301
|
Abstract
Long-term potentiation (LTP), a cellular model of learning and memory, produces both an enhancement of synaptic function and an increase in the size of the associated dendritic spine. Synaptic insertion of AMPA receptors is known to play an important role in mediating the increase in synaptic strength during LTP, whereas the role of AMPA receptor trafficking in structural changes remains unexplored. Here, we examine how the cell maintains the correlation between spine size and synapse strength during LTP. We found that cells exploit an elegant solution by linking both processes to a single molecule: the AMPA-type glutamate receptor subunit 1 (GluR1). Synaptic insertion of GluR1 is required to permit a stable increase in spine size, both in hippocampal slice cultures and in vivo. Synaptic insertion of GluR1 is not sufficient to drive structural plasticity. Although crucial to the expression of LTP, the ion channel function of GluR1 is not required for the LTP-driven spine size enhancement. Remarkably, a recombinant cytosolic C-terminal fragment (C-tail) of GluR1 is driven to the postsynaptic density after an LTP stimulus, and the synaptic incorporation of this isolated GluR1 C-tail is sufficient to permit spine enlargement even when postsynaptic exocytosis of endogenous GluR1 is blocked. We conclude that during plasticity, synaptic insertion of GluR1 has two functions: the established role of increasing synaptic strength via its ligand-gated ion channel, and a novel role through the structurally stabilizing effect of its C terminus that permits an increase in spine size.
Collapse
|
302
|
Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N, Natsume T, Soderling TR. Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 2008; 57:94-107. [PMID: 18184567 PMCID: PMC2277504 DOI: 10.1016/j.neuron.2007.11.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 08/17/2007] [Accepted: 11/21/2007] [Indexed: 01/04/2023]
Abstract
Neuronal activity augments maturation of mushroom-shaped spines to form excitatory synapses, thereby strengthening synaptic transmission. We have delineated a Ca(2+)-signaling pathway downstream of the NMDA receptor that stimulates calmodulin-dependent kinase kinase (CaMKK) and CaMKI to promote formation of spines and synapses in hippocampal neurons. CaMKK and CaMKI form a multiprotein signaling complex with the guanine nucleotide exchange factor (GEF) betaPIX and GIT1 that is localized in spines. CaMKI-mediated phosphorylation of Ser516 in betaPIX enhances its GEF activity, resulting in activation of Rac1, an established enhancer of spinogenesis. Suppression of CaMKK or CaMKI by pharmacological inhibitors, dominant-negative (dn) constructs and siRNAs, as well as expression of the betaPIX Ser516Ala mutant, decreases spine formation and mEPSC frequency. Constitutively-active Pak1, a downstream effector of Rac1, rescues spine inhibition by dnCaMKI or betaPIX S516A. This activity-dependent signaling pathway can promote synapse formation during neuronal development and in structural plasticity.
Collapse
Affiliation(s)
- Takeo Saneyoshi
- Vollum Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
303
|
|
304
|
Kreienkamp HJ. Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol 2008:365-80. [PMID: 18491060 DOI: 10.1007/978-3-540-72843-6_15] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Shank proteins are multidomain scaffold proteins of the postsynaptic density, connecting neurotransmitter receptors and other membrane proteins with signaling proteins and the actin cytoskeleton. By virtue of their protein interactions, Shank proteins assemble signaling platforms for G-protein-mediated signaling and the control of calcium homeostasis in dendritic spines. In addition, they participate in morphological changes, leading to maturation of dendritic spines and synapse formation. The importance of the Shank scaffolding function is demonstrated by genetically determined forms of mental retardation, which may be caused by haploinsufficiency for the SHANK3 gene. Consistent with its central function within the postsynaptic density, the availability of Shank is tightly controlled by local synthesis and degradation, as well as actin-dependent dynamic rearrangements within the dendritic spine.
Collapse
Affiliation(s)
- H-J Kreienkamp
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany.
| |
Collapse
|
305
|
Schüler H, Peti W. Structure-function analysis of the filamentous actin binding domain of the neuronal scaffolding protein spinophilin. FEBS J 2008; 275:59-68. [PMID: 18028445 PMCID: PMC2927859 DOI: 10.1111/j.1742-4658.2007.06171.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spinophilin, a neuronal scaffolding protein, is essential for synaptic transmission, and functions to target protein phosphatase-1 to distinct subcellular locations in dendritic spines. It is vital for the regulation of dendritic spine formation and motility, and functions by regulating glutamatergic receptors and binding to filamentous actin. To investigate its role in regulating actin cytoskeletal structure, we initiated structural studies of the actin binding domain of spinophilin. We demonstrate that the spinophilin actin binding domain is intrinsically unstructured, and that, with increasing C-terminal length, the domain shows augmented secondary structure content. Further characterization confirmed the previously known crosslinking activity and uncovered a novel filamentous actin pointed-end capping activity. Both of these functions seem to be fully contained within residues 1-154 of spinophilin.
Collapse
Affiliation(s)
- Herwig Schüler
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.
| | | |
Collapse
|
306
|
Mysore SP, Tai CY, Schuman EM. Effects of N-cadherin disruption on spine morphological dynamics. Front Cell Neurosci 2007; 1:1. [PMID: 18946519 PMCID: PMC2525931 DOI: 10.3389/neuro.03.001.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 12/12/2007] [Indexed: 01/01/2023] Open
Abstract
Structural changes at synapses are thought to be a key mechanism for the encoding of memories in the brain. Recent studies have shown that changes in the dynamic behavior of dendritic spines accompany bidirectional changes in synaptic plasticity, and that the disruption of structural constraints at synapses may play a mechanistic role in spine plasticity. While the prolonged disruption of N-cadherin, a key synaptic adhesion molecule, has been shown to alter spine morphology, little is known about the short-term regulation of spine morphological dynamics by N-cadherin. With time-lapse, confocal imaging in cultured hippocampal neurons, we examined the progression of structural changes in spines following an acute treatment with AHAVD, a peptide known to interfere with the function of N-cadherin. We characterized fast and slow timescale spine dynamics (minutes and hours, respectively) in the same population of spines. We show that N-cadherin disruption leads to enhanced spine motility and reduced length, followed by spine loss. The structural effects are accompanied by a loss of functional connectivity. Further, we demonstrate that early structural changes induced by AHAVD treatment, namely enhanced motility and reduced length, are indicators for later spine fate, i.e., spines with the former changes are more likely to be subsequently lost. Our results thus reveal the short-term regulation of synaptic structure by N-cadherin and suggest that some forms of morphological dynamics may be potential readouts for subsequent, stimulus-induced rewiring in neuronal networks.
Collapse
Affiliation(s)
- Shreesh P Mysore
- Control and Dynamical Systems Program, California Institute of Technology Pasadena, CA 91125, USA
| | | | | |
Collapse
|
307
|
Abstract
Ephrin (Eph) signaling via Eph receptors affects neuronal structure and function. We report here that exogenous ephrinAs (EphAs) induce outgrowth of filopodial processes from astrocytes within minutes in rat hippocampal slice cultures. Identical effects were induced by release of endogenous ephrinAs by cleavage of their glycosylphosphatidylinositol anchor. Reverse transcription-PCR and immunocytochemistry revealed the expression of multiple EphA receptors (EphARs) in astrocytes. Exogenous and endogenous ephrins did not induce process outgrowth from astrocytes transfected with a kinase-dead EphAR construct, indicating that the critical EphARs were located on glia. Concomitant with these morphological changes, ephrinA reduced the frequency of (S)-3,5-dihydroxyphenylglycine-evoked NMDA receptor-mediated inward currents in CA1 pyramidal cells, elicited by release of glutamate from glial cells. The sensitivity of CA1 cell synaptic or extrasynaptic NMDA receptors was unaffected by ephrinA, indicating that this effect was mediated by inhibition of glutamate release from glial cells. Finally, ephrinA application decreased the frequency and increased the duration of spontaneous oscillations of the intracellular [Ca2+] in astrocytes. We conclude that ephrinA-EphA signaling is a pluripotent regulator of neuron-astrocyte interactions mediating rapid structural and functional plasticity.
Collapse
|
308
|
Kitamura C, Takahashi M, Kondoh Y, Tashiro H, Tashiro T. Identification of synaptic activity-dependent genes by exposure of cultured cortical neurons to tetrodotoxin followed by its withdrawal. J Neurosci Res 2007; 85:2385-99. [PMID: 17551986 DOI: 10.1002/jnr.21391] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activity-dependent gene expression is one of the key mechanisms of synaptic plasticity that form the basis of higher order functions such as learning and memory. In the present study, we surveyed for activity-dependent genes by analyzing gene expression changes accompanying reversible inhibition of synaptic activity by tetrodotoxin (TTX) using two types of DNA microarrays; our focused oligo DNA microarray "Synaptoarray" and the commercially available high-density array. Cerebral cortical cells from E18 rat embryos were cultured for 14 days to ensure synaptogenesis, then treated with 1 muM TTX for 48 hr without detectable effect on cell viability. Synaptic density estimated by the amount of Synapsin I and Synaptotagmin I was decreased 21-24% by TTX treatment, but recovered to the control level 48 hr after TTX withdrawal. Comparison of gene expression profiles by competitive hybridization of fluorescently labeled cRNA from TTX-treated and control cells showed an overall downregulation of the genes on the Synaptoarray by TTX-treatment with different recovery rates after TTX withdrawal. With 16 representative genes, microarray data were validated by real-time PCR analysis. Genes most severely downregulated by TTX and upregulated above the control level at 5 hr after TTX withdrawal were munc13-1 (involved in docking and priming of synaptic vesicles) and Shank2 (involved in the postsynaptic scaffold). In addition, comprehensive screening at 5 hr after TTX withdrawal using high density arrays resulted in additional identification of Rgs2, a regulator of trimeric G-protein signaling, as an activity-dependent gene. These three genes are thus likely to be key factors in the regulation of synaptic plasticity. (c) 2007 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Chikara Kitamura
- Department of Chemistry and Biological Science, School of Science and Engineering, Aoyama-Gakuin University, Sagamihara, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
309
|
Independent expression of synaptic and morphological plasticity associated with long-term depression. J Neurosci 2007; 27:12419-29. [PMID: 17989307 DOI: 10.1523/jneurosci.2015-07.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Physiological and morphological alterations occur with long-term synaptic modifications, such as long-term potentiation (LTP) and long-term depression (LTD), but whether these two processes are independent or interactive is unclear. It is also unknown whether or how morphological modifications, like spine remodeling, may contribute to physiological modifications, such as trafficking of glutamate receptors which underlies, at least partially, the expression of LTP and LTD. In this study, we monitored spine size and synaptic responses simultaneously using combined two photon time-lapse imaging with patch-clamp recording in acute hippocampal slices. We show that spine shrinkage and LTD can occur independently of each other. We further show that changes in spine size are unrelated to trafficking of AMPA receptors (AMPARs) under various conditions: constitutive trafficking of AMPARs, insulin-induced internalization of AMPARs, or lateral movement of AMPARs to extrasynaptic sites. Induction of LTD of NMDA receptor-mediated responses (NMDAR-LTD) is associated with spine shrinkage. Nonetheless, NMDAR-LTD and spine shrinkage diverge in the downstream signaling events, and can occur independently of each other. Thus, spine shrinkage is not caused by or required for trafficking of glutamate receptors. In a broader sense, there is a clear dissociation between physiological and morphological expression of LTD. However, inhibition of actin depolymerization blocked the expression of LTD, suggesting that morphologically silent actin remodeling may be involved in the physiological expression of LTD and different subpopulations of actin filaments undergo changes during LTD.
Collapse
|
310
|
Ning W, Xu SJ, Chiang H, Xu ZP, Zhou SY, Yang W, Luo JH. Effects of GSM 1800 MHz on dendritic development of cultured hippocampal neurons. Acta Pharmacol Sin 2007; 28:1873-80. [PMID: 18031599 DOI: 10.1111/j.1745-7254.2007.00668.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To evaluate the effects of global system for mobile communications (GSM) 1800 MHz microwaves on dendritic filopodia, dendritic arborization, and spine maturation during development in cultured hippocampal neurons in rats. METHODS The cultured hippocampal neurons were exposed to GSM 1800 MHz microwaves with 2.4 and 0.8 W/kg, respectively, for 15 min each day from 6 days in vitro (DIV6) to DIV14. The subtle structures of dendrites were displayed by transfection with farnesylated enhanced green fluorescent protein (F-GFP) and GFP-actin on DIV5 into the hippocampal neurons. RESULTS There was a significant decrease in the density and mobility of dendritic filopodia at DIV8 and in the density of mature spines at DIV14 in the neurons exposed to GSM 1800 MHz microwaves with 2.4 W/kg. In addition, the average length of dendrites per neuron at DIV10 and DIV14 was decreased, while the dendritic arborization was unaltered in these neurons. However, there were no significant changes found in the neurons exposed to the GSM 1800 MHz microwaves with 0.8 W/kg. CONCLUSION These data indicate that the chronic exposure to 2.4 W/kg GSM 1800 MHz microwaves during the early developmental stage may affect dendritic development and the formation of excitatory synapses of hippocampal neurons in culture.
Collapse
Affiliation(s)
- Wei Ning
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
311
|
Bailly YJR, Castets F. Phocein: A potential actor in vesicular trafficking at Purkinje cell dendritic spines. CEREBELLUM (LONDON, ENGLAND) 2007; 6:344-52. [PMID: 17853115 DOI: 10.1080/14734220701225912] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Phocein is an intracellular protein highly expressed in neurons. It is the major partner of the striatin family members which are scaffolding proteins involved in signaling and trafficking. Due to its association with dynamin via direct interactions with nucleotide diphosphate kinase (NDPK) and EPS15, phocein has been implicated in vesicular trafficking, acting in particular in the endocytic process. This review focuses on immuno-cytochemical studies showing the strict localization of phocein in Purkinje cell dendritic spines involved in excitatory transmission in the cerebellum of postnatal and adult rodents. Immunogold labeling sometimes detects phocein in close vicinity with endocytic-like membrane profiles suggesting that phocein plays a role in endocytosis. Furthermore, co-localization of phocein and SG2NA within spines suggests that their interactions have a functional significance in the molecular cascades that underly membrane trafficking in post-synaptic structures. As the striatin family members are highly concentrated in dendritic spines, their interactions with phocein might be involved in mediating synaptic plasticity through spine remodeling by endocytosis.
Collapse
Affiliation(s)
- Yannick J R Bailly
- CInstitut des Neurosciences Cellulaires et Intégratives, Département Neurotransmission et Sécrétion Neuroendocrine, CNRS and Université Louis Pasteur, Strasbourg, France
| | | |
Collapse
|
312
|
Harms KJ, Dunaevsky A. Dendritic spine plasticity: Looking beyond development. Brain Res 2007; 1184:65-71. [PMID: 16600191 DOI: 10.1016/j.brainres.2006.02.094] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 02/24/2006] [Indexed: 11/24/2022]
Abstract
Most excitatory synapses in the CNS form on dendritic spines, tiny protrusions from the dendrites of excitatory neurons. As such, spines are likely loci of synaptic plasticity. Spines are dynamic structures, but the functional consequences of dynamic changes in these structures in the mature brain are unclear. Changes in spine density, morphology, and motility have been shown to occur with paradigms that induce synaptic plasticity, as well as altered sensory experience and neuronal activity. These changes potentially lead to an alteration in synaptic connectivity and strength between neuronal partners, affecting the efficacy of synaptic communication. Here, we review the formation and modification of excitatory synapses on dendritic spines as it relates to plasticity in the central nervous system after the initial phase of synaptogenesis. We will also discuss some of the molecular links that have been implicated in both synaptic plasticity and the regulation of spine morphology.
Collapse
Affiliation(s)
- Kimberly J Harms
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | |
Collapse
|
313
|
Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proc Natl Acad Sci U S A 2007; 104:19553-8. [PMID: 18048342 DOI: 10.1073/pnas.0704031104] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dendritic spines are the major sites of excitatory synaptic transmission in the CNS, and their size and density influence the functioning of neuronal circuits. Here we report that NMDA receptor signaling plays a critical role in regulating spine size and density in the developing cortex. Genetic deletion of the NR1 subunit of the NMDA receptor in the cortex leads to a decrease in spine density and an increase in spine head size in cortical layer 2/3 pyramidal neurons. This process is accompanied by an increase in the presynaptic axon bouton volume and the postsynaptic density area, as well as an increase in the miniature excitatory postsynaptic current amplitude and frequency. These observations indicate that NMDA receptors regulate synapse structure and function in the developing cortex.
Collapse
|
314
|
Brown CE, Murphy TH. Livin' on the edge: imaging dendritic spine turnover in the peri-infarct zone during ischemic stroke and recovery. Neuroscientist 2007; 14:139-46. [PMID: 18039977 DOI: 10.1177/1073858407309854] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spontaneous recovery of sensory, motor, and cognitive functions after stroke is thought to be mediated primarily through the reorganization and rewiring of surviving brain circuits. Given that dendritic spine turnover underlies rewiring during normal development and plasticity, this process is likely to play a key role in mediating functional changes that occur during and after stroke. Recently, a new approach has been taken using two-photon microscopy to monitor, in real time, the temporal and spatial progression of dendritic plasticity in the living animal, both while it is experiencing the initial ischemic episode as well as during long-term recovery from stroke damage. Here, we highlight recent evidence showing that stroke can trigger extensive changes in the relatively hardwired adult brain. For example, when dendrites are challenged by acute ischemia, they can disintegrate within minutes of ischemia and rapidly reassemble during reperfusion. Over longer time scales, dendrites in the surviving peri-infarct zone show heightened levels of spine turnover for many weeks after stroke, thereby raising the possibility that future stroke therapies may be able to facilitate or optimize dendritic rewiring to improve functional recovery.
Collapse
Affiliation(s)
- Craig E Brown
- Department of Psychiatry, Brain Research Center University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
315
|
Xie Z, Srivastava DP, Photowala H, Kai L, Cahill ME, Woolfrey KM, Shum CY, Surmeier DJ, Penzes P. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 2007; 56:640-56. [PMID: 18031682 PMCID: PMC2118058 DOI: 10.1016/j.neuron.2007.10.005] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 06/20/2007] [Accepted: 10/02/2007] [Indexed: 11/29/2022]
Abstract
Activity-dependent rapid structural and functional modifications of central excitatory synapses contribute to synapse maturation, experience-dependent plasticity, and learning and memory and are associated with neurodevelopmental and psychiatric disorders. However, the signal transduction mechanisms that link glutamate receptor activation to intracellular effectors that accomplish structural and functional plasticity are not well understood. Here we report that NMDA receptor activation in pyramidal neurons causes CaMKII-dependent phosphorylation of the guanine-nucleotide exchange factor (GEF) kalirin-7 at residue threonine 95, regulating its GEF activity, leading to activation of small GTPase Rac1 and rapid enlargement of existing spines. Kalirin-7 also interacts with AMPA receptors and controls their synaptic expression. By demonstrating that kalirin expression and spine localization are required for activity-dependent spine enlargement and enhancement of AMPAR-mediated synaptic transmission, our study identifies a signaling pathway that controls structural and functional spine plasticity.
Collapse
Affiliation(s)
| | | | - Huzefa Photowala
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Li Kai
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Michael E. Cahill
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Kevin M. Woolfrey
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Cassandra Y. Shum
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - D. James Surmeier
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
316
|
Hanamura K, Shirao T. [Actin cytoskeleton in dendritic spine]. Nihon Yakurigaku Zasshi 2007; 130:352-7. [PMID: 18000347 DOI: 10.1254/fpj.130.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
317
|
Rodríguez-González R, Hurtado O, Sobrino T, Castillo J. Neuroplasticity and cellular therapy in cerebral infarction. Cerebrovasc Dis 2007; 24 Suppl 1:167-80. [PMID: 17971653 DOI: 10.1159/000107393] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stroke is the second to third most common cause of death in adults, and more than a third of people who survive a stroke will have severe disability. Therapeutic options currently centre on fibrinolytic treatment, but its limitations restrict use to a small proportion of patients. Although a wide range of neuroprotective substances has been effective in experimental models, they have repeatedly failed in clinical trials because of toxicity or loss of effectiveness. Recent strategies based on neuroplasticity and cellular therapy have shown significant efficacy in improving functional recovery in experimental models, although further study is still necessary to clarify how the brain responds to ischaemic damage and is able to reorganize itself in the long term. Although steps must still be taken to ensure the safety and feasibility of treatments based on neuroplasticity and cellular therapy, neurorepair strategies provide promising future therapeutic options for stroke.
Collapse
Affiliation(s)
- Raquel Rodríguez-González
- Clinical Neuroscience Research Laboratory, Division of Vascular Neurology, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
318
|
Abstract
Dendritic spines are small protrusions present postsynaptically at approximately 90% of excitatory synapses in the brain. Spines undergo rapid spontaneous changes in shape that are thought to be important for alterations in synaptic connectivity underlying learning and memory. Visualization of these dynamic changes in spine morphology are especially challenging because of the small size of spines (approximately 1 microm). Here we describe a microscope system, based on a spinning-disk confocal microscope, suitable for imaging mature dendritic spines in brain slice preparations, with a time resolution of seconds. We discuss two commonly used in vitro brain slice preparations and methods for transfecting them. Preparation and transfection require approximately 1 d, after which slices must be cultured for at least 21 d to obtain spines of mature morphology. We also describe imaging and computer analysis routines for studying spine motility. These procedures require in the order of 2 to 4 h.
Collapse
Affiliation(s)
- J Martin Verkuyl
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | |
Collapse
|
319
|
Shoji-Kasai Y, Ageta H, Hasegawa Y, Tsuchida K, Sugino H, Inokuchi K. Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics. J Cell Sci 2007; 120:3830-7. [PMID: 17940062 DOI: 10.1242/jcs.012450] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-lasting modifications in synaptic transmission depend on de novo gene expression in neurons. The expression of activin, a member of the transforming growth factor beta (TGF-beta) superfamily, is upregulated during hippocampal long-term potentiation (LTP). Here, we show that activin increased the average number of presynaptic contacts on dendritic spines by increasing the population of spines that were contacted by multiple presynaptic terminals in cultured neurons. Activin also induced spine lengthening, primarily by elongating the neck, resulting in longer mushroom-shaped spines. The number of spines and spine head size were not significantly affected by activin treatment. The effects of activin on spinal filamentous actin (F-actin) morphology were independent of protein and RNA synthesis. Inhibition of cytoskeletal actin dynamics or of the mitogen-activated protein (MAP) kinase pathway blocked not only the activin-induced increase in the number of terminals contacting a spine but also the activin-induced lengthening of spines. These results strongly suggest that activin increases the number of synaptic contacts by modulating actin dynamics in spines, a process that might contribute to the establishment of late-phase LTP.
Collapse
Affiliation(s)
- Yoko Shoji-Kasai
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | | | | | |
Collapse
|
320
|
Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R. Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 2007; 1:131-43. [PMID: 18982124 PMCID: PMC2518053 DOI: 10.3389/neuro.01.1.1.010.2007] [Citation(s) in RCA: 398] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 12/22/2022] Open
Abstract
Dendritic spines are critical elements of cortical circuits, since they establish most excitatory synapses. Recent studies have reported correlations between morphological and functional parameters of spines. Specifically, the spine head volume is correlated with the area of the postsynaptic density (PSD), the number of postsynaptic receptors and the ready-releasable pool of transmitter, whereas the length of the spine neck is proportional to the degree of biochemical and electrical isolation of the spine from its parent dendrite. Therefore, the morphology of a spine could determine its synaptic strength and learning rules. To better understand the natural variability of neocortical spine morphologies, we used a combination of gold-toned Golgi impregnations and serial thin-section electron microscopy and performed three-dimensional reconstructions of spines from layer 2/3 pyramidal cells from mouse visual cortex. We characterized the structure and synaptic features of 144 completed reconstructed spines, and analyzed their morphologies according to their positions. For all morphological parameters analyzed, spines exhibited a continuum of variability, without clearly distinguishable subtypes of spines or clear dependence of their morphologies on their distance to the soma. On average, the spine head volume was correlated strongly with PSD area and weakly with neck diameter, but not with neck length. The large morphological diversity suggests an equally large variability of synaptic strength and learning rules.
Collapse
|
321
|
Kwiatkowski AV, Weis WI, Nelson WJ. Catenins: playing both sides of the synapse. Curr Opin Cell Biol 2007; 19:551-6. [PMID: 17936606 PMCID: PMC2674286 DOI: 10.1016/j.ceb.2007.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 08/14/2007] [Indexed: 12/11/2022]
Abstract
Synapses of the central nervous system (CNS) are specialized cell-cell junctions that mediate intercellular signal transmission from one neuron to another. The directional nature of signal relay requires synaptic contacts to be morphologically asymmetric with distinct protein components, while changes in synaptic communication during neural network formation require synapses to be plastic. Synapse morphology and plasticity require a dynamic actin cytoskeleton. Classical cadherins, which are junctional proteins associated with the actin cytoskeleton, localize to synapses and regulate synaptic adhesion, stability and remodeling. The major intracellular components of cadherin junctions are the catenin proteins, and increasing evidence suggests that cadherin-catenin complexes modulate an array of synaptic processes. Here we review the role of catenins in regulating the development of pre- and postsynaptic compartments and function in synaptic plasticity, with particular focus on their role in regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- Adam V Kwiatkowski
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, United States.
| | | | | |
Collapse
|
322
|
Lin X, Ogiya M, Takahara M, Yamaguchi W, Furuyama T, Tanaka H, Tohyama M, Inagaki S. Sema4D-plexin-B1 implicated in regulation of dendritic spine density through RhoA/ROCK pathway. Neurosci Lett 2007; 428:1-6. [PMID: 17950529 DOI: 10.1016/j.neulet.2007.09.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/02/2007] [Accepted: 09/19/2007] [Indexed: 12/21/2022]
Abstract
Plexin-B1, Sema4D receptor, mediates retraction and extension signals in axon guidance by associating with PDZ-containing Rho guanine nucleotide exchange factors (PDZ-RhoGEFs) which can activate a small Rho GTPase RhoA. RhoA is implicated in spine formation by rearranging actin cytoskeleton. Exogenous application of Sema4D to cultured neurons caused activation of RhoA, increase of spine density and changes in spine shape. Sema4D-induced changes in spine density were blocked by either Rho-kinase (a downstream of RhoA, ROCK) inhibitor Y-27632 or by overexpression of plexin-B1 mutant lacking the C-terminus which no longer associates with PDZ-RhoGEFs. This study suggests that Sema4D-plexin-B1 play a crucial role in spine formation by regulating RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Xianzong Lin
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
323
|
Redell JB, Xue-Bian JJ, Bubb MR, Crow T. One-trial in vitro conditioning regulates an association between the beta-thymosin repeat protein Csp24 and actin. Neuroscience 2007; 148:413-20. [PMID: 17681698 DOI: 10.1016/j.neuroscience.2007.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/14/2007] [Accepted: 06/18/2007] [Indexed: 12/20/2022]
Abstract
One-trial conditioning in Hermissenda results in enhanced intrinsic cellular excitability of sensory neurons in the conditioned stimulus pathway, and the phosphorylation of several proteins. Previous results demonstrated that the development of enhanced intrinsic excitability was dependent on the expression of conditioned stimulus pathway phosphoprotein-24 (Csp24), an intracellular protein containing four repeated beta-thymosin homology domains. Consistent with this, antisense oligonucleotide-mediated inhibition of Csp24 expression prevents the reduction in amplitude of the A-type transient K+ current (I(A)) and the depolarized shift in the steady-state activation curve normally produced by one-trial in vitro conditioning of isolated photoreceptors. One-trial conditioning also regulates Csp24 phosphorylation. We now show that purified recombinant Csp24 sequesters G-actin in vitro with an approximate K(d) value of 2.8 microM. We also observed a significant increase in the coprecipitation of actin with Csp24 after one-trial in vitro conditioning using antibodies directed toward either Csp24 or phospho-Csp24. Preincubation with protein kinase C (PKC) selective inhibitors attenuated the increase in Csp24 phosphorylation and coprecipitated actin observed after one-trial conditioning. Our findings indicate that the PKC signaling pathway contributes to the phosphorylation of Csp24 after one-trial conditioning, and that PKC activity modulates an association between Csp24 and actin. These data suggest Csp24 may influence intrinsic excitability by regulating cytoskeletal dynamics.
Collapse
Affiliation(s)
- J B Redell
- Department of Neurosurgery, Vivian L. Smith Center for Neurologic Research, University of Texas Health Science Center, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
324
|
O’Malley D, MacDonald N, Mizielinska S, Connolly CN, Irving AJ, Harvey J. Leptin promotes rapid dynamic changes in hippocampal dendritic morphology. Mol Cell Neurosci 2007; 35:559-72. [PMID: 17618127 PMCID: PMC1995039 DOI: 10.1016/j.mcn.2007.05.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 04/24/2007] [Accepted: 05/01/2007] [Indexed: 01/23/2023] Open
Abstract
Recent studies have implicated the hormone leptin in synaptic plasticity associated with neuronal development and learning and memory. Indeed, leptin facilitates hippocampal long-term potentiation and leptin-insensitive rodents display impaired hippocampal synaptic plasticity suggesting a role for endogenous leptin. Structural changes are also thought to underlie activity-dependent synaptic plasticity and this may be regulated by specific growth factors. As leptin is reported to have neurotrophic actions, we have examined the effects of leptin on the morphology and filopodial outgrowth in hippocampal neurons. Here, we demonstrate that leptin rapidly enhances the motility and density of dendritic filopodia and subsequently increases the density of hippocampal synapses. This process is dependent on the synaptic activation of NR2A-containing NMDA receptors and is mediated by the MAPK (ERK) signaling pathway. As dendritic morphogenesis is associated with activity-dependent changes in synaptic strength, the rapid structural remodeling of dendrites by leptin has important implications for its role in regulating hippocampal synaptic plasticity and neuronal development.
Collapse
Affiliation(s)
| | | | | | | | | | - Jenni Harvey
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| |
Collapse
|
325
|
Jiang J, Suppiramaniam V, Wooten MW. Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity. Neurosignals 2007; 15:266-82. [PMID: 17622793 DOI: 10.1159/000105517] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/18/2007] [Indexed: 01/26/2023] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission in the mammalian brain. It is widely believed that the long-lasting, activity-dependent changes in synaptic strength, including long-term potentiation and long-term depression, could be the molecular and cellular basis of experience-dependent plasticities, such as learning and memory. Those changes of synaptic strength are directly related to AMPAR trafficking to and away from the synapse. There are many forms of synaptic plasticity in the mammalian brain, while the prototypic form, hippocampal CA1 long-term potentiation, has received the most intense investigation. After synthesis, AMPAR subunits undergo posttranslational modifications such as glycosylation, palmitoylation, phosphorylation and potential ubiquitination. In addition, AMPAR subunits spatiotemporally associate with specific neuronal proteins in the cell. Those posttranslational modifications and receptor-associated proteins play critical roles in AMPAR trafficking and regulation of AMPAR-dependent synaptic plasticity. Here, we summarize recent studies on posttranslational modifications and associated proteins of AMPAR subunits, and their roles in receptor trafficking and synaptic plasticity.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Biological Sciences and Program in Cellular and Molecular Biosciences, Auburn University, AL 36849, USA
| | | | | |
Collapse
|
326
|
Zhou L, Martinez SJ, Haber M, Jones EV, Bouvier D, Doucet G, Corera AT, Fon EA, Zisch AH, Murai KK. EphA4 signaling regulates phospholipase Cgamma1 activation, cofilin membrane association, and dendritic spine morphology. J Neurosci 2007; 27:5127-38. [PMID: 17494698 PMCID: PMC6672384 DOI: 10.1523/jneurosci.1170-07.2007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Specialized postsynaptic structures known as dendritic spines are the primary sites of glutamatergic innervation at synapses of the CNS. Previous studies have shown that spines rapidly remodel their actin cytoskeleton to modify their shape and this has been associated with changes in synaptic physiology. However, the receptors and signaling intermediates that restructure the actin network in spines are only beginning to be identified. We reported previously that the EphA4 receptor tyrosine kinase regulates spine morphology. However, the signaling pathways downstream of EphA4 that induce spine retraction on ephrin ligand binding remain poorly understood. Here, we demonstrate that ephrin stimulation of EphA4 leads to the recruitment and activation of phospholipase Cgamma1 (PLCgamma1) in heterologous cells and in hippocampal slices. This interaction occurs through an Src homology 2 domain of PLCgamma1 and requires the EphA4 juxtamembrane tyrosines. In the brain, PLCgamma1 is found in multiple compartments of synaptosomes and is readily found in postsynaptic density fractions. Consistent with this, PLC activity is required for the maintenance of spine morphology and ephrin-induced spine retraction. Remarkably, EphA4 and PLC activity modulate the association of the actin depolymerizing/severing factor cofilin with the plasma membrane. Because cofilin has been implicated previously in the structural plasticity of spines, this signaling may enable cofilin to depolymerize actin filaments and restructure spines at sites of ephrin-EphA4 contact.
Collapse
Affiliation(s)
- Lei Zhou
- Center for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| | - Sarah J. Martinez
- Center for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| | - Michael Haber
- Center for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| | - Emma V. Jones
- Center for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| | - David Bouvier
- Département de Pathologie et Biologie Cellulaire and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Guy Doucet
- Département de Pathologie et Biologie Cellulaire and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Amadou T. Corera
- Center for Neuronal Survival and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 3B4
| | - Edward A. Fon
- Center for Neuronal Survival and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 3B4
| | - Andreas H. Zisch
- Department of Obstetrics, University Hospital Zurich, 8091 Zurich, Switzerland, and
- Center for Integrative Human Physiology, University of Zurich, 8091 Zurich, Switzerland
| | - Keith K. Murai
- Center for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| |
Collapse
|
327
|
García-López P, García-Marín V, Freire M. The discovery of dendritic spines by Cajal in 1888 and its relevance in the present neuroscience. Prog Neurobiol 2007; 83:110-30. [PMID: 17681416 DOI: 10.1016/j.pneurobio.2007.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 02/17/2007] [Accepted: 04/03/2007] [Indexed: 01/03/2023]
Abstract
The year 2006 marks the centenary of the Nobel Prize for Physiology or Medicine awarded to Santiago Ramón y Cajal and Camilo Golgi, "in recognition of their work on the structure of the nervous system". Their discoveries are keys to understanding the present neuroscience, for instance, the discovery of dendritic spines. Cajal discovered dendritic spines in 1888 with the Golgi method, although other contemporary scientists thought that they were silver precipitates. Dendritic spines were demonstrated definitively as real structures by Cajal with the Methylene Blue in 1896. Many of the observations of Cajal and other contemporary scientists about dendritic spines are active fields of research of present neuroscience, for instance, their morphology, distribution, density, development and function. This article will deal with the main contributions of Cajal and other contemporary scientists about dendritic spines. We will analyse their contributions from the historical and present point of view. In addition, we will show high quality images of Cajal's original preparations and drawings related with this discovery.
Collapse
Affiliation(s)
- Pablo García-López
- Museo Cajal, Instituto Cajal, CSIC, Avda. Doctor Arce 37, 28002 Madrid, Spain
| | | | | |
Collapse
|
328
|
Calabrese B, Shaked GM, Tabarean IV, Braga J, Koo EH, Halpain S. Rapid, concurrent alterations in pre- and postsynaptic structure induced by naturally-secreted amyloid-beta protein. Mol Cell Neurosci 2007; 35:183-93. [PMID: 17368908 PMCID: PMC2268524 DOI: 10.1016/j.mcn.2007.02.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022] Open
Abstract
In Alzheimer's disease increasing evidence attributes synaptic and cognitive deficits to soluble oligomers of amyloid beta protein (Abeta), even prior to the accumulation of amyloid plaques, neurofibrillary tangles, and neuronal cell death. Here we show that within 1-2 h picomolar concentrations of cell-derived, soluble Abeta induce specific alterations in pre- and postsynaptic morphology and connectivity in cultured hippocampal neurons. Clusters of presynaptic vesicle markers decreased in size and number at glutamatergic but not GABAergic terminals. Dendritic spines also decreased in number and became dysmorphic, as spine heads collapsed and/or extended long protrusions. Simultaneous time-lapse imaging of axon-dendrite pairs revealed that shrinking spines sometimes became disconnected from their presynaptic varicosity. Concomitantly, miniature synaptic potentials decreased in amplitude and frequency. Spine changes were prevented by blockers of nAChRs and NMDARs. Washout of Abeta within the first day reversed these spine changes. Further, spine changes reversed spontaneously by 2 days, because neurons acutely developed resistance to continuous Abeta exposure. Thus, rapid Abeta-induced synapse destabilization may underlie transient behavioral impairments in animal models, and early cognitive deficits in Alzheimer's patients.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
329
|
Chen LY, Rex CS, Casale MS, Gall CM, Lynch G. Changes in synaptic morphology accompany actin signaling during LTP. J Neurosci 2007; 27:5363-72. [PMID: 17507558 PMCID: PMC6672340 DOI: 10.1523/jneurosci.0164-07.2007] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stabilization of long-term potentiation (LTP) is commonly proposed to involve changes in synaptic morphology and reorganization of the spine cytoskeleton. Here we tested whether, as predicted from this hypothesis, induction of LTP by theta-burst stimulation activates an actin regulatory pathway and alters synapse morphology within the same dendritic spines. TBS increased severalfold the numbers of spines containing phosphorylated (p) p21-activated kinase (PAK) or its downstream target cofilin; the latter regulates actin filament assembly. The PAK/cofilin phosphoproteins were increased at 2 min but not 30 s post-TBS, peaked at 7 min, and then declined. Double immunostaining for the postsynaptic density protein PSD95 revealed that spines with high pPAK or pCofilin levels had larger synapses (+60-70%) with a more normal size frequency distribution than did neighboring spines. Based on these results and simulations of shape changes to synapse-like objects, we propose that theta stimulation markedly increases the probability that a spine will enter a state characterized by a large, ovoid synapse and that this morphology is important for expression and later stabilization of LTP.
Collapse
Affiliation(s)
| | - Christopher S. Rex
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550
| | - Malcolm S. Casale
- Psychiatry and Human Behavior, University of California, Irvine, California 92697-4292, and
| | - Christine M. Gall
- Departments of Anatomy and Neurobiology and
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550
| | - Gary Lynch
- Psychiatry and Human Behavior, University of California, Irvine, California 92697-4292, and
| |
Collapse
|
330
|
Sekino Y, Kojima N, Shirao T. Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 2007; 51:92-104. [PMID: 17590478 DOI: 10.1016/j.neuint.2007.04.029] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 11/20/2022]
Abstract
Dendritic spines are the postsynaptic receptive regions of most excitatory synapses, and their morphological plasticity play a pivotal role in higher brain functions, such as learning and memory. The dynamics of spine morphology is due to the actin cytoskeleton concentrated highly in spines. Filopodia, which are thin and headless protrusions, are thought to be precursors of dendritic spines. Drebrin, a spine-resident side-binding protein of filamentous actin (F-actin), is responsible for recruiting F-actin and PSD-95 into filopodia, and is suggested to govern spine morphogenesis. Interestingly, some recent studies on neurological disorders accompanied by cognitive deficits suggested that the loss of drebrin from dendritic spines is a common pathognomonic feature of synaptic dysfunction. In this review, to understand the importance of actin-binding proteins in spine morphogenesis, we first outline the well-established knowledge pertaining to the actin cytoskeleton in non-neuronal cells, such as the mechanism of regulation by small GTPases, the equilibrium between globular actin (G-actin) and F-actin, and the distinct roles of various actin-binding proteins. Then, we review the dynamic changes in the localization of drebrin during synaptogenesis and in response to glutamate receptor activation. Because side-binding proteins are located upstream of the regulatory pathway for actin organization via other actin-binding proteins, we discuss the significance of drebrin in the regulatory mechanism of spine morphology through the reorganization of the actin cytoskeleton. In addition, we discuss the possible involvement of an actin-myosin interaction in the morphological plasticity of spines.
Collapse
Affiliation(s)
- Yuko Sekino
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | |
Collapse
|
331
|
Toni N, Teng EM, Bushong EA, Aimone JB, Zhao C, Consiglio A, van Praag H, Martone ME, Ellisman MH, Gage FH. Synapse formation on neurons born in the adult hippocampus. Nat Neurosci 2007; 10:727-34. [PMID: 17486101 DOI: 10.1038/nn1908] [Citation(s) in RCA: 434] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 04/13/2007] [Indexed: 11/08/2022]
Abstract
Although new and functional neurons are produced in the adult brain, little is known about how they integrate into mature networks. Here we explored the mechanisms of synaptogenesis on neurons born in the adult mouse hippocampus using confocal microscopy, electron microscopy and live imaging. We report that new neurons, similar to mature granule neurons, were contacted by axosomatic, axodendritic and axospinous synapses. Consistent with their putative role in synaptogenesis, dendritic filopodia were more abundant during the early stages of maturation and, when analyzed in three dimensions, the tips of all filopodia were found within 200 nm of preexisting boutons that already synapsed on other neurons. Furthermore, dendritic spines primarily synapsed on multiple-synapse boutons, suggesting that initial contacts were preferentially made with preexisting boutons already involved in a synapse. The connectivity of new neurons continued to change until at least 2 months, long after the formation of the first dendritic protrusions.
Collapse
Affiliation(s)
- Nicolas Toni
- Laboratory of Genetics, the Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Beuchle D, Schwarz H, Langegger M, Koch I, Aberle H. Drosophila MICAL regulates myofilament organization and synaptic structure. Mech Dev 2007; 124:390-406. [PMID: 17350233 DOI: 10.1016/j.mod.2007.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 01/19/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
The overall size and structure of a synaptic terminal is an important determinant of its function. In a large-scale mutagenesis screen, designed to identify Drosophila mutants with abnormally structured neuromuscular junctions (NMJs), we discovered mutations in Drosophila mical, a conserved gene encoding a multi-domain protein with a N-terminal monooxygenase domain. In mical mutants, synaptic boutons do not sprout normally over the muscle surface and tend to form clusters along synaptic branches and at nerve entry sites. Consistent with high expression of MICAL in somatic muscles, immunohistochemical stainings reveal that the subcellular localization and architecture of contractile muscle filaments are dramatically disturbed in mical mutants. Instead of being integrated into a regular sarcomeric pattern, actin and myosin filaments are disorganized and accumulate beneath the plasmamembrane. Whereas contractile elements are strongly deranged, the proposed organizer of sarcomeric structure, D-Titin, is much less affected. Transgenic expression of interfering RNA molecules demonstrates that MICAL is required in muscles for the higher order arrangement of myofilaments. Ultrastructural analysis confirms that myosin-rich thick filaments enter submembranous regions and interfere with synaptic development, indicating that the disorganized myofilaments may cause the synaptic growth phenotype. As a model, we suggest that the filamentous network around synaptic boutons restrains the spreading of synaptic branches.
Collapse
Affiliation(s)
- Dirk Beuchle
- Max-Planck-Institute for Developmental Biology, Department III/Genetics, Spemannstr. 35, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
333
|
Rex CS, Lin CY, Kramár EA, Chen LY, Gall CM, Lynch G. Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J Neurosci 2007; 27:3017-29. [PMID: 17360925 PMCID: PMC6672589 DOI: 10.1523/jneurosci.4037-06.2007] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an extremely potent, positive modulator of theta burst induced long-term potentiation (LTP) in the adult hippocampus. The present studies tested whether the neurotrophin exerts its effects by facilitating cytoskeletal changes in dendritic spines. BDNF caused no changes in phalloidin labeling of filamentous actin (F-actin) when applied alone to rat hippocampal slices but markedly enhanced the number of densely labeled spines produced by a threshold level of theta burst stimulation. Conversely, the BDNF scavenger TrkB-Fc completely blocked increases in spine F-actin produced by suprathreshold levels of theta stimulation. TrkB-Fc also blocked LTP consolidation when applied 1-2 min, but not 10 min, after theta trains. Additional experiments confirmed that p21 activated kinase and cofilin, two actin-regulatory proteins implicated in spine morphogenesis, are concentrated in spines in mature hippocampus and further showed that both undergo rapid, dose-dependent phosphorylation after infusion of BDNF. These results demonstrate that the influence of BDNF on the actin cytoskeleton is retained into adulthood in which it serves to positively modulate the time-dependent LTP consolidation process.
Collapse
Affiliation(s)
| | | | - Eniko A. Kramár
- Psychiatry and Human Behavior, University of California, Irvine, Irvine, California 92697-4292
| | | | - Christine M. Gall
- Departments of Neurobiology and Behavior
- Anatomy and Neurobiology, and
| | - Gary Lynch
- Psychiatry and Human Behavior, University of California, Irvine, Irvine, California 92697-4292
| |
Collapse
|
334
|
Deller T, Bas Orth C, Del Turco D, Vlachos A, Burbach GJ, Drakew A, Chabanis S, Korte M, Schwegler H, Haas CA, Frotscher M. A role for synaptopodin and the spine apparatus in hippocampal synaptic plasticity. Ann Anat 2007; 189:5-16. [PMID: 17319604 DOI: 10.1016/j.aanat.2006.06.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spines are considered sites of synaptic plasticity in the brain and are capable of remodeling their shape and size. A molecule thathas been implicated in spine plasticity is the actin-associated protein synaptopodin. This article will review a series of studies aimed at elucidating the role of synaptopodin in the rodent brain. First, the developmental expression of synaptopodin mRNA and protein were studied; secondly, the subcellular localization of synaptopodin in hippocampal principal neurons was analyzed using confocal microscopy as well as electron microscopy and immunogold labelling; and, finally, the functional role of synaptopodin was investigated using a synaptopodin-deficient mouse. The results of these studies are: (1) synaptopodin expression byhippocampal principal neurons develops during the first postnatal weeks and increases in parallel with the maturation of spines in the hippocampus. (2) Synaptopodin is sorted to the spine compartment, where it is tightly associated with the spine apparatus, an enigmatic organelle believed to be involved in calcium storage or local protein synthesis. (3) Synaptopodin-deficient mice generated by gene targeting are viable but lack the spine apparatus organelle. These mice show deficitsin synaptic plasticity as well as impaired learning and memory. Taken together, these data implicate synaptopodin and the spine apparatus in the regulation of synaptic plasticity in the hippocampus. Future studies will be aimed at finding the molecular link between synaptopodin, the spine apparatus organelle, and synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Deller
- Institute of Clinical Neuroanatomy, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Okabe S. Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 2007; 34:503-18. [PMID: 17321751 DOI: 10.1016/j.mcn.2007.01.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022] Open
Abstract
The postsynaptic density (PSD) is a structure composed of both membranous and cytoplasmic proteins localized at the postsynaptic plasma membrane of excitatory synapses. Biochemical and molecular biological studies have identified a number of proteins present in the PSD. Glutamate receptors are important constituents of the PSD and membrane proteins involved in synaptic signal transduction and cell adhesion are also essential components. Scaffolding proteins containing multiple protein interaction motifs are thought to provide the framework of the PSD through their interactions with both membrane proteins and the cytoplasmic proteins. Among the cytoplasmic signaling molecules, calcium-calmodulin-dependent protein kinase II stands out as a major component of the PSD and its dynamic translocation to the PSD in response to neuronal activity is crucial in synaptic signal transduction. Recent advancements in molecular biological, structural and electrophysiological techniques have enabled us to directly measure the number, distribution and interactions of PSD molecules with high sensitivity and precision. In this review, I describe the structure and molecular composition of the PSD as well as the molecular interactions between the major constituents. This information will be combined with recent quantitative analyses of the PSD protein contents per synapse, in order to provide a current view of the PSD molecular architecture and its dynamics.
Collapse
Affiliation(s)
- Shigeo Okabe
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
336
|
Webb DJ, Zhang H, Majumdar D, Horwitz AF. alpha5 integrin signaling regulates the formation of spines and synapses in hippocampal neurons. J Biol Chem 2007; 282:6929-35. [PMID: 17213186 PMCID: PMC2750863 DOI: 10.1074/jbc.m610981200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The actin-based dynamics of dendritic spines play a key role in synaptic plasticity, which underlies learning and memory. Although it is becoming increasingly clear that modulation of actin is critical for spine dynamics, the upstream molecular signals that regulate the formation and plasticity of spines are poorly understood. In non-neuronal cells, integrins are critical modulators of the actin cytoskeleton, but their function in the nervous system is not well characterized. Here we show that alpha5 integrin regulates spine morphogenesis and synapse formation in hippocampal neurons. Knockdown of alpha5 integrin expression using small interfering RNA decreased the number of dendritic protrusions, spines, and synapses. Expression of constitutively active or dominant negative alpha5 integrin also resulted in alterations in the number of dendritic protrusions, spines, and synapses. alpha5 integrin signaling regulates spine morphogenesis and synapse formation by a mechanism that is dependent on Src kinase, Rac, and the signaling adaptor GIT1. Alterations in the activity or localization of these molecules result in a significant decrease in the number of spines and synapses. Thus, our results point to a critical role for integrin signaling in regulating the formation of dendritic spines and synapses in hippocampal neurons.
Collapse
Affiliation(s)
- Donna J Webb
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
337
|
De Simoni A, Edwards FA. Pathway specificity of dendritic spine morphology in identified synapses onto rat hippocampal CA1 neurons in organotypic slices. Hippocampus 2007; 16:1111-24. [PMID: 17068782 DOI: 10.1002/hipo.20236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The output of the hippocampus is largely determined by interaction of the three excitatory pathways that impinge on CA1 pyramidal neurons. These synapses, formed by axons of: (1) CA3 pyramidal neurons; (2) neurons of the entorhinal cortex (EC); and (3) neighboring CA1 neurons, are all potentially plastic. Here, we take advantage of the accessibility of the organotypic slice preparation to identify the type of spines with which each of these pathways forms synapses, at different developmental stages. Recent reports have shown that morphology of dendritic spines is activity-dependent with large mushroom spines being thought to represent stronger synaptic connections than thin or stubby spines. Although in a wide range of preparations, mushroom spines represent only 15% of spines across the whole dendritic tree, we find that this proportion is highly pathway specific. Thus in organotypic slices, the axons of CA3 neurons form synapses with mushroom spines on CA1 neurons in approximately 50% of cases, whereas this spine type is rare (<10%) in either of the other two pathways. This high proportion of mushroom spines only occurs after spontaneous excitatory activity in the CA1 cells increases over the second week in vitro. Previous studies suggest that pathway specificity also occurs in vivo. In tissue fixed in vivo, it is the synapses of distal apical dendrites thought to be formed by axons originating in the EC that are richer in mushroom spines. Hence, contrary to previous suggestions, the proportion of mushroom spines is clearly not an intrinsic property of the pathway but rather a characteristic dependent on the environment. We suggest that this is most likely a result of the previous activity of the synapses. The fact that, despite the large differences in pathway specificity between preparations, the overall proportion of different spine types remains unchanged, suggests a strong influence of homeostasis across the network.
Collapse
Affiliation(s)
- Anna De Simoni
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
338
|
Mateos JM, Lüthi A, Savic N, Stierli B, Streit P, Gähwiler BH, McKinney RA. Synaptic modifications at the CA3-CA1 synapse after chronic AMPA receptor blockade in rat hippocampal slices. J Physiol 2007; 581:129-38. [PMID: 17303644 PMCID: PMC2075211 DOI: 10.1113/jphysiol.2006.120550] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Maintenance of dendritic spines, the postsynaptic elements of most glutamatergic synapses in the central nervous system, requires continued activation of AMPA receptors. In organotypic hippocampal slice cultures, chronic blockade of AMPA receptors for 14 days induces a substantial loss of dendritic spines on CA1 pyramidal neurons. Here, using serial section electron microscopy, we show that loss of dendritic spines is paralleled by a significant reduction in synapse density. In contrast, we observed an increased number of asymmetric synapses onto the dendritic shaft, suggesting that spine retraction does not inevitably lead to synapse elimination. Functional analysis of the remaining synapses revealed that hippocampal circuitry compensates for the anatomical loss of synapses by increasing synaptic efficacy. Moreover, we found that the observed morphological and functional changes were associated with altered bidirectional synaptic plasticity. We conclude that continued activation of AMPA receptors is necessary for maintaining structure and function of central glutamatergic synapses.
Collapse
Affiliation(s)
- José María Mateos
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
339
|
Schell MJ, Irvine RF. Calcium-triggered exit of F-actin and IP(3) 3-kinase A from dendritic spines is rapid and reversible. Eur J Neurosci 2007; 24:2491-503. [PMID: 17100838 DOI: 10.1111/j.1460-9568.2006.05125.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of the actin cytoskeleton in dendritic spines is thought to underlie some forms of synaptic plasticity. We have used fixed and live-cell imaging in rat primary hippocampal cultures to characterize the synaptic dynamics of the F-actin binding protein inositol trisphosphate 3-kinase A (IP3K), which is localized in the spines of pyramidal neurons derived from the CA1 region. IP3K was intensely concentrated as puncta in spine heads when Ca(2+) influx was low, but rapidly and reversibly redistributed to a striated morphology in the main dendrite when Ca(2+) influx was high. Glutamate stimulated the exit of IP3K from spines within 10 s, and re-entry following blockage of Ca(2+) influx commenced within a minute; IP3K appeared to remain associated with F-actin throughout this process. Ca(2+)-triggered F-actin relocalization occurred in about 90% of the cells expressing IP3K endogenously, and was modulated by the synaptic activity of the cultures, suggesting that it is a physiological process. F-actin relocalization was blocked by cytochalasins, jasplakinolide and by the over-expression of actin fused to green fluorescent protein. We also used deconvolution microscopy to visualize the relationship between F-actin and endoplasmic reticulum inside dendritic spines, revealing a delicate microorganization of IP3K near the Ca(2+) stores. We conclude that Ca(2+) influx into the spines of CA1 pyramidal neurons triggers the rapid and reversible retraction of F-actin from the dendritic spine head. This process contributes to changes in spine F-actin shape and content during synaptic activity, and might also regulate spine IP3 signals.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, University of Cambridge CB2 1PD, UK.
| | | |
Collapse
|
340
|
Abstract
We provide protocols for preparing low-density dissociated-cell cultures of hippocampal neurons from embryonic rats or mice. The neurons are cultured on polylysine-treated coverslips, which are suspended above an astrocyte feeder layer and maintained in serum-free medium. When cultured according to this protocol, hippocampal neurons become appropriately polarized, develop extensive axonal and dendritic arbors and form numerous, functional synaptic connections with one another. Hippocampal cultures have been used widely for visualizing the subcellular localization of endogenous or expressed proteins, for imaging protein trafficking and for defining the molecular mechanisms underlying the development of neuronal polarity, dendritic growth and synapse formation. Preparation of glial feeder cultures must begin 2 weeks in advance, and it takes 5 d to prepare coverslips as a substrate for neuronal growth. Dissecting the hippocampus and plating hippocampal neurons takes 2-3 h.
Collapse
Affiliation(s)
- Stefanie Kaech
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, L606, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | | |
Collapse
|
341
|
Matsuzaki M. Factors critical for the plasticity of dendritic spines and memory storage. Neurosci Res 2007; 57:1-9. [PMID: 17070951 DOI: 10.1016/j.neures.2006.09.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/16/2006] [Accepted: 09/25/2006] [Indexed: 11/17/2022]
Abstract
The structure of dendritic spines is highly plastic and responds to synaptic activity, including activity patterns that induce long-term potentiation (LTP) and depression (LTD). Induction of LTP causes enlargement of spine heads, while LTD causes spine head shrinkage. In addition, spine structure is well associated with synaptic weight and the extent of synaptic plasticity, such that structural changes of the spine may represent forms of memory storage. While the correlation between structural and functional plasticity appears to be simple, the underlying mechanisms of spine plasticity are intricate. Spine plasticity requires multiple molecular interactions, and is affected by the surrounding environment and by cellular metabolic state. Here, I synthesize the latest progress in this field by defining six determinants of spine plasticity, and discuss the role of each factor in memory storage.
Collapse
Affiliation(s)
- Masanori Matsuzaki
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
342
|
Affiliation(s)
- Charles Kopec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
343
|
Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, Ehlers MD. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 2006; 52:817-30. [PMID: 17145503 PMCID: PMC1899130 DOI: 10.1016/j.neuron.2006.09.040] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/14/2006] [Accepted: 09/27/2006] [Indexed: 11/30/2022]
Abstract
Dendritic spines are micron-sized membrane protrusions receiving most excitatory synaptic inputs in the mammalian brain. Spines form and grow during long-term potentiation (LTP) of synaptic strength. However, the source of membrane for spine formation and enlargement is unknown. Here we report that membrane trafficking from recycling endosomes is required for the growth and maintenance of spines. Using live-cell imaging and serial section electron microscopy, we demonstrate that LTP-inducing stimuli promote the mobilization of recycling endosomes and vesicles into spines. Preventing recycling endosomal transport abolishes LTP-induced spine formation. Using a pH-sensitive recycling cargo, we show that exocytosis from recycling endosomes occurs locally in spines, is triggered by activation of synaptic NMDA receptors, and occurs concurrently with spine enlargement. Thus, recycling endosomes provide membrane for activity-dependent spine growth and remodeling, defining a novel membrane trafficking mechanism for spine morphological plasticity and providing a mechanistic link between structural and functional plasticity during LTP.
Collapse
Affiliation(s)
- Mikyoung Park
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
344
|
Smith BA, Roy H, De Koninck P, Grütter P, De Koninck Y. Dendritic spine viscoelasticity and soft-glassy nature: balancing dynamic remodeling with structural stability. Biophys J 2006; 92:1419-30. [PMID: 17114228 PMCID: PMC1783894 DOI: 10.1529/biophysj.106.092361] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neuronal dendritic spines are a key component of brain circuitry, implicated in many mechanisms for plasticity and long-term stability of synaptic communication. They can undergo rapid actin-based activity-dependent shape fluctuations, an intriguing biophysical property that is believed to alter synaptic transmission. Yet, because of their small size (approximately 1 microm or less) and metastable behavior, spines are inaccessible to most physical measurement techniques. Here we employ atomic force microscopy elasticity mapping and novel dynamic indentation methods to probe the biomechanics of dendritic spines in living neurons. We find that spines exhibit 1), a wide range of rigidities, correlated with morphological characteristics, axonal association, and glutamatergic stimulation, 2), a uniquely large viscosity, four to five times that of other cell types, consistent with a high density of solubilized proteins, and 3), weak power-law rheology, described by the soft-glassy model for cellular mechanics. Our findings provide a new perspective on spine functionality and identify key mechanical properties that govern the ability of spines to rapidly remodel and regulate internal protein trafficking but also maintain structural stability.
Collapse
Affiliation(s)
- Benjamin A Smith
- Department of Physics, McGill University, Montreal, QC, Canada H3A 2T8
| | | | | | | | | |
Collapse
|
345
|
Abstract
Rearrangement of molecular structures at individual synapses can contribute to network plasticity. At mossy fiber presynaptic terminals, experience regulates both connectivity and structure of individual boutons. Moreover, dendritic spines and postsynaptic densities of glutamatergic synapses rapidly form and remodel in an activity-dependent manner. Recent studies of the postsynaptic scaffold molecule gephyrin have now revealed that also inhibitory shaft synapses undergo rapid remodeling at the postsynaptic scaffold level. Taking into account that also surface membrane receptors are highly mobile, local coincidence of receptors and scaffold elements in adjacent layers at dendritic shafts might depend on regulatory processes underlying synaptic plasticity.
Collapse
Affiliation(s)
- Matthias Kneussel
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, D-20251 Hamburg, Germany.
| |
Collapse
|
346
|
Abstract
The year 2006 marks the 100th anniversary of the first Nobel Prize for Physiology or Medicine for studies in the field of the Neurosciences jointly awarded to Camillo Golgi and Santiago Ramón y Cajal for their key contributions to the study of the nervous system. This award represented the beginning of the modern era of neuroscience. Using the Golgi method, Cajal made fundamental, but often unappreciated, contributions to the study of the relationship between brain plasticity and mental processes. Here, I focus on some of these early experiments and how they continue to influence studies of brain plasticity.
Collapse
Affiliation(s)
- Javier DeFelipe
- Instituto Cajal (CSIC), Avenida Dr. Arce, 37, Madrid 28002, Spain.
| |
Collapse
|
347
|
Haber M, Zhou L, Murai KK. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 2006; 26:8881-91. [PMID: 16943543 PMCID: PMC6675342 DOI: 10.1523/jneurosci.1302-06.2006] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence is redefining the importance of neuron-glial interactions at synapses in the CNS. Astrocytes form "tripartite" complexes with presynaptic and postsynaptic structures and regulate synaptic transmission and plasticity. Despite our understanding of the importance of neuron-glial relationships in physiological contexts, little is known about the structural interplay between astrocytes and synapses. In the past, this has been difficult to explore because studies have been hampered by the lack of a system that preserves complex neuron-glial relationships observed in the brain. Here we present a system that can be used to characterize the intricate relationship between astrocytic processes and synaptic structures in situ using organotypic hippocampal slices, a preparation that retains the three-dimensional architecture of astrocyte-synapse interactions. Using time-lapse confocal imaging, we demonstrate that astrocytes can rapidly extend and retract fine processes to engage and disengage from motile postsynaptic dendritic spines. Surprisingly, astrocytic motility is, on average, higher than its dendritic spine counterparts and likely relies on actin-based cytoskeletal reorganization. Changes in astrocytic processes are typically coordinated with changes in spines, and astrocyte-spine interactions are stabilized at larger spines. Our results suggest that dynamic structural changes in astrocytes help control the degree of neuron-glial communication at hippocampal synapses.
Collapse
Affiliation(s)
- Michael Haber
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, H3G 1A4, Canada
| | - Lei Zhou
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, H3G 1A4, Canada
| | - Keith K. Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, H3G 1A4, Canada
| |
Collapse
|
348
|
Sdrulla AD, Linden DJ. Dynamic imaging of cerebellar Purkinje cells reveals a population of filopodia which cross-link dendrites during early postnatal development. THE CEREBELLUM 2006; 5:105-15. [PMID: 16818385 DOI: 10.1080/14734220600620908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Two-photon microscopy was used to image dye-loaded filopodia of Purkinje cells in acute rat cerebellar slices. In the process of examining filopodia in Purkinje cells from a period of rapid dendritic growth (P10-21), we observed a small subset of filopodia which appeared to form connections between two dendrites of the same cell, usually between the tips of two adjacent dendrites or the tip of a dendrite and the shaft of another. There were fewer of these 'filopodial bridges' present at P18-21 than at an earlier stage in development (P10-12) and they were absent in mature Purkinje cells. Filopodial bridges do not appear to be an artifact of living brain slice preparation as they may also be seen by dye-loading Purkinje cells in slices prepared from perfusion-fixed brain. They have varied morphologies which are mostly similar to conventional, unattached filopodia. However, when measured over tens of minutes, filopodial bridges were observed to be less motile than conventional filopodia as indicated by a reduced index of expansion. While the functions of these novel structures are unknown it is attractive to speculate that they play an instructive role in Purkinje cell dendritic development.
Collapse
Affiliation(s)
- Andrei D Sdrulla
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
349
|
Shrestha BR, Vitolo OV, Joshi P, Lordkipanidze T, Shelanski M, Dunaevsky A. Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Mol Cell Neurosci 2006; 33:274-82. [PMID: 16962789 DOI: 10.1016/j.mcn.2006.07.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 01/06/2023] Open
Abstract
Elevated levels of amyloid-beta peptide (Abeta) are found in Down's syndrome patients and alter synaptic function during the early stages of Alzheimer's disease. Dendritic spines, sites of most excitatory synaptic contacts, are considered to be an important locus for encoding synaptic plasticity. We used time-lapse two-photon imaging of hippocampal pyramidal neurons in organotypic slices to study the effects of Abeta on the development of dendritic spines. We report that exposure of hippocampal neurons to sub-lethal levels of Abeta decreased spine density, increased spine length and subdued spine motility. The effect of Abeta on spine density was reversible. Moreover, Abeta's effect on dendritic spine density was blocked by rolipram, a phosphodiesterase type IV inhibitor, suggesting the involvement of a cAMP dependent pathway. These findings raise the possibility that Abeta-induced spine alterations could underlie the cognitive defects in Alzheimer's disease and Down syndrome.
Collapse
Affiliation(s)
- Brikha R Shrestha
- Department of Neuroscience, Brown University, Box 1953, 190 Thayer Street, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
350
|
Johnson OL, Ouimet CC. A regulatory role for actin in dendritic spine proliferation. Brain Res 2006; 1113:1-9. [PMID: 16934781 DOI: 10.1016/j.brainres.2006.06.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 06/07/2006] [Accepted: 06/11/2006] [Indexed: 11/19/2022]
Abstract
Dendritic spines are small protrusions that receive 90% of excitatory cortical synapses and are critically important to neural function. Each dendritic spine is supported by a dynamic actin cytoskeleton that responds to internal and external cues to allow spine development, elongation, retraction and movement. Multiple proteins have roles in spinogenesis, but until now, a regulatory role for actin itself has not been established. Here, we show that, in the acute slice preparation, actin expression increases during a period of rapid spinogenesis. Furthermore, actin overexpression in organotypic hippocampal cultures leads to a significant increase in spine density on CA1 pyramidal cells. Specifically, the number of filopodia (long, thin protrusions without heads) increases by 38% on secondary apical dendrites and 88% on basal dendrites and the number of elongated spines with heads increases by 162% on secondary apical dendrites and 113% on basal dendrites. Synapsin-I immunostaining demonstrated that the majority of filopodia and elongated spines are apposed by axon terminals. Additionally, we show that overexpressed actin enters both new and established spines within 24 h. These data demonstrate that neurons undertaking spinogenesis upregulate actin expression, that actin overexpression per se increases spine density, and that both new and established spines incorporate exogenous actin.
Collapse
Affiliation(s)
- Orenda L Johnson
- Program in Neuroscience and Department of Psychology, College of Medicine, 1115 W. Call Street, Florida State University, Tallahassee, FL 32306-4340, USA.
| | | |
Collapse
|