301
|
Tye KM. Neural Circuit Motifs in Valence Processing. Neuron 2018; 100:436-452. [PMID: 30359607 PMCID: PMC6590698 DOI: 10.1016/j.neuron.2018.10.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023]
Abstract
How do our brains determine whether something is good or bad? How is this computational goal implemented in biological systems? Given the critical importance of valence processing for survival, the brain has evolved multiple strategies to solve this problem at different levels. The psychological concept of "emotional valence" is now beginning to find grounding in neuroscience. This review aims to bridge the gap between psychology and neuroscience on the topic of emotional valence processing. Here, I highlight a subset of studies that exemplify circuit motifs that repeatedly appear as implementational systems in valence processing. The motifs I identify as being important in valence processing include (1) Labeled Lines, (2) Divergent Paths, (3) Opposing Components, and (4) Neuromodulatory Gain. Importantly, the functionality of neural substrates in valence processing is dynamic, context-dependent, and changing across short and long timescales due to synaptic plasticity, competing mechanisms, and homeostatic need.
Collapse
Affiliation(s)
- Kay M Tye
- Picower Institute for Learning and Memory, Dept of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Salk Institute for Biological Sciences, La Jolla, CA 92037, USA.
| |
Collapse
|
302
|
Stanton CH, Holmes AJ, Chang SWC, Joormann J. From Stress to Anhedonia: Molecular Processes through Functional Circuits. Trends Neurosci 2018; 42:23-42. [PMID: 30327143 DOI: 10.1016/j.tins.2018.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
Converging evidence across species highlights the contribution of environmental stress to anhedonia (loss of pleasure and/or motivation). However, despite a clear link between stress and the emergence of anhedonic-like behavior in both human and animal models, the underlying biological pathways remain elusive. Here, we synthesize recent findings across multiple levels, from molecular signaling pathways through whole-brain networks, to discuss mechanisms through which stress may influence anhedonia. Recent work suggests the involvement of diverse systems that converge on the mesolimbic reward pathway, including medial-prefrontal cortical circuitry, neuroendocrine stress responses, homeostatic energy regulation systems, and inflammation. We conclude by emphasizing the need to disentangle the influences of key dimensions of stress on specific aspects of reward processing, taking into account individual differences that could moderate this relationship.
Collapse
Affiliation(s)
- Colin H Stanton
- Department of Psychology, Yale University, New Haven, CT 06511, USA.
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
303
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
304
|
Neuhofer D, Kalivas P. Metaplasticity at the addicted tetrapartite synapse: A common denominator of drug induced adaptations and potential treatment target for addiction. Neurobiol Learn Mem 2018; 154:97-111. [PMID: 29428364 PMCID: PMC6112115 DOI: 10.1016/j.nlm.2018.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 11/22/2022]
Abstract
In light of the current worldwide addiction epidemic, the need for successful therapies is more urgent than ever. Although we made substantial progress in our basic understanding of addiction, reliable therapies are lacking. Since 40-60% of patients treated for substance use disorder return to active substance use within a year following treatment discharge, alleviating the vulnerability to relapse is regarded as the most promising avenue for addiction therapy. Preclinical addiction research often focuses on maladaptive synaptic plasticity within the reward pathway. However, drug induced neuroadaptations do not only lead to a strengthening of distinct drug associated cues and drug conditioned behaviors, but also seem to increase plasticity thresholds for environmental stimuli that are not associated with the drug. This form of higher order plasticity, or synaptic metaplasticity, is not expressed as a change in the efficacy of synaptic transmission but as a change in the direction or degree of plasticity induced by a distinct stimulation pattern. Experimental addiction research has demonstrated metaplasticity after exposure to multiple classes of addictive drugs. In this review we will focus on the concept of synaptic metaplasticity in the context of preclinical addiction research. We will take a closer look at the tetrapartite glutamatergic synapse and outline forms of metaplasticity that have been described at the addicted synapse. Finally we will discuss the different potential avenues for pharmacotherapies that target glutamatergic synaptic plasticity and metaplasticity. Here we will argue that aberrant metaplasticity renders the reward seeking circuitry more rigid and hence less able to adapt to changing environmental contingencies. An understanding of the molecular mechanisms that underlie this metaplasticity is crucial for the development of new strategies for addiction therapy. The correction of drug-induced metaplasticity could be used to support behavioral and pharmacotherapies for the treatment of addiction.
Collapse
Affiliation(s)
- Daniela Neuhofer
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Peter Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
305
|
Parkinson's Disease-Linked LRRK2-G2019S Mutation Alters Synaptic Plasticity and Promotes Resilience to Chronic Social Stress in Young Adulthood. J Neurosci 2018; 38:9700-9711. [PMID: 30249796 DOI: 10.1523/jneurosci.1457-18.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022] Open
Abstract
The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is a prevalent cause of late-onset Parkinson's disease, producing psychiatric and motor symptoms, including depression, that are indistinguishable from sporadic cases. Here we tested how this mutation impacts depression-related behaviors and associated synaptic responses and plasticity in mice expressing a Lrrk2-G2019S knock-in mutation. Young adult male G2019S knock-in and wild-type mice were subjected to chronic social defeat stress (CSDS), a validated depression model, and other tests of anhedonia, anxiety, and motor learning. We found that G2019S mice were highly resilient to CSDS, failing to exhibit social avoidance compared to wild-type mice, many of which exhibited prominent social avoidance and were thus susceptible to CSDS. In the absence of CSDS, no behavioral differences between genotypes were found. Whole-cell recordings of spiny projection neurons (SPNs) in the nucleus accumbens revealed that glutamatergic synapses in G2019S mice lacked functional calcium-permeable AMPARs, and following CSDS, failed to accumulate inwardly rectifying AMPAR responses characteristic of susceptible mice. Based on this abnormal AMPAR response profile, we asked whether long-term potentiation (LTP) of corticostriatal synaptic strength was affected. We found that both D1 receptor (D1R)- and D2R-SPNs in G2019S mutants were unable to express LTP, with D2R-SPNs abnormally expressing long-term depression following an LTP-induction protocol. Thus, G2019S promotes resilience to chronic social stress in young adulthood, likely reflecting synapses constrained in their ability to undergo experience-dependent plasticity. These unexpected findings may indicate early adaptive coping mechanisms imparted by the G2019S mutation.SIGNIFICANCE STATEMENT The G2019S mutation in LRRK2 causes late-onset Parkinson's disease (PD). LRRK2 is highly expressed in striatal neurons throughout life, but it is unclear how mutant LRRK2 affects striatal neuron function and behaviors in young adulthood. We addressed this question using Lrrk2-G2019S knock-in mice. The data show that young adult G2019S mice were unusually resilient to a depression-like syndrome resulting from chronic social stress. Further, mutant striatal synapses were incapable of forms of synaptic plasticity normally accompanying depression-like behavior and important for supporting the full range of cognitive function. These data suggest that in humans, LRRK2 mutation may affect striatal circuit function in ways that alter normal responses to stress and could be relevant for treatment strategies for non-motor PD symptoms.
Collapse
|
306
|
Turner BD, Kashima DT, Manz KM, Grueter CA, Grueter BA. Synaptic Plasticity in the Nucleus Accumbens: Lessons Learned from Experience. ACS Chem Neurosci 2018; 9:2114-2126. [PMID: 29280617 DOI: 10.1021/acschemneuro.7b00420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity contributes to behavioral adaptations. As a key node in the reward pathway, the nucleus accumbens (NAc) is important for determining motivation-to-action outcomes. Across animal models of motivation including addiction, depression, anxiety, and hedonic feeding, selective recruitment of neuromodulatory signals and plasticity mechanisms have been a focus of physiologists and behaviorists alike. Experience-dependent plasticity mechanisms within the NAc vary depending on the distinct afferents and cell-types over time. A greater understanding of molecular mechanisms determining how these changes in synaptic strength track with behavioral adaptations will provide insight into the process of learning and memory along with identifying maladaptations underlying pathological behavior. Here, we summarize recent findings detailing how changes in NAc synaptic strength and mechanisms of plasticity manifest in various models of motivational disorders.
Collapse
Affiliation(s)
- Brandon D. Turner
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
| | - Daniel T. Kashima
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin M. Manz
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie A. Grueter
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Brad A. Grueter
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
307
|
Augustin SM, Lovinger DM. Functional Relevance of Endocannabinoid-Dependent Synaptic Plasticity in the Central Nervous System. ACS Chem Neurosci 2018; 9:2146-2161. [PMID: 29400439 DOI: 10.1021/acschemneuro.7b00508] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endocannabinoid (eCB) signaling system plays a key role in short-term and long-term synaptic plasticity in brain regions involved in various neural functions ranging from action selection to appetite control. This review will explore the role of eCBs in shaping neural circuit function to regulate behaviors. In particular, we will discuss the behavioral consequences of eCB mediated long-term synaptic plasticity in different brain regions. This review brings together evidence from in vitro and ex vivo studies and points out the need for more in vivo studies.
Collapse
Affiliation(s)
- Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| |
Collapse
|
308
|
Hippocampal-Evoked Feedforward Inhibition in the Nucleus Accumbens. J Neurosci 2018; 38:9091-9104. [PMID: 30185462 DOI: 10.1523/jneurosci.1971-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
The nucleus accumbens (NAc) is critical for motivated behavior and is rewired following exposure to drugs of abuse. Medium spiny neurons (MSNs) in the NAc express either D1 or D2 receptors and project to distinct downstream targets. Differential activation of these MSNs depends on both excitation from long-range inputs and inhibition via the local circuit. Assessing how long-range excitatory inputs engage inhibitory circuitry is therefore important for understanding NAc function. Here, we use slice electrophysiology and optogenetics to study ventral hippocampal (vHPC)-evoked feedforward inhibition in the NAc of male and female mice. We find that vHPC-evoked excitation is stronger at D1+ than D1- MSNs, whereas inhibition is unbiased at the two cell types. vHPC inputs contact both parvalbumin-positive (PV+) and somatostatin-positive (SOM+) interneurons, but PV+ cells are preferentially activated. Moreover, suppressing PV+ interneurons indicates they are primarily responsible for vHPC-evoked inhibition. Finally, repeated cocaine exposure alters the excitation of D1+ and D1- MSNs, without concomitant changes to inhibition, shifting the excitation/inhibition balance. Together, our results highlight the contributions of multiple interneuron populations to feedforward inhibition in the NAc. Moreover, they demonstrate that inhibition provides a stable backdrop on which drug-evoked changes to excitation occur within this circuit.SIGNIFICANCE STATEMENT Given the importance of the nucleus accumbens (NAc) in reward learning and drug-seeking behaviors, it is critical to understand what controls the activity of cells in this region. While excitatory inputs to projection neurons in the NAc have been identified, it is unclear how the local inhibitory network becomes engaged. Here, we identify a sparse population of interneurons responsible for feedforward inhibition evoked by ventral hippocampal input and characterize their connections within the NAc. We also demonstrate that the balance of excitation and inhibition that projection neurons experience is altered by exposure to cocaine. Together, this work provides insight into the fundamental circuitry of this region as well as the effects of drugs of abuse.
Collapse
|
309
|
Reed SJ, Lafferty CK, Mendoza JA, Yang AK, Davidson TJ, Grosenick L, Deisseroth K, Britt JP. Coordinated Reductions in Excitatory Input to the Nucleus Accumbens Underlie Food Consumption. Neuron 2018; 99:1260-1273.e4. [DOI: 10.1016/j.neuron.2018.07.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 06/14/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022]
|
310
|
Zeng Y, Hu D, Yang W, Hayashinaka E, Wada Y, Watanabe Y, Zeng Q, Cui Y. A voxel-based analysis of neurobiological mechanisms in placebo analgesia in rats. Neuroimage 2018; 178:602-612. [DOI: 10.1016/j.neuroimage.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/22/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
|
311
|
Hamed A, Kursa MB. Inter-individual differences in serotonin and glutamate co-transmission reflect differentiation in context-induced conditioned 50-kHz USVs response after morphine withdrawal. Brain Struct Funct 2018; 223:3149-3167. [PMID: 29774428 PMCID: PMC6132671 DOI: 10.1007/s00429-018-1683-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
A growing body of research provides compelling evidence that in rats 50-kHz USVs are a form of expression of positive emotions. Context-induced 50-kHz USVs emission is variable among rats, indicating individual differences in contextual response bound up with pharmacological reward. The aims of this study were to: extract the most important neurotransmitters related to context-induced conditioned 50-kHz USVs response; find biological basis of existing inter-individual differences in context-induced conditioned 50-kHz USVs response; create a model of all-to-all neurotransmitters correlations. The data collected here confirms that re-exposure to the context of morphine administration after the withdrawal period increases the level of 50-kHz USVs and this contextual response is associated with elevated serotonin concentrations in amygdala, hippocampus and mPFC and with increased Glu/Gln ratio in nucleus accumbens. The concentration of serotonin increases simultaneously in amygdala, nucleus accumbens and hippocampus. Moreover, 5-HT concentration in amygdala is bound up with glutamate level in this structure as well as in hippocampus. Furthermore, Glu/Gln ratio in nucleus accumbens has strong associations with Glu/Gln ratio simultaneously in VTA, amygdala, striatum and hippocampus. All-to-all-analysis indicate that concentration of glutamate in hippocampus is proportional to glutamate in VTA and GABA concentration in the hippocampus. We have also demonstrated that Glu/GABA ratio in VTA and amygdala was elevated after post withdrawal re-exposure to the pharmacological reward paired context. Presented analysis indicates a strong correlation between serotonergic and glutamatergic systems in context-induced conditioned response. The strength of this co-transmission correlates with the number of 50-kHz USVs emitted in response to morphine-paired context.
Collapse
Affiliation(s)
- Adam Hamed
- Laboratory of Spatial Memory, Department of Cellular and Molecular Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Miron Bartosz Kursa
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| |
Collapse
|
312
|
Turner BD, Rook JM, Lindsley CW, Conn PJ, Grueter BA. mGlu 1 and mGlu 5 modulate distinct excitatory inputs to the nucleus accumbens shell. Neuropsychopharmacology 2018; 43:2075-2082. [PMID: 29654259 PMCID: PMC6097986 DOI: 10.1038/s41386-018-0049-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/19/2018] [Accepted: 03/04/2018] [Indexed: 11/09/2022]
Abstract
Glutamatergic transmission in the nucleus accumbens shell (NAcSh) is a substrate for reward learning and motivation. Metabotropic glutamate (mGlu) receptors regulate NAcSh synaptic strength by inducing long-term depression (LTD). Inputs from prefrontal cortex (PFC) and medio-dorsal thalamus (MDT) drive opposing motivated behaviors yet mGlu receptor regulation of these synapses is unexplored. We examined Group I mGlu receptor regulation of PFC and MDT glutamatergic synapses onto specific populations of NAc medium spiny neurons (MSNs) using D1tdTom BAC transgenic mice and optogenetics. Synaptically evoked long-term depression (LTD) at MDT-NAcSh synapses required mGlu5 but not mGlu1 and was specific for D1(+) MSNs, whereas PFC LTD was expressed at both D1(+) and D1(-) MSNs and required mGlu1 but not mGlu5. Two weeks after five daily non-contingent cocaine exposures (15 mg/kg), LTD was attenuated at MDT-D1(+) synapses but was rescued by the mGlu5-positive allosteric modulator (PAM) VU0409551. These results highlight unique plasticity mechanisms regulating specific NAcSh synapses.
Collapse
Affiliation(s)
- Brandon D. Turner
- 0000 0001 2264 7217grid.152326.1Vanderbilt Brain Institute, Nashville, TN 37232 USA
| | - Jerri M. Rook
- 0000 0001 2264 7217grid.152326.1Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232 USA ,0000 0001 2264 7217grid.152326.1Dept. of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Craig W. Lindsley
- 0000 0001 2264 7217grid.152326.1Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232 USA ,0000 0001 2264 7217grid.152326.1Dept. of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - P. Jeffrey Conn
- 0000 0001 2264 7217grid.152326.1Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232 USA ,0000 0001 2264 7217grid.152326.1Dept. of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Brad A. Grueter
- 0000 0001 2264 7217grid.152326.1Vanderbilt Brain Institute, Nashville, TN 37232 USA ,0000 0001 2264 7217grid.152326.1Dept. of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA ,0000 0001 2264 7217grid.152326.1Dept. of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA ,0000 0001 2264 7217grid.152326.1Dept. of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232 USA ,0000 0001 2264 7217grid.152326.1Dept. of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232 USA ,0000 0001 2264 7217grid.152326.1Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| |
Collapse
|
313
|
Carcoba LM, Flores RJ, Natividad LA, O’Dell LE. Amino acid modulation of dopamine in the nucleus accumbens mediates sex differences in nicotine withdrawal. Addict Biol 2018; 23:1046-1054. [PMID: 28940989 PMCID: PMC5878145 DOI: 10.1111/adb.12556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 01/23/2023]
Abstract
The aversive effect of nicotine withdrawal is greater in female versus male rats, and we postulate that this sex difference is mediated in the nucleus accumbens (NAc). Nicotine withdrawal induces decreases in NAc dopamine and increases in acetylcholine (ACh) levels in male rats. To our knowledge, these neurochemical markers of nicotine withdrawal have not been compared in female versus male rats. Given the role of amino acids in modulating NAc dopaminergic and cholinergic transmission, concomitant measures of gamma-aminobutyric acid (GABA) and glutamate levels were also compared across sex. Rats received continuous nicotine exposure for 14 days, and then NAc dialysate was collected during baseline and following administration of the nicotinic receptor antagonist mecamylamine to precipitate withdrawal. Chronic nicotine exposure was associated with larger increases in baseline dopamine, GABA and glutamate levels in the NAc of female versus male rats, whereas baseline ACh was only increased in male rats. During withdrawal, both sexes displayed equivalent increases in NAc ACh levels. As expected, male rats displayed decreases in dopamine, coupled with increases in GABA and decreases in glutamate levels, suggesting the possibility of increased inhibitory tone in the NAc during withdrawal. Relative to males, female rats displayed larger decreases in NAc dopamine and related increases in GABAergic transmission. As female rats also showed elevated glutamate levels that persist during withdrawal, it is suggested that sex differences may arise from increased glutamatergic drive of inhibitory tone in the NAc. The findings provide a potential mechanism whereby the aversive effects of nicotine withdrawal are enhanced in female rats.
Collapse
Affiliation(s)
- Luis M. Carcoba
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Rodolfo J. Flores
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Luis A. Natividad
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Laura E. O’Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
314
|
McDevitt DS, Graziane NM. Neuronal mechanisms mediating pathological reward-related behaviors: A focus on silent synapses in the nucleus accumbens. Pharmacol Res 2018; 136:90-96. [PMID: 30171902 DOI: 10.1016/j.phrs.2018.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
The compulsive drive to seek drugs despite negative consequences relies heavily on drug-induced alterations that occur within the reward neurocircuit. These alterations include changes in neuromodulator and neurotransmitter systems that ultimately lock behaviors into an inflexible and permanent state. To provide clinicians with improved treatment options, researchers are trying to identify, as potential targets of therapeutic intervention, the neural mechanisms mediating an "addictive-like state". Here, we discuss how drug-induced generation of silent synapses in the nucleus accumbens may be a potential therapeutic target capable of reversing drug-related behaviors.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA; Neuroscience graduate program, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA.
| |
Collapse
|
315
|
Wolff AR, Bygrave AM, Sanderson DJ, Boyden ES, Bannerman DM, Kullmann DM, Kätzel D. Optogenetic induction of the schizophrenia-related endophenotype of ventral hippocampal hyperactivity causes rodent correlates of positive and cognitive symptoms. Sci Rep 2018; 8:12871. [PMID: 30150758 PMCID: PMC6110795 DOI: 10.1038/s41598-018-31163-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023] Open
Abstract
Pathological over-activity of the CA1 subfield of the human anterior hippocampus has been identified as a potential predictive marker for transition from a prodromal state to overt schizophrenia. Psychosis, in turn, is associated with elevated activity in the anterior subiculum, the hippocampal output stage directly activated by CA1. Over-activity in these subfields may represent a useful endophenotype to guide translationally predictive preclinical models. To recreate this endophenotype and study its causal relation to deficits in the positive and cognitive symptom domains, we optogenetically activated excitatory neurons of the ventral hippocampus (vHPC; analogous to the human anterior hippocampus), targeting the ventral subiculum. Consistent with previous studies, we found that vHPC over-activity evokes hyperlocomotion, a rodent correlate of positive symptoms. vHPC activation also impaired performance on the spatial novelty preference (SNP) test of short-term memory, regardless of whether stimulation was applied during the encoding or retrieval stage of the task. Increasing dopamine transmission with amphetamine produced hyperlocomotion, but was not associated with SNP impairments. This suggests that short-term memory impairments resulting from hippocampal over-activity likely arise independently of a hyperdopaminergic state, a finding that is consistent with the pharmaco-resistance of cognitive symptoms in patients.
Collapse
Affiliation(s)
- Amy R Wolff
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Institute of Neurology, University College London, London, UK
| | - Alexei M Bygrave
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - David J Sanderson
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Psychology, Durham University, Durham, UK
| | - Edward S Boyden
- Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, USA
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | | | - Dennis Kätzel
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Institute of Neurology, University College London, London, UK.
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
316
|
Lueptow LM, Devi LA, Fakira AK. Targeting the Recently Deorphanized Receptor GPR83 for the Treatment of Immunological, Neuroendocrine and Neuropsychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:1-25. [PMID: 30340784 DOI: 10.1016/bs.pmbts.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-protein coupled receptors (GPCRs) are a superfamily of receptors responsible for initiation of a myriad of intracellular signaling cascades. Currently, GPCRs represent approximately 34% of marketed pharmaceuticals, a large portion of which have no known endogenous ligand. These orphan GPCRs represent a large pool of novel targets for drug development. Very recently, the neuropeptide PEN, derived from the proteolytic processing of the precursor proSAAS, has been identified as a selective, high-affinity endogenous ligand for the orphan receptor, GPR83. GPR83 is highly expressed in the brain, spleen and thymus, indicating that this receptor may be a target to treat neurological and immune disorders. In the brain GPR83 is expressed in regions involved in the reward pathway, stress/anxiety responses, learning and memory and metabolism. However, the cell type specific expression of GPR83 in these regions has only recently begun to be characterized. In the immune system, GPR83 expression is regulated by Foxp3 in T-regulatory cells that are involved in autoimmune responses. Moreover, in the brain this receptor is regulated by interactions with other GPCRs, such as the recently deorphanized receptor, GPR171, and other hypothalamic receptors such as MC4R and GHSR. The following review will summarize the properties of GPR83 and highlight its known and potential significance in health and disease, as well as its promise as a novel target for drug development.
Collapse
Affiliation(s)
- Lindsay M Lueptow
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Amanda K Fakira
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
317
|
Sweis BM, Thomas MJ, Redish AD. Beyond simple tests of value: measuring addiction as a heterogeneous disease of computation-specific valuation processes. ACTA ACUST UNITED AC 2018; 25:501-512. [PMID: 30115772 PMCID: PMC6097760 DOI: 10.1101/lm.047795.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022]
Abstract
Addiction is considered to be a neurobiological disorder of learning and memory because addiction is capable of producing lasting changes in the brain. Recovering addicts chronically struggle with making poor decisions that ultimately lead to relapse, suggesting a view of addiction also as a neurobiological disorder of decision-making information processing. How the brain makes decisions depends on how decision-making processes access information stored as memories in the brain. Advancements in circuit-dissection tools and recent theories in neuroeconomics suggest that neurally dissociable valuation processes access distinct memories differently, and thus are uniquely susceptible as the brain changes during addiction. If addiction is to be considered a neurobiological disorder of memory, and thus decision-making, the heterogeneity with which information is both stored and processed must be taken into account in addiction studies. Addiction etiology can vary widely from person to person. We propose that addiction is not a single disease, nor simply a disorder of learning and memory, but rather a collection of symptoms of heterogeneous neurobiological diseases of distinct circuit-computation-specific decision-making processes.
Collapse
Affiliation(s)
- Brian M Sweis
- Graduate Program in Neuroscience and Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
318
|
Lupica CR, Hoffman AF. Cannabinoid disruption of learning mechanisms involved in reward processing. ACTA ACUST UNITED AC 2018; 25:435-445. [PMID: 30115765 PMCID: PMC6097761 DOI: 10.1101/lm.046748.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
Abstract
The increasing use of cannabis, its derivatives, and synthetic cannabinoids for medicinal and recreational purposes has led to burgeoning interest in understanding the addictive potential of this class of molecules. It is estimated that ∼10% of marijuana users will eventually show signs of dependence on the drug, and the diagnosis of cannabis use disorder (CUD) is increasing in the United States. The molecule that sustains the use of cannabis is Δ9-tetrahydrocannabinol (Δ9-THC), and our knowledge of its effects, and those of other cannabinoids on brain function has expanded rapidly in the past two decades. Additionally, the identification of endogenous cannabinoid (endocannabinoid) systems in brain and their roles in physiology and behavior, demonstrate extensive involvement of these lipid signaling molecules in regulating CNS function. Here, we examine roles for endogenous cannabinoids in shaping synaptic activity in cortical and subcortical brain circuits, and we discuss mechanisms in which exogenous cannabinoids, such as Δ9-THC, interact with endocannabinoid systems to disrupt neuronal network oscillations. We then explore how perturbation of the interaction of this activity within brain reward circuits may lead to impaired learning. Finally, we propose that disruption of cellular plasticity mechanisms by exogenous cannabinoids in cortical and subcortical circuits may explain the difficulty in establishing viable cannabinoid self-administration models in animals.
Collapse
Affiliation(s)
- Carl R Lupica
- Electrophysiology Research Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Alexander F Hoffman
- Electrophysiology Research Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
319
|
Gibson GD, Millan EZ, McNally GP. The nucleus accumbens shell in reinstatement and extinction of drug seeking. Eur J Neurosci 2018; 50:2014-2022. [PMID: 30044017 DOI: 10.1111/ejn.14084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
The contexts where drugs are self-administered have important control over relapse and extinction of drug-seeking behavior. The nucleus accumbens shell (AcbSh) is essential to this contextual control over drug-seeking behavior. It has been consistently implicated in both the expression of context-induced reinstatement and the expression of extinction, across a variety of drug classes and other rewards. Here, we review the evidence linking AcbSh to the extinction and reinstatement of drug seeking. We consider whether this dual role can be linked to known heterogeneities in AcbSh cell types, their major afferents, and their major efferents. We show that although these heterogeneities are each important and can determine extinction vs. reinstatement, they do not seem adequate to explain the body of findings from the behavioral literature. Rather, we suggest that this functional specialization of AcbSh may be more profitably viewed in terms of the segregation and compartmentalization of AcbSh channels.
Collapse
Affiliation(s)
| | - E Zayra Millan
- School of Psychology, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Gavan P McNally
- School of Psychology, UNSW Sydney, Sydney, 2052, NSW, Australia
| |
Collapse
|
320
|
Abstract
Depression and anxiety are the most common mood disorders affecting 300 million sufferers worldwide. Maladaptive changes in the neuroendocrine stress response is cited as the most common underlying cause, though how the circuits underlying this response are controlled at the molecular level, remains largely unknown. Approximately 40% of patients do not respond to current treatments, indicating that untapped mechanisms exist. Here we review recent evidence implicating JNK in the control of anxiety and depressive-like behavior with a particular focus on its action in immature granule cells of the hippocampal neurogenic niche and the potential for therapeutic targeting for affective disorders.
Collapse
Affiliation(s)
- Patrik Hollos
- Turku Centre for Biotechnology, Åbo Akademi and University of Turku, BioCity, Turku FIN, Finland
| | - Francesca Marchisella
- Turku Centre for Biotechnology, Åbo Akademi and University of Turku, BioCity, Turku FIN, Finland
| | - Eleanor T Coffey
- Turku Centre for Biotechnology, Åbo Akademi and University of Turku, BioCity, Turku FIN, Finland
| |
Collapse
|
321
|
Tonn Eisinger KR, Gross KS, Head BP, Mermelstein PG. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females. Horm Behav 2018; 104:130-137. [PMID: 29505763 PMCID: PMC6131090 DOI: 10.1016/j.yhbeh.2018.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogen receptors α and β (ERα and ERβ) have a unique relationship with metabotropic glutamate receptors (mGluRs) in the female rodent brain such that estradiol is able to recruit intracellular G-protein signaling cascades to influence neuronal physiology, structure, and ultimately behavior. While this association between ERs and mGluRs exists in many cell types and brain regions, its effects are perhaps most striking in the nucleus accumbens (NAc). This review will discuss the original characterization of ER/mGluR signaling and how estradiol activity in the NAc confers increased sensitivity to drugs of abuse in females through this mechanism.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Brian P Head
- Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92093, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
322
|
Ebner SR, Larson EB, Hearing MC, Ingebretson AE, Thomas MJ. Extinction and Reinstatement of Cocaine-seeking in Self-administering Mice is Associated with Bidirectional AMPAR-mediated Plasticity in the Nucleus Accumbens Shell. Neuroscience 2018; 384:340-349. [PMID: 29885524 DOI: 10.1016/j.neuroscience.2018.05.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/29/2022]
Abstract
Experience-dependent synaptic plasticity is an important component of both learning and motivational disturbances found in addicted individuals. Here, we investigated the role of cocaine experience-dependent plasticity at excitatory synapses in the nucleus accumbens shell (NAcSh) in relapse-related behavior in mice with a history of volitional cocaine self-administration. Using an extinction/reinstatement paradigm of cocaine-seeking behavior, we demonstrate that cocaine-experienced mice with extinguished cocaine-seeking behavior show potentiation of synaptic strength at excitatory inputs onto NAcSh medium spiny neurons (MSNs). Conversely, we found that exposure to various distinct types of reinstating stimuli (cocaine, cocaine-associated cues, yohimbine "stress") after extinction can produce a relative depotentiation of NAcSh synapses that is strongly associated with the magnitude of cocaine-seeking behavior exhibited in response to these challenges. Furthermore, we show that these effects are due to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-specific mechanisms that differ depending on the nature and context of the reinstatement-inducing stimuli. Together, our findings identify common themes as well as differential mechanisms that are likely important for the ability of diverse environmental stimuli to drive relapse to addictive-like cocaine-seeking behavior.
Collapse
Affiliation(s)
- Stephanie R Ebner
- Department of Neuroscience, University of Minnesota, 3-432 McGuire Translational Research Facility 3-432, 2001 6th St SE, Minneapolis, MN 55455, USA
| | - Erin B Larson
- Department of Neuroscience, University of Minnesota, 3-432 McGuire Translational Research Facility 3-432, 2001 6th St SE, Minneapolis, MN 55455, USA.
| | - Matthew C Hearing
- Department of Neuroscience, University of Minnesota, 3-432 McGuire Translational Research Facility 3-432, 2001 6th St SE, Minneapolis, MN 55455, USA.
| | - Anna E Ingebretson
- Department of Neuroscience, University of Minnesota, 3-432 McGuire Translational Research Facility 3-432, 2001 6th St SE, Minneapolis, MN 55455, USA.
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, 3-432 McGuire Translational Research Facility 3-432, 2001 6th St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
323
|
Stamatakis AM, Schachter MJ, Gulati S, Zitelli KT, Malanowski S, Tajik A, Fritz C, Trulson M, Otte SL. Simultaneous Optogenetics and Cellular Resolution Calcium Imaging During Active Behavior Using a Miniaturized Microscope. Front Neurosci 2018; 12:496. [PMID: 30087590 PMCID: PMC6066578 DOI: 10.3389/fnins.2018.00496] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
The ability to precisely monitor and manipulate neural circuits is essential to understand the brain. Advancements over the last decade in optical techniques such as calcium imaging and optogenetics have empowered researchers to gain insight into brain function by systematically manipulating or monitoring defined neural circuits. Combining these cutting-edge techniques enables a more direct mechanism for ascribing neural dynamics to behavior. Here, we developed a miniaturized integrated microscope that allows for simultaneous optogenetic manipulation and cellular-resolution calcium imaging within the same field of view in freely behaving mice. The integrated microscope has two LEDs, one filtered with a 435-460 nm excitation filter for imaging green calcium indicators, and a second LED filtered with a 590-650 nm excitation filter for optogenetic modulation of red-shifted opsins. We developed and tested this technology to minimize biological and optical crosstalk. We observed insignificant amounts of biological and optical crosstalk with regards to the optogenetic LED affecting calcium imaging. We observed some amounts of residual crosstalk of the imaging light on optogenetic manipulation. Despite residual crosstalk, we have demonstrated the utility of this technology by probing the causal relationship between basolateral amygdala (BLA) -to- nucleus accumbens (NAc) circuit function, behavior, and network dynamics. Using this integrated microscope we were able to observe both a significant behavioral and cellular calcium response of the optogenetic modulation on the BLA-to-NAc circuit. This integrated strategy will allow for routine investigation of the causality of circuit manipulation on cellular-resolution network dynamics and behavior.
Collapse
|
324
|
Drug Refraining and Seeking Potentiate Synapses on Distinct Populations of Accumbens Medium Spiny Neurons. J Neurosci 2018; 38:7100-7107. [PMID: 29976626 DOI: 10.1523/jneurosci.0791-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 02/08/2023] Open
Abstract
Cocaine-associated cues and contexts can precipitate drug seeking in humans and in experimental animals. Glutamatergic synapses in the core subcompartment of the nucleus accumbens (NAcore) undergo transient potentiation in response to presenting drug-associated cues. The NAcore contains two populations of medium spiny neurons (MSNs) that differentially express D1 or D2 dopamine receptors. By recording the ratio of AMPA and NMDA glutamate receptor currents (AMPA/NMDA ratio) from MSNs in NAcore tissue slices, we endeavored to understand which subpopulation of MSNs was undergoing transient potentiation. Transgenic female and male mice differentially expressing fluorescent reporters in D1 or D2 MSNs were withdrawn for 2-3 weeks after being trained to self-administer cocaine. In some mice, discrete cocaine-conditioned cues were isolated from the drug-associated context via extinction training, which causes rodents to refrain from drug seeking in the extinguished context. By measuring AMPA/NMDA ratios in the drug context with or without contextual or discrete cues, and with or without extinction training, we made the following three discoveries: (1) mice refraining from cocaine seeking in the extinguished context showed selective elevation in AMPA/NMDA ratios in D2 MSNs; (2) without extinction training, the drug-associated context selectively increased AMPA/NMDA ratios in D1 MSNs; (3) mice undergoing cue-induced cocaine seeking after extinction training in the drug-associated context showed AMPA/NMDA ratio increases in both D1 and D2 MSNs. These findings reveal that the NAcore codes drug seeking through transient potentiation of D1 MSNs, and that refraining from cocaine seeking in an extinguished context is coded through transient potentiation of D2 MSNs.SIGNIFICANCE STATEMENT Relapse is a primary symptom of addiction that can involve competition between the desire to use drugs and the desire to refrain from using drugs. Drug-associated cues induce relapse, which is correlated with transiently potentiated glutamatergic synapses in the nucleus accumbens core. We determined which of two cell populations in the accumbens core, D1-expressing or D2-expressing neurons, undergo transient synaptic potentiation. After being trained to self-administer cocaine, mice underwent withdrawal, some with and others without extinguishing responding in the drug-associated context. Extinguished mice showed transient potentiation in D2-expressing neurons in the extinguished environment, and all mice engaged in context-induced or cue-induced drug seeking showed transient potentiation of D1-expressing neurons. A simple binary engram in accumbens for seeking drugs and refraining from drugs offers opportunities for cell-specific therapies.
Collapse
|
325
|
Pessoa L. Emotion and the Interactive Brain: Insights From Comparative Neuroanatomy and Complex Systems. EMOTION REVIEW 2018; 10:204-216. [PMID: 31537985 PMCID: PMC6752744 DOI: 10.1177/1754073918765675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although emotion is closely associated with motivation, and interacts with perception, cognition, and action, many conceptualizations still treat emotion as separate from these domains. Here, a comparative/evolutionary anatomy framework is presented to motivate the idea that long-range, distributed circuits involving the midbrain, thalamus, and forebrain are central to emotional processing. It is proposed that emotion can be understood in terms of large-scale network interactions spanning the neuroaxis that form "functionally integrated systems." At the broadest level, the argument is made that we need to move beyond a Newtonian view of causation to one involving complex systems where bidirectional influences and nonlinearities abound. Therefore, understanding interactions between subsystems and signal integration becomes central to unraveling the organization of the emotional brain.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology and Maryland Neuroimaging Center, University of Maryland, USA
| |
Collapse
|
326
|
Silveira MM, Tremblay M, Winstanley CA. Dissociable contributions of dorsal and ventral striatal regions on a rodent cost/benefit decision-making task requiring cognitive effort. Neuropharmacology 2018; 137:322-331. [DOI: 10.1016/j.neuropharm.2018.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/14/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022]
|
327
|
Ohene-Nyako M, Persons AL, Napier TC. Region-specific changes in markers of neuroplasticity revealed in HIV-1 transgenic rats by low-dose methamphetamine. Brain Struct Funct 2018; 223:3503-3513. [PMID: 29931627 DOI: 10.1007/s00429-018-1701-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Methamphetamine abuse co-occurring with HIV infection presents neuropathology in brain regions that mediate reward and motivation. A neuronal signaling cascade altered acutely by meth and some HIV-1 proteins is the mitogen-activated protein kinase (MAPK) pathway. It remains unknown if chronic co-exposure to meth and HIV-1 proteins converge on MAPK in vivo. To make this determination, we studied young adult Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats that self-administered meth (0.02-0.04 mg/kg/0.05 ml iv infusion, 2 h/day for 21 days) and their saline-yoked controls. One day following the operant task, rats were killed. Brain regions involved in reward-motivation [i.e., nucleus accumbens (NA) and ventral pallidum (VP)], were assayed for a MAPK cascade protein, extracellular signal-regulated kinase (ERK), and a downstream transcription factor, ΔFosB. In the NA, activated (phosphorylated; p) ERK-to-ERK ratio (pERK/ERK) was increased in meth-exposed Tg rats versus saline Tg controls, and versus meth non-Tg rats. ΔFosB was increased in meth Tg rats versus saline and meth non-Tg rats. Assessment of two targets of ΔFosB-regulated transcription revealed (1) increased dopamine D1 receptor (D1R) immunoreactivity in the NA shell of Tg-meth rats versus saline Tg controls, but (2) no changes in the AMPA receptor subunit, GluA2. No changes related to genotype or meth occurred for ERK, ΔFosB or D1R protein in the VP. Results reveal a region-specific activation of ERK, and increases in ΔFosB and D1R expression induced by HIV-1 proteins and meth. Such effects may contribute to the neuronal and behavioral pathology associated with meth/HIV comorbidity.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Department of Pharmacology, Rush University, Chicago, IL, USA.,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - Amanda L Persons
- Department of Physician Assistant Studies, Rush University, Chicago, IL, USA.,Department of Psychiatry, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building Suite #424, Chicago, IL, 60612, USA.,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - T Celeste Napier
- Department of Psychiatry, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building Suite #424, Chicago, IL, 60612, USA. .,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA.
| |
Collapse
|
328
|
McGarry LM, Carter AG. Prefrontal Cortex Drives Distinct Projection Neurons in the Basolateral Amygdala. Cell Rep 2018; 21:1426-1433. [PMID: 29117549 DOI: 10.1016/j.celrep.2017.10.046] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/01/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023] Open
Abstract
The prefrontal cortex (PFC) regulates emotional behavior via top-down control of the basolateral amygdala (BLA). However, the influence of PFC inputs on the different projection pathways within the BLA remains largely unexplored. Here, we combine whole-cell recordings and optogenetics to study these cell-type specific connections in mouse BLA. We characterize PFC inputs onto three distinct populations of BLA neurons that project to the PFC, ventral hippocampus, or nucleus accumbens. We find that PFC-evoked synaptic responses are strongest at amygdala-cortical and amygdala-hippocampal neurons and much weaker at amygdala-striatal neurons. We assess the mechanisms for this targeting and conclude that it reflects fewer connections onto amygdala-striatal neurons. Given the similar intrinsic properties of these cells, this connectivity allows the PFC to preferentially activate amygdala-cortical and amygdala-hippocampal neurons. Together, our findings reveal how PFC inputs to the BLA selectively drive feedback projections to the PFC and feedforward projections to the hippocampus.
Collapse
Affiliation(s)
- Laura M McGarry
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Adam G Carter
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
329
|
Modi ME, Brooks JM, Guilmette ER, Beyna M, Graf R, Reim D, Schmeisser MJ, Boeckers TM, O'Donnell P, Buhl DL. Hyperactivity and Hypermotivation Associated With Increased Striatal mGluR1 Signaling in a Shank2 Rat Model of Autism. Front Mol Neurosci 2018; 11:107. [PMID: 29970986 PMCID: PMC6018399 DOI: 10.3389/fnmol.2018.00107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/19/2018] [Indexed: 12/02/2022] Open
Abstract
Mutations in the SHANK family of genes have been consistently identified in genetic and genomic screens of autism spectrum disorder (ASD). The functional overlap of SHANK with several other ASD-associated genes suggests synaptic dysfunction as a convergent mechanism of pathophysiology in ASD. Although many ASD-related mutations result in alterations to synaptic function, the nature of those dysfunctions and the consequential behavioral manifestations are highly variable when expressed in genetic mouse models. To investigate the phylogenetic conservation of phenotypes resultant of Shank2 loss-of-function in a translationally relevant animal model, we generated and characterized a novel transgenic rat with a targeted mutation of the Shank2 gene, enabling an evaluation of gene-associated phenotypes, the elucidation of complex behavioral phenotypes, and the characterization of potential translational biomarkers. The Shank2 loss-of-function mutation resulted in a notable phenotype of hyperactivity encompassing hypermotivation, increased locomotion, and repetitive behaviors. Mutant rats also expressed deficits in social behavior throughout development and in the acquisition of operant tasks. The hyperactive phenotype was associated with an upregulation of mGluR1 expression, increased dendritic branching, and enhanced long-term depression (LTD) in the striatum but opposing morphological and cellular alterations in the hippocampus (HP). Administration of the mGluR1 antagonist JNJ16259685 selectively normalized the expression of striatally mediated repetitive behaviors and physiology but had no effect on social deficits. Finally, Shank2 mutant animals also exhibited alterations in electroencephalography (EEG) spectral power and event-related potentials, which may serve as translatable EEG biomarkers of synaptopathic alterations. Our results show a novel hypermotivation phenotype that is unique to the rat model of Shank2 dysfunction, in addition to the traditional hyperactive and repetitive behaviors observed in mouse models. The hypermotivated and hyperactive phenotype is associated with striatal dysfunction, which should be explored further as a targetable mechanism for impairment in ASD.
Collapse
Affiliation(s)
- Meera E Modi
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Julie M Brooks
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Edward R Guilmette
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Mercedes Beyna
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Radka Graf
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Division of Neuroanatomy, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Patricio O'Donnell
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Derek L Buhl
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| |
Collapse
|
330
|
Ventral striatal dysfunction in cocaine dependence - difference mapping for subregional resting state functional connectivity. Transl Psychiatry 2018; 8:119. [PMID: 29915214 PMCID: PMC6006289 DOI: 10.1038/s41398-018-0164-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Research of dopaminergic deficits has focused on the ventral striatum (VS) with many studies elucidating altered resting state functional connectivity (rsFC) in individuals with cocaine dependence (CD). The VS comprises functional subregions and delineation of subregional changes in rsFC requires careful consideration of the differences between addicted and healthy populations. In the current study, we parcellated the VS using whole-brain rsFC differences between CD and non-drug-using controls (HC). Voxels with similar rsFC changes formed functional clusters. The results showed that the VS was divided into 3 subclusters, in the area of the dorsal-anterior VS (daVS), dorsal posterior VS (dpVS), and ventral VS (vVS), each in association with different patterns of rsFC. The three subregions shared reduced rsFC with bilateral hippocampal/parahippocampal gyri (HG/PHG) but also showed distinct changes, including reduced vVS rsFC with ventromedial prefrontal cortex (vmPFC) and increased daVS rsFC with visual cortex in CD as compared to HC. Across CD, daVS visual cortical connectivity was positively correlated with amount of prior-month cocaine use and cocaine craving, and vVS vmPFC connectivity was negatively correlated with the extent of depression and anxiety. These findings suggest a distinct pattern of altered VS subregional rsFC in cocaine dependence, and some of the changes have eluded analyses using the whole VS as a seed region. The findings may provide new insight to delineating VS circuit deficits in cocaine dependence and provide an alternative analytical framework to address functional dysconnectivity in other mental illnesses.
Collapse
|
331
|
Altering gain of the infralimbic-to-accumbens shell circuit alters economically dissociable decision-making algorithms. Proc Natl Acad Sci U S A 2018; 115:E6347-E6355. [PMID: 29915034 DOI: 10.1073/pnas.1803084115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nucleus accumbens shell (NAcSh) is involved in reward valuation. Excitatory projections from infralimbic cortex (IL) to NAcSh undergo synaptic remodeling in rodent models of addiction and enable the extinction of disadvantageous behaviors. However, how the strength of synaptic transmission of the IL-NAcSh circuit affects decision-making information processing and reward valuation remains unknown, particularly because these processes can conflict within a given trial and particularly given recent data suggesting that decisions arise from separable information-processing algorithms. The approach of many neuromodulation studies is to disrupt information flow during on-going behaviors; however, this limits the interpretation of endogenous encoding of computational processes. Furthermore, many studies are limited by the use of simple behavioral tests of value which are unable to dissociate neurally distinct decision-making algorithms. We optogenetically altered the strength of synaptic transmission between glutamatergic IL-NAcSh projections in mice trained on a neuroeconomic task capable of separating multiple valuation processes. We found that induction of long-term depression in these synapses produced lasting changes in foraging processes without disrupting deliberative processes. Mice displayed inflated reevaluations to stay when deciding whether to abandon continued reward-seeking investments but displayed no changes during initial commitment decisions. We also developed an ensemble-level measure of circuit-specific plasticity that revealed individual differences in foraging valuation tendencies. Our results demonstrate that alterations in projection-specific synaptic strength between the IL and the NAcSh are capable of augmenting self-control economic valuations within a particular decision-making modality and suggest that the valuation mechanisms for these multiple decision-making modalities arise from different circuits.
Collapse
|
332
|
Klawonn AM, Fritz M, Nilsson A, Bonaventura J, Shionoya K, Mirrasekhian E, Karlsson U, Jaarola M, Granseth B, Blomqvist A, Michaelides M, Engblom D. Motivational valence is determined by striatal melanocortin 4 receptors. J Clin Invest 2018; 128:3160-3170. [PMID: 29911992 DOI: 10.1172/jci97854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and κ opioid receptor-induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.
Collapse
Affiliation(s)
- Anna Mathia Klawonn
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Michael Fritz
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna Nilsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Kiseko Shionoya
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elahe Mirrasekhian
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Urban Karlsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maarit Jaarola
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Björn Granseth
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anders Blomqvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA.,Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - David Engblom
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
333
|
Jayanthi S, Gonzalez B, McCoy MT, Ladenheim B, Bisagno V, Cadet JL. Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens. Mol Neurobiol 2018; 55:5154-5166. [PMID: 28842817 PMCID: PMC5948251 DOI: 10.1007/s12035-017-0750-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/15/2017] [Indexed: 12/30/2022]
Abstract
Methamphetamine (METH) addiction is a biopsychosocial disorder that is accompanied by multiple relapses even after prolonged abstinence, suggesting the possibilities of long-lasting maladaptive epigenetic changes in the brain. Here, we show that METH administration produced time-dependent increases in the expression of corticotropin-releasing hormone (Crh/Crf), arginine vasopressin (Avp), and cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt) mRNAs in the rat nucleus accumbens (NAc). Chromatin immunoprecipitation (ChIP) assays revealed that METH increased the abundance of phosphorylated CREB (pCREB) at the promoter of Cartpt but not at Avp or Crh DNA sequences. In contrast, METH produced DNA hypomethylation at sites near the Crh transcription start site (TSS) and at intragenic Avp sequences. METH also increased DNA hydroxymethylation at the Crh TSS and at intragenic Avp sites. In addition, METH increased the protein expression of ten-eleven-translocation enzymes that catalyze DNA hydroxymethylation. Importantly, METH increased TET1 binding at the Crh promoter and increased TET3 binding at Avp intragenic regions. We further tested the role of TET enzymes in METH-induced changes in gene expression by using the TET inhibitor, 1,5-isoquinolinediol (IQD), and found that IQD blocked METH-induced increases in Crh and Avp mRNA expression. Together, these results indicate that METH produced changes in neuropeptide transcription by both activation of the cAMP/CREB pathway and stimulation of TET-dependent DNA hydroxymethylation. These results provide molecular evidence for epigenetic controls of METH-induced changes in the expression of neuropeptides.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Betina Gonzalez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Veronica Bisagno
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA.
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA IRP, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
334
|
Cahill ME, Walker DM, Gancarz AM, Wang ZJ, Lardner CK, Bagot RC, Neve RL, Dietz DM, Nestler EJ. The dendritic spine morphogenic effects of repeated cocaine use occur through the regulation of serum response factor signaling. Mol Psychiatry 2018; 23:1474-1486. [PMID: 28555077 PMCID: PMC5709273 DOI: 10.1038/mp.2017.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/23/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
Abstract
The nucleus accumbens (NAc) is a primary brain reward region composed predominantly of medium spiny neurons (MSNs). In response to early withdrawal from repeated cocaine administration, de novo dendritic spine formation occurs in NAc MSNs. Much evidence indicates that this new spine formation facilitates the rewarding properties of cocaine. Early withdrawal from repeated cocaine also produces dramatic alterations in the transcriptome of NAc MSNs, but how such alterations influence cocaine's effects on dendritic spine formation remain unclear. Studies in non-neuronal cells indicate that actin cytoskeletal regulatory pathways in nuclei have a direct role in the regulation of gene transcription in part by controlling the access of co-activators to their transcription factor partners. In particular, actin state dictates the interaction between the serum response factor (SRF) transcription factor and one of its principal co-activators, MAL. Here we show that cocaine induces alterations in nuclear F-actin signaling pathways in the NAc with associated changes in the nuclear subcellular localization of SRF and MAL. Using in vivo optogenetics, the brain region-specific inputs to the NAc that mediate these nuclear changes are investigated. Finally, we demonstrate that regulated SRF expression, in turn, is critical for the effects of cocaine on dendritic spine formation and for cocaine-mediated behavioral sensitization. Collectively, these findings reveal a mechanism by which nuclear-based changes influence the structure of NAc MSNs in response to cocaine.
Collapse
Affiliation(s)
- ME Cahill
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - DM Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - AM Gancarz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University at Buffalo, Buffalo, NY, USA
| | - ZJ Wang
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University at Buffalo, Buffalo, NY, USA
| | - CK Lardner
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - RC Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychology, McGill University, Montréal, QC, Canada
| | - RL Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - DM Dietz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University at Buffalo, Buffalo, NY, USA
| | - EJ Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
335
|
Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci 2018; 38:5939-5948. [PMID: 29853627 DOI: 10.1523/jneurosci.0149-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/21/2018] [Indexed: 01/27/2023] Open
Abstract
Microdeletion of the human 16p11.2 gene locus has been linked to autism spectrum disorder (ASD) and intellectual disability and confers risk for a number of other neurodevelopmental deficits. Transgenic mice carrying 16p11.2 deletion (16p11+/-) display phenotypes reminiscent of those in human patients with 16p11.2 deletion syndrome, but the molecular mechanisms and treatment strategies for these phenotypes remain unknown. In this study, we have found that both male and female 16p11+/- mice exhibit deficient NMDA receptor (NMDAR) function in the medial prefrontal cortex (mPFC), a brain region critical for high-level "executive" functions. Elevating the activity of mPFC pyramidal neurons with a CaMKII-driven Gq-DREADD (Gq-coupled designer receptors exclusively activated by designer drugs) led to the significant increase of NR2B subunit phosphorylation and the restoration of NMDAR function, as well as the amelioration of cognitive and social impairments in 16p11+/- mice. These results suggest that NMDAR hypofunction in PFC may contribute to the pathophysiology of 16p11.2 deletion syndrome and that restoring PFC activity is sufficient to rescue the behavioral deficits.SIGNIFICANCE STATEMENT The 16p11.2 deletion syndrome is strongly associated with autism spectrum disorder and intellectual disability. Using a mouse model carrying the 16p11.2 deletion, 16p11+/-, we identified NMDA receptor hypofunction in the prefrontal cortex (PFC). Elevating the activity of PFC pyramidal neurons with a chemogenetic tool, Gq-DREADD, led to the restoration of NMDA receptor function and the amelioration of cognitive and social impairments in 16p11+/- mice. These results have revealed a novel route for potential therapeutic intervention of 16p11.2 deletion syndrome.
Collapse
|
336
|
Sjulson L, Peyrache A, Cumpelik A, Cassataro D, Buzsáki G. Cocaine Place Conditioning Strengthens Location-Specific Hippocampal Coupling to the Nucleus Accumbens. Neuron 2018; 98:926-934.e5. [PMID: 29754750 DOI: 10.1016/j.neuron.2018.04.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 11/21/2017] [Accepted: 04/13/2018] [Indexed: 11/16/2022]
Abstract
Conditioned place preference (CPP) is a widely used model of addiction-related behavior whose underlying mechanisms are not understood. In this study, we used dual site silicon probe recordings in freely moving mice to examine interactions between the hippocampus and nucleus accumbens in cocaine CPP. We found that CPP was associated with recruitment of D2-positive nucleus accumbens medium spiny neurons to fire in the cocaine-paired location, and this recruitment was driven predominantly by selective strengthening of coupling with hippocampal place cells that encode the cocaine-paired location. These findings provide in vivo evidence suggesting that the synaptic potentiation in the accumbens caused by repeated cocaine administration preferentially affects inputs that were active at the time of drug exposure. This provides a potential physiological mechanism by which drug use becomes associated with specific environmental contexts.
Collapse
Affiliation(s)
- Lucas Sjulson
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.
| | - Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Cumpelik
- NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Daniela Cassataro
- NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - György Buzsáki
- NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
337
|
Tonn Eisinger KR, Larson EB, Boulware MI, Thomas MJ, Mermelstein PG. Membrane estrogen receptor signaling impacts the reward circuitry of the female brain to influence motivated behaviors. Steroids 2018; 133:53-59. [PMID: 29195840 PMCID: PMC5864533 DOI: 10.1016/j.steroids.2017.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
Abstract
Within the adult female, estrogen signaling is well-described as an integral component of the physiologically significant hypothalamic-pituitary-gonadal axis. In rodents, the timing of ovulation is intrinsically entwined with the display of sexual receptivity. For decades, the importance of estradiol activating intracellular estrogen receptors within the hypothalamus and midbrain/spinal cord lordosis circuits has been appreciated. These signaling pathways primarily account for the ability of the female to reproduce. Yet, often overlooked is that the desire to reproduce is also tightly regulated by estrogen receptor signaling. This lack of emphasis can be attributed to an absence of nuclear estrogen receptors in brain regions associated with reward, such as the nucleus accumbens, which are associated with motivated behaviors. This review outlines how membrane-localized estrogen receptors affect metabotropic glutamate receptor signaling within the rodent nucleus accumbens. In addition, we discuss how, as estrogens drive increased motivation for reproduction, they also produce the untoward side effect of heightening female vulnerability to drug addiction.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin B Larson
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marissa I Boulware
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark J Thomas
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
338
|
Ingebretson AE, Hearing MC, Huffington ED, Thomas MJ. Endogenous dopamine and endocannabinoid signaling mediate cocaine-induced reversal of AMPAR synaptic potentiation in the nucleus accumbens shell. Neuropharmacology 2018; 131:154-165. [PMID: 29225042 PMCID: PMC11552549 DOI: 10.1016/j.neuropharm.2017.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
Repeated exposure to drugs of abuse alters the structure and function of neural circuits mediating reward, generating maladaptive plasticity in circuits critical for motivated behavior. Within meso-corticolimbic dopamine circuitry, repeated exposure to cocaine induces progressive alterations in AMPAR-mediated glutamatergic synaptic transmission. During a 10-14 day period of abstinence from cocaine, AMPAR signaling is potentiated at synapses on nucleus accumbens (NAc) medium spiny neurons (MSNs), promoting a state of heightened synaptic excitability. Re-exposure to cocaine during abstinence, however, rapidly reverses and depotentiates enhanced AMPAR signaling. To understand how re-exposure to cocaine alters AMPAR synaptic transmission, we investigated the roles of dopamine and endocannabinoid (eCB) signaling in modifying synaptic strength in the NAc shell. Using patch-clamp recordings from NAc slices prepared after 10-14 days of abstinence from repeated cocaine, we found that AMPAR-mediated depotentiation is rapidly induced in the NAc shell within 20 min of cocaine re-exposure ex vivo, and persists for up to five days before synapses return to levels of potentiation observed during abstinence. In cocaine-treated animals, global dopamine receptor activation was both necessary and sufficient for the cocaine-evoked depotentiation of AMPAR synaptic function. Additionally, we identified that CB1 receptors are engaged by endogenous endocannabinoids (eCBs) during re-exposure to cocaine ex vivo. Overall, these results indicate the central role that dopamine and eCB signaling mechanisms play in modulating cocaine-induced AMPAR plasticity in the NAc shell.
Collapse
Affiliation(s)
- Anna E Ingebretson
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA
| | - Matthew C Hearing
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA; Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Ethan D Huffington
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA; Department of Psychology, University of Minnesota, 75 E River Road, Minneapolis, MN 55455, USA.
| |
Collapse
|
339
|
Gallo EF, Meszaros J, Sherman JD, Chohan MO, Teboul E, Choi CS, Moore H, Javitch JA, Kellendonk C. Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nat Commun 2018; 9:1086. [PMID: 29540712 PMCID: PMC5852096 DOI: 10.1038/s41467-018-03272-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/01/2018] [Indexed: 12/04/2022] Open
Abstract
Dopamine D2 receptors (D2Rs) in the nucleus accumbens (NAc) regulate motivated behavior, but the underlying neurobiological mechanisms remain unresolved. Here, we show that selective upregulation of D2Rs in the indirect pathway of the adult NAc enhances the willingness to work for food. Mechanistic studies in brain slices reveal that D2R upregulation attenuates inhibitory transmission at two main output projections of the indirect pathway, the classical long-range projections to the ventral pallidum (VP), as well as local collaterals to direct pathway medium spiny neurons. In vivo physiology confirms the reduction in indirect pathway inhibitory transmission to the VP, and inhibition of indirect pathway terminals to VP is sufficient to enhance motivation. In contrast, D2R upregulation in the indirect pathway does not disinhibit neuronal activity of the direct pathway in vivo. These data suggest that D2Rs in ventral striatal projection neurons promote motivation by weakening the canonical output to the ventral pallidum.
Collapse
Affiliation(s)
- Eduardo F Gallo
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jozsef Meszaros
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy D Sherman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Muhammad O Chohan
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Eric Teboul
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Claire S Choi
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Holly Moore
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jonathan A Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
340
|
Johnson AC, Latorre R, Ligon CO, Greenwood-Van Meerveld B. Visceral hypersensitivity induced by optogenetic activation of the amygdala in conscious rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G448-G457. [PMID: 29351398 DOI: 10.1152/ajpgi.00370.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vivo optogenetics identifies brain circuits controlling behaviors in conscious animals by using light to alter neuronal function and offers a novel tool to study the brain-gut axis. Using adenoviral-mediated expression, we aimed to investigate whether photoactivation with channelrhodopsin (ChR2) or photoinhibition with halorhodopsin (HR3.0) of fibers originating from the central nucleus of the amygdala (CeA) at the bed nucleus of the stria terminalis (BNST) had any effect on colonic sensitivity. We also investigated whether there was any deleterious effect of the adenovirus on the neuronal population or the neuronal phenotype within the CeA-BNST circuitry activated during the optogenetic stimulation. In male rats, the CeA was infected with vectors expressing ChR2 or HR3.0 and fiber optic cannulae were implanted on the BNST. After 8-10 wk, the response to graded, isobaric colonic distension was measured with and without laser stimulation of CeA fibers at the BNST. Immunohistochemistry and histology were used to evaluate vector expression, neuronal integrity, and neurochemical phenotype. Photoactivation of CeA fibers at the BNST with ChR2 induced colonic hypersensitivity, whereas photoinhibition of CeA fibers at the BNST with HR3.0 had no effect on colonic sensitivity. Control groups treated with virus expressing reporter proteins showed no abnormalities in neuronal morphology, neuronal number, or neurochemical phenotype following laser stimulation. Our experimental findings reveal that optogenetic activation of discrete brain nuclei can be used to advance our understanding of complex visceral nociceptive circuitry in a freely moving rat model. NEW & NOTEWORTHY Our findings reveal that optogenetic technology can be employed as a tool to advance understanding of the brain-gut axis. Using adenoviral-mediated expression of opsins, which were activated by laser light and targeted by fiber optic cannulae, we examined central nociceptive circuits mediating visceral pain in a freely moving rat. Photoactivation of amygdala fibers in the stria terminalis with channelrhodopsin induced colonic hypersensitivity, whereas inhibition of the same fibers with halorhodopsin did not alter colonic sensitivity.
Collapse
Affiliation(s)
| | - Rocco Latorre
- Oklahoma Center for Neuroscience , Oklahoma City, Oklahoma
| | - Casey O Ligon
- Oklahoma Center for Neuroscience , Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- Department of Veterans Affairs Medical Center , Oklahoma City, Oklahoma.,Oklahoma Center for Neuroscience , Oklahoma City, Oklahoma.,Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|
341
|
Lum JS, Millard SJ, Huang XF, Ooi L, Newell KA. A postmortem analysis of NMDA ionotropic and group 1 metabotropic glutamate receptors in the nucleus accumbens in schizophrenia. J Psychiatry Neurosci 2018; 43. [PMID: 29481317 PMCID: PMC5837882 DOI: 10.1503/jpn.170077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The nucleus accumbens (NAcc) has been implicated in the pathology and treatment of schizophrenia. Recent postmortem evidence suggests a hyperglutamatergic state in the NAcc. With the present study we aimed to explore possible glutamatergic alterations in the NAcc of a large schizophrenia cohort. METHODS We performed immunoblots on postmortem NAcc samples from 30 individuals who had schizophrenia and 30 matched controls. We examined the protein expression of primary glutamatergic receptors, including the N-methyl-D-aspartate (NMDA) receptor (NR1, NR2A and NR2B subunits) and the group 1 metabotropic glutamate receptor (mGluR1 and mGluR5; dimeric and monomeric forms). In addition, we measured the group 1 mGluR endogenous regulators, neurochondrin and Homer1b/c, which have recently been implicated in the pathophysiology of schizophrenia. RESULTS Protein levels of glutamatergic receptors and endogenous regulators were not significantly different between the controls and individuals who had schizophrenia. Furthermore, mGluR5, but not mGluR1, showed a positive association with NMDA receptor subunits, suggesting differential interactions between these receptors in this brain region. LIMITATIONS Investigation of these proteins in antipsychotic-naive individuals, in addition to the subregions of the NAcc and subcellular fractions, will strengthen future studies. CONCLUSION The present study does not provide evidence for glutamatergic abnormalities within the NAcc of individuals with schizophrenia. Taken together with the results of previous studies, these findings suggest NMDA receptors and group 1 mGluRs are altered in a brain region-dependent manner in individuals with schizophrenia. The differential associations between mGluR1, mGluR5 and NMDA receptors observed in this study warrant further research into the interactions of these proteins and the implications for the therapeutic and adverse effect profile of glutamatergic-based novel therapeutics.
Collapse
Affiliation(s)
- Jeremy S Lum
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Samuel J Millard
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Xu-Feng Huang
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Lezanne Ooi
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Kelly A Newell
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| |
Collapse
|
342
|
Lum JS, Millard SJ, Huang XF, Ooi L, Newell KA. A postmortem analysis of NMDA ionotropic and group 1 metabotropic glutamate receptors in the nucleus accumbens in schizophrenia. J Psychiatry Neurosci 2018; 43:102-110. [PMID: 29481317 PMCID: PMC5837882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/08/2017] [Accepted: 07/16/2017] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The nucleus accumbens (NAcc) has been implicated in the pathology and treatment of schizophrenia. Recent postmortem evidence suggests a hyperglutamatergic state in the NAcc. With the present study we aimed to explore possible glutamatergic alterations in the NAcc of a large schizophrenia cohort. METHODS We performed immunoblots on postmortem NAcc samples from 30 individuals who had schizophrenia and 30 matched controls. We examined the protein expression of primary glutamatergic receptors, including the N-methyl-D-aspartate (NMDA) receptor (NR1, NR2A and NR2B subunits) and the group 1 metabotropic glutamate receptor (mGluR1 and mGluR5; dimeric and monomeric forms). In addition, we measured the group 1 mGluR endogenous regulators, neurochondrin and Homer1b/c, which have recently been implicated in the pathophysiology of schizophrenia. RESULTS Protein levels of glutamatergic receptors and endogenous regulators were not significantly different between the controls and individuals who had schizophrenia. Furthermore, mGluR5, but not mGluR1, showed a positive association with NMDA receptor subunits, suggesting differential interactions between these receptors in this brain region. LIMITATIONS Investigation of these proteins in antipsychotic-naive individuals, in addition to the subregions of the NAcc and subcellular fractions, will strengthen future studies. CONCLUSION The present study does not provide evidence for glutamatergic abnormalities within the NAcc of individuals with schizophrenia. Taken together with the results of previous studies, these findings suggest NMDA receptors and group 1 mGluRs are altered in a brain region-dependent manner in individuals with schizophrenia. The differential associations between mGluR1, mGluR5 and NMDA receptors observed in this study warrant further research into the interactions of these proteins and the implications for the therapeutic and adverse effect profile of glutamatergic-based novel therapeutics.
Collapse
Affiliation(s)
- Jeremy S Lum
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Samuel J Millard
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Xu-Feng Huang
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Lezanne Ooi
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Kelly A Newell
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| |
Collapse
|
343
|
Bulin SE, Mendoza ML, Richardson DR, Song KH, Solberg TD, Yun S, Eisch AJ. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization. Addict Biol 2018. [PMID: 28626932 DOI: 10.1111/adb.12524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adult dentate gyrus (DG) neurogenesis is important for hippocampal-dependent learning and memory, but the role of new neurons in addiction-relevant learning and memory is unclear. To test the hypothesis that neurogenesis is involved in the vulnerability to morphine addiction, we ablated adult DG neurogenesis and examined morphine self-administration (MSA) and locomotor sensitization. Male Sprague-Dawley rats underwent hippocampal-focused, image-guided X-ray irradiation (IRR) to eliminate new DG neurons or sham treatment (Sham). Six weeks later, rats underwent either MSA (Sham = 16, IRR = 15) or locomotor sensitization (Sham = 12, IRR = 12). Over 21 days of MSA, IRR rats self-administered ~70 percent more morphine than Sham rats. After 28 days of withdrawal, IRR rats pressed the active lever 40 percent more than Sham during extinction. This was not a general enhancement of learning or locomotion, as IRR and Sham groups had similar operant learning and inactive lever presses. For locomotor sensitization, both IRR and Sham rats sensitized, but IRR rats sensitized faster and to a greater extent. Furthermore, dose-response revealed that IRR rats were more sensitive at a lower dose. Importantly, these increases in locomotor activity were not apparent after acute morphine administration and were not a byproduct of irradiation or post-irradiation recovery time. Therefore, these data, along with other previously published data, indicate that reduced hippocampal neurogenesis confers vulnerability for multiple classes of drugs. Thus, therapeutics to specifically increase or stabilize hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse.
Collapse
Affiliation(s)
- Sarah E. Bulin
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
- Department of Pharmacology; University of Texas Health Science Center; San Antonio TX USA
| | - Matthew L. Mendoza
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
| | - Devon R. Richardson
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
| | - Kwang H. Song
- Department of Radiology Oncology; University of Texas Southwestern Medical Center; Dallas TX USA
- Texas Oncology PA; Fort Worth TX USA
| | - Timothy D. Solberg
- Department of Radiology Oncology; University of Texas Southwestern Medical Center; Dallas TX USA
- Department of Radiation Oncology; University of California; San Francisco CA USA
| | - Sanghee Yun
- Mahoney Institute of Neurosciences; University of Pennsylvania Perelman School of Medicine; Philadelphia PA USA
- Department of Anesthesiology and Critical Care Medicine; Children's Hospital of Philadelphia; Philadelphia PA USA
| | - Amelia J. Eisch
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
- Mahoney Institute of Neurosciences; University of Pennsylvania Perelman School of Medicine; Philadelphia PA USA
- Department of Anesthesiology and Critical Care Medicine; Children's Hospital of Philadelphia; Philadelphia PA USA
| |
Collapse
|
344
|
Drive and Reinforcement Circuitry in the Brain: Origins, Neurotransmitters, and Projection Fields. Neuropsychopharmacology 2018; 43:680-689. [PMID: 28984293 PMCID: PMC5809792 DOI: 10.1038/npp.2017.228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/08/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023]
Abstract
Brain stimulation has identified two central subsets of stimulation sites with motivational relevance. First, there is a large and disperse set of sites where stimulation is reinforcing, increasing the frequency of the responses it follows, and second, a much more restricted set of sites where-along with reinforcement-stimulation also has drive-like effects, instigating feeding, copulation, predation, and other motivated acts in otherwise sated or peaceful animals. From this work a dispersed but synaptically interconnected network of reinforcement circuitry is emerging: it includes afferents to the ventral tegmental area and substantia nigra; the dopamine systems themselves; glutamatergic afferents to the striatum; and one of two dopamine-receptor-expressing efferent pathways of the striatum. Stimulation of a limited subset of these sites, including descending inhibitory medial forebrain bundle fibers, induces both feeding and reinforcement, and suggests the possibility of a subset of fibers where stimulation has both drive-like and reinforcing effects. This review stresses the common findings of sites and connectivity between electrical and optogenetic studies of core drive and reinforcement sites. By doing so, it suggests the biological importance of optogenetic follow-up of less-publicized electrical stimulation findings. Such studies promise not only information about origins, neurotransmitters, and connectivity of related networks, by covering more sensory and at least one putative motor component they also promote a much deeper understanding of the breadth of motivational function.
Collapse
|
345
|
Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, Zhou P, Ong SK, Wright MA, Zweifel L, Paninski L, Hen R, Kheirbek MA. Anxiety Cells in a Hippocampal-Hypothalamic Circuit. Neuron 2018; 97:670-683.e6. [PMID: 29397273 PMCID: PMC5877404 DOI: 10.1016/j.neuron.2018.01.016] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/04/2017] [Accepted: 01/05/2018] [Indexed: 11/25/2022]
Abstract
The hippocampus is traditionally thought to transmit contextual information to limbic structures where it acquires valence. Using freely moving calcium imaging and optogenetics, we show that while the dorsal CA1 subregion of the hippocampus is enriched in place cells, ventral CA1 (vCA1) is enriched in anxiety cells that are activated by anxiogenic environments and required for avoidance behavior. Imaging cells defined by their projection target revealed that anxiety cells were enriched in the vCA1 population projecting to the lateral hypothalamic area (LHA) but not to the basal amygdala (BA). Consistent with this selectivity, optogenetic activation of vCA1 terminals in LHA but not BA increased anxiety and avoidance, while activation of terminals in BA but not LHA impaired contextual fear memory. Thus, the hippocampus encodes not only neutral but also valence-related contextual information, and the vCA1-LHA pathway is a direct route by which the hippocampus can rapidly influence innate anxiety behavior.
Collapse
Affiliation(s)
- Jessica C Jimenez
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Katy Su
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Alexander R Goldberg
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Victor M Luna
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Jeremy S Biane
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Gokhan Ordek
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Pengcheng Zhou
- Center for the Neural Basis of Cognition and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA; Departments of Statistics and Neuroscience, Grossman Center for the Statistics of Mind, Center for Theoretical Neuroscience, Kavli Institute for Brain Science, and NeuroTechnology Center, Columbia University, New York, NY, USA
| | - Samantha K Ong
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Matthew A Wright
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Larry Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98105, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98105, USA
| | - Liam Paninski
- Departments of Statistics and Neuroscience, Grossman Center for the Statistics of Mind, Center for Theoretical Neuroscience, Kavli Institute for Brain Science, and NeuroTechnology Center, Columbia University, New York, NY, USA
| | - René Hen
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA.
| | - Mazen A Kheirbek
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
346
|
Peng SY, Li B, Xi K, Wang JJ, Zhu JN. Presynaptic α 2-adrenoceptor modulates glutamatergic synaptic transmission in rat nucleus accumbens in vitro. Neurosci Lett 2018; 665:117-122. [PMID: 29195907 DOI: 10.1016/j.neulet.2017.11.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022]
Abstract
The nucleus accumbens (NAc), integrating information from the prefrontal cortex and limbic structures, plays a critical role in reward and emotion regulation. Previous studies have reported that the NAc shell receives direct noradrenergic projections, and activation of α2-adrenoceptor (α2-AR) in the NAc shell decreases the fear or anxiety level of rats. However, the underlying mechanism is still little known. Intriguingly, glutamatergic neurotransmission in the NAc shell is closely related to reward and emotion. Here, using brain slice preparations and whole-cell patch clamp recordings, we examined the effect of activation of α2-AR on glutamatergic neurotransmission in the NAc shell. Perfusing slice with α2-AR selective agonist clonidine (CLON) reduced the evoked excitatory postsynaptic currents (EPSCs) on the NAc shell neurons. This inhibitory effect on AMPA-mediated glutamatergic EPSCs was blocked by the α2-AR selective antagonist yohimbine (YOH). Notably, CLON reduced the frequency but not the amplitude of miniature EPSCs. Furthermore, CLON decreased the first EPSC amplitude but increased the paired-pulse facilitation on the NAc shell neurons, and it did not affect postsynaptic AMPA/NMDA ratio, revealing a presynaptic mechanism of α2-AR-mediated inhibition on glutamatergic transmission. In addition, the modulation on glutamatergic transmission by α2-AR was independent of presynaptic NMDA receptor. These results suggest that noradrenergic afferent inputs may suppress glutamatergic synaptic transmission via presynaptic α2-AR in the NAc shell, and actively participate in rewarding and emotional processes via the NAc.
Collapse
Affiliation(s)
- Shi-Yu Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Bin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Kang Xi
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
347
|
Kerfoot EC, Williams CL. Contributions of the Nucleus Accumbens Shell in Mediating the Enhancement in Memory Following Noradrenergic Activation of Either the Amygdala or Hippocampus. Front Pharmacol 2018; 9:47. [PMID: 29472857 PMCID: PMC5810250 DOI: 10.3389/fphar.2018.00047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens shell is a site of converging inputs during memory processing for emotional events. The accumbens receives input from the nucleus of the solitary tract (NTS) regarding changes in peripheral autonomic functioning following emotional arousal. The shell also receives input from the amygdala and hippocampus regarding affective and contextual attributes of new learning experiences. The successful encoding of affect or context is facilitated by activating noradrenergic systems in either the amygdala or hippocampus. Recent findings indicate that memory enhancement produced by activating NTS neurons, is attenuated by suppressing accumbens functioning after learning. This finding illustrates the significance of the shell in integrating information from the periphery to modulate memory for arousing events. However, it is not known if the accumbens shell plays an equally important role in consolidating information that is initially processed in the amygdala and hippocampus. The present study determined if the convergence of inputs from these limbic regions within the nucleus accumbens contributes to successful encoding of emotional events into memory. Male Sprague-Dawley rats received bilateral cannula implants 2 mm above the accumbens shell and a second bilateral implant 2 mm above either the amygdala or hippocampus. The subjects were trained for 6 days to drink from a water spout. On day 7, a 0.35 mA footshock was initiated as the rat approached the spout and was terminated once the rat escaped into a white compartment. Subjects were then given intra-amygdala or hippocampal infusions of PBS or a dose of norepinephrine (0.2 μg) previously shown to enhance memory. Later, all subjects were given intra-accumbens infusion of muscimol to functionally inactivate the shell. Muscimol inactivation of the accumbens shell was delayed to allow sufficient time for norepinephrine to activate intracellular cascades that lead to long-term synaptic modifications involved in forming new memories. Results show that memory improvement produced by infusing norepinephrine in either the amygdala or hippocampus is attenuated by interrupting neuronal activity in the shell 1 or 7 7 h following amygdala or hippocampus activation. These findings suggest that the accumbens shell plays an integral role modulating information initially processed by the amygdala and hippocampus following exposure to emotionally arousing events. Additionally, results demonstrate that the accumbens is involved in the long-term consolidation processes lasting over 7 h.
Collapse
Affiliation(s)
- Erin C Kerfoot
- Division of Neuroscience and Behavior, Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Cedric L Williams
- Division of Neuroscience and Behavior, Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
348
|
The role of dopaminergic midbrain in Alzheimer's disease: Translating basic science into clinical practice. Pharmacol Res 2018; 130:414-419. [PMID: 29391234 DOI: 10.1016/j.phrs.2018.01.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 01/16/2023]
Abstract
Mammalian brain cortical functions, from executive and motor functioning to memory and emotional regulation, are strictly regulated by subcortical projections. These projections terminate in cortical areas that are continuously influenced by released neurotransmitters and neuromodulators. Among the subcortical structures, the dopaminergic midbrain plays a pivotal role in tuning cortical functions that commonly result altered in many neurological and psychiatric disorders. Incidentally, extensive neuropathological observations support a strong link between structural alterations of the dopaminergic midbrain and significant behavioural symptomatology observed in patients suffering from Alzheimer 's disease(AD). Here, we will review recent progress on the involvement of the dopaminergic system in the pathophysiology of AD as well as the current therapeutic strategies targeting this system.
Collapse
|
349
|
Beyeler A, Chang CJ, Silvestre M, Lévêque C, Namburi P, Wildes CP, Tye KM. Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala. Cell Rep 2018; 22:905-918. [PMID: 29386133 PMCID: PMC5891824 DOI: 10.1016/j.celrep.2017.12.097] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 01/03/2023] Open
Abstract
The basolateral amygdala (BLA) mediates associative learning for both
fear and reward. Accumulating evidence supports the notion that different BLA
projections distinctly alter motivated behavior, including projections to the
nucleus accumbens (NAc), medial aspect of the central amygdala (CeM), and
ventral hippocampus (vHPC). Although there is consensus regarding the existence
of distinct subsets of BLA neurons encoding positive or negative valence,
controversy remains regarding the anatomical arrangement of these populations.
First, we map the location of more than 1,000 neurons distributed across the BLA
and recorded during a Pavlovian discrimination task. Next, we determine the
location of projection-defined neurons labeled with retrograde tracers and use
CLARITY to reveal the axonal path in 3-dimensional space. Finally, we examine
the local influence of each projection-defined populations within the BLA.
Understanding the functional and topographical organization of circuits
underlying valence assignment could reveal fundamental principles about
emotional processing.
Collapse
Affiliation(s)
- Anna Beyeler
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Neurocentre Magendie, INSERM, U1215, University of Bordeaux, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France.
| | - Chia-Jung Chang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaux Silvestre
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Clémentine Lévêque
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Praneeth Namburi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Craig P Wildes
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
350
|
Willett JA, Johnson AG, Vogel AR, Patisaul HB, McGraw LA, Meitzen J. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster. J Neurophysiol 2018; 119:1576-1588. [PMID: 29361665 DOI: 10.1152/jn.00737.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and probes the relationship between cellular excitability and social behavior.
Collapse
Affiliation(s)
- Jaime A Willett
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Physiology, North Carolina State University , Raleigh, North Carolina
| | - Ashlyn G Johnson
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina
| | - Andrea R Vogel
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Genetics, North Carolina State University , Raleigh, North Carolina
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina
| | - Lisa A McGraw
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Genetics, North Carolina State University , Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|