301
|
Xu X, Wang SS, Zhang L, Lu AX, Lin Y, Liu JX, Yan CH. Methylmercury induced ferroptosis by interference of iron homeostasis and glutathione metabolism in CTX cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122278. [PMID: 37517642 DOI: 10.1016/j.envpol.2023.122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Environmental methylmercury (MeHg) exposure has gained global attention owing to its serious health hazards, especially neurotoxicity. Ferroptosis is a novel form of programmed cell death characterized by lipid peroxidation and iron overload. However, the occurrence of ferroptosis and its underlying mechanisms have not been fully elucidated in the methylmercury-induced neurotoxicity and the role of Nrf2 in MeHg-induced ferroptosis remains unexplored. In this study, we verified that MeHg decreased cell viability in a dose- and time-dependent manner in the Rat Brain Astrocytes cells (CTX cells). MeHg (3.5 μmol/L) exposure induced CTX cells to undergo ferroptosis, as evidenced by glutathione (GSH) depletion, lipid peroxidation, and iron overload, which was significantly rescued by the ferroptosis-specific inhibitors Ferrostatin-1 and Deferoxamine. MeHg directly disrupted the process of GSH metabolism by downregulating of SLC7A11 and GPX4 and interfered with intracellular iron homeostasis through inhibition of iron storage and export. Simultaneously, the expression of Nrf2 was upregulated by MeHg in CTX cells. Hence, the inhibition of Nrf2 activity further downregulated the levels of GPX4, SLC7A11, FTH1, and SLC40A1, which aggravated MeHg-induced ferroptosis to a greater extent. Overall, our findings provided evidence that ferroptosis played a critical role in MeHg-induced neurotoxicity, and suppressing Nrf2 activity further exacerbated MeHg-induced ferroptosis in CTX cells.
Collapse
Affiliation(s)
- Xi Xu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Su Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
302
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
303
|
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (Beijing) 2023; 4:e363. [PMID: 37746665 PMCID: PMC10511835 DOI: 10.1002/mco2.363] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Arachidonic acid (AA), an n-6 essential fatty acid, is a major component of mammalian cells and can be released by phospholipase A2. Accumulating evidence indicates that AA plays essential biochemical roles, as it is the direct precursor of bioactive lipid metabolites of eicosanoids such as prostaglandins, leukotrienes, and epoxyeicosatrienoic acid obtained from three distinct enzymatic metabolic pathways: the cyclooxygenase pathway, lipoxygenase pathway, and cytochrome P450 pathway. AA metabolism is involved not only in cell differentiation, tissue development, and organ function but also in the progression of diseases, such as hepatic fibrosis, neurodegeneration, obesity, diabetes, and cancers. These eicosanoids are generally considered proinflammatory molecules, as they can trigger oxidative stress and stimulate the immune response. Therefore, interventions in AA metabolic pathways are effective ways to manage inflammatory-related diseases in the clinic. Currently, inhibitors targeting enzymes related to AA metabolic pathways are an important area of drug discovery. Moreover, many advances have also been made in clinical studies of AA metabolic inhibitors in combination with chemotherapy and immunotherapy. Herein, we review the discovery of AA and focus on AA metabolism in relation to health and diseases. Furthermore, inhibitors targeting AA metabolism are summarized, and potential clinical applications are discussed.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Yingxiang Liu
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Jin Sun
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zheng Guo
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Qiong Ma
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
304
|
He W, Gao Z, Liu S, Tan L, Wu Y, Liu J, Zheng Z, Fan W, Luo Y, Chen Z, Song S. G protein-coupled estrogen receptor activation by bisphenol-A disrupts lipid metabolism and induces ferroptosis in the liver. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122211. [PMID: 37454720 DOI: 10.1016/j.envpol.2023.122211] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
As a metabolic disruptor, bisphenol A (BPA) has been widely reported to disrupt lipid balance. Moreover, BPA has gained significant attention due to its estrogenic activity. While both ferroptosis and the G-protein-coupled estrogen receptor (GPER) have been implicated in lipid metabolism, their link to BPA-induced lipid accumulation remains unclear. In this study, chickens were randomly assigned to three groups and housed them for 4 weeks: a control group (0 μg/L BPA), a low dose group (50 μg/L BPA) and a high dose group (5000 μg/L BPA) to investigate the underlying mechanism of BPA-induced hepatotoxicity. Our results showed that BPA exposure significantly increased the contents of TG, TC, and LDL-C while decreasing HDL-C levels. We also found that BPA treatment altered the levels of genes involved in fatty acid β-oxidation (ampkα, cpt-1, and ppaα), synthesis (acc, fas, scd-1, and srebp-1) and absorption (lpl and cd36). Moreover, the results showed that the BPA group had higher levels of IL-1β, IL-18 and TNF-α. These results indicated that BPA exposure disrupted lipid metabolism and induced inflammation in the liver. We also demonstrated that BPA caused hepatic ferroptosis by raising iron content and the expression of genes related to lipid peroxidation (lpcat3, acsl4 and alox15), while reducing the expression of antioxidant system-associated genes (gpx4, slc7a11 and slc3a2). Importantly, BPA remarkably activated GPER expression in the liver. Interestingly, inhibition of GPER remarkably ameliorated BPA-induced lipid metabolism disorder, inflammatory response, and ferroptosis, indicating the crucial role of GPER in BPA-induced liver abnormalities. These findings highlight the link between GPER and ferroptosis in BPA-induced hepatotoxicity, providing new insights into the potential hazard of BPA.
Collapse
Affiliation(s)
- Wanqiu He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lei Tan
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, 518000, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ziyi Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Luo
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, 518000, China
| | - Zeguo Chen
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, 518000, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
305
|
Cao L, Zhao S, Han K, Fan L, Zhao C, Yin S, Hu H. Managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis. J Nutr Biochem 2023; 120:109427. [PMID: 37549833 DOI: 10.1016/j.jnutbio.2023.109427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death driven by excessive oxidation of polyunsaturated phospholipids on cellular membranes. Accumulating evidence suggests that ferroptosis has been implicated in the pathological process of various diseases, such as cardiovascular diseases, neurological diseases, liver diseases, kidney injury, lung injury, diabetes, and cancer. Targeting ferroptosis is therefore considered to be a reasonable strategy to fight against ferroptosis-associated diseases. Many dietary bioactive agents have been identified to be able to either suppress or promote ferroptosis, indicating that ferroptosis-based intervention by dietary approach may be an effective strategy for preventing and treating diseases associated with ferroptosis dysregulation. In this review, we summarize the present understanding of the functional role of ferroptosis in the pathogenesis of aforementioned diseases with an emphasis on the evidence of managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis and propose issues that need to be addressed to promote practical application of dietary approach targeting ferroptosis.
Collapse
Affiliation(s)
- Lixing Cao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Kai Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China.
| |
Collapse
|
306
|
Yu H, Zhu K, Wang M, Jiang X. TXNDC12 knockdown promotes ferroptosis by modulating SLC7A11 expression in glioma. Clin Transl Sci 2023; 16:1957-1971. [PMID: 37503932 PMCID: PMC10582671 DOI: 10.1111/cts.13604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death process mainly triggered by reactive oxygen species (ROS) and lipid peroxidation. Thioredoxin domain protein 12 (TXNDC12) promotes the development of some tumors; however, its function in tumor ferroptosis remains unclear. In this study, we found that knockdown of TXNDC12 promoted erastin-induced increase in ROS, lipid peroxidation, and Fe2+ levels, and decreased glutathione content. TXNDC12 is involved in ferroptosis by regulating SLC7A11. Further studies showed that TXNDC12 knockdown promoted an erastin-induced decrease in glioma cell viability. Overall, TXNDC12 played a significant role in ferroptosis by modulating SLC7A11 expression. Thus, TXNDC12 and ferroptosis may provide new targets for the treatment of gliomas.
Collapse
Affiliation(s)
- Hao Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kai Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Minjie Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
307
|
Hu S, Chu Y, Zhou X, Wang X. Recent advances of ferroptosis in tumor: From biological function to clinical application. Biomed Pharmacother 2023; 166:115419. [PMID: 37666176 DOI: 10.1016/j.biopha.2023.115419] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Ferroptosis is a recently recognized form of cell death with distinct features in terms of morphology, biochemistry, and molecular mechanisms. Unlike other types of cell death, ferroptosis is characterized by iron dependence, reactive oxygen species accumulation and lipid peroxidation. Recent studies have demonstrated that selective autophagy plays a vital role in the induction of ferroptosis, including ferritinophagy, lipophagy, clockophagy, and chaperone-mediated autophagy. Emerging evidence has indicated the involvement of ferroptosis in tumorigenesis through regulating various biological processes, including tumor growth, metastasis, stemness, drug resistance, and recurrence. Clinical and preclinical studies have found that novel therapies targeting ferroptosis exert great potential in the treatment of tumors. This review provides a comprehensive overview of the molecular mechanisms in ferroptosis, especially in autophagy-driven ferroptosis, discusses the recent advances in the biological roles of ferroptosis in tumorigenesis, and highlights the application of novel ferroptosis-targeted therapies in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yurou Chu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
308
|
Gong J, Liu Y, Wang W, He R, Xia Q, Chen L, Zhao C, Gao Y, Shi Y, Bai Y, Liao Y, Zhang Q, Zhu F, Wang M, Li X, Qin R. TRIM21-Promoted FSP1 Plasma Membrane Translocation Confers Ferroptosis Resistance in Human Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302318. [PMID: 37587773 PMCID: PMC10582465 DOI: 10.1002/advs.202302318] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by excessive accumulation of lipid peroxides, has become a promising strategy in cancer treatment. Cancer cells exploit antioxidant proteins, including Ferroptosis Suppressor Protein 1 (FSP1), to prevent ferroptosis. In this study, it is found that the E3 ubiquitin ligase TRIM21 bound to FSP1 and mediated its ubiquitination on K322 and K366 residues via K63 linkage, which is essential for its membrane translocation and ferroptosis suppression ability. It is further verified the protective role of the TRIM21-FSP1 axis in RSL3-induced ferroptosis in cancer cells and a subcutaneous tumor model. Moreover, TRIM21 is highly expressed in multiple gastrointestinal (GI) tumors, and its expression is further stimulated upon ferroptosis induction in cancer cells and the KPC mouse model. In summary, This study identifies TRIM21 as a negative regulator of ferroptosis through K63 ubiquitination of FSP1, which can serve as a therapeutic target to enhance the chemosensitivity of tumors based on ferroptosis induction.
Collapse
Affiliation(s)
- Jun Gong
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yuhui Liu
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western MedicineAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Ruizhi He
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Qilong Xia
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Lin Chen
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Chunle Zhao
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yang Gao
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yongkang Shi
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yu Bai
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yangwei Liao
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Qi Zhang
- Department of Plastic and Cosmetic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Feng Zhu
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Min Wang
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Xu Li
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Renyi Qin
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| |
Collapse
|
309
|
Zhang H, Sun C, Sun Q, Li Y, Zhou C, Sun C. Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies. Front Mol Biosci 2023; 10:1275774. [PMID: 37818101 PMCID: PMC10561097 DOI: 10.3389/fmolb.2023.1275774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic malignancy with a 5-year survival rate of less than 30%. Continuous updating of diagnostic and therapeutic strategies has not been effective in improving the clinical benefit of AML. AML cells are prone to iron metabolism imbalance due to their unique pathological characteristics, and ferroptosis is a novel cell death mode that is dominated by three cellular biological processes: iron metabolism, oxidative stress and lipid metabolism. An in-depth exploration of the unique ferroptosis mechanism in AML can provide new insights for the diagnosis and treatment of this disease. This study summarizes recent studies on ferroptosis in AML cells and suggests that the metabolic characteristics, gene mutation patterns, and dependence on mitochondria of AML cells greatly increase their susceptibility to ferroptosis. In addition, this study suggests that AML cells can establish a variety of strategies to evade ferroptosis to maintain their survival during the process of occurrence and development, and summarizes the related drugs targeting ferroptosis pathway in AML treatment, which provides development directions for the subsequent mechanism research and clinical treatment of AML.
Collapse
Affiliation(s)
- Hanyun Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
310
|
Bian C, Zheng Z, Su J, Chang S, Yu H, Bao J, Xin Y, Jiang X. Copper homeostasis and cuproptosis in tumor pathogenesis and therapeutic strategies. Front Pharmacol 2023; 14:1271613. [PMID: 37767404 PMCID: PMC10520736 DOI: 10.3389/fphar.2023.1271613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Copper is an indispensable micronutrient for the development and replication of all eukaryotes, and its redox properties are both harmful and beneficial to cells. An imbalance in copper homeostasis is thought to be involved in carcinogenesis. Importantly, cancer cell proliferation, angiogenesis, and metastasis cannot be separated from the effects of copper. Cuproposis is a copper-dependent form of cell death that differs from other existing modalities of regulatory cell death. The role of cuproptosis in the pathogenesis of the nervous and cardiovascular systems has been widely studied; however, its impact on malignant tumors is yet to be fully understood from a clinical perspective. Exploring signaling pathways related to cuproptosis will undoubtedly provide a new perspective for the development of anti-tumor drugs in the future. Here, we systematically review the systemic and cellular metabolic processes of copper and the regulatory mechanisms of cuproptosis in cancer. In addition, we discuss the possibility of targeting copper ion drugs to prolong the survival of cancer patients, with an emphasis on the most representative copper ionophores and chelators. We suggest that attention should be paid to the potential value of copper in the treatment of specific cancers.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
311
|
Han Q, Sun L, Xiang K. Research progress of ferroptosis in Alzheimer disease: A review. Medicine (Baltimore) 2023; 102:e35142. [PMID: 37682127 PMCID: PMC10489260 DOI: 10.1097/md.0000000000035142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Ferroptosis is an emerging form of programmed cell death triggered by iron-dependent lipid peroxidation and reactive oxygen species (ROS). Alzheimer disease (AD), a neurodegenerative disorder, is characterized by the degeneration of nerve cells. Recent research has indicated a significant association between ferroptosis and AD; however, the precise underlying mechanism remains elusive. It is postulated that ferroptosis may impact the accumulation of iron ions within the body by influencing iron metabolism, amino acid metabolism, and lipid metabolism, ultimately leading to the induction of ferroptosis in nerve cells. This article centers on the attributes and regulatory mechanism of ferroptosis, the correlation between ferroptosis and AD, and the recent advancements in the therapeutic approach of targeting ferroptosis for the treatment of AD. These results suggest that ferroptosis could potentially serve as a pivotal focus in future research on AD.
Collapse
Affiliation(s)
- Qi Han
- Doctor from Changchun University of Chinese Medicine, Changchun City, Jilin Province, China
| | - Li Sun
- Chief Physician of Jilin Academy of Chinese Medicine, Chaoyang District, Changchun City, Jilin Province, China
| | - Ke Xiang
- Chief Physician of Jilin Academy of Chinese Medicine, Chaoyang District, Changchun City, Jilin Province, China
| |
Collapse
|
312
|
Zhu Y, Chen Y, Xie D, Xia D, Kuang H, Guo X, Ning B. Macrophages depletion alleviates lung injury by modulating AKT3/GXP4 following ventilator associated pneumonia. Front Immunol 2023; 14:1260584. [PMID: 37731502 PMCID: PMC10507695 DOI: 10.3389/fimmu.2023.1260584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Background AKT3 appears to play a role in lung cancer. However, its role in ventilator-associated pneumonia is still unclear. Therefore, this study aimed to investigate the role of AKT3 in macrophages during ventilator-associated pneumonia. Methods The mRNA level of AKT3, Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), The data is analyzed using the Xiantao academic analysis tool. Additionally, the roles of AKT3 in ventilator-associated pneumonia (VAP) were investigated through in vivo experiments. Results AKT3 was differentially expressed in various normal and tumor tissues. Functional enrichment analysis indicated the immunomodulatory function and inflammatory response of AKT3 in lung cancer. Depletion of macrophages protected against lung epithelial cells and significantly decreased MMP9, MMP19, FTH, and FTL expression levels and increased GPX4 expression levels, while partially reversing the changes in macrophage. Mechanistically, macrophage depletion attenuates ferroptosis of lung epithelial cells by modulating AKT3 following VAP. Conclusion Collectively, this study suggests the need for further validation of the immunoregulatory function of AKT3 in lung cancer. Additionally, macrophage depletion mitigates lung injury by modulating the AKT3/GPX4 pathway in the context of VAP.
Collapse
Affiliation(s)
- Youfeng Zhu
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yang Chen
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Di Xie
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Xia
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Huanming Kuang
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xinmin Guo
- Department of Ultrasonography, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
313
|
Li X, Peng X, Zhou X, Li M, Chen G, Shi W, Yu H, Zhang C, Li Y, Feng Z, Li J, Liang S, He W, Gou X. Small extracellular vesicles delivering lncRNA WAC-AS1 aggravate renal allograft ischemia‒reperfusion injury by inducing ferroptosis propagation. Cell Death Differ 2023; 30:2167-2186. [PMID: 37532764 PMCID: PMC10482833 DOI: 10.1038/s41418-023-01198-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Ferroptosis is a predominant contributor to renal ischemia reperfusion injury (IRI) after kidney transplant, evoking delayed graft function and poorer long-term outcomes. The wide propagation of ferroptosis among cell populations in a wave-like manner, developing the "wave of ferroptosis" causes a larger area of tubular necrosis and accordingly aggravates renal allograft IRI. In this study, we decipher a whole new metabolic mechanism underlying ferroptosis and propose a novel spreading pathway of the "wave of ferroptosis" in the renal tissue microenvironment, in which renal IRI cell-secreted small extracellular vesicles (IRI-sEVs) delivering lncRNA WAC-AS1 reprogram glucose metabolism in adjacent renal tubular epithelial cell populations by inducing GFPT1 expression and increasing hexosamine biosynthesis pathway (HBP) flux, and consequently enhances O-GlcNAcylation. Additionally, BACH2 O-GlcNAcylation at threonine 389 in renal tubular epithelial cells prominently inhibits its degradation by ubiquitination and promotes importin α5-mediated nuclear translocation. We present the first evidence that intranuclear BACH2 suppresses SLC7A11 and GPX4 transcription by binding to their proximal promoters and decreases cellular anti-peroxidation capability, accordingly facilitating ferroptosis. Inhibition of sEV biogenesis and secretion by GW4869 and knockout of lncRNA WAC-AS1 in IRI-sEVs both unequivocally diminished the "wave of ferroptosis" propagation and protected against renal allograft IRI. The functional and mechanistic regulation of IRI-sEVs was further corroborated in an allograft kidney transplant model and an in situ renal IRI model. In summary, these findings suggest that inhibiting sEV-mediated lncRNA WAC-AS1 secretion and targeting HBP metabolism-induced BACH2 O-GlcNAcylation in renal tubular epithelial cells may serve as new strategies for protecting against graft IRI after kidney transplant.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xiang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Mao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Wei Shi
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Zhenwei Feng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Simin Liang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
314
|
Sun H, Peng G, Chen K, Xiong Z, Zhuang Y, Liu M, Ning X, Yang H, Deng J. Identification of EGFR as an essential regulator in chondrocytes ferroptosis of osteoarthritis using bioinformatics, in vivo, and in vitro study. Heliyon 2023; 9:e19975. [PMID: 37810027 PMCID: PMC10559678 DOI: 10.1016/j.heliyon.2023.e19975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Objective The mechanisms of chondrocytes ferroptosis in osteoarthritis (OA) have not yet been fully elucidated. This study aimed to identify key ferroptosis related genes (FRGs) involved in chondrocytes ferroptosis. Methods LASSO, SVM-RFE, and receiver operating characteristic curve (ROC) were performed to screen key differentially expressed FRGs (DEFRGs). Functional analyses were conducted using GO, and KEGG analyses. Unsupervised clustering analysis was used to identify ferroptosis related patterns. The CeRNA network was constructed to predict the upstream miRNAs and lncRNAs. Finally, we validated the role of EGFR in chondrocytes ferroptosis using in vivo and in vitro experiments. Results A total of 42 DEFRGs were identified between OA and normal cartilages. GO and KEGG analyses indicated that these DEFRGs were significantly engaged in ferroptosis related biological processes and pathways, such as cellular response to oxidative stress, positive regulation of programmed cell death, MAPK and PI3K-Akt signaling pathways. Moreover, four key DEFRGs, including ACSF2, AURKA, EGFR, and KLHL24, were considered as potential biomarkers of OA. Moreover, two distinct ferroptosis related patterns were determined, and a total of 882 differentially expressed genes were identified which might participate in extracellular matrix degradation and inflammatory response. In addition, the CeRNA network showed that EGFR could be competitively regulated by 3 lncRNAs and 4 miRNAs. Significantly, the expression of EGFR was downregulated in human OA cartilages, OA mouse model, and erastin induced chondrocytes. EGFR inhibition could induce the occurrence of chondrocytes ferroptosis and ECM degradation which could be reversed by the addition of Ferrostatin-1. Conclusion Our study has identified ACSF2, AURKA, EGFR, and KLHL24 as ferroptosis-related biomarkers in OA. Furthermore, we have conducted a preliminary investigation into the role of EGFR in regulating chondrocytes ferroptosis. These findings offer novel insights into the molecular mechanisms underlying OA.
Collapse
Affiliation(s)
- Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Kunhao Chen
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
315
|
Liu Z, Wang X, Li J, Yang X, Huang J, Ji C, Li X, Li L, Zhou J, Hu Y. Gambogenic acid induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the P53 signaling pathway. Chem Biol Interact 2023; 382:110602. [PMID: 37302459 DOI: 10.1016/j.cbi.2023.110602] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents with extremely poor prognosis. Gambogenic acid (GNA), one of the major bioactive ingredients isolated from Gamboge, has been shown to possess a multipotent antitumor effect, its activity on OS remains unclear yet. In this study, we found that GNA could trigger multiple cell death modalities, including ferroptosis and apoptosis in human OS cells, reduce the cell viability, inhibit the proliferation and invasiveness. Furthermore, GNA provoked oxidative stress leading to GSH depletion-inducing ROS generation and lipid peroxidation, altered iron metabolism represented by the induction of labile iron, mitochondrial membrane potential decreased, mitochondrial morphological changed, decreased the cell viability. In addition, ferroptosis inhibitors (Fer-1) and apoptosis inhibitors (NAC) can partially reversed GNA' s effects on OS cells. Further investigation showed that GNA augmented the expression of P53, bax, caspase 3 and caspase 9 and decreased the expression of Bcl-2, SLC7A11 and glutathione peroxidase-4 (GPX4). In vivo, GNA was showed to delay tumor growth significantly in axenograft osteosarcoma mouse model. In conclusion, this study reveals that GNA simultaneously triggers ferroptosis and apoptosis in human OS cells by inducing oxidative stress via the P53/SLC7A11/GPX4 axis.
Collapse
Affiliation(s)
- Zilin Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Jun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Chuang Ji
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Lan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China.
| | - Yong Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
316
|
Yu H, Chang Q, Sun T, He X, Wen L, An J, Feng J, Zhao Y. Metabolic reprogramming and polarization of microglia in Parkinson's disease: Role of inflammasome and iron. Ageing Res Rev 2023; 90:102032. [PMID: 37572760 DOI: 10.1016/j.arr.2023.102032] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Parkinson's disease (PD) is a slowly progressive neurodegenerative disease characterized by α-synuclein aggregation and dopaminergic neuronal death. Recent evidence suggests that neuroinflammation is an early event in the pathogenesis of PD. Microglia are resident immune cells in the central nervous system that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes as found in peripheral macrophages. To exert their immune functions, microglia respond to various stimuli, resulting in the flexible regulation of their metabolic pathways. Inflammasomes activation in microglia induces metabolic shift from oxidative phosphorylation to glycolysis, and leads to the polarization of microglia to pro-inflammatory M1 phenotype, finally causing neuroinflammation and neurodegeneration. In addition, iron accumulation induces microglia take an inflammatory and glycolytic phenotype. M2 phenotype microglia is more sensitive to ferroptosis, inhibition of which can attenuate neuroinflammation. Therefore, this review highlights the interplay between microglial polarization and metabolic reprogramming of microglia. Moreover, it will interpret how inflammasomes and iron regulate microglial metabolism and phenotypic shifts, which provides a promising therapeutic target to modulate neuroinflammation and neurodegeneration in PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
317
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|
318
|
Wang H, Zhang Z, Ruan S, Yan Q, Chen Y, Cui J, Wang X, Huang S, Hou B. Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol 2023; 13:1251561. [PMID: 37736551 PMCID: PMC10509481 DOI: 10.3389/fonc.2023.1251561] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ability of cancer stem cells (CSCs) to self-renew, differentiate, and generate new tumors is a significant contributor to drug resistance, relapse, and metastasis. Therefore, the targeting of CSCs for treatment is particularly important. Recent studies have demonstrated that CSCs are more susceptible to ferroptosis than non-CSCs, indicating that this could be an effective strategy for treating tumors. Ferroptosis is a type of programmed cell death that results from the accumulation of lipid peroxides caused by intracellular iron-mediated processes. CSCs exhibit different molecular characteristics related to iron and lipid metabolism. This study reviews the alterations in iron metabolism, lipid peroxidation, and lipid peroxide scavenging in CSCs, their impact on ferroptosis, and the regulatory mechanisms underlying iron metabolism and ferroptosis. Potential treatment strategies and novel compounds targeting CSC by inducing ferroptosis are also discussed.
Collapse
Affiliation(s)
- Hailiang Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Xinjian Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
319
|
Zheng X, Zhang C. The Regulation of Ferroptosis by Noncoding RNAs. Int J Mol Sci 2023; 24:13336. [PMID: 37686142 PMCID: PMC10488123 DOI: 10.3390/ijms241713336] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
As a novel form of regulated cell death, ferroptosis is characterized by intracellular iron and lipid peroxide accumulation, which is different from other regulated cell death forms morphologically, biochemically, and immunologically. Ferroptosis is regulated by iron metabolism, lipid metabolism, and antioxidant defense systems as well as various transcription factors and related signal pathways. Emerging evidence has highlighted that ferroptosis is associated with many physiological and pathological processes, including cancer, neurodegeneration diseases, cardiovascular diseases, and ischemia/reperfusion injury. Noncoding RNAs are a group of functional RNA molecules that are not translated into proteins, which can regulate gene expression in various manners. An increasing number of studies have shown that noncoding RNAs, especially miRNAs, lncRNAs, and circRNAs, can interfere with the progression of ferroptosis by modulating ferroptosis-related genes or proteins directly or indirectly. In this review, we summarize the basic mechanisms and regulations of ferroptosis and focus on the recent studies on the mechanism for different types of ncRNAs to regulate ferroptosis in different physiological and pathological conditions, which will deepen our understanding of ferroptosis regulation by noncoding RNAs and provide new insights into employing noncoding RNAs in ferroptosis-associated therapeutic strategies.
Collapse
Affiliation(s)
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| |
Collapse
|
320
|
Zeng F, Nijiati S, Tang L, Ye J, Zhou Z, Chen X. Ferroptosis Detection: From Approaches to Applications. Angew Chem Int Ed Engl 2023; 62:e202300379. [PMID: 36828775 DOI: 10.1002/anie.202300379] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Understanding the intricate molecular machinery that governs ferroptosis and leveraging this accumulating knowledge could facilitate disease prevention, diagnosis, treatment, and prognosis. Emerging approaches for the in situ detection of the major regulators and biological events across cellular, tissue, and in living subjects provide a multiscale perspective for studying ferroptosis. Furthermore, advanced applications that integrate ferroptosis detection and the latest technologies hold tremendous promise in ferroptosis research. In this review, we first briefly summarize the mechanisms and key regulators underlying ferroptosis. Ferroptosis detection approaches are then presented to delineate their design, mechanisms of action, and applications. Special interest is placed on advanced ferroptosis applications that integrate multifunctional platforms. Finally, we discuss the prospects and challenges of ferroptosis detection approaches and applications, with the aim of providing a roadmap for the theranostic development of a broad range of ferroptosis-related diseases.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Sureya Nijiati
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Longguang Tang
- Affiliated Gaozhou People's Hospital, Guangdong Medical University, Guangdong, 524023, China
| | - Jinmin Ye
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
321
|
Wang W, Ma F, Cheung YT, Zeng G, Zhou Y, Chen Z, Liang L, Luo T, Tong R. Marine Alkaloid Lepadins E and H Induce Ferroptosis for Cancer Chemotherapy. J Med Chem 2023; 66:11201-11215. [PMID: 37578947 DOI: 10.1021/acs.jmedchem.3c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Induction of ferroptosis emerges as an effective method for cancer treatment. With massive efforts to elucidate the ferroptosis mechanism, the development of new ferroptosis inducers proceeds rather slowly, with only a few small molecules identified. Herein, we report our discovery of marine alkaloid lepadins E and H as a new class of ferroptosis inducers. Our in vitro studies show that lepadins E and H exhibit significant cytotoxicity, promote p53 expression, increase ROS production and lipid peroxides, reduce SLC7A11 and GPX4 levels, and upregulate ACSL4 expression, all of which consistently support induction of ferroptosis through the classical p53-SLC7A11-GPX4 pathway. Our animal model study of lepadin H confirms its in vivo antitumor efficacy with negligible toxicity to normal organs. This work elucidates the mode of action of lepadins (E and H) and verifies their in vivo efficacy as a new class of ferroptosis inducers for anticancer therapy with translational potential.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Foqing Ma
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yuen Tsz Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Guihua Zeng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zijing Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lixin Liang
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Tuoping Luo
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
322
|
Qiao L, Li G, Yuan HX. Dexmedetomidine mediates the mechanism of action of ferroptosis in mice with Alzheimer's disease by regulating the mTOR-TFR1 pathway. World J Psychiatry 2023; 13:511-523. [PMID: 37701546 PMCID: PMC10494775 DOI: 10.5498/wjp.v13.i8.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder, and there are currently no effective drugs to delay progression of the disease. Ferroptosis may play a vital part in AD, and is therefore receiving increasing attention by researchers. AIM To investigate the effects of dexmedetomidine (Dex) on ferroptosis in AD mouse hippocampus. METHODS Hippocampal neurons (HNs) HT22 were induced by amyloid β-protein (Aβ) and both in vitro and in vivo AD mouse models were prepared via injections. The cell-counting kit-8 assay and immunofluorescence technique were adopted to determine cell proliferation activity and intracellular Fe2+ levels, and the TBA method and microplate method were employed for malondialdehyde and glutathione measurements, respectively. Hippocampal tissue damage was determined using hematoxylin and eosin and Nissl staining. Mouse learning and memory ability in each group was assessed by the Morris water maze test, and the expression levels of mammalian target of rapamycin (mTOR) signal molecules and ferroptosis-related proteins transferrin receptor 1 (TFR1), SLC7A11 and glutathione peroxidase 4 were examined by western blotting. RESULTS Dex enhanced lipid peroxidation and iron influx in mouse HNs in both in vitro and in vivo experiments, while inhibition of the mTOR axis blocked this process. These findings demonstrate that Dex can inhibit ferroptosis-induced damage in mouse HNs by activating mTOR-TFR1 signaling to regulate ferroptosis-associated proteins, thus alleviating cognitive dysfunction in AD mice. CONCLUSION Dex can activate the mTOR-TFR1 axis to inhibit ferroptosis in mouse HNs, thereby improving the learning and memory ability of mice.
Collapse
Affiliation(s)
- Li Qiao
- Intensive Care Unit, Peking University International Hospital, Beijing 102206, China
| | - Gang Li
- Intensive Care Unit, Peking University International Hospital, Beijing 102206, China
| | - Hong-Xun Yuan
- Intensive Care Unit, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
323
|
Lv M, Gong Y, Liu X, Wang Y, Wu Q, Chen J, Min Q, Zhao D, Li X, Chen D, Yang D, Yeerken D, Liu R, Li J, Zhang W, Zhan Q. CDK7-YAP-LDHD axis promotes D-lactate elimination and ferroptosis defense to support cancer stem cell-like properties. Signal Transduct Target Ther 2023; 8:302. [PMID: 37582812 PMCID: PMC10427695 DOI: 10.1038/s41392-023-01555-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
Reprogrammed cellular metabolism is essential for maintaining cancer stem cells (CSCs) state. Here, we report that mitochondrial D-lactate catabolism is a necessary initiating oncogenic event during tumorigenesis of esophageal squamous cell carcinoma (ESCC). We discover that cyclin-dependent kinase 7 (CDK7) phosphorylates nuclear Yes-associated protein 1 (YAP) at S127 and S397 sites and enhances its transcription function, which promotes D-lactate dehydrogenase (LDHD) protein expression. Moreover, LDHD is enriched significantly in ESCC-CSCs rather than differentiated tumor cells and high LDHD status is connected with poor prognosis in ESCC patients. Mechanistically, the CDK7-YAP-LDHD axis helps ESCC-CSCs escape from ferroptosis induced by D-lactate and generates pyruvate to satisfy energetic demands for their elevated self-renewal potential. Hence, we conclude that esophageal CSCs adopt a D-lactate elimination and pyruvate accumulation mode dependent on CDK7-YAP-LDHD axis, which drives stemness-associated hallmarks of ESCC-CSCs. Reasonably, targeting metabolic checkpoints may serve as an effective strategy for ESCC therapy.
Collapse
Affiliation(s)
- Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ying Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongyu Zhao
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Xianfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongshao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Di Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Danna Yeerken
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Rui Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518036, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
324
|
Xiao Y, Yu TJ, Xu Y, Ding R, Wang YP, Jiang YZ, Shao ZM. Emerging therapies in cancer metabolism. Cell Metab 2023; 35:1283-1303. [PMID: 37557070 DOI: 10.1016/j.cmet.2023.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Metabolic reprogramming in cancer is not only a biological hallmark but also reveals treatment vulnerabilities. Numerous metabolic molecules have shown promise as treatment targets to impede tumor progression in preclinical studies, with some advancing to clinical trials. However, the intricacy and adaptability of metabolic networks hinder the effectiveness of metabolic therapies. This review summarizes the metabolic targets for cancer treatment and provides an overview of the current status of clinical trials targeting cancer metabolism. Additionally, we decipher crucial factors that limit the efficacy of metabolism-based therapies and propose future directions. With advances in integrating multi-omics, single-cell, and spatial technologies, as well as the ability to track metabolic adaptation more precisely and dynamically, clinicians can personalize metabolic therapies for improved cancer treatment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tian-Jian Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rui Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
325
|
Wu D, Zhang K, Khan FA, Wu Q, Pandupuspitasari NS, Tang Y, Guan K, Sun F, Huang C. The emerging era of lactate: A rising star in cellular signaling and its regulatory mechanisms. J Cell Biochem 2023; 124:1067-1081. [PMID: 37566665 DOI: 10.1002/jcb.30458] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Cellular metabolites are ancient molecules with pleiotropic implications in health and disease. Beyond their cognate roles, they have signaling functions as the ligands for specific receptors and the precursors for epigenetic or posttranslational modifications. Lactate has long been recognized as a metabolic waste and fatigue product mainly produced from glycolytic metabolism. Recent evidence however suggests lactate is an unique molecule with diverse signaling attributes in orchestration of numerous biological processes, including tumor immunity and neuronal survival. The copious metabolic and non-metabolic functions of lactate mediated by its bidirectional shuttle between cells or intracellular organelles lead to a phenotype called "lactormone." Importantly, the mechanisms of lactate signaling, via acting as a molecular sensor and a regulator of NAD+ metabolism and AMP-activated protein kinase signaling, and via the newly identified lactate-driven lactylation, have been discovered. Further, we include a brief discussion about the autocrine regulation of efferocytosis by lactate in Sertoli cells which favoraerobic glycolysis. By emphasizing a repertoire of the most recent discovered mechanisms of lactate signaling, this review will open tantalizing avenues for future investigations cracking the regulatory topology of lactate signaling covered in the veil of mystery.
Collapse
Affiliation(s)
- Di Wu
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Kejia Zhang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, Ministry of Research and Technology National Research and Innovation Agency, Jakarta, Indonesia
| | - Qin Wu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, China
| | | | - Yuan Tang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Fei Sun
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| |
Collapse
|
326
|
Kim JW, Lee JY, Oh M, Lee EW. An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis. Exp Mol Med 2023; 55:1620-1631. [PMID: 37612411 PMCID: PMC10474074 DOI: 10.1038/s12276-023-01077-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation. This process contributes to cellular and tissue damage in various human diseases, such as cardiovascular diseases, neurodegeneration, liver disease, and cancer. Although polyunsaturated fatty acids (PUFAs) in membrane phospholipids are preferentially oxidized, saturated/monounsaturated fatty acids (SFAs/MUFAs) also influence lipid peroxidation and ferroptosis. In this review, we first explain how cells differentially synthesize SFA/MUFAs and PUFAs and how they control fatty acid pools via fatty acid uptake and β-oxidation, impacting ferroptosis. Furthermore, we discuss how fatty acids are stored in different lipids, such as diacyl or ether phospholipids with different head groups; triglycerides; and cholesterols. Moreover, we explain how these fatty acids are released from these molecules. In summary, we provide an integrated view of the diverse and dynamic metabolic processes in the context of ferroptosis by revisiting lipidomic studies. Thus, this review contributes to the development of therapeutic strategies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Ji-Yoon Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Mihee Oh
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
327
|
Endale HT, Tesfaye W, Mengstie TA. ROS induced lipid peroxidation and their role in ferroptosis. Front Cell Dev Biol 2023; 11:1226044. [PMID: 37601095 PMCID: PMC10434548 DOI: 10.3389/fcell.2023.1226044] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Reactive oxygen species (ROS) play a crucial part in the process of cell death, including apoptosis, autophagy, and ferroptosis. ROS involves in the oxidation of lipids and generate 4-hydroxynonenal and other compounds associated with it. Ferroptosis may be facilitated by lipid peroxidation of phospholipid bilayers. In order to offer novel ideas and directions for the investigation of disorders connected to these processes, we evaluate the function of ROS in lipid peroxidation which ultimately leads to ferroptosis as well as proposed crosstalk mechanisms between ferroptosis and other types programmed cell death.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tiget Ayelgn Mengstie
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
328
|
Ji B, Yang G, Jin H, Liu X, Li H, Pan L, Lu W, Zhu H, Li Y. Trends and hotspots of publications on ferroptosis: A 10 Year overview. Heliyon 2023; 9:e18950. [PMID: 37600367 PMCID: PMC10432723 DOI: 10.1016/j.heliyon.2023.e18950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Background Ferroptosis was proposed to be a type of programmed cell death in 2012. Ferroptosis plays a significant role in a variety of illnesses. Objective To better understand the direction of future research, we performed a bibliometric analysis to identify research hotspots with a focus on ferroptosis. Methods The search terms [TI = "ferroptosis" OR ("GSH" AND "GPX4") OR "lipid peroxidation" OR "iron homeostasis" OR "iron metabolism"] AND [PY = "2012-2022"] AND [DT = "Article OR Review"] AND [LA = "English"] were used to retrieve publications related to ferroptosis for a bibliometric analysis. We utilized Microsoft Excel to calculate the frequency and proportion of the published articles, VOSviewer to perform a co-occurrence analysis and for visualizing the data, CiteSpace to obtain a timeline of keywords and institutions, and RStudio to calculate citation metrics. As indicated by the analysis, indicators such as the number of publications, the most productive authors and coauthorship status, the distribution of publications by country, favoured journals, the most influential institutions and the most frequently cited documents are reported in this article. Results A total of 8009 publications were retrieved from the WOS core collection, and 197 papers published in 2023 were removed from this analysis. The remaining 7812 papers, which included 118 in the WOS collection, were incorporated into the bibliometric study. Conclusion The number of annual scientific publications on ferroptosis have been increasing each year. The academic communities represented by Tang, Daolin, Stockwell, Brent R., Wang, Fudi, and Conrad, Marcus were the most authoritative. China, USA, and Germany were the front-runners in the field of ferroptosis. Free Radical Biology and Medicine was the largest contributor of ferroptosis-related research, and Cell and Nature were the most influential journals to publish articles on ferroptosis. Columbia Univ and Univ Pittsburgh were the institutions that received the most attention. Recent research on ferroptosis has been focused on molecular mechanisms, particularly those in the contexts of various diseases, which will be a hotspot of future research. In addition, interdisciplinary ferroptosis and big-data research is expected to be a new frontier.
Collapse
Affiliation(s)
- Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linyuan Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenhao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heyuan Zhu
- Department of Orthopedics, Central Hospital of Loudi, Loudi, Hunan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
329
|
Lee S, Hwang N, Seok BG, Lee S, Lee SJ, Chung SW. Autophagy mediates an amplification loop during ferroptosis. Cell Death Dis 2023; 14:464. [PMID: 37491375 PMCID: PMC10368698 DOI: 10.1038/s41419-023-05978-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Ferroptosis, a programmed cell death, has been identified and associated with cancer and various other diseases. Ferroptosis is defined as a reactive oxygen species (ROS)-dependent cell death related to iron accumulation and lipid peroxidation, which is different from apoptosis, necrosis, autophagy, and other forms of cell death. However, accumulating evidence has revealed a link between autophagy and ferroptosis at the molecular level and has suggested that autophagy is involved in regulating the accumulation of iron-dependent lipid peroxidation and ROS during ferroptosis. Understanding the roles and pathophysiological processes of autophagy during ferroptosis may provide effective strategies for the treatment of ferroptosis-related diseases. In this review, we summarize the current knowledge regarding the regulatory mechanisms underlying ferroptosis, including iron and lipid metabolism, and its association with the autophagy pathway. In addition, we discuss the contribution of autophagy to ferroptosis and elucidate the role of autophagy as a ferroptosis enhancer during ROS-dependent ferroptosis.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, VA Palo Alto Health Care System and Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Byeong Geun Seok
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
| | - Sangguk Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, 34141, South Korea
| | - Su Wol Chung
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea.
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, 44610, South Korea.
| |
Collapse
|
330
|
Chen Z, Wang W, Abdul Razak SR, Han T, Ahmad NH, Li X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis 2023; 14:460. [PMID: 37488128 PMCID: PMC10366218 DOI: 10.1038/s41419-023-05930-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/24/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Ferroptosis is a recently discovered essential type of cell death that is mainly characterized by iron overload and lipid peroxidation. Emerging evidence suggests that ferroptosis is a double-edged sword in human cancer. However, the precise underlying molecular mechanisms and their differential roles in tumorigenesis are unclear. Therefore, in this review, we summarize and briefly present the key pathways of ferroptosis, paying special attention to the regulation of ferroptosis as well as its dual role as an oncogenic and as a tumor suppressor event in various human cancers. Moreover, multiple pharmacological ferroptosis activators are summarized, and the prospect of targeting ferroptosis in cancer therapy is further elucidated.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Pulau Pinang, Malaysia
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Weilong Wang
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, China
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Pulau Pinang, Malaysia
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Siti Razila Abdul Razak
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Tao Han
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, China
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Pulau Pinang, Malaysia.
| | - Xiumin Li
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang, 453003, Henan Province, China.
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P. R. China.
| |
Collapse
|
331
|
Gupta G, Bhat AA, Goyal A, Singla N, Gupta S, Sharma S, Bhatt S, Dua K. Exploring ACSL4/LPCAT3/ALOX15 and SLC7A11/GPX4/NFE2L2 as potential targets in ferroptosis-based cancer therapy. Future Med Chem 2023; 15:1209-1212. [PMID: 37503591 DOI: 10.4155/fmc-2023-0125] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Affiliation(s)
- Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Khandwa Road, Village Umrikheda, Near Toll Booth, Indore, Madhya Pradesh, 452020, India
| | - Sanjay Sharma
- Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Vile Parle West, Mumbai, Maharashtra, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune-411038, Maharashtra, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, New South Wales, 2007, Australia
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology, Sydney, New South Wales, 2007, Australia
| |
Collapse
|
332
|
Zhang Y, Yu W, Chen M, Zhang B, Zhang L, Li P. The applications of nanozymes in cancer therapy: based on regulating pyroptosis, ferroptosis and autophagy of tumor cells. NANOSCALE 2023. [PMID: 37377098 DOI: 10.1039/d3nr01722b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanozymes are nanomaterials with catalytic properties similar to those of natural enzymes, and they have recently been collectively identified as a class of innovative artificial enzymes. Nanozymes are widely used in various fields, such as biomedicine, due to their high catalytic activity and stability. Nanozymes can trigger changes in reactive oxygen species (ROS) levels in cells and the activation of inflammasomes, leading to the programmed cell death (PCD), including the pyroptosis, ferroptosis, and autophagy, of tumor cells. In addition, some nanozymes consume glucose, starving cancer cells and thus accelerating tumor cell death. In addition, the electric charge of the structure and the catalytic activity of nanozymes are sensitive to external factors such as light and electric and magnetic fields. Therefore, nanozymes can be used with different therapeutic methods, such as chemodynamic therapy (CDT), photodynamic therapy (PDT) and sonodynamic therapy (SDT), to achieve highly efficient antitumor effects. Many cancer therapies induce tumor cell death via the pyroptosis, ferroptosis, and autophagy of tumor cells mediated by nanozymes. We review the mechanisms of pyroptosis, ferroptosis, and autophagy in tumor development, as well as the potential application of nanozymes to regulate pyroptosis, ferroptosis, and autophagy in tumor cells.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Mengmeng Chen
- Qingdao Re-store Life Science Co., Ltd, Qingdao, Shandong, China
| | - Bingqiang Zhang
- Qingdao Re-store Life Science Co., Ltd, Qingdao, Shandong, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
333
|
Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR, Jiang X. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 2023; 186:2748-2764.e22. [PMID: 37267948 PMCID: PMC10330611 DOI: 10.1016/j.cell.2023.05.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
Ferroptosis, a cell death process driven by iron-dependent phospholipid peroxidation, has been implicated in various diseases. There are two major surveillance mechanisms to suppress ferroptosis: one mediated by glutathione peroxidase 4 (GPX4) that catalyzes the reduction of phospholipid peroxides and the other mediated by enzymes, such as FSP1, that produce metabolites with free radical-trapping antioxidant activity. In this study, through a whole-genome CRISPR activation screen, followed by mechanistic investigation, we identified phospholipid-modifying enzymes MBOAT1 and MBOAT2 as ferroptosis suppressors. MBOAT1/2 inhibit ferroptosis by remodeling the cellular phospholipid profile, and strikingly, their ferroptosis surveillance function is independent of GPX4 or FSP1. MBOAT1 and MBOAT2 are transcriptionally upregulated by sex hormone receptors, i.e., estrogen receptor (ER) and androgen receptor (AR), respectively. A combination of ER or AR antagonist with ferroptosis induction significantly inhibited the growth of ER+ breast cancer and AR+ prostate cancer, even when tumors were resistant to single-agent hormonal therapies.
Collapse
Affiliation(s)
- Deguang Liang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yan Feng
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zeda Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jinnie Kim
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyan Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wei Gu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
334
|
Giustizieri M, Petrillo S, D’Amico J, Torda C, Quatrana A, Vigevano F, Specchio N, Piemonte F, Cherubini E. The ferroptosis inducer RSL3 triggers interictal epileptiform activity in mice cortical neurons. Front Cell Neurosci 2023; 17:1213732. [PMID: 37396923 PMCID: PMC10311487 DOI: 10.3389/fncel.2023.1213732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures, which result from excessive, synchronous discharges of neurons in different brain areas. In about 30% of cases, epileptic discharges, which vary in their etiology and symptomatology, are difficult to treat with conventional drugs. Ferroptosis is a newly defined iron-dependent programmed cell death, characterized by excessive accumulation of lipid peroxides and reactive oxygen species. Evidence has been provided that ferroptosis is involved in epilepsy, and in particular in those forms resistant to drugs. Here, whole cell patch clamp recordings, in current and voltage clamp configurations, were performed from layer IV principal neurons in cortical slices obtained from adult mouse brain. Application of the ferroptosis inducer RAS-selective lethal 3 (RSL3) induced interictal epileptiform discharges which started at RSL3 concentrations of 2 μM and reached a plateau at 10 μM. This effect was not due to changes in active or passive membrane properties of the cells, but relied on alterations in synaptic transmission. In particular, interictal discharges were dependent on the excessive excitatory drive to layer IV principal cells, as suggested by the increase in frequency and amplitude of spontaneously occurring excitatory glutamatergic currents, possibly dependent on the reduction of inhibitory GABAergic ones. This led to an excitatory/inhibitory unbalance in cortical circuits. Interictal bursts could be prevented or reduced in frequency by the lipophilic antioxidant Vitamin E (30 μM). This study allows identifying new targets of ferroptosis-mediated epileptic discharges opening new avenues for the treatment of drug-resistant forms of epilepsy.
Collapse
Affiliation(s)
- Michela Giustizieri
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini Foundation, Rome, Italy
| | - Sara Petrillo
- Muscular and Neurodegenerative Diseases Laboratory, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Jessica D’Amico
- Muscular and Neurodegenerative Diseases Laboratory, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Caterina Torda
- Muscular and Neurodegenerative Diseases Laboratory, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Quatrana
- Muscular and Neurodegenerative Diseases Laboratory, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federico Vigevano
- Neurology Unit, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies (EpiCARE), Rome, Italy
| | - Fiorella Piemonte
- Muscular and Neurodegenerative Diseases Laboratory, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini Foundation, Rome, Italy
| |
Collapse
|
335
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNA-mediated modulation of ferroptosis in cardiovascular diseases. Biomed Pharmacother 2023; 164:114993. [PMID: 37302320 DOI: 10.1016/j.biopha.2023.114993] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Cardiovascular disease (CVD) is a major contributor to increasing morbidity and mortality worldwide and seriously threatens human health and life. Cardiomyocyte death is considered the pathological basis of various CVDs, including myocardial infarction, heart failure, and aortic dissection. Multiple mechanisms, such as ferroptosis, necrosis, and apoptosis, contribute to cardiomyocyte death. Among them, ferroptosis is an iron-dependent form of programmed cell death that plays a vital role in various physiological and pathological processes, from development and aging to immunity and CVD. The dysregulation of ferroptosis has been shown to be closely associated with CVD progression, yet its underlying mechanisms are still not fully understood. In recent years, a growing amount of evidence suggests that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are involved in the regulation of ferroptosis, thus affecting CVD progression. Some ncRNAs also exhibit potential value as biomarker and/or therapeutic target for patients with CVD. In this review, we systematically summarize recent findings on the underlying mechanisms of ncRNAs involved in ferroptosis regulation and their role in CVD progression. We also focus on their clinical applications as diagnostic and prognostic biomarkers as well as therapeutic targets in CVD treatment. DATA AVAILABILITY: No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
336
|
Gong S, Zhang A, Yao M, Xin W, Guan X, Qin S, Liu Y, Xiong J, Yang K, Xiong L, He T, Huang Y, Zhao J. REST contributes to AKI-to-CKD transition through inducing ferroptosis in renal tubular epithelial cells. JCI Insight 2023; 8:166001. [PMID: 37288660 PMCID: PMC10393228 DOI: 10.1172/jci.insight.166001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/20/2023] [Indexed: 06/09/2023] Open
Abstract
Ischemic-reperfusion injury (IRI) is a major pathogenic factor in acute kidney injury (AKI), which directly leads to the hypoxic injury of renal tubular epithelial cells (RTECs). Although emerging studies suggest repressor element 1-silencing transcription factor (REST) as a master regulator of gene repression under hypoxia, its role in AKI remains elusive. Here, we found that REST was upregulated in AKI patients, mice, and RTECs, which was positively associated with the degree of kidney injury, while renal tubule-specific knockout of Rest significantly alleviated AKI and its progression to chronic kidney disease (CKD). Subsequent mechanistic studies indicated that suppression of ferroptosis was responsible for REST-knockdown-induced amelioration of hypoxia-reoxygenation injury, during which process Cre-expressing adenovirus-mediated REST downregulation attenuated ferroptosis through upregulating glutamate-cysteine ligase modifier subunit (GCLM) in primary RTECs. Further, REST transcriptionally repressed GCLM expression via directly binding to its promoter region. In conclusion, our findings revealed the involvement of REST, a hypoxia regulatory factor, in AKI-to-CKD transition and identified the ferroptosis-inducing effect of REST, which may serve as a promising therapeutic target for ameliorating AKI and its progression to CKD.
Collapse
|
337
|
Lee J, Roh JL. Unleashing Ferroptosis in Human Cancers: Targeting Ferroptosis Suppressor Protein 1 for Overcoming Therapy Resistance. Antioxidants (Basel) 2023; 12:1218. [PMID: 37371948 DOI: 10.3390/antiox12061218] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Ferroptosis, a recently identified form of regulated cell death characterized by the iron-dependent accumulation of lethal lipid peroxidation, has gained increasing attention in cancer therapy. Ferroptosis suppressor protein 1 (FSP1), an NAD(P)H-ubiquinone oxidoreductase that reduces ubiquinone to ubiquinol, has emerged as a critical player in the regulation of ferroptosis. FSP1 operates independently of the canonical system xc-/glutathione peroxidase 4 pathway, making it a promising target for inducing ferroptosis in cancer cells and overcoming ferroptosis resistance. This review provides a comprehensive overview of FSP1 and ferroptosis, emphasizing the importance of FSP1 modulation and its potential as a therapeutic target in cancer treatment. We also discuss recent progress in developing FSP1 inhibitors and their implications for cancer therapy. Despite the challenges associated with targeting FSP1, advances in this field may provide a strong foundation for developing innovative and effective treatments for cancer and other diseases.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do 13496, Republic of Korea
| |
Collapse
|
338
|
Ma X, Wang Q, Liu C, Liu J, Luo G, He L, Yuan T, He RR, Yao Z. Regulation of phospholipid peroxidation signaling by a traditional Chinese medicine formula for coronary heart disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154749. [PMID: 36931097 DOI: 10.1016/j.phymed.2023.154749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Phospholipid peroxidation signaling was recently revealed as a novel pathological mechanism of coronary heart disease (CHD), and small molecules involved in this redox-metabolic pathway are suggested as the potential anti-CHD drugs. Danlou Tablet (DLT), a famous traditional Chinese medicine (TCM) formula characterized by multi-component and multi-target regulation, is widely used in the clinical treatment of CHD by regulating lipid metabolism. However, little information is available addressing the corresponding pharmacological mechanisms and associated active components of DLT. PURPOSE To study whether phospholipid peroxidation involves a novel mechanism of DLT for the therapeutic effect of CHD and to explain the essential active components. METHODS Firstly, the HPLC fingerprint was constructed to ensure the controllability of the quality of DLT. Then, a CHD animal model with the characteristics of lipid disorder and myocardial ischemia was established by a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation. The therapeutic effect of DLT was further evaluated based on the results of the rat survival rate, cardiac function, cardiac histopathology, and myocardial ischemia indicators. Correspondingly, whether DLT can regulate the key indicators (ALOX15, GPX4, MDA, GSH, and NADPH) of the phospholipid peroxidation pathway was investigated, and Alox15-/- mice have been applied to confirm the mechanism of DLT. Finally, the target-mediated characterization strategy based on ALOX15, including the integration of in vivo component characterization, network pharmacology, molecular docking analysis, and activity verification, has been further implemented to reveal the key bio-active components in DLT. RESULTS In this study, a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation was utilized to generate a CHD model, and DLT significantly improved the cardiac dysfunction and reduced the myocardial cell death susceptibility. Further results revealed that DLT reversed the protein expression of ALOX15 and GPX4, the key proteins of phospholipid peroxidation pathways, which subsequently influenced the parameters of phospholipid peroxidation (MDA, GSH, and NADPH). The ALOX15 knockout transgenic animal model confirmed that Alox15-/- mice lost their cardioprotective effects with DLT, suggesting that DLT exerted therapeutic effects on CHD by regulating ALOX15-mediated phospholipid peroxidation. Finally, the target-mediated characterization strategy identified that daidzein is an active component in DLT against CHD by modulating ALOX15. CONCLUSION Innovatively, ALOX15-mediated phospholipid peroxidation was identified as one of the critical mechanisms of DLT exerting cardioprotective effects. Our findings elucidate a novel mechanism of DLT and provide some new drug evaluation targets and therapeutic strategies for CHD.
Collapse
Affiliation(s)
- Xiaohui Ma
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China; Key Laboratory of High Incidence Diseases in Xinjiang Region, Ministry of Education (MOE), Xinjiang Medical University, Urumqi 830054, China
| | - Qi Wang
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Chunyu Liu
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Jianghanzi Liu
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Ganqing Luo
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Liangliang He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China.
| | - Tianhui Yuan
- Department of Cardiology, International Medical Services, The Clinical Research Ward (Geriatrics), The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
339
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S, Ge J. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother 2023; 164:114312. [PMID: 37210894 DOI: 10.1016/j.biopha.2023.114312] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Da Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Chen
- Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
340
|
Sun J, Lin XM, Lu DH, Wang M, Li K, Li SR, Li ZQ, Zhu CJ, Zhang ZM, Yan CY, Pan MH, Gong HB, Feng JC, Cao YF, Huang F, Sun WY, Kurihara H, Li YF, Duan WJ, Jiao GL, Zhang L, He RR. Midbrain dopamine oxidation links ubiquitination of glutathione peroxidase 4 to ferroptosis of dopaminergic neurons. J Clin Invest 2023; 133:e165228. [PMID: 37183824 PMCID: PMC10178840 DOI: 10.1172/jci165228] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/17/2023] [Indexed: 05/16/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the gradual loss of midbrain dopaminergic neurons in association with aggregation of α-synuclein. Oxidative damage has been widely implicated in this disease, though the mechanisms involved remain elusive. Here, we demonstrated that preferential accumulation of peroxidized phospholipids and loss of the antioxidant enzyme glutathione peroxidase 4 (GPX4) were responsible for vulnerability of midbrain dopaminergic neurons and progressive motor dysfunctions in a mouse model of PD. We also established a mechanism wherein iron-induced dopamine oxidation modified GPX4, thereby rendering it amenable to degradation via the ubiquitin-proteasome pathway. In conclusion, this study unraveled what we believe to be a novel pathway for dopaminergic neuron degeneration during PD pathogenesis, driven by dopamine-induced loss of antioxidant GPX4 activity.
Collapse
Affiliation(s)
- Jie Sun
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiao-Min Lin
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Dan-Hua Lu
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Meng Wang
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Kun Li
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Sheng-Rong Li
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zheng-Qiu Li
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Cheng-Jun Zhu
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhi-Min Zhang
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Chang-Yu Yan
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ming-Hai Pan
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hai-Biao Gong
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jing-Cheng Feng
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yun-Feng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, National Health Commission Key Laboratory of Reproduction Regulation, Shanghai, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Wan-Yang Sun
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hiroshi Kurihara
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yi-Fang Li
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Wen-Jun Duan
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Gen-Long Jiao
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration, Ministry of Education, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Rong-Rong He
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
341
|
Huo L, Liu C, Yuan Y, Liu X, Cao Q. Pharmacological inhibition of ferroptosis as a therapeutic target for sepsis-associated organ damage. Eur J Med Chem 2023; 257:115438. [PMID: 37269668 DOI: 10.1016/j.ejmech.2023.115438] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/05/2023]
Abstract
Sepsis is a complex clinical syndrome caused by dysfunctional host response to infection, which contributes to excess mortality and morbidity worldwide. The development of life-threatening sepsis-associated organ injury to the brain, heart, kidneys, lungs, and liver is a major concern for sepsis patients. However, the molecular mechanisms underlying sepsis-associated organ injury remain incompletely understood. Ferroptosis, an iron-dependent non-apoptotic form of cell death characterized by lipid peroxidation, is involved in sepsis and sepsis-related organ damage, including sepsis-associated encephalopathy, septic cardiomyopathy, sepsis-associated acute kidney injury, sepsis-associated acute lung injury, and sepsis-induced acute liver injury. Moreover, compounds that inhibit ferroptosis exert potential therapeutic effects in the context of sepsis-related organ damage. This review summarizes the mechanism by which ferroptosis contributes to sepsis and sepsis-related organ damage. We focus on the emerging types of therapeutic compounds that can inhibit ferroptosis and delineate their beneficial pharmacological effects for the treatment of sepsis-related organ damage. The present review highlights pharmacologically inhibiting ferroptosis as an attractive therapeutic strategy for sepsis-related organ damage.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Chunfeng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yujun Yuan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qingjun Cao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
342
|
Yang L, Liu Y, Zhou S, Feng Q, Lu Y, Liu D, Liu Z. Novel Insight into Ferroptosis in Kidney Diseases. Am J Nephrol 2023; 54:184-199. [PMID: 37231767 DOI: 10.1159/000530882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Various kidney diseases such as acute kidney injury, chronic kidney disease, polycystic kidney disease, renal cancer, and kidney stones, are an important part of the global burden, bringing a huge economic burden to people around the world. Ferroptosis is a type of nonapoptotic iron-dependent cell death caused by the excess of iron-dependent lipid peroxides and accompanied by abnormal iron metabolism and oxidative stress. Over the past few decades, several studies have shown that ferroptosis is associated with many types of kidney diseases. Studying the mechanism of ferroptosis and related agonists and inhibitors may provide new ideas and directions for the treatment of various kidney diseases. SUMMARY In this review, we discuss the differences between ferroptosis and other types of cell death such as apoptosis, necroptosis, pyroptosis, cuprotosis, pathophysiological features of the kidney, and ferroptosis-induced kidney injury. We also provide an overview of the molecular mechanisms involved in ferroptosis and events that lead to ferroptosis. Furthermore, we summarize the possible clinical applications of this mechanism among various kidney diseases. KEY MESSAGE The current research suggests that future therapeutic efforts to treat kidney ailments would benefit from a focus on ferroptosis.
Collapse
Affiliation(s)
- Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China,
- Henan Province Research Center for Kidney Disease, Zhengzhou, China,
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
343
|
Su W, Gao W, Zhang R, Wang Q, Li L, Bu Q, Xu Z, Liu Z, Wang M, Zhu Y, Wu G, Zhou H, Wang X, Lu L. TAK1 deficiency promotes liver injury and tumorigenesis via ferroptosis and macrophage cGAS-STING signalling. JHEP Rep 2023; 5:100695. [PMID: 36968217 PMCID: PMC10033999 DOI: 10.1016/j.jhepr.2023.100695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background & Aims Oxidative stress-mediated ferroptosis and macrophage-related inflammation play an important role in various liver diseases. Here, we explored if and how hepatocyte ferroptosis regulates macrophage stimulator of interferon genes (STING) activation in the development of spontaneous liver damage, fibrosis, and tumorigenesis. Methods We used a transforming growth factor-beta-activated kinase 1 (TAK1) deficiency-induced model of spontaneous liver damage, fibrosis, and tumorigenesis to investigate hepatocyte ferroptosis and its impact on macrophage STING signalling. Primary hepatocytes and macrophages were used for in vitro experiments. Results Significant liver injury and increased numbers of intrahepatic M1 macrophages were found in hepatocyte-specific TAK1-deficient (TAK1ΔHEP) mice, peaking at 4 weeks and gradually decreasing at 8 and 12 weeks. Meanwhile, activation of STING signalling was observed in livers from TAK1ΔHEP mice at 4 weeks and had decreased at 8 and 12 weeks. Treatment with a STING inhibitor promoted macrophage M2 polarisation and alleviated liver injury, fibrosis, and tumour burden. TAK1 deficiency exacerbated liver iron metabolism in mice with a high-iron diet. Moreover, consistent with the results from single-cell RNA-Seq dataset, TAK1ΔHEP mice demonstrated an increased oxidative response and hepatocellular ferroptosis, which could be inhibited by reactive oxygen species scavenging. Suppression of ferroptosis by ferrostatin-1 inhibited the activation of macrophage STING signalling, leading to attenuated liver injury and fibrosis and a reduced tumour burden. Mechanistically, increased intrahepatic and serum levels of 8-hydroxydeoxyguanosine were detected in TAK1ΔHEP mice, which was suppressed by ferroptosis inhibition. Treatment with 8-hydroxydeoxyguanosine antibody inhibited macrophage STING activation in TAK1ΔHEP mice. Conclusions Hepatocellular ferroptosis-derived oxidative DNA damage promotes macrophage STING activation to facilitate the development of liver injury, fibrosis, and tumorigenesis. Inhibition of macrophage STING may represent a novel therapeutic approach for the prevention of chronic liver disease. Impact and implications The precise mechanism by which hepatocyte ferroptosis regulates macrophage STING activation in the progression of liver damage, fibrosis, and tumorigenesis remains unclear. Herein, we show that deletion of TAK1 in hepatocytes caused oxidative stress-mediated ferroptosis and macrophage-related inflammation in the development of spontaneous liver injury, fibrosis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wantong Su
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Weicheng Gao
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Zhang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qi Wang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Lei Li
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qingfa Bu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zibo Xu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zheng Liu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Mingming Wang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yaqing Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
| | - Guoping Wu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China.
| | - Haoming Zhou
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Corresponding authors. Addresses: Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China. Tel.: +86-25-68303947.
| | - Xun Wang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Corresponding authors. Addresses: Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China. Tel.: +86-25-68303947.
| | - Ling Lu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
344
|
Li Y, Huang Z, Pan S, Feng Y, He H, Cheng S, Wang L, Wang L, Pathak JL. Resveratrol Alleviates Diabetic Periodontitis-Induced Alveolar Osteocyte Ferroptosis Possibly via Regulation of SLC7A11/GPX4. Nutrients 2023; 15:2115. [PMID: 37432277 DOI: 10.3390/nu15092115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
The mode and mechanism of diabetic periodontitis-induced alveolar-osteocyte death are still unclear. This study aimed to investigate the occurrence of ferroptosis in alveolar osteocytes during diabetic periodontitis and the therapeutic potential of resveratrol to alleviate osteocyte ferroptosis. Diabetic periodontitis was induced in C57/BL6-male mice and treated with or without resveratrol. Periodontitis pathogenicity was analyzed by micro-CT and histology, and alveolar-osteocyte ferroptosis was analyzed by immunohistochemistry. MLOY4 osteocytes were treated with P. gingivalis-derived lipopolysaccharide (LPS)+advanced glycosylated end products (AGEs) mimicking diabetic periodontitis condition in vitro, with or without resveratrol or ferrostatin-1 (ferroptosis inhibitor). Osteocyte ferroptosis and expression of inflammatory mediators were analyzed. Diabetic periodontitis aggravated periodontitis pathogenicity and inhibited the expression of GPX4 and SLC7A11 in alveolar osteocytes and resveratrol alleviated these effects. LPS+AGEs triggered osteocyte ferroptosis in vitro as indicated by the downregulated GPX4 and SLC7A11, upregulated malondialdehyde, disrupted mitochondrial morphology, and overexpressed pro-inflammatory mediators IL-1β, TNF-α, SOST, RANKL, and IL-6, and ferrostatin-1 or resveratrol treatment reversed these effects. LPS+AGEs upregulated pIKBα and pNF-κB p65 expression in osteocytes, and resveratrol or ferrostatin-1 reversed this effect. In conclusion, diabetic periodontitis triggers alveolar osteocyte ferroptosis possibly via disruption of the SLC7A11/GPX4 axis, and resveratrol has therapeutic potential to correct this biological event.
Collapse
Affiliation(s)
- Yue Li
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Zhijun Huang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuaifei Pan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Yuhui Feng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Haokun He
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuguang Cheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Liping Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Janak Lal Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
345
|
Chen L, Huang J, Yao ZM, Sun XR, Tong XH, Hu M, Zhang Y, Dong SY. Procyanidins Alleviated Cerebral Ischemia/Reperfusion Injury by Inhibiting Ferroptosis via the Nrf2/HO-1 Signaling Pathway. Molecules 2023; 28:molecules28083582. [PMID: 37110816 PMCID: PMC10143264 DOI: 10.3390/molecules28083582] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Procyanidins (PCs), which are organic antioxidants, suppress oxidative stress, exhibit anti-apoptotic properties, and chelate metal ions. The potential defense mechanism of PCs against cerebral ischemia/reperfusion injury (CIRI) was investigated in this study. Pre-administration for 7 days of a PC enhanced nerve function and decreased cerebellar infarct volume in a mouse middle cerebral artery embolization paradigm. In addition, mitochondrial ferroptosis was enhanced, exhibited by mitochondrial shrinkage and roundness, increased membrane density, and reduced or absent ridges. The level of Fe2+ and lipid peroxidation that cause ferroptosis was significantly reduced by PC administration. According to the Western blot findings, PCs altered the expression of proteins associated with ferroptosis, promoting the expression of GPX4 and SLC7A11 while reducing the expression of TFR1, hence inhibiting ferroptosis. Moreover, the treatment of PCs markedly elevated the expression of HO-1 and Nuclear-Nrf2. The PCs' ability to prevent ferroptosis due to CIRI was decreased by the Nrf2 inhibitor ML385. Our findings showed that the protective effect of PCs may be achieved via activation of the Nrf2/HO-1 pathway and inhibiting ferroptosis. This study provides a new perspective on the treatment of CIRI with PCs.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Xu-Hui Tong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Miao Hu
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Ying Zhang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
346
|
Chen J, Wu K, Lei Y, Huang M, Cheng L, Guan H, Lin J, Zhong M, Wang X, Zheng Z. Inhibition of Fatty Acid β-Oxidation by Fatty Acid Binding Protein 4 Induces Ferroptosis in HK2 Cells Under High Glucose Conditions. Endocrinol Metab (Seoul) 2023; 38:226-244. [PMID: 37150518 PMCID: PMC10164503 DOI: 10.3803/enm.2022.1604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/18/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGRUOUND Ferroptosis, which is caused by an iron-dependent accumulation of lipid hydroperoxides, is a type of cell death linked to diabetic kidney disease (DKD). Previous research has shown that fatty acid binding protein 4 (FABP4) is involved in the regulation of ferroptosis in diabetic retinopathy. The present study was constructed to explore the role of FABP4 in the regulation of ferroptosis in DKD. METHODS We first detected the expression of FABP4 and proteins related to ferroptosis in renal biopsies of patients with DKD. Then, we used a FABP4 inhibitor and small interfering RNA to investigate the role of FABP4 in ferroptosis induced by high glucose in human renal proximal tubular epithelial (HG-HK2) cells. RESULTS In kidney biopsies of DKD patients, the expression of FABP4 was elevated, whereas carnitine palmitoyltransferase-1A (CP-T1A), glutathione peroxidase 4, ferritin heavy chain, and ferritin light chain showed reduced expression. In HG-HK2 cells, the induction of ferroptosis was accompanied by an increase in FABP4. Inhibition of FABP4 in HG-HK2 cells changed the redox state, sup-pressing the production of reactive oxygen species, ferrous iron (Fe2+), and malondialdehyde, increasing superoxide dismutase, and reversing ferroptosis-associated mitochondrial damage. The inhibition of FABP4 also increased the expression of CPT1A, reversed lipid deposition, and restored impaired fatty acid β-oxidation. In addition, the inhibition of CPT1A could induce ferroptosis in HK2 cells. CONCLUSION Our results suggest that FABP4 mediates ferroptosis in HG-HK2 cells by inhibiting fatty acid β-oxidation.
Collapse
Affiliation(s)
- Jiasi Chen
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Keping Wu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, China
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yan Lei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Mingcheng Huang
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Lokyu Cheng
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Hui Guan
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Jiawen Lin
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Ming Zhong
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Xiaohua Wang
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Zhihua Zheng
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, China
| |
Collapse
|
347
|
Zhang YY, Ren KD, Luo XJ, Peng J. COVID-19-induced neurological symptoms: focus on the role of metal ions. Inflammopharmacology 2023; 31:611-631. [PMID: 36892679 PMCID: PMC9996599 DOI: 10.1007/s10787-023-01176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Neurological symptoms are prevalent in both the acute and post-acute phases of coronavirus disease 2019 (COVID-19), and they are becoming a major concern for the prognosis of COVID-19 patients. Accumulation evidence has suggested that metal ion disorders occur in the central nervous system (CNS) of COVID-19 patients. Metal ions participate in the development, metabolism, redox and neurotransmitter transmission in the CNS and are tightly regulated by metal ion channels. COVID-19 infection causes neurological metal disorders and metal ion channels abnormal switching, subsequently resulting in neuroinflammation, oxidative stress, excitotoxicity, neuronal cell death, and eventually eliciting a series of COVID-19-induced neurological symptoms. Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for mitigating COVID-19-induced neurological symptoms. This review provides a summary for the latest advances in research related to the physiological and pathophysiological functions of metal ions and metal ion channels, as well as their role in COVID-19-induced neurological symptoms. In addition, currently available modulators of metal ions and their channels are also discussed. Collectively, the current work offers a few recommendations according to published reports and in-depth reflections to ameliorate COVID-19-induced neurological symptoms. Further studies need to focus on the crosstalk and interactions between different metal ions and their channels. Simultaneous pharmacological intervention of two or more metal signaling pathway disorders may provide clinical advantages in treating COVID-19-induced neurological symptoms.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
348
|
Zheng X, Liang Y, Zhang C. Ferroptosis Regulated by Hypoxia in Cells. Cells 2023; 12:cells12071050. [PMID: 37048123 PMCID: PMC10093394 DOI: 10.3390/cells12071050] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Ferroptosis is an oxidative damage-related, iron-dependent regulated cell death with intracellular lipid peroxide accumulation, which is associated with many physiological and pathological processes. It exhibits unique features that are morphologically, biochemically, and immunologically distinct from other regulated cell death forms. Ferroptosis is regulated by iron metabolism, lipid metabolism, anti-oxidant defense systems, as well as various signal pathways. Hypoxia, which is found in a group of physiological and pathological conditions, can affect multiple cellular functions by activation of the hypoxia-inducible factor (HIF) signaling and other mechanisms. Emerging evidence demonstrated that hypoxia regulates ferroptosis in certain cell types and conditions. In this review, we summarize the basic mechanisms and regulations of ferroptosis and hypoxia, as well as the regulation of ferroptosis by hypoxia in physiological and pathological conditions, which may contribute to the numerous diseases therapies.
Collapse
Affiliation(s)
- Xiangnan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuqiong Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
349
|
Arenbaoligao, Guo X, Xiong J, Zhang S, Yang Y, Chen D, Xie Y. Kumatakenin inhibited iron-ferroptosis in epithelial cells from colitis mice by regulating the Eno3-IRP1-axis. Front Pharmacol 2023; 14:1127931. [PMID: 37006994 PMCID: PMC10063804 DOI: 10.3389/fphar.2023.1127931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Inhibition of epithelial ferroptosis in colonic tissues relieved clinical symptoms and improved endoscopic presentations in inflammatory bowel disease (IBD). Kumatakenin, the main ingredient of traditional Chinese medicinal cloves and Alpinia purpurata, is reported to possess therapeutic benefits. However, whether kumatakenin could inhibit ferroptosis and further alleviate colitis remains unclear. Here, we measured the effects of kumatakenin on ferroptosis of colonic epithelial cells from colitis mice. The colitis model was induced in mice by oral intake of 2.5% dextran sulfate sodium in drinking water. RNA sequencing was performed to investigate the mechanism underlying kumatakenin-mediated effects on colitis. The results showed that different doses of kumatakenin significantly alleviated symptoms and suppressed intestinal inflammation in the colitis mouse model. Kumatakenin supplementation decreased cellular iron levels and suppressed ferroptosis in epithelial cells from colitis mice. RNA sequencing, qPCR, and pharmacological inhibition assays showed that kumatakenin reduced cellular iron levels and suppressed ferroptosis in epithelial cells from colitis mice at least partially by upregulating expression of enolase (Eno-3). Furthermore, kumatakenin decreased iron levels in epithelial cells by modulating the Eno3-iron regulatory protein (IRP1) axis. Molecular docking results revealed that kumatakenin could bind Eno3 via hydrogen bonding with the amino acid residues Thr208, Val206, and Pro203. This work will provide a scientific basis for the clinical use of kumatakenin in the treatment of colitis.
Collapse
|
350
|
Guan Z, Jin X, Guan Z, Liu S, Tao K, Luo L. The gut microbiota metabolite capsiate regulate SLC2A1 expression by targeting HIF-1α to inhibit knee osteoarthritis-induced ferroptosis. Aging Cell 2023:e13807. [PMID: 36890785 DOI: 10.1111/acel.13807] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death that has been found to aggravate the progression of osteoarthritis (OA) and gut microbiota- OA axis refers to the bidirectional information network between the gut microbiota and OA, which may provide a new way to protect the OA. However, the role of gut microbiota-derived metabolites in ferroptosis-relative osteoarthritis remains unclear. The objective of this study was to analyze the protective effect of gut microbiota and its metabolite capsiate (CAT) on ferroptosis-relative osteoarthritis in vivo and in vitro experiments. From June 2021 to February 2022, 78 patients were evaluated retrospectively and divided into two groups: The health group (n = 39) and the OA group (n = 40). Iron and oxidative stress indicators were determined in peripheral blood samples. And then in vivo and in vitro experiments, a surgically destabilized medial meniscus (DMM) mice model was established and treated with CAT or Ferric Inhibitor-1 (Fer-1). Solute Carrier Family 2 Member 1 (SLC2A1) short hairpin RNA (shRNA) was utilized to inhibit SLC2A1 expression. Serum iron was increased significantly but total iron binding capacity was decreased significantly in OA patients than healthy people (p < 0.0001). The least absolute shrinkage and selection operator clinical prediction model suggested that serum iron, total iron binding capacity, transferrin, and superoxide dismutase were all independent predictors of OA (p < 0.001). Bioinformatics results suggested that SLC2A1, Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), and HIF-1α (Hypoxia Inducible Factor 1 Alpha)-related oxidative stress signaling pathways play an important role in iron homeostasis and OA. In addition, gut microbiota 16s RNA sequencing and untargeted metabolomics were used to find that gut microbiota metabolites CAT in mice with osteoarthritis were negatively correlated with Osteoarthritis Research Society International (OARSI) scores for chondrogenic degeneration (p = 0.0017). Moreover, CAT reduced ferroptosis-dependent osteoarthritis in vivo and in vitro. However, the protective effect of CAT against ferroptosis-dependent osteoarthritis could be eliminated by silencing SLC2A1. SLC2A1 was upregulated but reduced the SLC2A1 and HIF-1α levels in the DMM group. HIF-1α, MALAT1, and apoptosis levels were increased after SLC2A1 knockout in chondrocyte cells (p = 0.0017). Finally, downregulation of SLC2A1 expression by Adeno-associated Virus (AAV) -SLC2A1 shRNA improves osteoarthritis in vivo. Our findings indicated that CAT inhibited HIF-1a expression and reduced ferroptosis-relative osteoarthritis progression by activating SLC2A1.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.,Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Jin
- Department of Rheumatology and Immunology, The First People's Hospital of Xuzhou, Jiangsu, Xuzhou, China.,Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Jiangsu, Xuzhou, China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Jiangsu, Xuzhou, China
| | - Shengfu Liu
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Kun Tao
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|