301
|
Perez-Riverol Y. Proteomic repository data submission, dissemination, and reuse: key messages. Expert Rev Proteomics 2022; 19:297-310. [PMID: 36529941 PMCID: PMC7614296 DOI: 10.1080/14789450.2022.2160324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The creation of ProteomeXchange data workflows in 2012 transformed the field of proteomics, consisting of the standardization of data submission and dissemination and enabling the widespread reanalysis of public MS proteomics data worldwide. ProteomeXchange has triggered a growing trend toward public dissemination of proteomics data, facilitating the assessment, reuse, comparative analyses, and extraction of new findings from public datasets. By 2022, the consortium is integrated by PRIDE, PeptideAtlas, MassIVE, jPOST, iProX, and Panorama Public. AREAS COVERED Here, we review and discuss the current ecosystem of resources, guidelines, and file formats for proteomics data dissemination and reanalysis. Special attention is drawn to new exciting quantitative and post-translational modification-oriented resources. The challenges and future directions on data depositions including the lack of metadata and cloud-based and high-performance software solutions for fast and reproducible reanalysis of the available data are discussed. EXPERT OPINION The success of ProteomeXchange and the amount of proteomics data available in the public domain have triggered the creation and/or growth of other protein knowledgebase resources. Data reuse is a leading, active, and evolving field; supporting the creation of new formats, tools, and workflows to rediscover and reshape the public proteomics data.
Collapse
Affiliation(s)
- Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
302
|
Steinbach MK, Leipert J, Blurton C, Leippe M, Tholey A. Digital Microfluidics Supported Microproteomics for Quantitative Proteome Analysis of Single Caenorhabditis elegans Nematodes. J Proteome Res 2022; 21:1986-1996. [PMID: 35771142 DOI: 10.1021/acs.jproteome.2c00274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Miniaturization of sample preparation, including omissible manual sample handling steps, is key for reproducible nanoproteomics, as material is often restricted to only hundreds of cells or single model organisms. Here, we demonstrate a highly sensitive digital microfluidics (DMF)-based sample preparation workflow making use of single-pot solid-phase enhanced sample preparation (SP3) in combination with high-field asymmetric-waveform ion mobility spectrometry (FAIMS), and fast and sensitive ion trap detection on an Orbitrap tribrid MS system. Compared to a manual in-tube SP3-supported sample preparation, the numbers of identified peptides and proteins were markedly increased, while lower standard deviations between replicates were observed. We repeatedly identified up to 5000 proteins from single nematodes. Moreover, label-free quantification of protein changes in single Caenorhabditis elegans treated with a heat stimulus yielded 45 differentially abundant proteins when compared to the untreated control, highlighting the potential of this technology for low-input proteomics studies. LC-MS data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD033143.
Collapse
Affiliation(s)
- Max K Steinbach
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Jan Leipert
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Christine Blurton
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
303
|
Griesser E, Schönberger T, Stierstorfer B, Wyatt H, Rist W, Lamla T, Thomas MJ, Lamb D, Geillinger-Kästle KE. Characterization of a flexible AAV-DTR/DT mouse model of acute epithelial lung injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L206-L218. [PMID: 35762632 DOI: 10.1152/ajplung.00364.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animal models are important to mimic certain pathways or biological aspects of human pathologies including acute and chronic pulmonary diseases. We developed a novel and flexible mouse model of acute epithelial lung injury based on adeno-associated virus (AAV) variant 6.2 mediated expression of the human diphtheria toxin receptor (DTR). Following intratracheal administration of diphtheria toxin (DT), a cell-specific death of bronchial and alveolar epithelial cells can be observed. In contrast to other lung injury models, the here described mouse model provides the possibility of targeted injury using specific tropisms of AAV vectors or cell type specific promotors to drive the human DTR expression. Also, generation of cell specific mouse lines is not required. Detailed characterization of the AAV-DTR/DT mouse model including titration of viral genome (vg) load and administered DT amount revealed increasing cell numbers in bronchoalveolar lavage (BAL; macrophages, neutrophils, and unspecified cells) and elevation of degenerated cells and infiltrated leukocytes in lung tissue, dependent of vg load and DT dose. Cytokine levels in BAL fluid showed different patterns with higher vg load, e.g. IFNγ, TNFα, and IP10 increasing and IL-5 and IL-6 decreasing, while lung function was not affected. Additionally, laser-capture microdissection (LCM)-based proteomics of bronchial epithelium and alveolar tissue revealed upregulated immune and inflammatory response in all regions and extracellular matrix deposition in infiltrated alveoli. Overall, our novel AAV-DTR/DT model allows investigation of repair mechanisms following epithelial injury and resembles specific mechanistic aspects of acute and chronic pulmonary diseases.
Collapse
Affiliation(s)
- Eva Griesser
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany, Germany
| | - Tanja Schönberger
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany, Germany
| | - Birgit Stierstorfer
- Non-clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Hannah Wyatt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany, Germany
| | - Wolfgang Rist
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany, Germany
| | - Thorsten Lamla
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany, Germany
| | - Matthew James Thomas
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany.,University of Bath, Bath, United Kingdom
| | - David Lamb
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany
| | - Kerstin E Geillinger-Kästle
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
304
|
Liu X, Yang YY, Wang Y. HSP90 and Aha1 modulate microRNA maturation through promoting the folding of Dicer1. Nucleic Acids Res 2022; 50:6990-7001. [PMID: 35736213 PMCID: PMC9262616 DOI: 10.1093/nar/gkac528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Aha1 is a co-chaperone of heat shock protein 90 (HSP90), and it stimulates the ATPase activity of HSP90 to promote the folding of its client proteins. By employing ascorbate peroxidase (APEX)-based proximity labeling and proteomic analysis, we identified over 30 proteins exhibiting diminished abundances in the proximity proteome of HSP90 in HEK293T cells upon genetic depletion of Aha1. Dicer1 is a top-ranked protein, and we confirmed its interactions with HSP90 and Aha1 by immunoprecipitation followed by western blot analysis. Genetic depletion of Aha1 and pharmacological inhibition of HSP90 both led to reduced levels of Dicer1 protein. Additionally, HSP90 and Aha1 bind preferentially to newly translated Dicer1. Reconstitution of Aha1-depleted cells with wild-type Aha1 substantially rescued Dicer1 protein level, and a lower level of restoration was observed for complementation with the HSP90-binding-defective Aha1-E67K, whereas an Aha1 mutant lacking the first 20 amino acids-which abolishes its chaperone activity-failed to rescue Dicer1 protein level. Moreover, knockdown of Aha1 and inhibition of HSP90 led to diminished levels of mature microRNAs (miRNAs), but not their corresponding primary miRNAs. Together, we uncovered a novel mechanism of HSP90 and Aha1 in regulating the miRNA pathway through promoting the folding of Dicer1 protein, and we also demonstrated that Aha1 modulates this process by acting as an autonomous chaperone and a co-chaperone for HSP90.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92502, USA
| | - Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92502, USA
| | - Yinsheng Wang
- To whom correspondence should be addressed. Tel: +1 951 827 2700; Fax: +1 951 827 4713;
| |
Collapse
|
305
|
Yan K, Mei Z, Zhao J, Prodhan MAI, Obal D, Katragadda K, Doelling B, Hoetker D, Posa DK, He L, Yin X, Shah J, Pan J, Rai S, Lorkiewicz PK, Zhang X, Liu S, Bhatnagar A, Baba SP. Integrated Multilayer Omics Reveals the Genomic, Proteomic, and Metabolic Influences of Histidyl Dipeptides on the Heart. J Am Heart Assoc 2022; 11:e023868. [PMID: 35730646 PMCID: PMC9333374 DOI: 10.1161/jaha.121.023868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Histidyl dipeptides such as carnosine are present in a micromolar to millimolar range in mammalian hearts. These dipeptides facilitate glycolysis by proton buffering. They form conjugates with reactive aldehydes, such as acrolein, and attenuate myocardial ischemia–reperfusion injury. Although these dipeptides exhibit multifunctional properties, a composite understanding of their role in the myocardium is lacking. Methods and Results To identify histidyl dipeptide–mediated responses in the heart, we used an integrated triomics approach, which involved genome‐wide RNA sequencing, global proteomics, and unbiased metabolomics to identify the effects of cardiospecific transgenic overexpression of the carnosine synthesizing enzyme, carnosine synthase (Carns), in mice. Our result showed that higher myocardial levels of histidyl dipeptides were associated with extensive changes in the levels of several microRNAs, which target the expression of contractile proteins, β‐fatty acid oxidation, and citric acid cycle (TCA) enzymes. Global proteomic analysis showed enrichment in the expression of contractile proteins, enzymes of β‐fatty acid oxidation, and the TCA in the Carns transgenic heart. Under aerobic conditions, the Carns transgenic hearts had lower levels of short‐ and long‐chain fatty acids as well as the TCA intermediate—succinic acid; whereas, under ischemic conditions, the accumulation of fatty acids and TCA intermediates was significantly attenuated. Integration of multiple data sets suggested that β‐fatty acid oxidation and TCA pathways exhibit correlative changes in the Carns transgenic hearts at all 3 levels. Conclusions Taken together, these findings reveal a central role of histidyl dipeptides in coordinated regulation of myocardial structure, function, and energetics.
Collapse
Affiliation(s)
- Keqiang Yan
- Beijing Institute of Genomics Chinese Academy of Sciences, Beishan Industrial Zone Shenzhen China
| | - Zhanlong Mei
- Beijing Institute of Genomics Chinese Academy of Sciences, Beishan Industrial Zone Shenzhen China
| | - Jingjing Zhao
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | | | - Detlef Obal
- Department of Anesthesiology and Perioperative and Pain Medicine Stanford University Palo Alto CA
| | - Kartik Katragadda
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Benjamin Doelling
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - David Hoetker
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Liqing He
- Department of Chemistry University of Louisville KY
| | - Xinmin Yin
- Department of Chemistry University of Louisville KY
| | - Jasmit Shah
- Department of Medicine, Medical college The Aga Khan University Nairobi Kenya
| | - Jianmin Pan
- Biostatistics Shared Facility University of Louisville Health, Brown Cancer Center Louisville KY
| | - Shesh Rai
- Biostatistics Shared Facility University of Louisville Health, Brown Cancer Center Louisville KY
| | - Pawel Konrad Lorkiewicz
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Xiang Zhang
- Department of Chemistry University of Louisville KY
| | - Siqi Liu
- Beijing Institute of Genomics Chinese Academy of Sciences, Beishan Industrial Zone Shenzhen China
| | - Aruni Bhatnagar
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| | - Shahid P Baba
- Diabetes and Obesity Center University of Louisville KY.,Christina Lee Brown Envirome Institute University of Louisville KY USA
| |
Collapse
|
306
|
Kuang L, Chen S, Guo Y, Scheuring D, Flaishman MA, Ma H. Proteome Analysis of Vacuoles Isolated from Fig (Ficus carica L.) Flesh during Fruit Development. PLANT & CELL PHYSIOLOGY 2022; 63:785-801. [PMID: 35348748 DOI: 10.1093/pcp/pcac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fruit flesh cell vacuoles play a pivotal role in fruit growth and quality formation. In the present study, intact vacuoles were carefully released and collected from protoplasts isolated from flesh cells at five sampling times along fig fruit development. Label-free quantification and vacuole proteomic analysis identified 1,251 proteins, 1,137 of which were recruited as differentially abundant proteins (DAPs) by fold change ≥ 1.5, P < 0.05. DAPs were assigned to 10 functional categories; among them, 238, 186, 109, 93 and 90 were annotated as metabolism, transport proteins, membrane fusion or vesicle trafficking, protein fate and stress response proteins, respectively. Decreased numbers of DAPs were uncovered along fruit development. The overall changing pattern of DAPs revealed two major proteome landscape conversions in fig flesh cell vacuoles: the first occurred when fruit developed from late-stage I to mid-stage II, and the second occurred when the fruit started ripening. Metabolic proteins related to glycosidase, lipid and extracellular proteins contributing to carbohydrate storage and vacuole expansion, and protein-degrading proteins determining vacuolar lytic function were revealed. Key tonoplast proteins contributing to vacuole expansion, cell growth and fruit quality formation were also identified. The revealed comprehensive changes in the vacuole proteome during flesh development were compared with our previously published vacuole proteome of grape berry. The information expands our knowledge of the vacuolar proteome and the protein basis of vacuole functional evolution during fruit development and quality formation.
Collapse
Affiliation(s)
- Liuqing Kuang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shangwu Chen
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- College of Biology Sciences, China Agricultural University, Beijing 100193, China
| | - David Scheuring
- Department of Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Moshe A Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
307
|
Bettinger JQ, Simon M, Korotkov A, Welle KA, Hryhorenko JR, Seluanov A, Gorbunova V, Ghaemmaghami S. Accurate Proteomewide Measurement of Methionine Oxidation in Aging Mouse Brains. J Proteome Res 2022; 21:1495-1509. [PMID: 35584362 PMCID: PMC9171897 DOI: 10.1021/acs.jproteome.2c00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/28/2022]
Abstract
The oxidation of methionine has emerged as an important post-translational modification of proteins. A number of studies have suggested that the oxidation of methionines in select proteins can have diverse impacts on cell physiology, ranging from detrimental effects on protein stability to functional roles in cell signaling. Despite its importance, the large-scale investigation of methionine oxidation in a complex matrix, such as the cellular proteome, has been hampered by technical limitations. We report a methodology, methionine oxidation by blocking (MobB), that allows for accurate and precise quantification of low levels of methionine oxidation typically observed in vivo. To demonstrate the utility of this methodology, we analyzed the brain tissues of young (6 m.o.) and old (20 m.o.) mice and identified over 280 novel sites for in vivo methionine oxidation. We further demonstrated that oxidation stoichiometries for specific methionine residues are highly consistent between individual animals and methionine sulfoxides are enriched in clusters of functionally related gene products including membrane and extracellular proteins. However, we did not detect significant changes in methionine oxidation in brains of old mice. Our results suggest that under normal conditions, methionine oxidation may be a biologically regulated process rather than a result of stochastic chemical damage.
Collapse
Affiliation(s)
- John Q. Bettinger
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Matthew Simon
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Anatoly Korotkov
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Kevin A. Welle
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Jennifer R. Hryhorenko
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Andrei Seluanov
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Vera Gorbunova
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Sina Ghaemmaghami
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| |
Collapse
|
308
|
Alves G, Ogurtsov A, Karlsson R, Jaén-Luchoro D, Piñeiro-Iglesias B, Salvà-Serra F, Andersson B, Moore ERB, Yu YK. Identification of Antibiotic Resistance Proteins via MiCId's Augmented Workflow. A Mass Spectrometry-Based Proteomics Approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:917-931. [PMID: 35500907 PMCID: PMC9164240 DOI: 10.1021/jasms.1c00347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Fast and accurate identifications of pathogenic bacteria along with their associated antibiotic resistance proteins are of paramount importance for patient treatments and public health. To meet this goal from the mass spectrometry aspect, we have augmented the previously published Microorganism Classification and Identification (MiCId) workflow for this capability. To evaluate the performance of this augmented workflow, we have used MS/MS datafiles from samples of 10 antibiotic resistance bacterial strains belonging to three different species: Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The evaluation shows that MiCId's workflow has a sensitivity value around 85% (with a lower bound at about 72%) and a precision greater than 95% in identifying antibiotic resistance proteins. In addition to having high sensitivity and precision, MiCId's workflow is fast and portable, making it a valuable tool for rapid identifications of bacteria as well as detection of their antibiotic resistance proteins. It performs microorganismal identifications, protein identifications, sample biomass estimates, and antibiotic resistance protein identifications in 6-17 min per MS/MS sample using computing resources that are available in most desktop and laptop computers. We have also demonstrated other use of MiCId's workflow. Using MS/MS data sets from samples of two bacterial clonal isolates, one being antibiotic-sensitive while the other being multidrug-resistant, we applied MiCId's workflow to investigate possible mechanisms of antibiotic resistance in these pathogenic bacteria; the results showed that MiCId's conclusions agree with the published study. The new version of MiCId (v.07.01.2021) is freely available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.
Collapse
Affiliation(s)
- Gelio Alves
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Aleksey Ogurtsov
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Roger Karlsson
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Nanoxis
Consulting AB, 40234 Gothenburg, Sweden
| | - Daniel Jaén-Luchoro
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
| | - Beatriz Piñeiro-Iglesias
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
| | - Francisco Salvà-Serra
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
- Microbiology,
Department of Biology, University of the
Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Björn Andersson
- Bioinformatics
Core Facility at Sahlgrenska Academy, University
of Gothenburg, Box 413, 40530 Gothenburg, Sweden
| | - Edward R. B. Moore
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
| | - Yi-Kuo Yu
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| |
Collapse
|
309
|
Wang S, García-Seisdedos D, Prakash A, Kundu DJ, Collins A, George N, Fexova S, Moreno P, Papatheodorou I, Jones AR, Vizcaíno JA. Integrated view and comparative analysis of baseline protein expression in mouse and rat tissues. PLoS Comput Biol 2022; 18:e1010174. [PMID: 35714157 PMCID: PMC9246241 DOI: 10.1371/journal.pcbi.1010174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/30/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
The increasingly large amount of proteomics data in the public domain enables, among other applications, the combined analyses of datasets to create comparative protein expression maps covering different organisms and different biological conditions. Here we have reanalysed public proteomics datasets from mouse and rat tissues (14 and 9 datasets, respectively), to assess baseline protein abundance. Overall, the aggregated dataset contained 23 individual datasets, including a total of 211 samples coming from 34 different tissues across 14 organs, comprising 9 mouse and 3 rat strains, respectively. In all cases, we studied the distribution of canonical proteins between the different organs. The number of canonical proteins per dataset ranged from 273 (tendon) and 9,715 (liver) in mouse, and from 101 (tendon) and 6,130 (kidney) in rat. Then, we studied how protein abundances compared across different datasets and organs for both species. As a key point we carried out a comparative analysis of protein expression between mouse, rat and human tissues. We observed a high level of correlation of protein expression among orthologs between all three species in brain, kidney, heart and liver samples, whereas the correlation of protein expression was generally slightly lower between organs within the same species. Protein expression results have been integrated into the resource Expression Atlas for widespread dissemination.
Collapse
Affiliation(s)
- Shengbo Wang
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David García-Seisdedos
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ananth Prakash
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Deepti Jaiswal Kundu
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Andrew Collins
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Silvie Fexova
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Pablo Moreno
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Andrew R. Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
310
|
Treitz C, Gottwald J, Gericke E, Urban P, Meliß RR, Axmann HD, Siebert F, Becker K, Tholey A, Röcken C. Quantitative proteome profiling provides evidence of an activation of the complement cascade in ATTR amyloidosis. Amyloid 2022; 29:102-109. [PMID: 34913770 DOI: 10.1080/13506129.2021.2015316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Amyloidosis is a disease group caused by pathological aggregation and deposition of peptides in diverse tissue sites. Apart from the fibril protein, amyloid deposits frequently enclose non-fibrillar constituents. In this study, carpal tunnel tissue sections with ATTR amyloid were analysed by quantitative mass spectrometry-based proteomics. Following manual dissection, tissue samples of equal size and with heterogeneous amyloid load were dissected and forwarded to bottom-up proteome analysis and label-free protein profiling. The amyloid-associated proteins showed significant correlations of label-free intensity profiles. A comprehensive list of 83 proteins specifically enriched in amyloid deposits was discovered. In addition to well-known signature proteins (e.g. apolipoprotein E, apolipoprotein A-IV, and vitronectin), 22 members of the complement system, including all seven components of the membrane attack complex could be associated to the disease. These data lend support to the hypothesis that the complement system is activated in ATTR amyloidosis.
Collapse
Affiliation(s)
- Christian Treitz
- Systematic Proteome Research and Bioanalytics, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Juliane Gottwald
- Department of Pathology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Eva Gericke
- Department of Pathology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Peter Urban
- Institute of Pathology and Dermatopathology, Hannover, Germany
| | | | | | | | | | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
311
|
Ramsbottom KA, Prakash A, Riverol YP, Camacho OM, Martin MJ, Vizcaíno JA, Deutsch EW, Jones AR. Method for Independent Estimation of the False Localization Rate for Phosphoproteomics. J Proteome Res 2022; 21:1603-1615. [PMID: 35640880 PMCID: PMC9251759 DOI: 10.1021/acs.jproteome.1c00827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Phosphoproteomic
methods are commonly employed to identify and
quantify phosphorylation sites on proteins. In recent years, various
tools have been developed, incorporating scores or statistics related
to whether a given phosphosite has been correctly identified or to
estimate the global false localization rate (FLR) within a given data
set for all sites reported. These scores have generally been calibrated
using synthetic datasets, and their statistical reliability on real
datasets is largely unknown, potentially leading to studies reporting
incorrectly localized phosphosites, due to inadequate statistical
control. In this work, we develop the concept of scoring modifications
on a decoy amino acid, that is, one that cannot be modified, to allow
for independent estimation of global FLR. We test a variety of amino
acids, on both synthetic and real data sets, demonstrating that the
selection can make a substantial difference to the estimated global
FLR. We conclude that while several different amino acids might be
appropriate, the most reliable FLR results were achieved using alanine
and leucine as decoys. We propose the use of a decoy amino acid to
control false reporting in the literature and in public databases
that re-distribute the data. Data are available via ProteomeXchange
with identifier PXD028840.
Collapse
Affiliation(s)
- Kerry A Ramsbottom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, U.K
| | - Ananth Prakash
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, U.K
| | - Yasset Perez Riverol
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, U.K
| | - Oscar Martin Camacho
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, U.K
| | - Maria-Jesus Martin
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, U.K
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, U.K
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Andrew R Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, U.K
| |
Collapse
|
312
|
Latorre J, Aroca A, Fernández-Real JM, Romero LC, Moreno-Navarrete JM. The Combined Partial Knockdown of CBS and MPST Genes Induces Inflammation, Impairs Adipocyte Function-Related Gene Expression and Disrupts Protein Persulfidation in Human Adipocytes. Antioxidants (Basel) 2022; 11:antiox11061095. [PMID: 35739994 PMCID: PMC9220337 DOI: 10.3390/antiox11061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies in mice and humans demonstrated the relevance of H2S synthesising enzymes, such as CTH, CBS, and MPST, in the physiology of adipose tissue and the differentiation of preadipocyte into adipocytes. Here, our objective was to investigate the combined role of CTH, CBS, and MPST in the preservation of adipocyte protein persulfidation and adipogenesis. Combined partial CTH, CBS, and MPST gene knockdown was achieved treating fully human adipocytes with siRNAs against these transcripts (siRNA_MIX). Adipocyte protein persulfidation was analyzed using label-free quantitative mass spectrometry coupled with a dimedone-switch method for protein labeling and purification. Proteomic analysis quantified 216 proteins with statistically different levels of persulfidation in KD cells compared to control adipocytes. In fully differentiated adipocytes, CBS and MPST mRNA and protein levels were abundant, while CTH expression was very low. It is noteworthy that siRNA_MIX administration resulted in a significant decrease in CBS and MPST expression, without impacting on CTH. The combined partial knockdown of the CBS and MPST genes resulted in reduced cellular sulfide levels in parallel to decreased expression of relevant genes for adipocyte biology, including adipogenesis, mitochondrial biogenesis, and lipogenesis, but increased proinflammatory- and senescence-related genes. It should be noted that the combined partial knockdown of CBS and MPST genes also led to a significant disruption in the persulfidation pattern of the adipocyte proteins. Although among the less persulfidated proteins, we identified several relevant proteins for adipocyte adipogenesis and function, among the most persulfidated, key mediators of adipocyte inflammation and dysfunction as well as some proteins that might play a positive role in adipogenesis were found. In conclusion, the current study indicates that the combined partial elimination of CBS and MPST (but not CTH) in adipocytes affects the expression of genes related to the maintenance of adipocyte function and promotes inflammation, possibly by altering the pattern of protein persulfidation in these cells, suggesting that these enzymes were required for the functional maintenance of adipocytes.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-872-987087 (ext. 70)
| |
Collapse
|
313
|
Krawczyk HE, Sun S, Doner NM, Yan Q, Lim MSS, Scholz P, Niemeyer PW, Schmitt K, Valerius O, Pleskot R, Hillmer S, Braus GH, Wiermer M, Mullen RT, Ischebeck T. SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet-plasma membrane tethering. THE PLANT CELL 2022; 34:2424-2448. [PMID: 35348751 PMCID: PMC9134073 DOI: 10.1093/plcell/koac095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Membrane contact sites (MCSs) are interorganellar connections that allow for the direct exchange of molecules, such as lipids or Ca2+ between organelles, but can also serve to tether organelles at specific locations within cells. Here, we identified and characterized three proteins of Arabidopsis thaliana that form a lipid droplet (LD)-plasma membrane (PM) tethering complex in plant cells, namely LD-localized SEED LD PROTEIN (SLDP) 1 and SLDP2 and PM-localized LD-PLASMA MEMBRANE ADAPTOR (LIPA). Using proteomics and different protein-protein interaction assays, we show that both SLDPs associate with LIPA. Disruption of either SLDP1 and SLDP2 expression, or that of LIPA, leads to an aberrant clustering of LDs in Arabidopsis seedlings. Ectopic co-expression of one of the SLDPs with LIPA is sufficient to reconstitute LD-PM tethering in Nicotiana tabacum pollen tubes, a cell type characterized by dynamically moving LDs in the cytosolic streaming. Furthermore, confocal laser scanning microscopy revealed both SLDP2.1 and LIPA to be enriched at LD-PM contact sites in seedlings. These and other results suggest that SLDP and LIPA interact to form a tethering complex that anchors a subset of LDs to the PM during post-germinative seedling growth in Arabidopsis.
Collapse
Affiliation(s)
- Hannah Elisa Krawczyk
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Siqi Sun
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Qiqi Yan
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
| | - Magdiel Sheng Satha Lim
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Philipp William Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stefan Hillmer
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Gerhard H Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Marcel Wiermer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
314
|
James J, Chen Y, Hernandez CM, Forster F, Dagnell M, Cheng Q, Saei AA, Gharibi H, Lahore GF, Åstrand A, Malhotra R, Malissen B, Zubarev RA, Arnér ESJ, Holmdahl R. Redox regulation of PTPN22 affects the severity of T-cell-dependent autoimmune inflammation. eLife 2022; 11:74549. [PMID: 35587260 PMCID: PMC9119677 DOI: 10.7554/elife.74549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic autoimmune diseases are associated with mutations in PTPN22, a modifier of T cell receptor (TCR) signaling. As with all protein tyrosine phosphatases, the activity of PTPN22 is redox regulated, but if or how such regulation can modulate inflammatory pathways in vivo is not known. To determine this, we created a mouse with a cysteine-to-serine mutation at position 129 in PTPN22 (C129S), a residue proposed to alter the redox regulatory properties of PTPN22 by forming a disulfide with the catalytic C227 residue. The C129S mutant mouse showed a stronger T-cell-dependent inflammatory response and development of T-cell-dependent autoimmune arthritis due to enhanced TCR signaling and activation of T cells, an effect neutralized by a mutation in Ncf1, a component of the NOX2 complex. Activity assays with purified proteins suggest that the functional results can be explained by an increased sensitivity to oxidation of the C129S mutated PTPN22 protein. We also observed that the disulfide of native PTPN22 can be directly reduced by the thioredoxin system, while the C129S mutant lacking this disulfide was less amenable to reductive reactivation. In conclusion, we show that PTPN22 functionally interacts with Ncf1 and is regulated by oxidation via the noncatalytic C129 residue and oxidation-prone PTPN22 leads to increased severity in the development of T-cell-dependent autoimmunity.
Collapse
Affiliation(s)
- Jaime James
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yifei Chen
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Clara M Hernandez
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Florian Forster
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Markus Dagnell
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Amir A Saei
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden
| | - Gonzalo Fernandez Lahore
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Åstrand
- Project Leader Department, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rajneesh Malhotra
- Translational Science and Experimental Medicine, Research and Early Development Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bernard Malissen
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, Marseille, France
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elias S J Arnér
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
315
|
Sasaki S, Oba K, Kodera Y, Itakura M, Shichiri M. ANGT_HUMAN[448–462], an Anorexigenic Peptide Identified using Plasma Peptidomics. J Endocr Soc 2022; 6:bvac082. [PMID: 35702602 PMCID: PMC9184509 DOI: 10.1210/jendso/bvac082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
Abstract
The discovery of bioactive peptides is an important research target that enables the elucidation of the pathophysiology of human diseases and provides seeds for drug discovery. Using a large number of native peptides previously identified using plasma peptidomics technology, we sequentially synthesized selected sequences and subjected them to functional screening using human cultured cells. A 15-amino-acid residue proangiotensinogen-derived peptide, designated ANGT_HUMAN[448–462], elicited cellular responses and bound to cultured human cells. Synthetic fluorescent-labeled and biotinylated ANGT_HUMAN[448–462] peptides were rendered to bind to cell- and tissue-derived proteins and peptide-cell protein complexes were retrieved and analyzed using liquid chromatography-tandem mass spectrometry, revealing the β-subunit of ATP synthase as its cell-surface binding protein. Because ATP synthase mediates the effects of anorexigenic peptides, the ability of ANGT_HUMAN[448–462] to modulate eating behavior in mice was investigated. Both intraperitoneal and intracerebroventricular injections of low doses of ANGT_HUMAN[448–462] suppressed spontaneous food and water intake throughout the dark phase of the diurnal cycle without affecting locomotor activity. Immunoreactive ANGT_HUMAN[448–462], distributed throughout human tissues and in human-derived cells, is mostly co-localized with angiotensin II and is occasionally present separately from angiotensin II. In this study, an anorexigenic peptide, ANGT_HUMAN[448–462], was identified by exploring cell surface target proteins of the human native peptides identified using plasma peptidomics.
Collapse
Affiliation(s)
- Sayaka Sasaki
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
| | - Kazuhito Oba
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
| | - Yoshio Kodera
- Department of Physics, Kitasato University School of Science, Kanagawa 252-0373, Japan
- Center for Disease Proteomics, Kitasato University School of Science, Kanagawa 252-0373, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Kyosai Hospital, Tokyo 153-8934, Japan
| |
Collapse
|
316
|
A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos. Nat Commun 2022; 13:2557. [PMID: 35581187 PMCID: PMC9114389 DOI: 10.1038/s41467-022-29923-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
The Pleistocene presence of the genus Homo in continental Southeast Asia is primarily evidenced by a sparse stone tool record and rare human remains. Here we report a Middle Pleistocene hominin specimen from Laos, with the discovery of a molar from the Tam Ngu Hao 2 (Cobra Cave) limestone cave in the Annamite Mountains. The age of the fossil-bearing breccia ranges between 164–131 kyr, based on the Bayesian modelling of luminescence dating of the sedimentary matrix from which it was recovered, U-series dating of an overlying flowstone, and U-series–ESR dating of associated faunal teeth. Analyses of the internal structure of the molar in tandem with palaeoproteomic analyses of the enamel indicate that the tooth derives from a young, likely female, Homo individual. The close morphological affinities with the Xiahe specimen from China indicate that they belong to the same taxon and that Tam Ngu Hao 2 most likely represents a Denisovan. Evidence for the presence of Homo during the Middle Pleistocene is limited in continental Southeast Asia. Here, the authors report a hominin molar from Tam Ngu Hao 2 (Cobra Cave), dated to 164–131 kyr. They use morphological and paleoproteomic analysis to show that it likely belonged to a female Denisovan.
Collapse
|
317
|
Heil LR, Fondrie WE, McGann CD, Federation AJ, Noble WS, MacCoss MJ, Keich U. Building Spectral Libraries from Narrow-Window Data-Independent Acquisition Mass Spectrometry Data. J Proteome Res 2022; 21:1382-1391. [PMID: 35549345 DOI: 10.1021/acs.jproteome.1c00895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in library-based methods for peptide detection from data-independent acquisition (DIA) mass spectrometry have made it possible to detect and quantify tens of thousands of peptides in a single mass spectrometry run. However, many of these methods rely on a comprehensive, high-quality spectral library containing information about the expected retention time and fragmentation patterns of peptides in the sample. Empirical spectral libraries are often generated through data-dependent acquisition and may suffer from biases as a result. Spectral libraries can be generated in silico, but these models are not trained to handle all possible post-translational modifications. Here, we propose a false discovery rate-controlled spectrum-centric search workflow to generate spectral libraries directly from gas-phase fractionated DIA tandem mass spectrometry data. We demonstrate that this strategy is able to detect phosphorylated peptides and can be used to generate a spectral library for accurate peptide detection and quantitation in wide-window DIA data. We compare the results of this search workflow to other library-free approaches and demonstrate that our search is competitive in terms of accuracy and sensitivity. These results demonstrate that the proposed workflow has the capacity to generate spectral libraries while avoiding the limitations of other methods.
Collapse
Affiliation(s)
- Lilian R Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - William E Fondrie
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Christopher D McGann
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Alexander J Federation
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States.,Paul G. Allen School for Computer Science and Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Uri Keich
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
318
|
Nikitina AS, Lipatova AV, Goncharov AO, Kliuchnikova AA, Pyatnitskiy MA, Kuznetsova KG, Hamad A, Vorobyev PO, Alekseeva ON, Mahmoud M, Shakiba Y, Anufrieva KS, Arapidi GP, Ivanov MV, Tarasova IA, Gorshkov MV, Chumakov PM, Moshkovskii SA. Multiomic Profiling Identified EGF Receptor Signaling as a Potential Inhibitor of Type I Interferon Response in Models of Oncolytic Therapy by Vesicular Stomatitis Virus. Int J Mol Sci 2022; 23:5244. [PMID: 35563635 PMCID: PMC9102229 DOI: 10.3390/ijms23095244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cell lines responded differentially to type I interferon treatment in models of oncolytic therapy using vesicular stomatitis virus (VSV). Two opposite cases were considered in this study, glioblastoma DBTRG-05MG and osteosarcoma HOS cell lines exhibiting resistance and sensitivity to VSV after the treatment, respectively. Type I interferon responses were compared for these cell lines by integrative analysis of the transcriptome, proteome, and RNA editome to identify molecular factors determining differential effects observed. Adenosine-to-inosine RNA editing was equally induced in both cell lines. However, transcriptome analysis showed that the number of differentially expressed genes was much higher in DBTRG-05MG with a specific enrichment in inflammatory proteins. Further, it was found that two genes, EGFR and HER2, were overexpressed in HOS cells compared with DBTRG-05MG, supporting recent reports that EGF receptor signaling attenuates interferon responses via HER2 co-receptor activity. Accordingly, combined treatment of cells with EGF receptor inhibitors such as gefitinib and type I interferon increases the resistance of sensitive cell lines to VSV. Moreover, sensitive cell lines had increased levels of HER2 protein compared with non-sensitive DBTRG-05MG. Presumably, the level of this protein expression in tumor cells might be a predictive biomarker of their resistance to oncolytic viral therapy.
Collapse
Affiliation(s)
- Anastasia S. Nikitina
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (A.S.N.); (A.O.G.); (A.A.K.); (M.A.P.); (K.G.K.); (K.S.A.); (G.P.A.)
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.H.); (P.O.V.); (O.N.A.); (P.M.C.)
| | - Anton O. Goncharov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (A.S.N.); (A.O.G.); (A.A.K.); (M.A.P.); (K.G.K.); (K.S.A.); (G.P.A.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anna A. Kliuchnikova
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (A.S.N.); (A.O.G.); (A.A.K.); (M.A.P.); (K.G.K.); (K.S.A.); (G.P.A.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mikhail A. Pyatnitskiy
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (A.S.N.); (A.O.G.); (A.A.K.); (M.A.P.); (K.G.K.); (K.S.A.); (G.P.A.)
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Ksenia G. Kuznetsova
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (A.S.N.); (A.O.G.); (A.A.K.); (M.A.P.); (K.G.K.); (K.S.A.); (G.P.A.)
| | - Azzam Hamad
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.H.); (P.O.V.); (O.N.A.); (P.M.C.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia; (M.M.); (Y.S.)
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.H.); (P.O.V.); (O.N.A.); (P.M.C.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia; (M.M.); (Y.S.)
| | - Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.H.); (P.O.V.); (O.N.A.); (P.M.C.)
| | - Marah Mahmoud
- Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia; (M.M.); (Y.S.)
| | - Yasmin Shakiba
- Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia; (M.M.); (Y.S.)
| | - Ksenia S. Anufrieva
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (A.S.N.); (A.O.G.); (A.A.K.); (M.A.P.); (K.G.K.); (K.S.A.); (G.P.A.)
| | - Georgy P. Arapidi
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (A.S.N.); (A.O.G.); (A.A.K.); (M.A.P.); (K.G.K.); (K.S.A.); (G.P.A.)
| | - Mark V. Ivanov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.I.); (I.A.T.); (M.V.G.)
| | - Irina A. Tarasova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.I.); (I.A.T.); (M.V.G.)
| | - Mikhail V. Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.I.); (I.A.T.); (M.V.G.)
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.H.); (P.O.V.); (O.N.A.); (P.M.C.)
| | - Sergei A. Moshkovskii
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (A.S.N.); (A.O.G.); (A.A.K.); (M.A.P.); (K.G.K.); (K.S.A.); (G.P.A.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
319
|
Roos FJM, van Tienderen GS, Wu H, Bordeu I, Vinke D, Albarinos LM, Monfils K, Niesten S, Smits R, Willemse J, Rosmark O, Westergren-Thorsson G, Kunz DJ, de Wit M, French PJ, Vallier L, IJzermans JNM, Bartfai R, Marks H, Simons BD, van Royen ME, Verstegen MMA, van der Laan LJW. Human branching cholangiocyte organoids recapitulate functional bile duct formation. Cell Stem Cell 2022; 29:776-794.e13. [PMID: 35523140 DOI: 10.1016/j.stem.2022.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
Human cholangiocyte organoids show great promise for regenerative therapies and in vitro modeling of bile duct development and diseases. However, the cystic organoids lack the branching morphology of intrahepatic bile ducts (IHBDs). Here, we report establishing human branching cholangiocyte organoid (BRCO) cultures. BRCOs self-organize into complex tubular structures resembling the IHBD architecture. Single-cell transcriptomics and functional analysis showed high similarity to primary cholangiocytes, and importantly, the branching growth mimics aspects of tubular development and is dependent on JAG1/NOTCH2 signaling. When applied to cholangiocarcinoma tumor organoids, the morphology changes to an in vitro morphology like primary tumors. Moreover, these branching cholangiocarcinoma organoids (BRCCAOs) better match the transcriptomic profile of primary tumors and showed increased chemoresistance to gemcitabine and cisplatin. In conclusion, BRCOs recapitulate a complex process of branching morphogenesis in vitro. This provides an improved model to study tubular formation, bile duct functionality, and associated biliary diseases.
Collapse
Affiliation(s)
- Floris J M Roos
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Gilles S van Tienderen
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Haoyu Wu
- Radboud University, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Ignacio Bordeu
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Dina Vinke
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Laura Muñoz Albarinos
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Kathryn Monfils
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Sabrah Niesten
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Ron Smits
- Erasmus MC, University Medical Center Rotterdam, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands
| | - Jorke Willemse
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Oskar Rosmark
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Daniel J Kunz
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, University of Cambridge, Cambridge, UK
| | - Maurice de Wit
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, the Netherlands
| | - Pim J French
- Erasmus MC, University Medical Center Rotterdam, Cancer Treatment Screening Facility, Department of Neurology, Rotterdam, the Netherlands
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Jan N M IJzermans
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Richard Bartfai
- Radboud University, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Hendrik Marks
- Radboud University, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Ben D Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Martin E van Royen
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, the Netherlands
| | - Monique M A Verstegen
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands.
| |
Collapse
|
320
|
Niu L, Geyer PE, Gupta R, Santos A, Meier F, Doll S, Wewer Albrechtsen NJ, Klein S, Ortiz C, Uschner FE, Schierwagen R, Trebicka J, Mann M. Dynamic human liver proteome atlas reveals functional insights into disease pathways. Mol Syst Biol 2022; 18:e10947. [PMID: 35579278 PMCID: PMC9112488 DOI: 10.15252/msb.202210947] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Deeper understanding of liver pathophysiology would benefit from a comprehensive quantitative proteome resource at cell type resolution to predict outcome and design therapy. Here, we quantify more than 150,000 sequence-unique peptides aggregated into 10,000 proteins across total liver, the major liver cell types, time course of primary cell cultures, and liver disease states. Bioinformatic analysis reveals that half of hepatocyte protein mass is comprised of enzymes and 23% of mitochondrial proteins, twice the proportion of other liver cell types. Using primary cell cultures, we capture dynamic proteome remodeling from tissue states to cell line states, providing useful information for biological or pharmaceutical research. Our extensive data serve as spectral library to characterize a human cohort of non-alcoholic steatohepatitis and cirrhosis. Dramatic proteome changes in liver tissue include signatures of hepatic stellate cell activation resembling liver cirrhosis and providing functional insights. We built a web-based dashboard application for the interactive exploration of our resource (www.liverproteome.org).
Collapse
Affiliation(s)
- Lili Niu
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Rajat Gupta
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Pfizer Worldwide Research and DevelopmentSan DiegoCAUSA
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Center for Health Data ScienceFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Big Data InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Florian Meier
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Functional ProteomicsJena University HospitalJenaGermany
| | - Sophia Doll
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Sabine Klein
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Cristina Ortiz
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
| | - Frank E Uschner
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Robert Schierwagen
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Jonel Trebicka
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
- European Foundation for the Study of Chronic Failure, EFCLIFBarcelonaSpain
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
321
|
Struckmann Poulsen J, de Jonge N, Vieira Macêdo W, Rask Dalby F, Feilberg A, Lund Nielsen J. Characterisation of cellulose-degrading organisms in an anaerobic digester. BIORESOURCE TECHNOLOGY 2022; 351:126933. [PMID: 35247567 DOI: 10.1016/j.biortech.2022.126933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The recalcitrant nature of lignocellulosic biomass hinders efficient exploitation of this fraction for energy production. A better understanding of the microorganisms able to convert plant-based feedstocks is needed to improve anaerobic digestion of lignocellulosic biomass. In this study, active thermophilic cellulose-degrading microorganisms were identified from a full-scale anaerobic digester fed with maize by using metagenome-resolved protein stable isotope probing (protein-SIP). 13C-cellulose was converted into 13C-methane with a 13/12C isotope ratio of 0.127 after two days of incubation. Metagenomic analysis revealed 238 different genes coding for carbohydrate-active enzymes (CAZymes), six of which were directly associated with cellulose degradation. The protein-SIP analysis identified twenty heavily labelled peptides deriving from microorganisms actively assimilating labelled carbon from the degradation of 13C-cellulose, highlighting several members of the order Clostridiales. Corynebacterium was identified through CAZyme screening, amplicon analysis, and in the metagenome giving a strong identification of being a cellulose degrader.
Collapse
Affiliation(s)
- Jan Struckmann Poulsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Williane Vieira Macêdo
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Frederik Rask Dalby
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200 Aarhus N, Denmark
| | - Anders Feilberg
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200 Aarhus N, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark.
| |
Collapse
|
322
|
Bennike TB, Templeton K, Fujimura K, Bellin MD, Ahmed S, Schlaffner CN, Arora R, Cruz-Monserrate Z, Arnaout R, Beilman GJ, Grover AS, Conwell DL, Steen H. Urine Proteomics Reveals Sex-Specific Response to Total Pancreatectomy With Islet Autotransplantation. Pancreas 2022; 51:435-444. [PMID: 35881699 PMCID: PMC9527096 DOI: 10.1097/mpa.0000000000002063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Total pancreatectomy with islet autotransplantation (TPIAT) is a surgical option for refractory chronic pancreatitis-related pain. Despite the known clinical implications of TPIAT, the molecular effects remain poorly investigated. We performed the first hypothesis-generating study of the urinary proteome before and after TPIAT. METHODS Twenty-two patients eligible for TPIAT were prospectively enrolled. Urine samples were collected the week before and 12 to 18 months after TPIAT. The urine samples were prepared for bottom-up label-free quantitative proteomics using the "MStern" protocol. RESULTS Using 17 paired samples, we identified 2477 urinary proteins, of which 301 were significantly changed post-TPIAT versus pre-TPIAT. Our quantitative analysis revealed that the molecular response to TPIAT was highly sex-specific, with pronounced sex differences pre-TPIAT but minimal differences afterward. Comparing post-TPIAT versus pre-TPIAT, we found changes in cell-cell adhesion, intracellular vacuoles, and immune response proteins. After surgery, immunoglobulins, complement proteins, and cathepsins were increased, findings that may reflect glomerular damage. Finally, we identified both known and novel markers for immunoglobulin A nephropathy after 1 patient developed the disease 2 years after TPIAT. CONCLUSIONS We found distinct changes in the urinary proteomic profile after TPIAT and the response to TPIAT is highly sex-specific.
Collapse
Affiliation(s)
- Tue Bjerg Bennike
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kate Templeton
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA
| | - Kimino Fujimura
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Melena D. Bellin
- Department of Pediatrics, University of Minnesota Medical Center and Masonic Children’s Hospital, Minneapolis, MN
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN
| | - Saima Ahmed
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Christoph N. Schlaffner
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Data Analytics and Computational Statistics, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany
- Digital Engineering Faculty, University of Potsdam, Potsdam, Brandenburg, Germany
| | - Rohit Arora
- Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology and Nutrition, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ramy Arnaout
- Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Gregory J. Beilman
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN
| | - Amit S. Grover
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Darwin L. Conwell
- Division of Gastroenterology, Hepatology and Nutrition, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
323
|
Krueger A, Mohamed A, Kolka CM, Stoll T, Zaugg J, Linedale R, Morrison M, Soyer HP, Hugenholtz P, Frazer IH, Hill MM. Skin Cancer-Associated S. aureus Strains Can Induce DNA Damage in Human Keratinocytes by Downregulating DNA Repair and Promoting Oxidative Stress. Cancers (Basel) 2022; 14:2143. [PMID: 35565272 PMCID: PMC9106025 DOI: 10.3390/cancers14092143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022] Open
Abstract
Actinic keratosis (AK) is a premalignant lesion, common on severely photodamaged skin, that can progress over time to cutaneous squamous cell carcinoma (SCC). A high bacterial load of Staphylococcus aureus is associated with AK and SCC, but it is unknown whether this has a direct impact on skin cancer development. To determine whether S. aureus can have cancer-promoting effects on skin cells, we performed RNA sequencing and shotgun proteomics on primary human keratinocytes after challenge with sterile culture supernatant ('secretome') from four S. aureus clinical strains isolated from AK and SCC. Secretomes of two of the S. aureus strains induced keratinocytes to overexpress biomarkers associated with skin carcinogenesis and upregulated the expression of enzymes linked to reduced skin barrier function. Further, these strains induced oxidative stress markers and all secretomes downregulated DNA repair mechanisms. Subsequent experiments on an expanded set of lesion-associated S. aureus strains confirmed that exposure to their secretomes led to increased oxidative stress and DNA damage in primary human keratinocytes. A significant correlation between the concentration of S. aureus phenol soluble modulin toxins in secretome and the secretome-induced level of oxidative stress and genotoxicity in keratinocytes was observed. Taken together, these data demonstrate that secreted compounds from lesion-associated clinical isolates of S. aureus can have cancer-promoting effects in keratinocytes that may be relevant to skin oncogenesis.
Collapse
Affiliation(s)
- Annika Krueger
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Cathryn M. Kolka
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.Z.); (P.H.)
| | - Richard Linedale
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
| | - H. Peter Soyer
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia;
- Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.Z.); (P.H.)
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
| | - Michelle M. Hill
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
324
|
Torres A, Collin-Faure V, Diemer H, Moriscot C, Fenel D, Gallet B, Cianférani S, Sergent JA, Rabilloud T. Repeated Exposure of Macrophages to Synthetic Amorphous Silica Induces Adaptive Proteome Changes and a Moderate Cell Activation. NANOMATERIALS 2022; 12:nano12091424. [PMID: 35564134 PMCID: PMC9105884 DOI: 10.3390/nano12091424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
Synthetic amorphous silica (SAS) is a nanomaterial used in a wide variety of applications, including the use as a food additive. Two types of SAS are commonly employed as a powder additive, precipitated silica and fumed silica. Numerous studies have investigated the effects of synthetic amorphous silica on mammalian cells. However, most of them have used an exposure scheme based on a single dose of SAS. In this study, we have used instead a repeated 10-day exposure scheme in an effort to better simulate the occupational exposure encountered in daily life by consumers and workers. As a biological model, we have used the murine macrophage cell line J774A.1, as macrophages are very important innate immune cells in the response to particulate materials. In order to obtain a better appraisal of the macrophage responses to this repeated exposure to SAS, we have used proteomics as a wide-scale approach. Furthermore, some of the biological pathways detected as modulated by the exposure to SAS by the proteomic experiments have been validated through targeted experiments. Overall, proteomics showed that precipitated SAS induced a more important macrophage response than fumed SAS at equal dose. Nevertheless, validation experiments showed that most of the responses detected by proteomics are indeed adaptive, as the cellular homeostasis appeared to be maintained at the end of the exposure. For example, the intracellular glutathione levels or the mitochondrial transmembrane potential at the end of the 10 days exposure were similar for SAS-exposed cells and for unexposed cells. Similarly, no gross lysosomal damage was observed after repeated exposure to SAS. Nevertheless, important functions of macrophages such as phagocytosis, TNFα, and interleukin-6 secretion were up-modulated after exposure, as was the expression of important membrane proteins such as the scavenger receptors, MHC-II, or the MAC-1 receptor. These results suggest that repeated exposure to low doses of SAS slightly modulates the immune functions of macrophages, which may alter the homeostasis of the immune system.
Collapse
Affiliation(s)
- Anaelle Torres
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
| | - Véronique Collin-Faure
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Centre National de la Rech erche Scientifique, Hubert Curien Pluridisciplinary Institute UMR 7178, Strasbourg University, 67087 Strasbourg, France; (H.D.); (S.C.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | - Christine Moriscot
- Integrated Structural Biology Grenoble (ISBG), European Molecular Biology Laboratory Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, 71 Avenue des Martyrs, 38042 Grenoble, France;
| | - Daphna Fenel
- Institute of Structural Biology (IBS), Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38044 Grenoble, France; (D.F.); (B.G.)
| | - Benoît Gallet
- Institute of Structural Biology (IBS), Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38044 Grenoble, France; (D.F.); (B.G.)
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Centre National de la Rech erche Scientifique, Hubert Curien Pluridisciplinary Institute UMR 7178, Strasbourg University, 67087 Strasbourg, France; (H.D.); (S.C.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | | | - Thierry Rabilloud
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
- Correspondence: ; Tel.: +33-43-878-3212
| |
Collapse
|
325
|
A Non-Hazardous Deparaffinization Protocol Enables Quantitative Proteomics of Core Needle Biopsy-Sized Formalin-Fixed and Paraffin-Embedded (FFPE) Tissue Specimens. Int J Mol Sci 2022; 23:ijms23084443. [PMID: 35457260 PMCID: PMC9031572 DOI: 10.3390/ijms23084443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Most human tumor tissues that are obtained for pathology and diagnostic purposes are formalin-fixed and paraffin-embedded (FFPE). To perform quantitative proteomics of FFPE samples, paraffin has to be removed and formalin-induced crosslinks have to be reversed prior to proteolytic digestion. A central component of almost all deparaffinization protocols is xylene, a toxic and highly flammable solvent that has been reported to negatively affect protein extraction and quantitative proteome analysis. Here, we present a 'green' xylene-free protocol for accelerated sample preparation of FFPE tissues based on paraffin-removal with hot water. Combined with tissue homogenization using disposable micropestles and a modified protein aggregation capture (PAC) digestion protocol, our workflow enables streamlined and reproducible quantitative proteomic profiling of FFPE tissue. Label-free quantitation of FFPE cores from human ductal breast carcinoma in situ (DCIS) xenografts with a volume of only 0.79 mm3 showed a high correlation between replicates (r2 = 0.992) with a median %CV of 16.9%. Importantly, this small volume is already compatible with tissue micro array (TMA) cores and core needle biopsies, while our results and its ease-of-use indicate that further downsizing is feasible. Finally, our FFPE workflow does not require costly equipment and can be established in every standard clinical laboratory.
Collapse
|
326
|
van Linde ME, Labots M, Brahm CG, Hovinga KE, De Witt Hamer PC, Honeywell RJ, de Goeij-de Haas R, Henneman AA, Knol JC, Peters GJ, Dekker H, Piersma SR, Pham TV, Vandertop WP, Jiménez CR, Verheul HM. Tumor Drug Concentration and Phosphoproteomic Profiles After Two Weeks of Treatment With Sunitinib in Patients with Newly Diagnosed Glioblastoma. Clin Cancer Res 2022; 28:1595-1602. [PMID: 35165100 PMCID: PMC9365363 DOI: 10.1158/1078-0432.ccr-21-1933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/14/2021] [Accepted: 02/09/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Tyrosine kinase inhibitors (TKI) have poor efficacy in patients with glioblastoma (GBM). Here, we studied whether this is predominantly due to restricted blood-brain barrier penetration or more to biological characteristics of GBM. PATIENTS AND METHODS Tumor drug concentrations of the TKI sunitinib after 2 weeks of preoperative treatment was determined in 5 patients with GBM and compared with its in vitro inhibitory concentration (IC50) in GBM cell lines. In addition, phosphotyrosine (pTyr)-directed mass spectrometry (MS)-based proteomics was performed to evaluate sunitinib-treated versus control GBM tumors. RESULTS The median tumor sunitinib concentration of 1.9 μmol/L (range 1.0-3.4) was 10-fold higher than in concurrent plasma, but three times lower than sunitinib IC50s in GBM cell lines (median 5.4 μmol/L, 3.0-8.5; P = 0.01). pTyr-phosphoproteomic profiles of tumor samples from 4 sunitinib-treated versus 7 control patients revealed 108 significantly up- and 23 downregulated (P < 0.05) phosphopeptides for sunitinib treatment, resulting in an EGFR-centered signaling network. Outlier analysis of kinase activities as a potential strategy to identify drug targets in individual tumors identified nine kinases, including MAPK10 and INSR/IGF1R. CONCLUSIONS Achieved tumor sunitinib concentrations in patients with GBM are higher than in plasma, but lower than reported for other tumor types and insufficient to significantly inhibit tumor cell growth in vitro. Therefore, alternative TKI dosing to increase intratumoral sunitinib concentrations might improve clinical benefit for patients with GBM. In parallel, a complex profile of kinase activity in GBM was found, supporting the potential of (phospho)proteomic analysis for the identification of targets for (combination) treatment.
Collapse
Affiliation(s)
- Myra E. van Linde
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Cyrillo G. Brahm
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Koos E. Hovinga
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Philip C. De Witt Hamer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Richard J. Honeywell
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Pharmacy, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alex A. Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jaco C. Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Henk Dekker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - William P. Vandertop
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Connie R. Jiménez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henk M.W. Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Medical Oncology, Radboud UMC, Nijmegen, the Netherlands
| |
Collapse
|
327
|
Nielsen M, Ternette N, Barra C. The interdependence of machine learning and LC-MS approaches for an unbiased understanding of the cellular immunopeptidome. Expert Rev Proteomics 2022; 19:77-88. [PMID: 35390265 DOI: 10.1080/14789450.2022.2064278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The comprehensive collection of peptides presented by Major Histocompatibility Complex (MHC) molecules on the cell surface is collectively known as the immunopeptidome. The analysis and interpretation of such data sets holds great promise for furthering our understanding of basic immunology and adaptive immune activation and regulation, and for direct rational discovery of T cell antigens and the design of T-cell based therapeutics and vaccines. These applications are however challenged by the complex nature of immunopeptidome data. AREAS COVERED Here, we describe the benefits and shortcomings of applying liquid chromatography-tandem mass spectrometry (MS) to obtain large scale immunopeptidome data sets and illustrate how the accurate analysis and optimal interpretation of such data is reliant on the availability of refined and highly optimized machine learning approaches. EXPERT OPINION Further we demonstrate how the accuracy of immunoinformatics prediction methods within the field of MHC antigen presentation has benefited greatly from the availability of MS-immunopeptidomics data, and exemplify how optimal antigen discovery is best performed in a synergistic combination of MS experiments and such in silico models trained on large scale immunopeptidomics data.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Carolina Barra
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
328
|
Gonzales GB, Njunge JM, Gichuki BM, Wen B, Ngari M, Potani I, Thitiri J, Laukens D, Voskuijl W, Bandsma R, Vanmassenhove J, Berkley JA. The role of albumin and the extracellular matrix on the pathophysiology of oedema formation in severe malnutrition. EBioMedicine 2022; 79:103991. [PMID: 35398787 PMCID: PMC9014367 DOI: 10.1016/j.ebiom.2022.103991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND While fluid flows in a steady state from plasma, through interstitium, and into the lymph compartment, altered fluid distribution and oedema can result from abnormal Starling's forces, increased endothelial permeability or impaired lymphatic drainage. The mechanism of oedema formation, especially the primary role of hypoalbuminaemia, remains controversial. Here, we explored the roles of albumin and albumin-independent mechanisms in oedema formation among children with severe malnutrition (SM). METHODS We performed secondary analysis of data obtained from two independent clinical trials in Malawi and Kenya (NCT02246296 and NCT00934492). We then used an unconventional strategy of comparing children with kwashiorkor and marasmus by matching (discovery cohort, n = 144) and normalising (validation cohort, n = 98, 2 time points) for serum albumin. Untargeted proteomics was used in the discovery cohort to determine plausible albumin-independent mechanisms associated with oedema, which was validated using enzyme-linked immunosorbent assay and multiplex assays in the validation cohort. FINDINGS We demonstrated that low serum albumin is necessary but not sufficient to develop oedema in SM. We further found that markers of extracellular matrix (ECM) degradation rather than markers of EG degradation distinguished oedematous and non-oedematous children with SM. INTERPRETATION Our results show that oedema formation has both albumin-dependent and independent mechanisms. ECM integrity appears to have a greater role in oedema formation than EG shedding in SM. FUNDING Research Foundation Flanders (FWO), Thrasher Foundation (15122 and 9403), VLIR-UOS-Ghent University Global Minds Fund, Bill & Melinda Gates Foundation (OPP1131320), MRC/DfID/Wellcome Trust Global Health Trials Scheme (MR/M007367/1), Canadian Institutes of Health Research (156307), Wellcome Trust (WT083579MA).
Collapse
Affiliation(s)
- Gerard Bryan Gonzales
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherland,Department of Internal Medicine and Paediatrics, Laboratory of Gastroenterology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium,VIB-UGent Center for Inflammation Research, Ghent, Belgium,Corresponding author at: Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherland.
| | - James M. Njunge
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya,KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya,Corresponding author at: The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya.
| | - Bonface M Gichuki
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya,KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Bijun Wen
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Moses Ngari
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya,KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Isabel Potani
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya,Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada,Kamuzu University of Health Sciences (Former College of Medicine), Blantyre, Malawi
| | - Johnstone Thitiri
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya,KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Debby Laukens
- Department of Internal Medicine and Paediatrics, Laboratory of Gastroenterology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium,VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Wieger Voskuijl
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya,Kamuzu University of Health Sciences (Former College of Medicine), Blantyre, Malawi,Amsterdam Centre for Global Child Health, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, the Netherland,Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centres, Amsterdam, the Netherland
| | - Robert Bandsma
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya,Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada,Kamuzu University of Health Sciences (Former College of Medicine), Blantyre, Malawi
| | - Jill Vanmassenhove
- Department of Internal Medicine and Paediatrics, Renal Division, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - James A Berkley
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya,KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya,Nuffield Department of Medicine, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
329
|
Proteomic profiling of postmortem prefrontal cortex tissue of suicide completers. Transl Psychiatry 2022; 12:142. [PMID: 35383147 PMCID: PMC8983647 DOI: 10.1038/s41398-022-01896-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Suicide is a leading cause of death worldwide, presenting a serious public health problem. We aimed to investigate the biological basis of suicide completion using proteomics on postmortem brain tissue. Thirty-six postmortem brain samples (23 suicide completers and 13 controls) were collected. We evaluated the proteomic profile in the prefrontal cortex (Broadmann area 9, 10) using tandem mass tag-based quantification with liquid chromatography-tandem mass spectrometry. Bioinformatics tools were used to elucidate the biological mechanisms related to suicide. Subgroup analysis was conducted to identify common differentially expressed proteins among clinically different groups. Of 9801 proteins identified, 295 were differentially expressed between groups. Suicide completion samples were mostly enriched in the endocannabinoid and apoptotic pathways (CAPNS1, CSNK2B, PTP4A2). Among the differentially expressed proteins, GSTT1 was identified as a potential biomarker among suicide completers with psychiatric disorders. Our findings suggest that the previously under-recognized endocannabinoid system and apoptotic processes are highly involved in suicide.
Collapse
|
330
|
Zananiri R, Mangapuram Venkata S, Gaydar V, Yahalom D, Malik O, Rudnizky S, Kleifeld O, Kaplan A, Henn A. Auxiliary ATP binding sites support DNA unwinding by RecBCD. Nat Commun 2022; 13:1806. [PMID: 35379800 PMCID: PMC8980037 DOI: 10.1038/s41467-022-29387-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/13/2022] [Indexed: 12/22/2022] Open
Abstract
The RecBCD helicase initiates double-stranded break repair in bacteria by processively unwinding DNA with a rate approaching ∼1,600 bp·s−1, but the mechanism enabling such a fast rate is unknown. Employing a wide range of methodologies — including equilibrium and time-resolved binding experiments, ensemble and single-molecule unwinding assays, and crosslinking followed by mass spectrometry — we reveal the existence of auxiliary binding sites in the RecC subunit, where ATP binds with lower affinity and distinct chemical interactions as compared to the known catalytic sites. The essentiality and functionality of these sites are demonstrated by their impact on the survival of E.coli after exposure to damage-inducing radiation. We propose a model by which RecBCD achieves its optimized unwinding rate, even when ATP is scarce, by using the auxiliary binding sites to increase the flux of ATP to its catalytic sites. RecBCD is a remarkably fast DNA helicase. Using a battery of biophysical methods, Zananiri et. al reveal additional, non-catalytic ATP binding sites that increase the ATP flux to the catalytic sites that allows fast unwinding when ATP is scarce.
Collapse
|
331
|
Vanuopadath M, Raveendran D, Nair BG, Nair SS. Venomics and antivenomics of Indian spectacled cobra (Naja naja) from the Western Ghats. Acta Trop 2022; 228:106324. [PMID: 35093326 DOI: 10.1016/j.actatropica.2022.106324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/03/2023]
Abstract
Venom proteome profiling of Naja naja from the Western Ghats region in Kerala was achieved through SDS-PAGE and RP-HPLC followed by Q-TOF LC-MS/MS analysis, incorporating PEAKS and Novor assisted de novo sequencing methodologies. A total of 115 proteins distributed across 17 different enzymatic and non-enzymatic venom protein families were identified through conventional and 39 peptides through homology-driven proteomics approaches. Fourteen peptides derived through de novo complements the Mascot data indicating the importance of homology-driven approaches in improving protein sequence information. Among the protein families identified, glutathione peroxidase and endonuclease were reported for the first time in the Indian cobra venom. Immunological cross-reactivity assessed using Indian polyvalent antivenoms suggested that VINS showed better EC50 (2.48 µg/mL) value than that of PSAV (6.04 µg/mL) and Virchow (6.03 µg/mL) antivenoms. Western blotting experiments indicated that all the antivenoms elicited poor binding specificities, especially towards low molecular mass proteins. Second-generation antivenomics studies revealed that VINS antivenom was less efficient to detect many low molecular mass proteins such as three-finger toxins and Kunitz-type serine protease Inhibitors. Taken together, the present study enabled a large-scale characterization of the venom proteome of Naja naja from the Western Ghats and emphasized the need for developing more efficient antivenoms.
Collapse
Affiliation(s)
| | - Dileepkumar Raveendran
- Indriyam Biologics Pvt. Ltd., SCTIMST-TIMed, BMT Wing-Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | | | | |
Collapse
|
332
|
Comparative Proteomic Profiling of Ectosomes Derived from Thyroid Carcinoma and Normal Thyroid Cells Uncovers Multiple Proteins with Functional Implications in Cancer. Cells 2022; 11:cells11071184. [PMID: 35406748 PMCID: PMC8997476 DOI: 10.3390/cells11071184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Proteins carried by tumor-derived ectosomes play an important role in cancer progression, and are considered promising diagnostic markers. In the present study, a shotgun nanoLC–MS/MS proteomic approach was applied to profile and compare the protein content of ectosomes released in vitro by normal human thyroid follicular epithelial Nthy-ori 3-1 cells and human anaplastic thyroid carcinoma (TC) 8305C cells. Additionally, the pro-migratory and pro-proliferative effects of Nthy-ori 3-1- and 8305C-derived ectosomes exerted on the recipient cells were assessed in wound closure and Alamar Blue assays. A total of 919 proteins were identified in all replicates of 8305C-derived ectosomes, while Nthy-ori 3-1-derived ectosomes contained a significantly lower number of 420 identified proteins. Qualitative analysis revealed 568 proteins present uniquely in 8305C-derived ectosomes, suggesting their applicability in TC diagnosis and management. In addition, 8305C-derived ectosomes were able to increase the proliferation and motility rates of the recipient cells, likely due to the ectosomal transfer of the identified cancer-promoting molecules. Our description of ectosome protein content and its related functions provides the first insight into the role of ectosomes in TC development and progression. The results also indicate the applicability of some of these ectosomal proteins for further investigation regarding their potential as circulating TC biomarkers.
Collapse
|
333
|
A Single Bout of Ultra-Endurance Exercise Reveals Early Signs of Muscle Aging in Master Athletes. Int J Mol Sci 2022; 23:ijms23073713. [PMID: 35409073 PMCID: PMC8998696 DOI: 10.3390/ijms23073713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Middle-aged and master endurance athletes exhibit similar physical performance and long-term muscle adaptation to aerobic exercise. Nevertheless, we hypothesized that the short-term plasticity of the skeletal muscle might be distinctly altered for master athletes when they are challenged by a single bout of prolonged moderate-intensity exercise. Six middle-aged (37Y) and five older (50Y) master highly-trained athletes performed a 24-h treadmill run (24TR). Vastus lateralis muscle biopsies were collected before and after the run and assessed for proteomics, fiber morphometry, intramyocellular lipid droplets (LD), mitochondrial oxidative activity, extracellular matrix (ECM), and micro-vascularisation. Before 24TR, muscle fiber type morphometry, intramyocellular LD, oxidative activity, ECM and micro-vascularisation were similar between master and middle-aged runners. For 37Y runners, 24TR was associated with ECM thickening, increased capillary-to-fiber interface, and an 89% depletion of LD in type-I fibers. In contrast, for 50Y runners, 24TR did not alter ECM and capillarization and poorly depleted LDs. Moreover, an impaired succinate dehydrogenase activity and functional class scoring of proteomes suggested reduced oxidative phosphorylation post-24TR exclusively in 50Y muscle. Collectively, our data support that middle-aged and master endurance athletes exhibit distinct transient plasticity in response to a single bout of ultra-endurance exercise, which may constitute early signs of muscle aging for master athletes.
Collapse
|
334
|
Simionato G, Rabe A, Gallego-Murillo JS, van der Zwaan C, Hoogendijk AJ, van den Biggelaar M, Minetti G, Bogdanova A, Mairbäurl H, Wagner C, Kaestner L, van den Akker E. In Vitro Erythropoiesis at Different pO 2 Induces Adaptations That Are Independent of Prior Systemic Exposure to Hypoxia. Cells 2022; 11:cells11071082. [PMID: 35406648 PMCID: PMC8997720 DOI: 10.3390/cells11071082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is associated with increased erythropoietin (EPO) release to drive erythropoiesis. At high altitude, EPO levels first increase and then decrease, although erythropoiesis remains elevated at a stable level. The roles of hypoxia and related EPO adjustments are not fully understood, which has contributed to the formulation of the theory of neocytolysis. We aimed to evaluate the role of oxygen exclusively on erythropoiesis, comparing in vitro erythroid differentiation performed at atmospheric oxygen, a lower oxygen concentration (three percent oxygen) and with cultures of erythroid precursors isolated from peripheral blood after a 19-day sojourn at high altitude (3450 m). Results highlight an accelerated erythroid maturation at low oxygen and more concave morphology of reticulocytes. No differences in deformability were observed in the formed reticulocytes in the tested conditions. Moreover, hematopoietic stem and progenitor cells isolated from blood affected by hypoxia at high altitude did not result in different erythroid development, suggesting no retention of a high-altitude signature but rather an immediate adaptation to oxygen concentration. This adaptation was observed during in vitro erythropoiesis at three percent oxygen by a significantly increased glycolytic metabolic profile. These hypoxia-induced effects on in vitro erythropoiesis fail to provide an intrinsic explanation of the concept of neocytolysis.
Collapse
Affiliation(s)
- Greta Simionato
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
- Department of Experimental Surgery, Campus University Hospital, Building 65, Saarland University, 66421 Homburg, Germany
- Correspondence: (G.S.); (E.v.d.A.)
| | - Antonia Rabe
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
| | - Joan Sebastián Gallego-Murillo
- Sanquin Research, Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Carmen van der Zwaan
- Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.v.d.Z.); (A.J.H.); (M.v.d.B.)
| | - Arie Johan Hoogendijk
- Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.v.d.Z.); (A.J.H.); (M.v.d.B.)
| | - Maartje van den Biggelaar
- Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.v.d.Z.); (A.J.H.); (M.v.d.B.)
| | - Giampaolo Minetti
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratories of Biochemistry, University of Pavia, I-27100 Pavia, Italy;
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Heimo Mairbäurl
- University Hospital Heidelberg, Medical Clinic VII, Sports Medicine, 69120 Heidelberg, Germany;
- Translational Lung Research Centre Heidelberg (TLRC), Part of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany
- Translational Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christian Wagner
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Lars Kaestner
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
- Theoretical Medicine and Biosciences, Campus University Hospital, Building 61.4, Saarland University, 66421 Homburg, Germany
| | - Emile van den Akker
- Sanquin Research, Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
- Correspondence: (G.S.); (E.v.d.A.)
| |
Collapse
|
335
|
Battle S, Gogonea V, Willard B, Wang Z, Fu X, Huang Y, Graham LM, Cameron SJ, DiDonato JA, Crabb JW, Hazen SL. The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta. J Biol Chem 2022; 298:101832. [PMID: 35304099 PMCID: PMC9010765 DOI: 10.1016/j.jbc.2022.101832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an equilibrium mixture of cyanate (CNO−) and the reactive electrophile isocyanate. The second pathway involves myeloperoxidase (MPO)-catalyzed oxidation of thiocyanate (SCN−), yielding CNO− and isocyanate. Apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoprotein (HDL), is a known target for MPO-catalyzed modification in vivo, converting the cardioprotective lipoprotein into a proatherogenic and proapoptotic one. We hypothesized that monitoring site-specific carbamylation patterns of apoA-I recovered from human atherosclerotic aorta could provide insights into the chemical environment within the artery wall. To test this, we first mapped carbamyllysine obtained from in vitro carbamylation of apoA-I by both the urea-driven (nonenzymatic) and inflammatory-driven (enzymatic) pathways in lipid-poor and lipidated apoA-I (reconstituted HDL). Our results suggest that lysine residues within proximity of the known MPO-binding sites on HDL are preferentially targeted by the enzymatic (MPO) carbamylation pathway, whereas the nonenzymatic pathway leads to nearly uniform distribution of carbamylated lysine residues along the apoA-I polypeptide chain. Quantitative proteomic analyses of apoA-I from human aortic atheroma identified 16 of the 21 lysine residues as carbamylated and suggested that the majority of apoA-I carbamylation in vivo occurs on “lipid-poor” apoA-I forms via the nonenzymatic CNO− pathway. Monitoring patterns of apoA-I carbamylation recovered from arterial tissues can provide insights into both apoA-I structure and the chemical environment within human atheroma.
Collapse
Affiliation(s)
- Shawna Battle
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Belinda Willard
- Proteomics Shared Laboratory Resource, Cleveland Clinic, Cleveland, OH
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Ying Huang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Linda M Graham
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Scott J Cameron
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH; Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - John W Crabb
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Department of Chemistry, Cleveland State University, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
336
|
Hobohm L, Koudelka T, Bahr FH, Truberg J, Kapell S, Schacht SS, Meisinger D, Mengel M, Jochimsen A, Hofmann A, Heintz L, Tholey A, Voss M. N-terminome analyses underscore the prevalence of SPPL3-mediated intramembrane proteolysis among Golgi-resident enzymes and its role in Golgi enzyme secretion. Cell Mol Life Sci 2022; 79:185. [PMID: 35279766 PMCID: PMC8918473 DOI: 10.1007/s00018-022-04163-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 12/17/2022]
Abstract
Golgi membrane proteins such as glycosyltransferases and other glycan-modifying enzymes are key to glycosylation of proteins and lipids. Secretion of soluble Golgi enzymes that are released from their membrane anchor by endoprotease activity is a wide-spread yet largely unexplored phenomenon. The intramembrane protease SPPL3 can specifically cleave select Golgi enzymes, enabling their secretion and concomitantly altering global cellular glycosylation, yet the entire range of Golgi enzymes cleaved by SPPL3 under physiological conditions remains to be defined. Here, we established isogenic SPPL3-deficient HEK293 and HeLa cell lines and applied N-terminomics to identify substrates cleaved by SPPL3 and released into cell culture supernatants. With high confidence, our study identifies more than 20 substrates of SPPL3, including entirely novel substrates. Notably, our N-terminome analyses provide a comprehensive list of SPPL3 cleavage sites demonstrating that SPPL3-mediated shedding of Golgi enzymes occurs through intramembrane proteolysis. Through the use of chimeric glycosyltransferase constructs we show that transmembrane domains can determine cleavage by SPPL3. Using our cleavage site data, we surveyed public proteome data and found that SPPL3 cleavage products are present in human blood. We also generated HEK293 knock-in cells expressing the active site mutant D271A from the endogenous SPPL3 locus. Immunoblot analyses revealed that secretion of select novel substrates such as the key mucin-type O-glycosylation enzyme GALNT2 is dependent on endogenous SPPL3 protease activity. In sum, our study expands the spectrum of known physiological substrates of SPPL3 corroborating its significant role in Golgi enzyme turnover and secretion as well as in the regulation of global glycosylation pathways.
Collapse
Affiliation(s)
- Laura Hobohm
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Tomas Koudelka
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Fenja H Bahr
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Jule Truberg
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Sebastian Kapell
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Sarah-Sophie Schacht
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
- Institute of Immunology, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Daniel Meisinger
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Marion Mengel
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Alexander Jochimsen
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Anna Hofmann
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Lukas Heintz
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
- Institute for Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany.
| |
Collapse
|
337
|
Cho NH, Cheveralls KC, Brunner AD, Kim K, Michaelis AC, Raghavan P, Kobayashi H, Savy L, Li JY, Canaj H, Kim JY, Stewart EM, Gnann C, McCarthy F, Cabrera JP, Brunetti RM, Chhun BB, Dingle G, Hein MY, Huang B, Mehta SB, Weissman JS, Gómez-Sjöberg R, Itzhak DN, Royer LA, Mann M, Leonetti MD. OpenCell: Endogenous tagging for the cartography of human cellular organization. Science 2022; 375:eabi6983. [PMID: 35271311 PMCID: PMC9119736 DOI: 10.1126/science.abi6983] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elucidating the wiring diagram of the human cell is a central goal of the postgenomic era. We combined genome engineering, confocal live-cell imaging, mass spectrometry, and data science to systematically map the localization and interactions of human proteins. Our approach provides a data-driven description of the molecular and spatial networks that organize the proteome. Unsupervised clustering of these networks delineates functional communities that facilitate biological discovery. We found that remarkably precise functional information can be derived from protein localization patterns, which often contain enough information to identify molecular interactions, and that RNA binding proteins form a specific subgroup defined by unique interaction and localization properties. Paired with a fully interactive website (opencell.czbiohub.org), our work constitutes a resource for the quantitative cartography of human cellular organization.
Collapse
Affiliation(s)
| | | | - Andreas-David Brunner
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kibeom Kim
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - André C. Michaelis
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Laura Savy
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jason Y. Li
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Hera Canaj
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | - Christian Gnann
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Rachel M. Brunetti
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | | | - Greg Dingle
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | | | - Bo Huang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | | | - Jonathan S. Weissman
- Whitehead Institute, Koch Institute, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | | | | | | | - Matthias Mann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
338
|
Mealer RG, Williams SE, Noel M, Yang B, D’Souza AK, Nakata T, Graham DB, Creasey EA, Cetinbas M, Sadreyev RI, Scolnick EM, Woo CM, Smoller JW, Xavier RJ, Cummings RD. The schizophrenia-associated variant in SLC39A8 alters protein glycosylation in the mouse brain. Mol Psychiatry 2022; 27:1405-1415. [PMID: 35260802 PMCID: PMC9106890 DOI: 10.1038/s41380-022-01490-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 01/13/2023]
Abstract
A missense mutation (A391T) in SLC39A8 is strongly associated with schizophrenia in genomic studies, though the molecular connection to the brain is unknown. Human carriers of A391T have reduced serum manganese, altered plasma glycosylation, and brain MRI changes consistent with altered metal transport. Here, using a knock-in mouse model homozygous for A391T, we show that the schizophrenia-associated variant changes protein glycosylation in the brain. Glycosylation of Asn residues in glycoproteins (N-glycosylation) was most significantly impaired, with effects differing between regions. RNAseq analysis showed negligible regional variation, consistent with changes in the activity of glycosylation enzymes rather than gene expression. Finally, nearly one-third of detected glycoproteins were differentially N-glycosylated in the cortex, including members of several pathways previously implicated in schizophrenia, such as cell adhesion molecules and neurotransmitter receptors that are expressed across all cell types. These findings provide a mechanistic link between a risk allele and potentially reversible biochemical changes in the brain, furthering our molecular understanding of the pathophysiology of schizophrenia and a novel opportunity for therapeutic development.
Collapse
Affiliation(s)
- Robert G. Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital. Harvard Medical School, Boston, MA.,National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA.,Corresponding Author: Robert Gene Mealer, M.D., Ph.D., Richard B. Simches Research Center, 185 Cambridge St, 6th Floor, Boston, MA 02114,
| | - Sarah E. Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Maxence Noel
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Bo Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | | | - Toru Nakata
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel B. Graham
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth A. Creasey
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Edward M. Scolnick
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital. Harvard Medical School, Boston, MA.,The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard D. Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
339
|
|
340
|
Stamboulian M, Canderan J, Ye Y. Metaproteomics as a tool for studying the protein landscape of human-gut bacterial species. PLoS Comput Biol 2022; 18:e1009397. [PMID: 35302987 PMCID: PMC8967034 DOI: 10.1371/journal.pcbi.1009397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/30/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Host-microbiome interactions and the microbial community have broad impact in human health and diseases. Most microbiome based studies are performed at the genome level based on next-generation sequencing techniques, but metaproteomics is emerging as a powerful technique to study microbiome functional activity by characterizing the complex and dynamic composition of microbial proteins. We conducted a large-scale survey of human gut microbiome metaproteomic data to identify generalist species that are ubiquitously expressed across all samples and specialists that are highly expressed in a small subset of samples associated with a certain phenotype. We were able to utilize the metaproteomic mass spectrometry data to reveal the protein landscapes of these species, which enables the characterization of the expression levels of proteins of different functions and underlying regulatory mechanisms, such as operons. Finally, we were able to recover a large number of open reading frames (ORFs) with spectral support, which were missed by de novo protein-coding gene predictors. We showed that a majority of the rescued ORFs overlapped with de novo predicted protein-coding genes, but on opposite strands or in different frames. Together, these demonstrate applications of metaproteomics for the characterization of important gut bacterial species. Many reference genomes for studying human gut microbiome are available, but knowledge about how microbial organisms work is limited. Identification of proteins at individual species or community level provides direct insight into the functionality of microbial organisms. By analyzing more than a thousand metaproteomics datasets, we examined protein landscapes of more than two thousands of microbial species that may be important to human health and diseases. This work demonstrated new applications of metaproteomic datasets for studying individual genomes. We made the analysis results available through a website (called GutBac), which we believe will become a resource for studying microbial species important for human health and diseases.
Collapse
Affiliation(s)
- Moses Stamboulian
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
| | - Jamie Canderan
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
| | - Yuzhen Ye
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
341
|
Kaulich PT, Cassidy L, Winkels K, Tholey A. Improved Identification of Proteoforms in Top-Down Proteomics Using FAIMS with Internal CV Stepping. Anal Chem 2022; 94:3600-3607. [PMID: 35172570 DOI: 10.1021/acs.analchem.1c05123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In top-down (TD) proteomics, prefractionation prior to mass spectrometric (MS) analysis is a crucial step for both the high confidence identification of proteoforms and increased proteome coverage. In addition to liquid-phase separations, gas-phase fractionation strategies such as field asymmetric ion mobility spectrometry (FAIMS) have been shown to be highly beneficial in TD proteomics. However, so far, only external compensation voltage (CV) stepping has been demonstrated for TD proteomics, i.e., single CVs were applied for each run. Here, we investigated the use of internal CV stepping (multiple CVs per acquisition) for single-shot TD analysis, which has huge advantages in terms of measurement time and the amount of sample required. In addition, MS parameters were optimized for the individual CVs since different CVs target certain mass ranges. For example, small proteoforms identified mainly with more negative CVs can be identified with lower resolution and number of microscans than larger proteins identified primarily via less negative CVs. We investigated the optimal combination and number of CVs for different gradient lengths and validated the optimized settings with the low-molecular-weight proteome of CaCo-2 cells obtained using a range of different sample preparation techniques. Compared to measurements without FAIMS, both the number of identified protein groups (+60-94%) and proteoforms (+46-127%) and their confidence were significantly increased, while the measurement time remained identical. In total, we identified 684 protein groups and 2675 proteoforms from CaCo-2 cells in less than 24 h using the optimized multi-CV method.
Collapse
Affiliation(s)
- Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Konrad Winkels
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
342
|
Millan C, Prause L, Vallmajo‐Martin Q, Hensky N, Eberli D. Extracellular Vesicles from 3D Engineered Microtissues Harbor Disease-Related Cargo Absent in EVs from 2D Cultures. Adv Healthc Mater 2022; 11:e2002067. [PMID: 33890421 DOI: 10.1002/adhm.202002067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Engineered microtissues that recapitulate key properties of the tumor microenvironment can induce clinically relevant cancer phenotypes in vitro. However, their effect on molecular cargo of secreted extracellular vesicles (EVs) has not yet been investigated. Here, the impact of hydrogel-based 3D engineered microtissues on EVs secreted by benign and malignant prostate cells is assessed. Compared to 2D cultures, yield of EVs per cell is significantly increased for cancer cells cultured in 3D. Whole transcriptome sequencing and proteomics of 2D-EV and 3D-EV samples reveal stark contrasts in molecular cargo. For one cell type in particular, LNCaP, enrichment is observed exclusively in 3D-EVs of GDF15, FASN, and TOP1, known drivers of prostate cancer progression. Using imaging flow cytometry in a novel approach to validate a putative EV biomarker, colocalization in single EVs of GDF15 with CD9, a universal EV marker, is demonstrated. Finally, in functional assays it is observed that only 3D-EVs, unlike 2D-EVs, confer increased invasiveness and chemoresistance to cells in 2D. Collectively, this study highlights the value of engineered 3D microtissue cultures for the study of bona fide EV cargoes and their potential to identify biomarkers that are not detectable in EVs secreted by cells cultured in standard 2D conditions.
Collapse
Affiliation(s)
- Christopher Millan
- Laboratory for Urologic Oncology and Stem Cell Therapy University Hospital Zürich Wagistr. 21 Schlieren 8952 Switzerland
- CellSpring AG Breitensteinstr. 31 Zürich 8037 Switzerland
| | - Lukas Prause
- Laboratory for Urologic Oncology and Stem Cell Therapy University Hospital Zürich Wagistr. 21 Schlieren 8952 Switzerland
- Kantonsspital Aarau Urologie, Tellstr. 25 Aarau 5001 Switzerland
| | | | - Natalie Hensky
- Laboratory for Urologic Oncology and Stem Cell Therapy University Hospital Zürich Wagistr. 21 Schlieren 8952 Switzerland
| | - Daniel Eberli
- Laboratory for Urologic Oncology and Stem Cell Therapy University Hospital Zürich Wagistr. 21 Schlieren 8952 Switzerland
| |
Collapse
|
343
|
Davies AK, Alecu JE, Ziegler M, Vasilopoulou CG, Merciai F, Jumo H, Afshar-Saber W, Sahin M, Ebrahimi-Fakhari D, Borner GHH. AP-4-mediated axonal transport controls endocannabinoid production in neurons. Nat Commun 2022; 13:1058. [PMID: 35217685 PMCID: PMC8881493 DOI: 10.1038/s41467-022-28609-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/08/2022] [Indexed: 01/20/2023] Open
Abstract
The adaptor protein complex AP-4 mediates anterograde axonal transport and is essential for axon health. AP-4-deficient patients suffer from a severe neurodevelopmental and neurodegenerative disorder. Here we identify DAGLB (diacylglycerol lipase-beta), a key enzyme for generation of the endocannabinoid 2-AG (2-arachidonoylglycerol), as a cargo of AP-4 vesicles. During normal development, DAGLB is targeted to the axon, where 2-AG signalling drives axonal growth. We show that DAGLB accumulates at the trans-Golgi network of AP-4-deficient cells, that axonal DAGLB levels are reduced in neurons from a patient with AP-4 deficiency, and that 2-AG levels are reduced in the brains of AP-4 knockout mice. Importantly, we demonstrate that neurite growth defects of AP-4-deficient neurons are rescued by inhibition of MGLL (monoacylglycerol lipase), the enzyme responsible for 2-AG hydrolysis. Our study supports a new model for AP-4 deficiency syndrome in which axon growth defects arise through spatial dysregulation of endocannabinoid signalling. Davies et al. identify a putative mechanism underlying the childhood neurological disorder AP-4 deficiency syndrome. In the absence of AP-4, an enzyme that makes 2-AG is not transported to the axon, leading to axonal growth defects, which can be rescued by inhibition of 2-AG breakdown.
Collapse
Affiliation(s)
- Alexandra K Davies
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| | - Julian E Alecu
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marvin Ziegler
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, Heidelberg, 69120, Germany
| | - Catherine G Vasilopoulou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Fabrizio Merciai
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.,Department of Pharmacy and PhD Program in Drug Discovery and Development, University of Salerno, 84084, Fisciano, SA, Italy
| | - Hellen Jumo
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wardiya Afshar-Saber
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
344
|
Cibichakravarthy B, Oses-Prieto JA, Ben-Yosef M, Burlingame AL, Karr TL, Gottlieb Y. Comparative Proteomics of Coxiella like Endosymbionts (CLEs) in the Symbiotic Organs of Rhipicephalus sanguineus Ticks. Microbiol Spectr 2022; 10:e0167321. [PMID: 35019702 PMCID: PMC8754119 DOI: 10.1128/spectrum.01673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/07/2021] [Indexed: 12/31/2022] Open
Abstract
Maternally transmitted obligatory endosymbionts are found in the female gonads as well as in somatic tissue and are expected to provide missing metabolite to their hosts. These deficiencies are presumably complemented through specific symbiotic microorganisms such as Coxiella-like endosymbionts (CLEs) of Rhipicephalus ticks. CLEs are localized in specialized host tissue cells within the Malpighian tubules (Mt) and the ovaries (Ov) from which they are maternally transmitted to developing oocytes. These two organs differ in function and cell types, but the role of CLEs in these tissues is unknown. To probe possible functions of CLEs, comparative proteomics was performed between Mt and Ov of R. sanguineus ticks. Altogether, a total of 580 and 614 CLE proteins were identified in Mt and Ov, respectively. Of these, 276 CLE proteins were more abundant in Mt, of which 12 were significantly differentially abundant. In Ov, 290 CLE proteins were more abundant, of which 16 were significantly differentially abundant. Gene Ontology analysis revealed that most of the proteins enriched in Mt are related to cellular metabolic functions and stress responses, whereas in Ov, the majority were related to cell proliferation suggesting CLEs function differentially and interdependently with host requirements specific to each organ. The results suggest Mt CLEs provide essential nutrients to its host and Ov CLEs promote proliferation and vertical transmission to tick progeny. IMPORTANCE Here we compare the Coxiella-like endosymbionts (CLEs) proteomes from Malpighian tubule (Mt) and the ovaries (Ov) of the brown dog tick Rhipicephalus sanguineus. Our results support the hypothesis that CLEs function interdependently with host requirements in each of the organs. The different functional specificity of CLE in the same host suggest that metabolic capabilities evolved according to the constrains imposed by the specific organ function and requirements. Our findings provide specific CLE protein targets that can be useful for future studies of CLE biology with a focus on tick population control.
Collapse
Affiliation(s)
- Balasubramanian Cibichakravarthy
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Michael Ben-Yosef
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Timothy L. Karr
- The Biodesign Institute, Mass Spectrometry Core Facility, Arizona State University, Tempe, Arizona, USA
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
345
|
Schwäbe FV, Happonen L, Ekestubbe S, Neumann A. Host Defense Peptides LL-37 and Lactoferrin Trigger ET Release from Blood-Derived Circulating Monocytes. Biomedicines 2022; 10:biomedicines10020469. [PMID: 35203676 PMCID: PMC8962388 DOI: 10.3390/biomedicines10020469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Neutrophils are commonly regarded as the first line of immune response during infection or in tissue injury-induced inflammation. The rapid influx of these cells results in the release of host defense proteins (HDPs) or formation of neutrophil extracellular traps (NETs). As a second wave during inflammation or infection, circulating monocytes arrive at the site. Earlier studies showed that HDPs LL-37 and Lactoferrin (LTF) activate monocytes while neutrophil elastase facilitates the formation of extracellular traps (ETs) in monocytes. However, the knowledge about the impact of HDPs on monocytes remains sparse. In the present study, we investigated the effect of LL-37 and LTF on blood-derived CD14+ monocytes. Both HDPs triggered a significant release of TNFα, nucleosomes, and monocyte ETs. Microscopic analysis indicated that ET formation by LL-37 depends on storage-operated calcium entry (SOCE), mitogen-activated protein kinase (MAPK), and ERK1/2, whereas the LTF-mediated ET release is not affected by any of the here used inhibitors. Quantitative proteomics mass spectrometry analysis of the neutrophil granular content (NGC) revealed a high abundance of Lactoferrin. The stimulation of CD14+ monocytes with NGC resulted in a significant secretion of TNFα and nucleosomes, and the formation of monocyte ETs. The findings of this study provide new insight into the complex interaction of HDPs, neutrophils, and monocytes during inflammation.
Collapse
|
346
|
Lee H, Kim SI. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. Int J Mol Sci 2022; 23:ijms23042187. [PMID: 35216306 PMCID: PMC8878692 DOI: 10.3390/ijms23042187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Rapid and precise diagnostic methods are required to control emerging infectious diseases effectively. Human body fluids are attractive clinical samples for discovering diagnostic targets because they reflect the clinical statuses of patients and most of them can be obtained with minimally invasive sampling processes. Body fluids are good reservoirs for infectious parasites, bacteria, and viruses. Therefore, recent clinical proteomics methods have focused on body fluids when aiming to discover human- or pathogen-originated diagnostic markers. Cutting-edge liquid chromatography-mass spectrometry (LC-MS)-based proteomics has been applied in this regard; it is considered one of the most sensitive and specific proteomics approaches. Here, the clinical characteristics of each body fluid, recent tandem mass spectroscopy (MS/MS) data-acquisition methods, and applications of body fluids for proteomics regarding infectious diseases (including the coronavirus disease of 2019 [COVID-19]), are summarized and discussed.
Collapse
Affiliation(s)
- Hayoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Il Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
347
|
Wang JH, Choong WK, Chen CT, Sung TY. Calibr improves spectral library search for spectrum-centric analysis of data independent acquisition proteomics. Sci Rep 2022; 12:2045. [PMID: 35132134 PMCID: PMC8821666 DOI: 10.1038/s41598-022-06026-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Identifying peptides and proteins from mass spectrometry (MS) data, spectral library searching has emerged as a complementary approach to the conventional database searching. However, for the spectrum-centric analysis of data-independent acquisition (DIA) data, spectral library searching has not been widely exploited because existing spectral library search tools are mainly designed and optimized for the analysis of data-dependent acquisition (DDA) data. We present Calibr, a spectral library search tool for spectrum-centric DIA data analysis. Calibr optimizes spectrum preprocessing for pseudo MS2 spectra, generating an 8.11% increase in spectrum–spectrum match (SSM) number and a 7.49% increase in peptide number over the traditional preprocessing approach. When searching against the DDA-based spectral library, Calibr improves SSM number by 17.6–26.65% and peptide number by 18.45–37.31% over two state-of-the-art tools on three different data sets. Searching against the public spectral library from MassIVE, Calibr improves state-of-the-art tools in SSM and peptide numbers by more than 31.49% and 25.24%, respectively, for two data sets. Our analyses indicate higher sensitivity of Calibr results from the use of various spectral similarity measures and statistical scores, coupled with machine learning-based statistical validation for FDR control. Calibr executable files including a graphical user-interface application are available at https://ms.iis.sinica.edu.tw/COmics/Software_CalibrWizard.html and https://sourceforge.net/projects/comics-calibr.
Collapse
|
348
|
Palmblad M, Böcker S, Degroeve S, Kohlbacher O, Käll L, Noble WS, Wilhelm M. Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics. J Proteome Res 2022; 21:1204-1207. [PMID: 35119864 PMCID: PMC8981311 DOI: 10.1021/acs.jproteome.1c00900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Machine
learning is increasingly applied in proteomics and metabolomics
to predict molecular structure, function, and physicochemical properties,
including behavior in chromatography, ion mobility, and tandem mass
spectrometry. These must be described in sufficient detail to apply
or evaluate the performance of trained models. Here we look at and
interpret the recently published and general DOME (Data, Optimization,
Model, Evaluation) recommendations for conducting and reporting on
machine learning in the specific context of proteomics and metabolomics.
Collapse
Affiliation(s)
- Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Sebastian Böcker
- Faculty of Mathematics and Computer Science, Friedrich Schiller University, 07743 Jena, Germany
| | - Sven Degroeve
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium and Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Oliver Kohlbacher
- Eberhard Karls Universität Tübingen, WSI/ZBIT, 72076 Tübingen, Germany
| | - Lukas Käll
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), 171 21 Solna, Sweden
| | - William Stafford Noble
- Department of Genome Sciences and the Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195-5065, United States
| | - Mathias Wilhelm
- Computational Mass Spectrometry, Technical University of Munich (TUM), 85354 Freising, Germany
| |
Collapse
|
349
|
Hajjaji N, Aboulouard S, Cardon T, Bertin D, Robin YM, Fournier I, Salzet M. Path to Clonal Theranostics in Luminal Breast Cancers. Front Oncol 2022; 11:802177. [PMID: 35096604 PMCID: PMC8793283 DOI: 10.3389/fonc.2021.802177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Integrating tumor heterogeneity in the drug discovery process is a key challenge to tackle breast cancer resistance. Identifying protein targets for functionally distinct tumor clones is particularly important to tailor therapy to the heterogeneous tumor subpopulations and achieve clonal theranostics. For this purpose, we performed an unsupervised, label-free, spatially resolved shotgun proteomics guided by MALDI mass spectrometry imaging (MSI) on 124 selected tumor clonal areas from early luminal breast cancers, tumor stroma, and breast cancer metastases. 2868 proteins were identified. The main protein classes found in the clonal proteome dataset were enzymes, cytoskeletal proteins, membrane-traffic, translational or scaffold proteins, or transporters. As a comparison, gene-specific transcriptional regulators, chromatin related proteins or transmembrane signal receptor were more abundant in the TCGA dataset. Moreover, 26 mutated proteins have been identified. Similarly, expanding the search to alternative proteins databases retrieved 126 alternative proteins in the clonal proteome dataset. Most of these alternative proteins were coded mainly from non-coding RNA. To fully understand the molecular information brought by our approach and its relevance to drug target discovery, the clonal proteomic dataset was further compared to the TCGA breast cancer database and two transcriptomic panels, BC360 (nanoString®) and CDx (Foundation One®). We retrieved 139 pathways in the clonal proteome dataset. Only 55% of these pathways were also present in the TCGA dataset, 68% in BC360 and 50% in CDx. Seven of these pathways have been suggested as candidate for drug targeting, 22 have been associated with breast cancer in experimental or clinical reports, the remaining 19 pathways have been understudied in breast cancer. Among the anticancer drugs, 35 drugs matched uniquely with the clonal proteome dataset, with only 7 of them already approved in breast cancer. The number of target and drug interactions with non-anticancer drugs (such as agents targeting the cardiovascular system, metabolism, the musculoskeletal or the nervous systems) was higher in the clonal proteome dataset (540 interactions) compared to TCGA (83 interactions), BC360 (419 interactions), or CDx (172 interactions). Many of the protein targets identified and drugs screened were clinically relevant to breast cancer and are in clinical trials. Thus, we described the non-redundant knowledge brought by this clone-tailored approach compared to TCGA or transcriptomic panels, the targetable proteins identified in the clonal proteome dataset, and the potential of this approach for drug discovery and repurposing through drug interactions with antineoplastic agents and non-anticancer drugs.
Collapse
Affiliation(s)
- Nawale Hajjaji
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Soulaimane Aboulouard
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Delphine Bertin
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Yves-Marie Robin
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Institut universitaire de France, Paris, France
| | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Institut universitaire de France, Paris, France
| |
Collapse
|
350
|
Sethumadhavan S, Barth M, Spaapen RM, Schmidt C, Trowitzsch S, Tampé R. Viral immune evasins impact antigen presentation by allele-specific trapping of MHC I at the peptide-loading complex. Sci Rep 2022; 12:1516. [PMID: 35087068 PMCID: PMC8795405 DOI: 10.1038/s41598-022-05000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides to cytotoxic T cells to eliminate infected or cancerous cells. The transporter associated with antigen processing (TAP) shuttles proteasomally generated peptides into the ER for MHC I loading. As central part of the peptide-loading complex (PLC), TAP is targeted by viral factors, which inhibit peptide supply and thereby impact MHC I-mediated immune responses. However, it is still poorly understood how antigen presentation via different MHC I allotypes is affected by TAP inhibition. Here, we show that conditional expression of herpes simplex viral ICP47 suppresses surface presentation of HLA-A and HLA-C, but not of HLA-B, while the human cytomegaloviral US6 reduces surface levels of all MHC I allotypes. This marked difference in HLA-B antigen presentation is echoed by an enrichment of HLA-B allomorphs at US6-arrested PLC in comparison to ICP47-PLC. Although both viral factors prevent TAP-mediated peptide supply, our data imply that MHC I allomorphs favor different conformationally arrested states of the PLC, leading to differential downregulation of MHC I surface presentation. These findings will help understand MHC I biology in general and will even advance the targeted treatment of infections depending on patients' allotypes.
Collapse
Affiliation(s)
- Sunesh Sethumadhavan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|