method for multielectrode recording from the interior of sulci and other deep brain areas. J Neurosci Methods 2006; 153:86-94. [PMID: 16316688 DOI: 10.1016/j.jneumeth.2005.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 10/13/2005] [Indexed: 11/30/2022]
Abstract
Most current techniques for multielectrode recording involve chronically implanting planar or staggered arrays of electrodes. Such chronic implants are suited for studying a stable population of neurons over long periods of time but exploratory studies of the physiological properties of cortical subdivisions require the ability to sample multiple neural populations. This makes it necessary to penetrate frequently with small multielectrode assemblies. Some commercial systems allow daily penetrations with multiple electrodes, but they tend to be bulky, complex and expensive, and some make no provision for piercing the barrier of fibrous tissue that often covers the brain surface. We describe an apparatus for inserting bundles of 3-16 electrodes on a daily basis, thus allowing different neural populations to be sampled. The system is designed to allow penetration through a thick dura mater into deep brain structures. We discuss a simple method for performing multielectrode recording from cortical areas buried inside sulci using acute implantations of a bundle of electrodes. Our results show that it is possible to obtain stable recordings for at least 4h and that repeated implantations yield an average of two neurons per electrode with every electrode in the bundle picking up at least one single neuron in 70% of the implantations.
Collapse
Affiliation(s)
- Gopathy Purushothaman
- Department of Psychology, and Committee on Computational Neuroscience, The University of Chicago, 5848 South University Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
347
|
Abstract
This article reviews bioengineered strategies for spinal cord repair using tissue engineered scaffolds and drug delivery systems. The pathophysiology of spinal cord injury (SCI) is multifactorial and multiphasic, and therefore, it is likely that effective treatments will require combinations of strategies such as neuroprotection to counteract secondary injury, provision of scaffolds to replace lost tissue, and methods to enhance axonal regrowth, synaptic plasticity, and inhibition of astrocytosis. Biomaterials have major advantages for spinal cord repair because of their structural and chemical versatility. To date, various degradable or non-degradable biomaterial polymers have been tested as guidance channels or delivery systems for cellular and non-cellular neuroprotective or neuroregenerative agents in experimental SCI. There is promise that bioengineering technology utilizing cellular treatment strategies, including Schwann cells, olfactory ensheathing glia, or neural stem cells, can promote repair of the injured spinal cord. This review is divided into three parts: (1) degradable and non-degradable biomaterials; (2) device design; and (3) combination strategies with scaffolds. We will show that bioengineering combinations of cellular and non-cellular strategies have enhanced the potential for experimental SCI repair, although further pre-clinical work is required before this technology can be translated to humans.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Toronto Western Research Institute, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
348
|
Otto KJ, Johnson MD, Kipke DR. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. IEEE Trans Biomed Eng 2006; 53:333-40. [PMID: 16485763 DOI: 10.1109/tbme.2005.862530] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Current neuroprosthetic systems based on electro-physiological recording have an extended, yet finite working lifetime. Some posited lifetime-extension solutions involve improving device biocompatibility or suppressing host immune responses. Our objective was to test an alternative solution comprised of applying a voltage pulse to a microelectrode site, herein termed "rejuvenation." Previously, investigators have reported preliminary electrophysiological results by utilizing a similar voltage pulse. In this study we sought to further explore this phenomenon via two methods: 1) electrophysiology; 2) an equivalent circuit model applied to impedance spectroscopy data. The experiments were conducted via chronically implanted silicon-substrate iridium microelectrode arrays in the rat cortex. Rejuvenation voltages resulted in increased unit recording signal-to-noise ratios (10% +/- 2%), with a maximal increase of 195% from 3.74 to 11.02. Rejuvenation also reduced the electrode site impedances at 1 kHz (67% +/- 2%). Neither the impedance nor recording properties of the electrodes changed on neighboring microelectrode sites that were not rejuvenated. In the equivalent circuit model, we found a transient increase in conductivity, the majority of which corresponded to a decrease in the tissue resistance component (44% +/- 7%). These findings suggest that rejuvenation may be an intervention strategy to prolong the functional lifetime of chronically implanted microelectrodes.
Collapse
Affiliation(s)
- Kevin J Otto
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor 48109, USA.
| | | | | |
Collapse
|
349
|
Ludwig KA, Uram JD, Yang J, Martin DC, Kipke DR. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng 2006; 3:59-70. [PMID: 16510943 DOI: 10.1088/1741-2560/3/1/007] [Citation(s) in RCA: 405] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Conductive polymer coatings can be used to modify traditional electrode recording sites with the intent of improving the long-term performance of cortical microelectrodes. Conductive polymers can drastically decrease recording site impedance, which in turn is hypothesized to reduce thermal noise and signal loss through shunt pathways. Moreover, conductive polymers can be seeded with agents aimed at promoting neural growth toward the recording sites or minimizing the inherent immune response. The end goal of these efforts is to generate an ideal long-term interface between the recording electrode and surrounding tissue. The goal of this study was to refine a method to electrochemically deposit surfactant-templated ordered poly(3,4-ethylenedioxythiophene) (PEDOT) films on the recording sites of standard 'Michigan' probes and to evaluate the efficacy of these modified sites in recording chronic neural activity. PEDOT-coated site performance was compared to control sites over a six-week evaluation period in terms of impedance spectroscopy, signal-to-noise ratio, number of viable unit potentials recorded and local field potential recordings. PEDOT sites were found to outperform control sites with respect to signal-to-noise ratio and number of viable unit potentials. The benefit of reduced initial impedance, however, was mitigated by the impedance contribution of typical silicon electrode encapsulation. Coating sites with PEDOT also reduced the amount of low-frequency drift evident in local field potential recordings. These findings indicate that electrode sites electrochemically deposited with PEDOT films are suitable for recording neural activity in vivo for extended periods. This study also provided a unique opportunity to monitor how neural recording characteristics develop over the six weeks following implantation.
Collapse
Affiliation(s)
- Kip A Ludwig
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
350
|
Kim DH, Martin DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 2006; 27:3031-7. [PMID: 16443270 DOI: 10.1016/j.biomaterials.2005.12.021] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/31/2005] [Indexed: 11/17/2022]
Abstract
The release of the anti-inflammatory agent dexamethasone (DEX) from nanoparticles of poly(lactic-co-glycolic acid) (PLGA) embedded in alginate hydrogel (HG) matrices was investigated. DEX-loaded PLGA nanoparticles were prepared using a solvent evaporation technique and were characterized for size, drug loading, and in-vitro release. The crosslinking density of the HG was studied and correlated with drug release kinetics. The amount of DEX loaded in the nanoparticles was estimated as approximately 13 wt%. The typical particle size ranged from 400 to 600 nm. The in-vitro release of DEX from NPs entrapped in the HG showed that 90% of the drug was released over 2 weeks. The impedance of the NP-loaded HG coatings on microfabricated neural probes was measured and found to be similar to the unmodified and uncoated probes. The in-vivo impedance of chronically implanted electrodes loaded with DEX was maintained at its initial level, while that of the control electrode increased by 3 times after about 2 weeks after implantation until it stabilized at approximately 3 MOmega. This improvement in performance is presumably due to the reduced amount of glial inflammation in the immediate vicinity of the DEX-modified neural probe.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Biomedical Engineering, University of Michigan, Michigan 48109-2136, USA
| | | |
Collapse
|