301
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
302
|
Lewis AH, Bridges CS, Punia VS, Cooper AFJ, Puppi M, Lacorazza HD. Krüppel-like factor 4 promotes survival and expansion in acute myeloid leukemia cells. Oncotarget 2021; 12:255-267. [PMID: 33659038 PMCID: PMC7899553 DOI: 10.18632/oncotarget.27878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy of the bone marrow that affects mostly elderly adults. Alternative therapies are needed for AML patients because the overall prognosis with current standard of care, high dose chemotherapy and allogeneic transplantation, remains poor due to the emergence of refractory and relapsed disease. Here, we found expression of the transcription factor KLF4 in AML cell lines is not silenced through KLF4 gene methylation nor via proteasomal degradation. The deletion of KLF4 by CRISPR-CAS9 technology reduced cell growth and increased apoptosis in both NB4 and MonoMac-6 cell lines. Chemical induced differentiation of gene edited NB4 and MonoMac6 cells with ATRA and PMA respectively increased apoptosis and altered expression of differentiating markers CD11b and CD14. Transplantation of NB4 and MonoMac-6 cells lacking KLF4 into NSG mice resulted in improved overall survival compared to the transplantation of parental cell lines. Finally, loss-of-KLF4 did not alter sensitivity of leukemic cells to the chemotherapeutic drugs daunorubicin and cytarabine. These results suggest that KLF4 expression supports AML cell growth and survival, and the identification and disruption of KLF4-regulated pathways could represent an adjuvant therapeutic approach to increase response.
Collapse
Affiliation(s)
- Andrew Henry Lewis
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Cory Seth Bridges
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Viraaj Singh Punia
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Abraham Fausto Jornada Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
- SMART Program at Baylor College of Medicine Houston, Houston, TX 77030, USA
| | - Monica Puppi
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - H. Daniel Lacorazza
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
303
|
Al Hinai ASA, Grob T, Rijken M, Kavelaars FG, Zeilemaker A, Erpelinck-Verschueren CAJ, Sanders MA, Löwenberg B, Jongen-Lavrencic M, Valk PJM. PPM1D mutations appear in complete remission after exposure to chemotherapy without predicting emerging AML relapse. Leukemia 2021; 35:2693-2697. [PMID: 33589749 DOI: 10.1038/s41375-021-01155-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Adil S A Al Hinai
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,National Genetic Center, Ministry of Health, Muscat, Sultanate of Oman
| | - Tim Grob
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Melissa Rijken
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - François G Kavelaars
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annelieke Zeilemaker
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Mathijs A Sanders
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mojca Jongen-Lavrencic
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
304
|
Chen WS, Zhang ML, Han B. [Comparison of genetic mutations in myelodysplastic syndrome and acute myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:171-176. [PMID: 33858051 PMCID: PMC8071666 DOI: 10.3760/cma.j.issn.0253-2727.2021.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 11/23/2022]
Affiliation(s)
- W S Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - M L Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - B Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
305
|
Molecular Targeted Therapy in Myelodysplastic Syndromes: New Options for Tailored Treatments. Cancers (Basel) 2021; 13:cancers13040784. [PMID: 33668555 PMCID: PMC7917605 DOI: 10.3390/cancers13040784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Myelodysplastic syndromes (MDS) are a group of diseases in which bone marrow stem cells acquire genetic alterations and can initiate leukemia, blocking the production of mature blood cells. It is of crucial importance to identify those genetic abnormalities because some of them can be the targeted. To date only very few drugs are approved for patients manifesting this group of disorders and there is an urgent need to develop new effective therapies. This review gives an overview of the genetic of MDS and the therapeutic options available and in clinical experimentation. Abstract Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders characterized by ineffective hematopoiesis, progressive cytopenias and increased risk of transformation to acute myeloid leukemia. The improved understanding of the underlying biology and genetics of MDS has led to better disease and risk classification, paving the way for novel therapeutic opportunities. Indeed, we now have a vast pipeline of targeted agents under pre-clinical and clinical development, potentially able to modify the natural history of the diverse disease spectrum of MDS. Here, we review the latest therapeutic approaches (investigational and approved agents) for MDS treatment. A deep insight will be given to molecularly targeted therapies by reviewing new agents for individualized precision medicine.
Collapse
|
306
|
Integrating Patient-Specific Information into Logic Models of Complex Diseases: Application to Acute Myeloid Leukemia. J Pers Med 2021; 11:jpm11020117. [PMID: 33578936 PMCID: PMC7916657 DOI: 10.3390/jpm11020117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
High throughput technologies such as deep sequencing and proteomics are increasingly becoming mainstream in clinical practice and support diagnosis and patient stratification. Developing computational models that recapitulate cell physiology and its perturbations in disease is a required step to help with the interpretation of results of high content experiments and to devise personalized treatments. As complete cell-models are difficult to achieve, given limited experimental information and insurmountable computational problems, approximate approaches should be considered. We present here a general approach to modeling complex diseases by embedding patient-specific genomics data into actionable logic models that take into account prior knowledge. We apply the strategy to acute myeloid leukemia (AML) and assemble a network of logical relationships linking most of the genes that are found frequently mutated in AML patients. We derive Boolean models from this network and we show that by priming the model with genomic data we can infer relevant patient-specific clinical features. Here we propose that the integration of literature-derived causal networks with patient-specific data should be explored to help bedside decisions.
Collapse
|
307
|
Tothova Z, Valton AL, Gorelov RA, Vallurupalli M, Krill-Burger JM, Holmes A, Landers CC, Haydu JE, Malolepsza E, Hartigan C, Donahue M, Popova KD, Koochaki S, Venev SV, Rivera J, Chen E, Lage K, Schenone M, D’Andrea AD, Carr SA, Morgan EA, Dekker J, Ebert BL. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight 2021; 6:142149. [PMID: 33351783 PMCID: PMC7934867 DOI: 10.1172/jci.insight.142149] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
The cohesin complex plays an essential role in chromosome maintenance and transcriptional regulation. Recurrent somatic mutations in the cohesin complex are frequent genetic drivers in cancer, including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Here, using genetic dependency screens of stromal antigen 2-mutant (STAG2-mutant) AML, we identified DNA damage repair and replication as genetic dependencies in cohesin-mutant cells. We demonstrated increased levels of DNA damage and sensitivity of cohesin-mutant cells to poly(ADP-ribose) polymerase (PARP) inhibition. We developed a mouse model of MDS in which Stag2 mutations arose as clonal secondary lesions in the background of clonal hematopoiesis driven by tet methylcytosine dioxygenase 2 (Tet2) mutations and demonstrated selective depletion of cohesin-mutant cells with PARP inhibition in vivo. Finally, we demonstrated a shift from STAG2- to STAG1-containing cohesin complexes in cohesin-mutant cells, which was associated with longer DNA loop extrusion, more intermixing of chromatin compartments, and increased interaction with PARP and replication protein A complex. Our findings inform the biology and therapeutic opportunities for cohesin-mutant malignancies.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Damage
- DNA Repair/genetics
- Disease Models, Animal
- Female
- Humans
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Mutant Strains
- Mice, SCID
- Mice, Transgenic
- Mutation
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Nuclear Proteins/genetics
- Phthalazines/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- U937 Cells
- Xenograft Model Antitumor Assays
- Cohesins
Collapse
Affiliation(s)
- Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Anne-Laure Valton
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Mounica Vallurupalli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Amie Holmes
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - J. Erika Haydu
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | | | - Melanie Donahue
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Sebastian Koochaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sergey V. Venev
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeanne Rivera
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Edwin Chen
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kasper Lage
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Monica Schenone
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Steven A. Carr
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Elizabeth A. Morgan
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
308
|
Sasaki M, Miyoshi N, Fujino S, Saso K, Ogino T, Takahashi H, Uemura M, Yamamoto H, Matsuda C, Yasui M, Ohue M, Mizushima T, Doki Y, Eguchi H. The meiosis-specific cohesin component stromal antigen 3 promotes cell migration and chemotherapeutic resistance in colorectal cancer. Cancer Lett 2021; 497:112-122. [PMID: 33039558 DOI: 10.1016/j.canlet.2020.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Chromosome instability is one of the hallmarks of cancer. Stromal antigen (STAG) 3 is a core component of the meiosis-specific cohesin complex, which regulates sister chromatid cohesion. Although aberrantly activated genes encoding the cohesin complex have been identified in cancers, little is known about the role of STAG3 in colorectal cancer (CRC). Here, we evaluated the prognostic impact and role of STAG3 in CRC. Analysis of 172 CRC surgical specimens revealed that high STAG3 expression was associated with poor prognosis. STAG3 knockdown inhibited cell migration and increased drug sensitivity to oxaliplatin, 5-fluorouracil, irinotecan hydrochloride hydrate, and BRAF inhibitor in CRC cell lines. The enhanced drug sensitivity was also confirmed in a human organoid established from a CRC specimen. Moreover, suppression of STAG3 increased γH2AX foci. Particularly, in BRAF-mutant CRC cells, STAG3 silencing suppressed the expression of snail family transcriptional repressor 1 and phosphorylation of extracellular signal-regulated kinase via upregulation of dual-specificity phosphatase 6. Our findings suggest that STAG3 is related to poor clinical outcomes and promotes metastasis and chemotherapeutic resistance in CRC. STAG3 may be a novel prognostic marker and potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Masaru Sasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Innovative Oncology Research and Regenerative Medicine, Osaka International Cancer Institute, 3-1-69, Otemae, Chuou-ku, Osaka, 537-8511, Japan.
| | - Shiki Fujino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Innovative Oncology Research and Regenerative Medicine, Osaka International Cancer Institute, 3-1-69, Otemae, Chuou-ku, Osaka, 537-8511, Japan
| | - Kazuhiro Saso
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuou-ku, Osaka, 537-8511, Japan
| | - Masayoshi Yasui
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuou-ku, Osaka, 537-8511, Japan
| | - Masayuki Ohue
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuou-ku, Osaka, 537-8511, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
309
|
Reilly A, Doulatov S. Induced pluripotent stem cell models of myeloid malignancies and clonal evolution. Stem Cell Res 2021; 52:102195. [PMID: 33592565 PMCID: PMC10115516 DOI: 10.1016/j.scr.2021.102195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of cells from patients with genetic disorders to pluripotency is a promising avenue to understanding disease biology. A number of induced pluripotent stem cell (iPSC) models of inherited monogenic blood disorders have been reported over the past decade. However, the application of iPSCs for modeling of hematological malignancies has only recently been explored. Blood malignancies comprise a spectrum of genetically heterogeneous disorders marked by the acquisition of somatic mutations and chromosomal aberrations. This genetic heterogeneity presents unique challenges for iPSC modeling, but also opportunities to capture genetically distinct states and generate models of stepwise progression from normal to malignant hematopoiesis. Here we briefly review the current state of this field, highlighting current models of acquired pre-malignant and malignant blood disorders and clonal evolution, and challenges including barriers to reprogramming and differentiation of iPSCs into bona fide hematopoietic stem cells.
Collapse
Affiliation(s)
- Andreea Reilly
- Division of Hematology, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, United States
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
310
|
Starks ER, Swanson L, Docking TR, Bosdet I, Munro S, Moore RA, Karsan A. Assessing Limit of Detection in Clinical Sequencing. J Mol Diagn 2021; 23:455-466. [PMID: 33486075 DOI: 10.1016/j.jmoldx.2020.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/05/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022] Open
Abstract
Clinical reporting of solid tumor sequencing requires reliable assessment of the accuracy and reproducibility of each assay. Somatic mutation variant allele fractions may be below 10% in many samples due to sample heterogeneity, tumor clonality, and/or sample degradation in fixatives such as formalin. The toolkits available to the clinical sequencing community for correlating assay design parameters with assay sensitivity remain limited, and large-scale empirical assessments are often relied upon due to the lack of clear theoretical grounding. To address this uncertainty, a theoretical model was developed for predicting the expected variant calling sensitivity for a given library complexity and sequencing depth. Binomial models were found to be appropriate when assay sensitivity was only limited by library complexity or sequencing depth, but functional scaling for library complexity was necessary when both library complexity and sequencing depth were co-limiting. This model was empirically validated with sequencing experiments by using a series of DNA input amounts and sequencing depths. Based on these findings, a workflow is proposed for determining the limiting factors to sensitivity in different assay designs, and the formulas for these scenarios are presented. The approach described here provides designers of clinical assays with the methods to theoretically predict assay design outcomes a priori, potentially reducing burden in clinical tumor assay design and validation efforts.
Collapse
Affiliation(s)
- Elizabeth R Starks
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.
| | - Lucas Swanson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - T Roderick Docking
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Ian Bosdet
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Munro
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Aly Karsan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
311
|
Saeed BR, Manta L, Raffel S, Pyl PT, Buss EC, Wang W, Eckstein V, Jauch A, Trumpp A, Huber W, Ho AD, Lutz C. Analysis of nonleukemic cellular subcompartments reconstructs clonal evolution of acute myeloid leukemia and identifies therapy-resistant preleukemic clones. Int J Cancer 2021; 148:2825-2838. [PMID: 33411954 DOI: 10.1002/ijc.33461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/16/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
To acquire a better understanding of clonal evolution of acute myeloid leukemia (AML) and to identify the clone(s) responsible for disease recurrence, we have comparatively studied leukemia-specific mutations by whole-exome-sequencing (WES) of both the leukemia and the nonleukemia compartments derived from the bone marrow of AML patients. The T-lymphocytes, B-lymphocytes and the functionally normal hematopoietic stem cells (HSC), that is, CD34+ /CD38- /ALDH+ cells for AML with rare-ALDH+ blasts (<1.9% ALDH+ cells) were defined as the nonleukemia compartments. WES identified 62 point-mutations in the leukemia compartment derived from 12 AML-patients at the time of diagnosis and 73 mutations in 3 matched relapse cases. Most patients (8/12) showed 4 to 6 point-mutations per sample at diagnosis. Other than the mutations in the recurrently mutated genes such as DNMT3A, NRAS and KIT, we were able to identify novel point-mutations that have not yet been described in AML. Some leukemia-specific mutations and cytogenetic abnormalities including DNMT3A(R882H), EZH2(I146T) and inversion(16) were also detectable in the respective T-lymphocytes, B-lymphocytes and HSC in 5/12 patients, suggesting that preleukemia HSC might represent the source of leukemogenesis for these cases. The leukemic evolution was reconstructed for five cases with detectable preleukemia clones, which were tracked in follow-up and relapse samples. Four of the five patients with detectable preleukemic mutations developed relapse. The presence of leukemia-specific mutations in these nonleukemia compartments, especially after chemotherapy or after allogeneic stem cell transplantation, is highly relevant, as these could be responsible for relapse. This discovery may facilitate the identification of novel targets for long-term cure.
Collapse
Affiliation(s)
- Borhan R Saeed
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Linda Manta
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Simon Raffel
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Theodor Pyl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Division of Surgery, Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Eike C Buss
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Wenwen Wang
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Volker Eckstein
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Andreas Trumpp
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Anthony D Ho
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Christoph Lutz
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Praxis for Hematology and Oncology Koblenz, Koblenz, Germany
| |
Collapse
|
312
|
Venugopal K, Feng Y, Shabashvili D, Guryanova OA. Alterations to DNMT3A in Hematologic Malignancies. Cancer Res 2021; 81:254-263. [PMID: 33087320 PMCID: PMC7855745 DOI: 10.1158/0008-5472.can-20-3033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
In the last decade, large-scale genomic studies in patients with hematologic malignancies identified recurrent somatic alterations in epigenetic modifier genes. Among these, the de novo DNA methyltransferase DNMT3A has emerged as one of the most frequently mutated genes in adult myeloid as well as lymphoid malignancies and in clonal hematopoiesis. In this review, we discuss recent advances in our understanding of the biochemical and structural consequences of DNMT3A mutations on DNA methylation catalysis and binding interactions and summarize their effects on epigenetic patterns and gene expression changes implicated in the pathogenesis of hematologic malignancies. We then review the role played by mutant DNMT3A in clonal hematopoiesis, accompanied by its effect on immune cell function and inflammatory responses. Finally, we discuss how this knowledge informs therapeutic approaches for hematologic malignancies with mutant DNMT3A.
Collapse
Affiliation(s)
- Kartika Venugopal
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida
| | - Yang Feng
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida
| | - Daniil Shabashvili
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida
| | - Olga A Guryanova
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida.
- University of Florida Health Cancer Center, Gainesville, Florida
| |
Collapse
|
313
|
Lee HR, Lee GY, Kim EW, Kim HJ, Lee M, Humphries RK, Oh IH. Reversible switching of leukemic cells to a drug-resistant, stem-like subset via IL-4 mediated cross-talk with mesenchymal stroma. Haematologica 2021; 107:381-392. [PMID: 33440923 PMCID: PMC8804570 DOI: 10.3324/haematol.2020.269944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 11/13/2022] Open
Abstract
Chemoresistance of leukemic cells has largely been attributed to clonal evolution secondary to accumulating mutations. Here, we show that a subset of leukemic blasts in contact with the mesenchymal stroma undergo cellular conversion into a distinct cell type that exhibits a stem cell-like phenotype and chemoresistance. These stroma-induced changes occur in a reversible and stochastic manner driven by cross-talk, whereby stromal contact induces interleukin-4 in leukemic cells that in turn targets the mesenchymal stroma to facilitate the development of new subset. This mechanism was dependent on interleukin-4-mediated upregulation of vascular cell adhesion molecule- 1 in mesenchymal stroma, causing tight adherence of leukemic cells to mesenchymal progenitors for generation of new subsets. Together, our study reveals another class of chemoresistance in leukemic blasts via functional evolution through stromal cross-talk, and demonstrates dynamic switching of leukemic cell fates that could cause a non-homologous response to chemotherapy in concert with the patient-specific microenvironment.
Collapse
Affiliation(s)
- Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University, Seoul
| | - Ga-Young Lee
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University, Seoul
| | - Eung-Won Kim
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University, Seoul
| | - Hee-Je Kim
- Division of Hematology, Department of Internal Medicine, St Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang-si, Gyeonggi-do
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada; Department of Medicine, University of British Columbia, Vancouver
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University, Seoul.
| |
Collapse
|
314
|
Mitchell SR, Gopakumar J, Jaiswal S. Insights into clonal hematopoiesis and its relation to cancer risk. Curr Opin Genet Dev 2021; 66:63-69. [PMID: 33422951 DOI: 10.1016/j.gde.2020.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
In the multi-hit model of carcinogenesis, a precancerous state often precedes overt malignancy. Identification of these states has been of great interest as they allow for early identification of at-risk individuals before the appearance of a future cancer. One such condition has recently been described for blood cancers: Clonal Hematopoiesis of Indeterminate Potential (CHIP). Recent research advances have elucidated the risk of progression of CHIP to myeloid malignancies, its potential as a precursor for non-myeloid blood cancers, and its association with non-hematological cancers. Understanding the evolution of CHIP to hematological malignancy may help identify CHIP carriers at high risk of transformation and lead to the development of targeted therapies that can be deployed preemptively.
Collapse
Affiliation(s)
- Shaneice R Mitchell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, United States
| | - Jayakrishnan Gopakumar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, United States
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94304, United States.
| |
Collapse
|
315
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
316
|
Ogawa H, Sano S, Walsh K. Employing the CRISPR-Cas System for Clonal Hematopoiesis Research. INTERNATIONAL JOURNAL OF PHYSICAL MEDICINE & REHABILITATION 2021; 9:582. [PMID: 34395722 PMCID: PMC8360470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Clonal hematopoiesis is a state in which substantial fraction of hematopoietic stem cells acquire mutations in specific driver genes and expand in the absence of an overt hematological malignancy. Recent clinical studies have shown that clonal hematopoiesis increases likelihood of hematological malignancy and cardiovascular disease. While clinical studies have identified countless candidate driver genes associated with clonal hematopoiesis, experimental studies are required to evaluate causal and mechanistic relationships with disease processes. This task is technically difficult and expensive to achieve with traditional genetically engineered mice. The versatility and programmability of CRISPR-Cas system enables investigators to evaluate the pathogenesis of each mutation in experimental systems. Technical refinements have enabled gene editing in a cell type specific manner and at a single base pair resolution. Here, we summarize strategies to apply CRISPR-Cas system to experimental studies of clonal hematopoiesis and concerns that should be addressed.
Collapse
Affiliation(s)
- Hayato Ogawa
- Department of Cardiovascular Research, University of Virginia, Charlottesville, Virginia, United States,Department of Hematovascular Biology, University of Virginia, Charlottesville, Virginia, United States
| | - Soichi Sano
- Department of Cardiovascular Research, University of Virginia, Charlottesville, Virginia, United States,Department of Hematovascular Biology, University of Virginia, Charlottesville, Virginia, United States,Department of Cardiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kenneth Walsh
- Department of Cardiovascular Research, University of Virginia, Charlottesville, Virginia, United States,Department of Hematovascular Biology, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
317
|
Doulatov S, Papapetrou EP. Studying clonal evolution of myeloid malignancies using induced pluripotent stem cells. Curr Opin Hematol 2021; 28:50-56. [PMID: 33264225 PMCID: PMC7821967 DOI: 10.1097/moh.0000000000000620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Myeloid malignancies comprise a spectrum of genetically heterogeneous disorders marked by the stepwise acquisition of somatic mutations and clonal evolution. The blood and bone marrow of patients typically consists of a mix of different clones and subclones along the path of clonal evolution that cannot be deconvoluted with most current approaches. Here, we review the application of induced pluripotent stem cell (iPSC) technology to the study of the clonal architecture and clonal evolution of these diseases, focusing on myelodysplastic syndromes and acute myeloid leukemia. RECENT FINDINGS Reprogramming to pluripotency allows capture of the genomes of single somatic cells into stable iPSC lines. In addition, precise genome editing can introduce specific driver mutations, isolated, and in combinations, into normal iPSCs. Studies utilizing these approaches have elucidated the clonal composition and mutational order in patients with myeloid neoplasms. Importantly, they have also enabled functional interrogation of the cellular and molecular consequences of individual mutations and their combinations and allowed testing of the effects of drugs on distinct disease clones. SUMMARY Human iPSCs are important tools to elucidate the mechanisms of progression from normal to malignant haematopoiesis and empower drug testing and drug discovery.
Collapse
Affiliation(s)
- Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
318
|
Fraga de Andrade I, Mehta C, Bresnick EH. Post-transcriptional control of cellular differentiation by the RNA exosome complex. Nucleic Acids Res 2020; 48:11913-11928. [PMID: 33119769 PMCID: PMC7708067 DOI: 10.1093/nar/gkaa883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Given the complexity of intracellular RNA ensembles and vast phenotypic remodeling intrinsic to cellular differentiation, it is instructive to consider the role of RNA regulatory machinery in controlling differentiation. Dynamic post-transcriptional regulation of protein-coding and non-coding transcripts is vital for establishing and maintaining proteomes that enable or oppose differentiation. By contrast to extensively studied transcriptional mechanisms governing differentiation, many questions remain unanswered regarding the involvement of post-transcriptional mechanisms. Through its catalytic activity to selectively process or degrade RNAs, the RNA exosome complex dictates the levels of RNAs comprising multiple RNA classes, thereby regulating chromatin structure, gene expression and differentiation. Although the RNA exosome would be expected to control diverse biological processes, studies to elucidate its biological functions and how it integrates into, or functions in parallel with, cell type-specific transcriptional mechanisms are in their infancy. Mechanistic analyses have demonstrated that the RNA exosome confers expression of a differentiation regulatory receptor tyrosine kinase, downregulates the telomerase RNA component TERC, confers genomic stability and promotes DNA repair, which have considerable physiological and pathological implications. In this review, we address how a broadly operational RNA regulatory complex interfaces with cell type-specific machinery to control cellular differentiation.
Collapse
Affiliation(s)
- Isabela Fraga de Andrade
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| |
Collapse
|
319
|
Zhou J, Zhou XA, Zhang N, Wang J. Evolving insights: how DNA repair pathways impact cancer evolution. Cancer Biol Med 2020; 17:805-827. [PMID: 33299637 PMCID: PMC7721097 DOI: 10.20892/j.issn.2095-3941.2020.0177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Viewing cancer as a large, evolving population of heterogeneous cells is a common perspective. Because genomic instability is one of the fundamental features of cancer, this intrinsic tendency of genomic variation leads to striking intratumor heterogeneity and functions during the process of cancer formation, development, metastasis, and relapse. With the increased mutation rate and abundant diversity of the gene pool, this heterogeneity leads to cancer evolution, which is the major obstacle in the clinical treatment of cancer. Cells rely on the integrity of DNA repair machineries to maintain genomic stability, but these machineries often do not function properly in cancer cells. The deficiency of DNA repair could contribute to the generation of cancer genomic instability, and ultimately promote cancer evolution. With the rapid advance of new technologies, such as single-cell sequencing in recent years, we have the opportunity to better understand the specific processes and mechanisms of cancer evolution, and its relationship with DNA repair. Here, we review recent findings on how DNA repair affects cancer evolution, and discuss how these mechanisms provide the basis for critical clinical challenges and therapeutic applications.
Collapse
Affiliation(s)
- Jiadong Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ning Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Jiadong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
320
|
Chiara F, Indraccolo S, Trevisan A. Filling the gap between risk assessment and molecular determinants of tumor onset. Carcinogenesis 2020; 42:507-516. [PMID: 33319226 DOI: 10.1093/carcin/bgaa135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/22/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
In the past two decades, a ponderous epidemiological literature has causally linked tumor onset to environmental exposure to carcinogens. As consequence, risk assessment studies have been carried out with the aim to identify both predictive models of estimating cancer risks within exposed populations and establishing rules for minimizing hazard when handling carcinogenic compounds. The central assumption of these works is that neoplastic transformation is directly related to the mutational burden of the cell without providing further mechanistic clues to explain increased cancer onset after carcinogen exposure. Nevertheless, in the last few years, a growing number of studies have implemented the traditional models of cancer etiology, proposing that neoplastic transformation is a complex process in which several parameters and crosstalk between tumor and microenvironmental cells must be taken into account and integrated with mutagenesis. In this conceptual framework, the current strategies of risk assessment that are solely based on the 'mutator model' require an urgent update and revision to keep pace with advances in our understanding of cancer biology. We will approach this topic revising the most recent theories on the biological mechanisms involved in tumor formation in order to envision a roadmap leading to a future regulatory framework for a new, protective policy of risk assessment.
Collapse
Affiliation(s)
- Federica Chiara
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani, Padua, Italy
| | | | - Andrea Trevisan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani, Padua, Italy
| |
Collapse
|
321
|
Zhang S, Gong Y, Li C, Yang W, Li L. Beyond regulations at DNA levels: A review of epigenetic therapeutics targeting cancer stem cells. Cell Prolif 2020; 54:e12963. [PMID: 33314500 PMCID: PMC7848960 DOI: 10.1111/cpr.12963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/05/2023] Open
Abstract
In the past few years, the paramount role of cancer stem cells (CSCs), in terms of cancer initiation, proliferation, metastasis, invasion and chemoresistance, has been revealed by accumulating studies. However, this level of cellular plasticity cannot be entirely explained by genetic mutations. Research on epigenetic modifications as a complementary explanation for the properties of CSCs has been increasing over the past several years. Notably, therapeutic strategies are currently being developed in an effort to reverse aberrant epigenetic alterations using specific chemical inhibitors. In this review, we summarize the current understanding of CSCs and their role in cancer progression, and provide an overview of epigenetic alterations seen in CSCs. Importantly, we focus on primary cancer therapies that target the epigenetic modification of CSCs by the use of specific chemical inhibitors, such as histone deacetylase (HDAC) inhibitors, DNA methyltransferase (DNMT) inhibitors and microRNA‐based (miRNA‐based) therapeutics.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan Province, Chengdu, China
| | - Yanji Gong
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunjie Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenbin Yang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan Province, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
322
|
Thakral D, Gupta R, Sahoo RK, Verma P, Kumar I, Vashishtha S. Real-Time Molecular Monitoring in Acute Myeloid Leukemia With Circulating Tumor DNA. Front Cell Dev Biol 2020; 8:604391. [PMID: 33363162 PMCID: PMC7759522 DOI: 10.3389/fcell.2020.604391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
The clonal evolution of acute myeloid leukemia (AML), an oligoclonal hematological malignancy, is driven by a plethora of cytogenetic abnormalities, gene mutations, abnormal epigenetic patterns, and aberrant gene expressions. These alterations in the leukemic blasts promote clinically diverse manifestations with common characteristics of high relapse and drug resistance. Defining and real-time monitoring of a personalized panel of these predictive genetic biomarkers is rapidly being adapted in clinical setting for diagnostic, prognostic, and therapeutic decision-making in AML. A major challenge remains the frequency of invasive biopsy procedures that can be routinely performed for monitoring of AML disease progression. Moreover, a single-site biopsy is not representative of the tumor heterogeneity as it is spatially and temporally constrained and necessitates the understanding of longitudinal and spatial subclonal dynamics in AML. Hematopoietic cells are a major contributor to plasma cell-free DNA, which also contain leukemia-specific aberrations as the circulating tumor-derived DNA (ctDNA) fraction. Plasma cell-free DNA analysis holds immense potential as a minimally invasive tool for genomic profiling at diagnosis as well as clonal evolution during AML disease progression. With the technological advances and increasing sensitivity for detection of ctDNA, both genetic and epigenetic aberrations can be qualitatively and quantitatively evaluated. However, challenges remain in validating the utility of liquid biopsy tools in clinics, and universal recommendations are still awaited towards reliable diagnostics and prognostics. Here, we provide an overview on the scope of ctDNA analyses for prognosis, assessment of response to treatment and measurable residual disease, prediction of disease relapse, development of acquired resistance and beyond in AML.
Collapse
Affiliation(s)
- Deepshi Thakral
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Verma
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Indresh Kumar
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sangeeta Vashishtha
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
323
|
Roussel X, Daguindau E, Berceanu A, Desbrosses Y, Warda W, Neto da Rocha M, Trad R, Deconinck E, Deschamps M, Ferrand C. Acute Myeloid Leukemia: From Biology to Clinical Practices Through Development and Pre-Clinical Therapeutics. Front Oncol 2020; 10:599933. [PMID: 33363031 PMCID: PMC7757414 DOI: 10.3389/fonc.2020.599933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have provided several insights into acute myeloid leukemia. Studies based on molecular biology have identified eight functional mutations involved in leukemogenesis, including driver and passenger mutations. Insight into Leukemia stem cells (LSCs) and assessment of cell surface markers have enabled characterization of LSCs from hematopoietic stem and progenitor cells. Clonal evolution has been described as having an effect similar to that of microenvironment alterations. Such biological findings have enabled the development of new targeted drugs, including drug inhibitors and monoclonal antibodies with blockage functions. Some recently approved targeted drugs have resulted in new therapeutic strategies that enhance standard intensive chemotherapy regimens as well as supportive care regimens. Besides the progress made in adoptive immunotherapy, since allogenic hematopoietic stem cell transplantation enabled the development of new T-cell transfer therapies, such as chimeric antigen receptor T-cell and transgenic TCR T-cell engineering, new promising strategies that are investigated.
Collapse
Affiliation(s)
- Xavier Roussel
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Etienne Daguindau
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Ana Berceanu
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Yohan Desbrosses
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Walid Warda
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | | | - Rim Trad
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Marina Deschamps
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
324
|
A new era of immuno-oncology in acute myeloid leukemia - antibody-based therapies and immune checkpoint inhibition. Best Pract Res Clin Haematol 2020; 33:101220. [PMID: 33279176 DOI: 10.1016/j.beha.2020.101220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) remains a therapeutically challenging malignancy with high rate of relapse and poor outcomes. There has been increased understanding of the molecular characteristics of AML and the various roles of the immune system in its pathogenesis, the result of which has led to the study and development of multiple immune-based approaches for this disease. In this review, we aim to provide an overview of the recent advancements made in antibody-based approaches to the treatment of AML including monoclonal antibodies, antibody-drug conjugates, and immune checkpoint inhibition. In addition, we provide insight and discuss the promise of these agents, some of which may soon enter the therapeutic armamentarium we currently employ against this lethal disease.
Collapse
|
325
|
Savola P, Martelius T, Kankainen M, Huuhtanen J, Lundgren S, Koski Y, Eldfors S, Kelkka T, Keränen MA, Ellonen P, Kovanen PE, Kytölä S, Saarela J, Lähdesmäki H, Seppänen MR, Mustjoki S. Somatic mutations and T-cell clonality in patients with immunodeficiency. Haematologica 2020; 105:2757-2768. [PMID: 33256375 PMCID: PMC7716374 DOI: 10.3324/haematol.2019.220889] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency and other late-onset immunodeficiencies often co-manifest with autoimmunity and lymphoproliferation. The pathogenesis of most cases is elusive, as only a minor subset harbors known monogenic germline causes. The involvement of both B and T cells is however implicated. To study whether somatic mutations in CD4+ and CD8+ T cells associate with immunodeficiency, we recruited 17 patients and 21 healthy controls. Eight patients had late-onset common variable immunodeficiency and nine patients other immunodeficiency and/or severe autoimmunity. In total, autoimmunity occurred in 94% and lymphoproliferation in 65%. We performed deep sequencing of 2533 immune-associated genes from CD4+ and CD8+ cells. Deep T-cell receptor beta sequencing was used to characterize CD4+ and CD8+ T-cell receptor repertoires. The prevalence of somatic mutations was 65% in all immunodeficiency patients, 75% in common variable immunodeficiency and 48% in controls. Clonal hematopoiesis-associated variants in both CD4+ and CD8+ cells occurred in 24% of immunodeficiency patients. Results demonstrated mutations in known tumor suppressors, oncogenes, and genes that are critical for immune- and proliferative functions, such as STAT5B (two patients), C5AR1 (two patients), KRAS (one patient), and NOD2 (one patient). Additionally, as a marker of T-cell receptor repertoire perturbation, common variable immunodeficiency patients harbored increased frequencies of clones with identical complementarity determining region 3 sequences despite unique nucleotide sequences when compared to controls. In conclusion, somatic mutations in genes implicated for autoimmunity and lymphoproliferation are common in CD4+ and CD8+ cells of patients with immunodeficiency. They may contribute to immune dysregulation in a subset of immunodeficiency patients.
Collapse
Affiliation(s)
- Paula Savola
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Timi Martelius
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki, HUS Helsinki University Hospital, Helsinki
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
- Institute for Molecular Medicine Finland (FIMM), HILIFE, University of Helsinki, Helsinki
- Medical and Clinical Genetics, University of Helsinki and HUS Helsinki University Hospital, Helsinki
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Sofie Lundgren
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Yrjö Koski
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Samuli Eldfors
- Institute for Molecular Medicine Finland (FIMM), HILIFE, University of Helsinki, Helsinki
| | - Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Mikko A.I. Keränen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland (FIMM), HILIFE, University of Helsinki, Helsinki
| | - Panu E. Kovanen
- Department of Pathology, University of Helsinki and HUSLAB, HUS Helsinki University Hospital, Helsinki
| | - Soili Kytölä
- Laboratory of Genetics, HUSLAB, HUS Helsinki University Hospital, Helsinki
| | - Janna Saarela
- Institute for Molecular Medicine Finland (FIMM), HILIFE, University of Helsinki, Helsinki
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University School of Science, Espoo
| | - Mikko R.J. Seppänen
- Translational Immunology Research Program, University of Helsinki, Helsinki
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki, HUS Helsinki University Hospital, Helsinki
- Rare Diseases Center and Pediatric Research Center, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, Helsinki
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
326
|
Affiliation(s)
- John S Welch
- Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
327
|
Bersani F, Morena D, Picca F, Morotti A, Tabbò F, Bironzo P, Righi L, Taulli R. Future perspectives from lung cancer pre-clinical models: new treatments are coming? Transl Lung Cancer Res 2020; 9:2629-2644. [PMID: 33489823 PMCID: PMC7815341 DOI: 10.21037/tlcr-20-189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer currently stands out as both the most common and the most lethal type of cancer, the latter feature being partly explained by the fact that the majority of lung cancer patients already display advanced disease at the time of diagnosis. In recent years, the development of specific tyrosine kinase inhibitors (TKI) for the therapeutic benefit of patients harboring certain molecular aberrations and the introduction of prospective molecular profiling in the clinical practice have revolutionized the treatment of advanced non-small cell lung cancer (NSCLC). However, the identification of the best strategies to enhance treatment effectiveness and to avoid the critical phenomenon of drug tolerance and acquired resistance in patients with lung cancer still remains an unmet medical need. Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are two complementary approaches to define tumor heterogeneity and clonal evolution in a non-invasive manner and to perform functional studies on metastatic cells. Finally, the recent discovery that the tumor microenvironment architecture can be faithfully recapitulated in vitro represents a novel pre-clinical frontier with the potential to optimize more effective immunology-based precision therapies that could rapidly move forward to the clinic.
Collapse
Affiliation(s)
- Francesca Bersani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Deborah Morena
- Department of Oncology, University of Torino, 10043 Orbassano, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Francesca Picca
- Department of Oncology, University of Torino, 10043 Orbassano, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Fabrizio Tabbò
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, 10043 Orbassano, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Torino, 10043 Orbassano, Italy.,Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, 10043 Orbassano, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, 10043 Orbassano, Italy.,Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, 10043 Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Torino, 10043 Orbassano, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| |
Collapse
|
328
|
Shahar Gabay T, Chapal-Ilani N, Moskovitz Y, Biezuner T, Oron B, Brilon Y, Fridman-Dror A, Sabah R, Balicer R, Tanay A, Mendelson-Cohen N, Dann EJ, Fineman R, Kaushansky N, Yehudai-Reshef S, Zuckerman T, Shlush LI. Donor cell leukemia: reappearance of gene mutations in donor cells - more than an incidental phenomenon? Haematologica 2020; 105:2861-2863. [PMID: 33256388 PMCID: PMC7716367 DOI: 10.3324/haematol.2019.242347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Tal Shahar Gabay
- Hematology Research Center, Rambam Health Care Campus, Haifa, Israel
| | - Noa Chapal-Ilani
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoni Moskovitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Biezuner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Barak Oron
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yardena Brilon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Fridman-Dror
- Hematology Research Center, Rambam Health Care Campus, Haifa, Israel
| | - Rawan Sabah
- Hematology Research Center, Rambam Health Care Campus, Haifa, Israel
| | | | - Amos Tanay
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Netta Mendelson-Cohen
- Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad J Dann
- Department of Hematology and BMT, Rambam Health Care Campus, Haifa, Israel
| | - Riva Fineman
- Department of Hematology and BMT, Rambam Health Care Campus, Haifa, Israel
| | - Nathali Kaushansky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tsila Zuckerman
- Department of Hematology and BMT, Rambam Health Care Campus, Haifa, Israel
| | - Liran I Shlush
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
329
|
Roeder I, Glauche I. Overlooking the obvious? On the potential of treatment alterations to predict patient-specific therapy response. Exp Hematol 2020; 94:26-30. [PMID: 33246016 DOI: 10.1016/j.exphem.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Prognostic or therapeutic classification of diseases is often based on clinical or genetic characteristics at diagnosis or response landmarks determined at a certain time point of treatment. On the other hand, there are more and more means, such as molecular markers and sensor data, that allow for quantification of disease or therapeutic parameters over time. Although a general value of time-resolved disease monitoring is widely accepted, the full potential of using the available information on disease and treatment dynamics in the context of outcome prediction or individualized treatment optimization still seems to be, at least partially, overlooked. Within this Perspective, we summarize the conceptual idea of using dynamic information to obtain a better understanding of complex pathophysiological processes within their particular "host environment," which also allows us to intrinsically map patient-specific heterogeneity. Specifically, we discuss to which extent treatment alterations can provide additional information to understand a patient's individual condition and use this information to further adapt the therapeutic strategy. This conceptual discussion is illustrated by using examples from myeloid leukemias to which we recently applied this concept using statistical and mathematical modeling.
Collapse
Affiliation(s)
- Ingo Roeder
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Institute for Medical Informatics and Biometry, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Core Unit: Data Management and Analytics, Dresden, Germany.
| | - Ingmar Glauche
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Institute for Medical Informatics and Biometry, Dresden, Germany
| |
Collapse
|
330
|
Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 2020; 26:423-449. [PMID: 32154564 DOI: 10.1093/humupd/dmz047] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disease. Thus, it came as a complete surprise when it was reported recently that the majority of deep endometriosis lesions harbour somatic mutations and a sizeable portion of them contain known cancer-associated mutations (CAMs). Four more studies have since been published, all demonstrating the existence of CAMs in different subtypes of endometriosis. While the field is still evolving, the confirmation of CAMs has raised many questions that were previously overlooked. OBJECTIVE AND RATIONALE A comprehensive overview of CAMs in endometriosis has been produced. In addition, with the recently emerged understanding of the natural history of endometriotic lesions as well as CAMs in normal and apparently healthy tissues, this review attempts to address the following questions: Why has there been such a wild discrepancy in reported mutation frequencies? Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium? Would the presence of CAMs in endometriotic lesions increase the risk of cancer to the bearers? Why do endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart? What clinical implications, if any, do the CAMs have for the bearers? Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis? SEARCH METHODS The PubMed database was searched, from its inception to September 2019, for all papers in English using the term 'endometriosis and CAM', 'endometriosis and cancer-driver mutation', 'somatic mutations', 'fibrosis', 'fibrosis and epigenetic', 'CAMs and tumorigenesis', 'somatic mutation and normal tissues', 'oestrogen receptor and fibrosis', 'oxidative stress and fibrosis', 'ARID1A mutation', and 'Kirsten rat sarcoma mutation and therapeutics'. All retrieved papers were read and, when relevant, incorporated into the review results. OUTCOMES Seven papers that identified CAMs in endometriosis using various sequencing methods were retrieved, and their results were somewhat different. Yet, it is apparent that those using microdissection techniques and more accurate sequencing methods found more CAMs, echoing recent discoveries that apparently healthy tissues also harbour CAMs as a result of the replicative aging process. Hence endometriotic lesions, irrespective of subtype, if left intact, would generate CAMs as part of replicative aging, oxidative stress and perhaps other factors yet to be identified and, in some rare cases, develop cancer. The published data still are unable to paint a clear picture on pathogenesis of endometriosis. However, since endometriotic epithelial cells have a higher turnover than their stromal counterpart due to cyclic bleeding, and since the endometriotic stromal component can be formed by refresh influx of mesenchymal cells through epithelial-mesenchymal transition, endothelial-mesenchymal transition, mesothelial-mesenchymal transition and other processes as well as recruitment of bone-marrow-derived stem cells and outflow due to smooth muscle metaplasia, endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart. The epithelial and stromal cellular components develop in a dependent and co-evolving manner. Genes involved in CAMs are likely to be active players in lesional fibrogenesis, and hyperestrogenism and oxidative stress are likely drivers of both CAMs and fibrogenesis. Finally, endometriotic lesions harbouring CAMs would conceivably be more refractory to medical treatment, due, in no small part, to their high fibrotic content and reduced vascularity and cellularity. WIDER IMPLICATIONS The accumulating data on CAMs in endometriosis have shed new light on the pathogenesis and pathophysiology of endometriosis. They also suggest new challenges in management. The distinct yet co-evolving developmental trajectories of endometriotic stroma and epithelium underscore the importance of the lesional microenvironment and ever-changing cellular identity. Mutational profiling of normal endometrium from women of different ages and reproductive history is needed in order to gain a deeper understanding of the pathogenesis. Moreover, one area that has conspicuously received scant attention is the epigenetic landscape of ectopic, eutopic and normal endometrium.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| |
Collapse
|
331
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
332
|
Marensi V, Keeshan KR, MacEwan DJ. Pharmacological impact of FLT3 mutations on receptor activity and responsiveness to tyrosine kinase inhibitors. Biochem Pharmacol 2020; 183:114348. [PMID: 33242449 DOI: 10.1016/j.bcp.2020.114348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023]
Abstract
Acute myelogenous leukaemia (AML) is an aggressive blood cancer characterized by the rapid proliferation of immature myeloid blast cells, resulting in a high mortality rate. The 5-year overall survival rate for AML patients is approximately 25%. Circa 35% of all patients carry a mutation in the FLT3 gene which have a poor prognosis. Targeting FLT3 receptor tyrosine kinase has become a treatment strategy in AML patients possessing FLT3 mutations. The most common mutations are internal tandem duplications (ITD) within exon 14 and a single nucleotide polymorphism (SNP) that leads to a point mutation in the D835 of the tyrosine kinase domain (TKD). Variations in the ITD sequence and the occurrence of other point mutations that lead to ligand-independent FLT3 receptor activation create difficulties in developing personalized therapeutic strategies to overcome observed mutation-driven drug resistance. Midostaurin and quizartinib are tyrosine kinase inhibitors (TKIs) with inhibitory efficacy against FLT3-ITD, but exhibit limited clinical impact. In this review, we focus on the structural aspects of the FLT3 receptor and correlate those mutations with receptor activation and the consequences for molecular and clinical responsiveness towards therapies targeting FLT3-ITD positive AML.
Collapse
Affiliation(s)
- Vanessa Marensi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Karen R Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
333
|
Chen Z, Li S, Shen M, Lu X, Bao C, Chen D, Ding J, Wang Q, Huang S, Cong W, Han L, He X. The Mutational and Transcriptional Landscapes of Hepatocarcinogenesis in a Rat Model. iScience 2020; 23:101690. [PMID: 33163943 PMCID: PMC7600387 DOI: 10.1016/j.isci.2020.101690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) initiation is characterized by stepwise accumulation of molecular alterations, during which the early events are largely unknown. Here, we presented a comprehensive genomic and transcriptomic landscape at stages of hepatitis, cirrhosis, and HCC by using a diethylnitrosamine-induced rat HCC model. We observed the early occurrence of gene instability and aberrant cancer associated signaling pathways in liver hepatitis. We further characterized the progressive molecular changes during hepatocarcinogenesis, wherein the intense rivalry between tumor-suppressive and oncogenic strengths occurred in cirrhosis stage. Despite the significant pathological difference, mutation signatures and expression landscape are highly similar between hepatitis and cirrhosis stages. Furthermore, we identified PI3K-Akt signaling pathway as a key pathway in the process of hepatocarcinogenesis through integrative analysis, and PIK3CD is a potential biomarker indicating HCC recurrence. The dynamic immune response during hepatocarcinogenesis, such as continuous decline of monocytes, suggests an immunological intervention strategy beyond chemoprevention for liver cancer.
Collapse
Affiliation(s)
- Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shengli Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Mengting Shen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xinyuan Lu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Chunyang Bao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Di Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qifeng Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
334
|
Awada H, Thapa B, Visconte V. The Genomics of Myelodysplastic Syndromes: Origins of Disease Evolution, Biological Pathways, and Prognostic Implications. Cells 2020; 9:E2512. [PMID: 33233642 PMCID: PMC7699752 DOI: 10.3390/cells9112512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
The molecular pathogenesis of myelodysplastic syndrome (MDS) is complex due to the high rate of genomic heterogeneity. Significant advances have been made in the last decade which elucidated the landscape of molecular alterations (cytogenetic abnormalities, gene mutations) in MDS. Seminal experimental studies have clarified the role of diverse gene mutations in the context of disease phenotypes, but the lack of faithful murine models and/or cell lines spontaneously carrying certain gene mutations have hampered the knowledge on how and why specific pathways are associated with MDS pathogenesis. Here, we summarize the genomics of MDS and provide an overview on the deregulation of pathways and the latest molecular targeted therapeutics.
Collapse
Affiliation(s)
- Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| |
Collapse
|
335
|
Koenig K, Mims A, Levis MJ, Horowitz MM. The Changing Landscape of Treatment in Acute Myeloid Leukemia. Am Soc Clin Oncol Educ Book 2020; 40:1-12. [PMID: 32239961 DOI: 10.1200/edbk_279129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The treatment of acute myeloid leukemia is evolving, with increased understanding of molecular pathogenesis allowing better risk stratification and development of new therapies. Tests to identify and drugs to target specific molecular abnormalities are improving remission rates and prolonging survival in patients with high-risk disease. Allogeneic hematopoietic stem cell transplantation remains an important curative therapy, with advances in donor availability and approaches to reduce transplant-related mortality making it applicable in many more patients. Considerations in identifying appropriate patients for targeted therapy and transplantation are presented.
Collapse
Affiliation(s)
- Kristin Koenig
- Division of Hematology, Department of Medicine, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Alice Mims
- Division of Hematology, Department of Medicine, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Mark J Levis
- Hematologic Malignancies and Bone Marrow Transplant Program, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Mary M Horowitz
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
336
|
Dynamic clonal hematopoiesis and functional T-cell immunity in a supercentenarian. Leukemia 2020; 35:2125-2129. [PMID: 33184493 PMCID: PMC8257492 DOI: 10.1038/s41375-020-01086-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/03/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
337
|
Enhanced risk of cancer in companion animals as a response to the longevity. Sci Rep 2020; 10:19508. [PMID: 33177562 PMCID: PMC7658259 DOI: 10.1038/s41598-020-75684-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022] Open
Abstract
Cancer is caused by the lifetime accumulation of multiple somatic deformations of the genome and epigenome. At a very low rate, mistakes occur during genomic replication (e.g., mutations or modified epigenetic marks). Long-lived species, such as elephants, are suggested to have evolved mechanisms to slow down the cancer progression. Recently, the life span of companion dogs has increased considerably than before, owing to the improvement of their environment, which has led to an increase in the fraction of companion dogs developing cancer. These findings suggest that short-term responses of cancer risk to longevity differ from long-term responses. In this study, to clarify the situation, we used a simple multi-step model for cancer. The rates of events leading to malignant cancer are assumed to be proportional to those of genomic replication error. Perfect removal of replication error requires a large cost, resulting in the evolution of a positive rate of genomic replication error. The analysis of the model revealed: that, when the environment suddenly becomes benign, the relative importance of cancer enhances, although the age-dependent cancer risk remains unchanged. However, in the long run, the genomic error rate evolves to become smaller and mitigates the cancer risk.
Collapse
|
338
|
Characterizing the In Vivo Role of Candidate Leukemia Stem Cell Genes. Methods Mol Biol 2020. [PMID: 33165857 DOI: 10.1007/978-1-0716-0810-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Acute myeloid leukemia (AML) is a disease caused by multiple distinct genomic events in the hematopoietic stem cell and progenitor compartment. To gain insight into the link between genetic mutations in AML and their clinical significance, AML mouse models are often employed. However, the breeding of genetically modified mouse models is a resource-intensive and time-consuming endeavor. Here, we describe a viral-based protocol to study the role of candidate leukemia stem cell (LSC) genes. Transplantation of virally transduced oncogenic drivers for AML with virally altered expression of candidate leukemia associated genes in murine primary bone marrow cells, is an effective alternative method to assess the impact of cooperating mutations in AML.
Collapse
|
339
|
Bolton KL, Ptashkin RN, Gao T, Braunstein L, Devlin SM, Kelly D, Patel M, Berthon A, Syed A, Yabe M, Coombs CC, Caltabellotta NM, Walsh M, Offit K, Stadler Z, Mandelker D, Schulman J, Patel A, Philip J, Bernard E, Gundem G, Ossa JEA, Levine M, Martinez JSM, Farnoud N, Glodzik D, Li S, Robson ME, Lee C, Pharoah PDP, Stopsack KH, Spitzer B, Mantha S, Fagin J, Boucai L, Gibson CJ, Ebert BL, Young AL, Druley T, Takahashi K, Gillis N, Ball M, Padron E, Hyman DM, Baselga J, Norton L, Gardos S, Klimek VM, Scher H, Bajorin D, Paraiso E, Benayed R, Arcila ME, Ladanyi M, Solit DB, Berger MF, Tallman M, Garcia-Closas M, Chatterjee N, Diaz LA, Levine RL, Morton LM, Zehir A, Papaemmanuil E. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 2020; 52:1219-1226. [PMID: 33106634 PMCID: PMC7891089 DOI: 10.1038/s41588-020-00710-0] [Citation(s) in RCA: 458] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/02/2020] [Indexed: 01/30/2023]
Abstract
Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/pharmacology
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/radiation effects
- Child
- Child, Preschool
- Clonal Evolution
- Clonal Hematopoiesis/drug effects
- Clonal Hematopoiesis/genetics
- Cohort Studies
- Female
- Genetic Fitness
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid/genetics
- Male
- Middle Aged
- Models, Biological
- Mutation
- Neoplasms/drug therapy
- Neoplasms/radiotherapy
- Neoplasms, Second Primary/genetics
- Selection, Genetic
- Young Adult
Collapse
Affiliation(s)
- Kelly L Bolton
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan N Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Teng Gao
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lior Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean M Devlin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Kelly
- Department of Information Systems, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minal Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonin Berthon
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aijazuddin Syed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariko Yabe
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Catherine C Coombs
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole M Caltabellotta
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mike Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia Stadler
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Schulman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akshar Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Philip
- Department of Health Informatics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gunes Gundem
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan E Arango Ossa
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max Levine
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Noushin Farnoud
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dominik Glodzik
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonya Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul D P Pharoah
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Mantha
- Department of Medicine, Hematology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James Fagin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Boucai
- Department of Medicine, Endocrinology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew L Young
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd Druley
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Gillis
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Markus Ball
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jose Baselga
- Research & Development, AstraZeneca, Milton, Cambridge, UK
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Stuart Gardos
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Virginia M Klimek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Howard Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Dean Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Eder Paraiso
- Department of Medicine, Endocrinology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Strategy & Innovation, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Endocrinology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Endocrinology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin Tallman
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Luis A Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program in Precision Interception and Prevention, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Solid Tumor Division, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ross L Levine
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
340
|
Catalano G, Niscola P, Banella C, Diverio D, Trawinska MM, Fratoni S, Iazzoni R, De Fabritiis P, Abruzzese E, Noguera NI. NPM1 Mutated, BCR-ABL1 Positive Myeloid Neoplasms: Review of the Literature. Mediterr J Hematol Infect Dis 2020; 12:e2020083. [PMID: 33194157 PMCID: PMC7643801 DOI: 10.4084/mjhid.2020.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Breakpoint cluster region - Abelson (BCR-ABL1) chimeric protein and mutated Nucleophosmin (NPM1) are often present in hematological cancers, but they rarely coexist in the same disease. Both anomalies are considered founder mutations that inhibit differentiation and apoptosis, but BCR-ABL1 could act as a secondary mutation conferring a proliferative advantage to a pre-neoplastic clone. The 2016 World Health Organization (WHO) classification lists the provisional acute myeloid leukemia (AML) with BCR-ABL1, which must be diagnosed differentially from the rare blast phase (BP) onset of chronic myeloid leukemia (CML), mainly because of the different therapeutic approach in the use of tyrosine kinase inhibitors (TKI). Here we review the BCR/ABL1 plus NPMc+ published cases since 1975 and describe a case from our institution in order to discuss the clinical and molecular features of this rare combination, and report the latest acquisition about an occurrence that could pertain either to the rare AML BCR-ABL1 positive or the even rarer CML-BP with mutated NPM1 at the onset. Differential diagnosis is based on careful analysis of genotypic and phenotypic features and anamnestic, clinical evolution, and background data. Therapeutic decisions must consider the broader clinical aspects, the comparatively mild effects of TKI therapy versus the great benefit that might bring to most of the patients, as may be incidentally demonstrated by our case history.
Collapse
Affiliation(s)
- Gianfranco Catalano
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Neuro Oncohematology Unit, Santa Lucia Foundation, IRCCS. Rome, Italy
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Pasquale Niscola
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Cristina Banella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Neuro Oncohematology Unit, Santa Lucia Foundation, IRCCS. Rome, Italy
| | - Daniela Diverio
- Hematology, Department of Precision and Translational Medicine, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy
| | | | - Stefano Fratoni
- Department of Pathology (UOSD Anatomia Patologica) A.S.L. Roma2, Sant’ Eugenio Hospital, Rome, Italy
| | - Rita Iazzoni
- Department of Clinical Pathology (U.O.C. Laboratorio) A.S.L. Roma2, Sant’ Eugenio Hospital, Rome, Italy
| | - Paolo De Fabritiis
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Elisabetta Abruzzese
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Neuro Oncohematology Unit, Santa Lucia Foundation, IRCCS. Rome, Italy
| |
Collapse
|
341
|
Stanchina M, Soong D, Zheng-Lin B, Watts JM, Taylor J. Advances in Acute Myeloid Leukemia: Recently Approved Therapies and Drugs in Development. Cancers (Basel) 2020; 12:E3225. [PMID: 33139625 PMCID: PMC7692236 DOI: 10.3390/cancers12113225] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous malignancy comprised of various cytogenetic and molecular abnormalities that has notoriously been difficult to treat with an overall poor prognosis. For decades, treatment options were limited to either intensive chemotherapy with anthracycline and cytarabine-based regimens (7 + 3) or lower intensity regimens including hypomethylating agents or low dose cytarabine, followed by either allogeneic stem cell transplant or consolidation chemotherapy. Fortunately, with the influx of rapidly evolving molecular technologies and new genetic understanding, the treatment landscape for AML has dramatically changed. Advances in the formulation and delivery of 7 + 3 with liposomal cytarabine and daunorubicin (Vyxeos) have improved overall survival in secondary AML. Increased understanding of the genetic underpinnings of AML has led to targeting actionable mutations such as FLT3, IDH1/2 and TP53, and BCL2 or hedgehog pathways in more frail populations. Antibody drug conjugates have resurfaced in the AML landscape and there have been numerous advances utilizing immunotherapies including immune checkpoint inhibitors, antibody-drug conjugates, bispecific T cell engager antibodies, chimeric antigen receptor (CAR)-T therapy and the development of AML vaccines. While there are dozens of ongoing studies and new drugs in the pipeline, this paper serves as a review of the advances achieved in the treatment of AML in the last several years and the most promising future avenues of advancement.
Collapse
Affiliation(s)
- Michele Stanchina
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (D.S.)
| | - Deborah Soong
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (D.S.)
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Binbin Zheng-Lin
- Department of Medicine, Icahn School of Medicine Mount Sinai West-Morningside, New York, NY 10025, USA;
| | - Justin M. Watts
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| |
Collapse
|
342
|
Rovirosa L, Ramos-Morales A, Javierre BM. The Genome in a Three-Dimensional Context: Deciphering the Contribution of Noncoding Mutations at Enhancers to Blood Cancer. Front Immunol 2020; 11:592087. [PMID: 33117405 PMCID: PMC7575776 DOI: 10.3389/fimmu.2020.592087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 11/13/2022] Open
Abstract
Associations between blood cancer and genetic predisposition, including both inherited variants and acquired mutations and epimutations, have been well characterized. However, the majority of these variants affect noncoding regions, making their mechanisms difficult to hypothesize and hindering the translation of these insights into patient benefits. Fueled by unprecedented progress in next-generation sequencing and computational integrative analysis, studies have started applying combinations of epigenetic, genome architecture, and functional assays to bridge the gap between noncoding variants and blood cancer. These complementary tools have not only allowed us to understand the potential malignant role of these variants but also to differentiate key variants, cell-types, and conditions from misleading ones. Here, we briefly review recent studies that have provided fundamental insights into our understanding of how noncoding mutations at enhancers predispose and promote blood malignancies in the context of spatial genome architecture.
Collapse
Affiliation(s)
- Llorenç Rovirosa
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol, Badalona, Spain
| | - Alberto Ramos-Morales
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol, Badalona, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol, Badalona, Spain.,Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| |
Collapse
|
343
|
Heiblig M, Hachem-Khalife S, Willekens C, Micol JB, Paci A, Penard-Lacronique V, de Botton S. Enasidenib for the treatment of relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase 2 mutation. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1831909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mael Heiblig
- Inserm U1170, Gustave Roussy Cancer Campus, Université Paris-Sud, Villejuif, France
| | | | | | - Jean-Baptiste Micol
- Service d’Hématologie Clinique, Gustave Roussy Cancer Campus, Villejuif, France
| | - Angelo Paci
- Service De Pharmacologie, Département De Biologie Et Pathologie Médicales, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | | | - Stéphane de Botton
- Inserm U1170, Gustave Roussy Cancer Campus, Université Paris-Sud, Villejuif, France
- Service d’Hématologie Clinique, Gustave Roussy Cancer Campus, Villejuif, France
- Département d’Innovation Thérapeutique Et d’Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Faculté De Médecine Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
344
|
Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun 2020; 11:5327. [PMID: 33087716 PMCID: PMC7577981 DOI: 10.1038/s41467-020-19119-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 02/04/2023] Open
Abstract
Clonal diversity is a consequence of cancer cell evolution driven by Darwinian selection. Precise characterization of clonal architecture is essential to understand the evolutionary history of tumor development and its association with treatment resistance. Here, using a single-cell DNA sequencing, we report the clonal architecture and mutational histories of 123 acute myeloid leukemia (AML) patients. The single-cell data reveals cell-level mutation co-occurrence and enables reconstruction of mutational histories characterized by linear and branching patterns of clonal evolution, with the latter including convergent evolution. Through xenotransplantion, we show leukemia initiating capabilities of individual subclones evolving in parallel. Also, by simultaneous single-cell DNA and cell surface protein analysis, we illustrate both genetic and phenotypic evolution in AML. Lastly, single-cell analysis of longitudinal samples reveals underlying evolutionary process of therapeutic resistance. Together, these data unravel clonal diversity and evolution patterns of AML, and highlight their clinical relevance in the era of precision medicine. Understanding the evolutionary trajectory of cancer samples may enable understanding resistance to treatment. Here, the authors used single cell sequencing of a cohort of acute myeloid leukemia tumours and identify features of linear and branching evolution in tumours.
Collapse
|
345
|
Lawson ARJ, Abascal F, Coorens THH, Hooks Y, O'Neill L, Latimer C, Raine K, Sanders MA, Warren AY, Mahbubani KTA, Bareham B, Butler TM, Harvey LMR, Cagan A, Menzies A, Moore L, Colquhoun AJ, Turner W, Thomas B, Gnanapragasam V, Williams N, Rassl DM, Vöhringer H, Zumalave S, Nangalia J, Tubío JMC, Gerstung M, Saeb-Parsy K, Stratton MR, Campbell PJ, Mitchell TJ, Martincorena I. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 2020; 370:75-82. [PMID: 33004514 DOI: 10.1126/science.aba8347] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
The extent of somatic mutation and clonal selection in the human bladder remains unknown. We sequenced 2097 bladder microbiopsies from 20 individuals using targeted (n = 1914 microbiopsies), whole-exome (n = 655), and whole-genome (n = 88) sequencing. We found widespread positive selection in 17 genes. Chromatin remodeling genes were frequently mutated, whereas mutations were absent in several major bladder cancer genes. There was extensive interindividual variation in selection, with different driver genes dominating the clonal landscape across individuals. Mutational signatures were heterogeneous across clones and individuals, which suggests differential exposure to mutagens in the urine. Evidence of APOBEC mutagenesis was found in 22% of the microbiopsies. Sequencing multiple microbiopsies from five patients with bladder cancer enabled comparisons with cancer-free individuals and across histological features. This study reveals a rich landscape of mutational processes and selection in normal urothelium with large heterogeneity across clones and individuals.
Collapse
Affiliation(s)
- Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Laura O'Neill
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Keiran Raine
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 GD, Netherlands
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Krishnaa T A Mahbubani
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Bethany Bareham
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Timothy M Butler
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Alex Cagan
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Andrew Menzies
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Luiza Moore
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Alexandra J Colquhoun
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - William Turner
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Benjamin Thomas
- The Royal Melbourne Hospital, Parkville, Victoria 3010, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vincent Gnanapragasam
- Academic Urology Group, Department of Surgery and Oncology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cambridge Urology Translational Research and Clinical Trials Office, University of Cambridge CB2 0QQ, UK
| | - Nicholas Williams
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Doris M Rassl
- Department of Pathology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0AY, UK
| | - Harald Vöhringer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Sonia Zumalave
- Mobile Genomes and Disease, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Jyoti Nangalia
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - José M C Tubío
- Mobile Genomes and Disease, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
- The Biomedical Research Centre (CINBIO), University of Vigo, Vigo 36310, Spain
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK
| | - Thomas J Mitchell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
346
|
Al Zouabi L, Bardin AJ. Stem Cell DNA Damage and Genome Mutation in the Context of Aging and Cancer Initiation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036210. [PMID: 31932318 DOI: 10.1101/cshperspect.a036210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adult stem cells fuel tissue homeostasis and regeneration through their unique ability to self-renew and differentiate into specialized cells. Thus, their DNA provides instructions that impact the tissue as a whole. Since DNA is not an inert molecule, but rather dynamic, interacting with a myriad of chemical and physical factors, it encounters damage from both endogenous and exogenous sources. Damage to DNA introduces deviations from its normal intact structure and, if left unrepaired, may result in a genetic mutation. In turn, mutant genomes of stem and progenitor cells are inherited in cells of the lineage, thus eroding the genetic information that maintains homeostasis of the somatic cell population. Errors arising in stem and progenitor cells will have a substantially larger impact on the tissue in which they reside than errors occurring in postmitotic differentiated cells. Therefore, maintaining the integrity of genomic DNA within our stem cells is essential to protect the instructions necessary for rebuilding healthy tissues during homeostatic renewal. In this review, we will first discuss DNA damage arising in stem cells and cell- and tissue-intrinsic mechanisms that protect against harmful effects of this damage. Secondly, we will examine how erroneous DNA repair and persistent DNA damage in stem and progenitor cells impact stem cells and tissues in the context of cancer initiation and aging. Finally, we will discuss the use of invertebrate and vertebrate model systems to address unanswered questions on the role that DNA damage and mutation may play in aging and precancerous conditions.
Collapse
Affiliation(s)
- Lara Al Zouabi
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75248 Paris, France.,Sorbonne Universités, UPMC University, Paris 6, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75248 Paris, France.,Sorbonne Universités, UPMC University, Paris 6, France
| |
Collapse
|
347
|
Fang C, Rao S, Crispino JD, Ntziachristos P. Determinants and role of chromatin organization in acute leukemia. Leukemia 2020; 34:2561-2575. [PMID: 32690881 PMCID: PMC7999176 DOI: 10.1038/s41375-020-0981-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
DNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias. Cohesin and CTCF are critical for mediating looping and establishing boundaries within chromatin. Cells that harbor mutations in these genes display aberrant chromatin architecture and resulting differences in gene expression that contribute to leukemia initiation and progression. Here, we provide detailed discussion of the nature of 3D interactions and the way that they are disrupted in acute leukemia. Continued research in this area will provide new insights into the mechanisms of leukemogenesis and may shed light on novel treatment strategies.
Collapse
Affiliation(s)
- Celestia Fang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
348
|
|
349
|
Tsai FD, Lindsley RC. Clonal hematopoiesis in the inherited bone marrow failure syndromes. Blood 2020; 136:1615-1622. [PMID: 32736377 PMCID: PMC7530647 DOI: 10.1182/blood.2019000990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are characterized by ineffective hematopoiesis and increased risk for developing myeloid malignancy. The pathophysiologies of different IBMFSs are variable and can relate to defects in diverse biological processes, including DNA damage repair (Fanconi anemia), telomere maintenance (dyskeratosis congenita), and ribosome biogenesis (Diamond-Blackfan anemia, Shwachman-Diamond syndrome). Somatic mutations leading to clonal hematopoiesis have been described in IBMFSs, but the distinct mechanisms by which mutations drive clonal advantage in each disease and their associations with leukemia risk are not well understood. Clinical observations and laboratory models of IBMFSs suggest that the germline deficiencies establish a qualitatively impaired functional state at baseline. In this context, somatic alterations can promote clonal hematopoiesis by improving the competitive fitness of specific hematopoietic stem cell clones. Some somatic alterations relieve baseline fitness constraints by normalizing the underlying germline deficit through direct reversion or indirect compensation, whereas others do so by subverting senescence or tumor-suppressor pathways. Clones with normalizing somatic mutations may have limited transformation potential that is due to retention of functionally intact fitness-sensing and tumor-suppressor pathways, whereas those with mutations that impair cellular elimination may have increased risk for malignant transformation that is due to subversion of tumor-suppressor pathways. Because clonal hematopoiesis is not deterministic of malignant transformation, rational surveillance strategies will depend on the ability to prospectively identify specific clones with increased leukemic potential. We describe a framework by which an understanding of the processes that promote clonal hematopoiesis in IBMFSs may inform clinical surveillance strategies.
Collapse
Affiliation(s)
- Frederick D Tsai
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - R Coleman Lindsley
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
350
|
Jaiswal S. Clonal hematopoiesis and nonhematologic disorders. Blood 2020; 136:1606-1614. [PMID: 32736379 PMCID: PMC8209629 DOI: 10.1182/blood.2019000989] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/01/2020] [Indexed: 12/18/2022] Open
Abstract
Clonal expansions of mutated hematopoietic cells, termed clonal hematopoiesis, are common in aging humans. One expected consequence of mutation-associated clonal hematopoiesis is an increased risk of hematologic cancers, which has now been shown in several studies. However, the hematopoietic stem cells that acquire these somatic mutations also give rise to mutated immune effector cells, such as monocytes, granulocytes, and lymphocytes. These effector cells can potentially influence many disease states, especially those with a chronic inflammatory component. Indeed, several studies have now shown that clonal hematopoiesis associates with increased risk of atherosclerotic cardiovascular disease. Emerging data also associate clonal hematopoiesis with other nonhematologic diseases. Here, we will review recent studies linking clonal hematopoiesis to altered immune function, inflammation, and nonmalignant diseases of aging.
Collapse
Affiliation(s)
- Siddhartha Jaiswal
- Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, and Program in Immunology, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|