301
|
Watanabe N, Kaminuma O, Kitamura N, Hiroi T. Induced Treg Cells Augment the Th17-Mediated Intestinal Inflammatory Response in a CTLA4-Dependent Manner. PLoS One 2016; 11:e0150244. [PMID: 26950218 PMCID: PMC4780716 DOI: 10.1371/journal.pone.0150244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/11/2016] [Indexed: 12/17/2022] Open
Abstract
Th17 cells and Foxp3+ regulatory T cells (Tregs) are thought to promote and suppress inflammatory responses, respectively. However, whether they counteract each other or synergize in regulating immune reactions remains controversial. To determine their interactions, we describe the results of experiments employing mouse models of intestinal inflammation by transferring antigen-specific Th cells (Th1, Th2, and Th17) differentiated in vitro followed by the administration of the cognate antigen via enema. We show that cotransfer of induced Tregs (iTregs) suppressed Th1- and Th2-mediated colon inflammation. In contrast, colon inflammation induced by transfer of Th17 cells, was augmented by the cotransfer of iTregs. Furthermore, oral delivery of antigen potentiated Th17-mediated colon inflammation. Administration of a blocking antibody against cytotoxic T lymphocyte-associated antigen 4 (CTLA4) abrogated the effects of cotransfer of iTregs, while the injection of a soluble recombinant immunoglobulin (Ig) fusion protein, CTLA4-Ig substituted for the cotransfer of iTregs. These results suggest that antigen-specific activation of iTregs in a local environment stimulates the Th17-mediated inflammatory response in a CTLA4-dependent manner.
Collapse
Affiliation(s)
- Nobumasa Watanabe
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Osamu Kaminuma
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriko Kitamura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takachika Hiroi
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail:
| |
Collapse
|
302
|
Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 2016; 16:149-63. [PMID: 26875830 DOI: 10.1038/nri.2015.18] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4(+) T cells differentiate and acquire distinct functions to combat specific pathogens but can also adapt their functions in response to changing circumstances. Although this phenotypic plasticity can be potentially deleterious, driving immune pathology, it also provides important benefits that have led to its evolutionary preservation. Here, we review CD4(+) T cell plasticity by examining the molecular mechanisms that regulate it - from the extracellular cues that initiate and drive cells towards varying phenotypes, to the cytosolic signalling cascades that decipher these cues and transmit them into the cell and to the nucleus, where these signals imprint specific gene expression programmes. By understanding how this functional flexibility is achieved, we may open doors to new therapeutic approaches that harness this property of T cells.
Collapse
|
303
|
Jandl C, King C. Cytokines in the Germinal Center Niche. Antibodies (Basel) 2016; 5:antib5010005. [PMID: 31557986 PMCID: PMC6698856 DOI: 10.3390/antib5010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
Cytokines are small, secreted, glycoproteins that specifically affect the interactions and communications between cells. Cytokines are produced transiently and locally, acting in a paracrine or autocrine manner, and they are extremely potent, ligating high affinity cell surface receptors to elicit changes in gene expression and protein synthesis in the responding cell. Cytokines produced during the differentiation of T follicular helper (Tfh) cells and B cells within the germinal center (GC) niche play an important role in ensuring that the humoral immune response is robust, whilst retaining flexibility, during the generation of affinity matured antibodies. Cytokines produced by B cells, antigen presenting cells and stromal cells are important for the differentiation of Tfh cells and Tfh cell produced cytokines act both in an autocrine fashion to firm Tfh cell differentiation and in a paracrine fashion to support the differentiation of memory B cells and plasma cells. In this review, we discuss the role of cytokines during the GC reaction with a particular focus on the influence of cytokines on Tfh cells.
Collapse
Affiliation(s)
- Christoph Jandl
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| | - Cecile King
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
304
|
Lorenzen E, Follmann F, Bøje S, Erneholm K, Olsen AW, Agerholm JS, Jungersen G, Andersen P. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis. Front Immunol 2015; 6:628. [PMID: 26734002 PMCID: PMC4679855 DOI: 10.3389/fimmu.2015.00628] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general.
Collapse
Affiliation(s)
- Emma Lorenzen
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| | - Sarah Bøje
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Karin Erneholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Weinreich Olsen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| | - Jørgen Steen Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Gregers Jungersen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| |
Collapse
|
305
|
Sun T, Rojas OL, Li C, Philpott DJ, Gommerman JL. Hematopoietic LTβR deficiency results in skewed T cell cytokine profiles during a mucosal viral infection. J Leukoc Biol 2015; 100:103-10. [DOI: 10.1189/jlb.4mab0715-294r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022] Open
|
306
|
Jones GW, Jones SA. Ectopic lymphoid follicles: inducible centres for generating antigen-specific immune responses within tissues. Immunology 2015; 147:141-51. [PMID: 26551738 PMCID: PMC4717241 DOI: 10.1111/imm.12554] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/28/2015] [Accepted: 11/01/2015] [Indexed: 02/06/2023] Open
Abstract
Lymphoid neogenesis is traditionally viewed as a pre‐programmed process that promotes the formation of lymphoid organs during development. Here, the spatial organization of T and B cells in lymph nodes and spleen into discrete structures regulates antigen‐specific responses and adaptive immunity following immune challenge. However, lymphoid neogenesis is also triggered by chronic or persistent inflammation. Here, ectopic (or tertiary) lymphoid organs frequently develop in inflamed tissues as a response to infection, auto‐immunity, transplantation, cancer or environmental irritants. Although these structures affect local immune responses, the contribution of these lymphoid aggregates to the underlining pathology are highly context dependent and can elicit either protective or deleterious outcomes. Here we review the cellular and molecular mechanisms responsible for ectopic lymphoid neogenesis and consider the relevance of these structures in human disease.
Collapse
Affiliation(s)
- Gareth W Jones
- Division of Infection and Immunity, The School of Medicine, Cardiff University, Cardiff, UK
| | - Simon A Jones
- Division of Infection and Immunity, The School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
307
|
Control of Giardiasis by Interleukin-17 in Humans and Mice--Are the Questions All Answered? CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:2-5. [PMID: 26581888 DOI: 10.1128/cvi.00648-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
For years, studies of the immune response to Giardia lamblia infection focused on the production of IgA by infected hosts and antigenic variation by the parasite to escape destruction by this IgA. A new study by Hanevik and colleagues (C. S. Saghaug, S. Sørnes, D. Peirasmaki, S. Svärd, N. Langeland, and K. Hanevik, Clin Vaccine Immunol 23:11-18, 2016, http://dx.doi.org/10.1128/CVI.00419-15) highlights the emerging role of interleukin-17 (IL-17) in immunity to this parasite. Along with recent studies of Giardia infections of animals, this work shows that IL-17 appears to be essential for the control of these infections and to be a key factor linking cellular and humoral immune responses.
Collapse
|
308
|
Kara EE, McKenzie DR, Bastow CR, Gregor CE, Fenix KA, Ogunniyi AD, Paton JC, Mack M, Pombal DR, Seillet C, Dubois B, Liston A, MacDonald KPA, Belz GT, Smyth MJ, Hill GR, Comerford I, McColl SR. CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells. Nat Commun 2015; 6:8644. [PMID: 26511769 PMCID: PMC4639903 DOI: 10.1038/ncomms9644] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022] Open
Abstract
IL-17-producing helper T (Th17) cells are critical for host defense against extracellular pathogens but also drive numerous autoimmune diseases. Th17 cells that differ in their inflammatory potential have been described including IL-10-producing Th17 cells that are weak inducers of inflammation and highly inflammatory, IL-23-driven, GM-CSF/IFNγ-producing Th17 cells. However, their distinct developmental requirements, functions and trafficking mechanisms in vivo remain poorly understood. Here we identify a temporally regulated IL-23-dependent switch from CCR6 to CCR2 usage by developing Th17 cells that is critical for pathogenic Th17 cell-driven inflammation in experimental autoimmune encephalomyelitis (EAE). This switch defines a unique in vivo cell surface signature (CCR6−CCR2+) of GM-CSF/IFNγ-producing Th17 cells in EAE and experimental persistent extracellular bacterial infection, and in humans. Using this signature, we identify an IL-23/IL-1/IFNγ/TNFα/T-bet/Eomesodermin-driven circuit driving GM-CSF/IFNγ-producing Th17 cell formation in vivo. Thus, our data identify a unique cell surface signature, trafficking mechanism and T-cell intrinsic regulators of GM-CSF/IFNγ-producing Th17 cells. Little is known regarding migration of Th17 cells that produce distinct cytokines implicated in protection and pathology. Kara et al. show that a switch from CCR6 to CCR2 by Th17 cells defines a signature (CCR6−CCR2+) of GM-CSF+ Th17 cells and drives pathology in a mouse model of autoimmunity.
Collapse
Affiliation(s)
- Ervin E Kara
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Duncan R McKenzie
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Cameron R Bastow
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Carly E Gregor
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kevin A Fenix
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Abiodun D Ogunniyi
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.,Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - James C Paton
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.,Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg 93042, Germany
| | - Diana R Pombal
- Department of Microbiology and Immunology, VIB and University of Leuven, B-3000 Leuven, Belgium
| | - Cyrill Seillet
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Bénédicte Dubois
- Department of Neurosciences, KU-Leuven-University of Leuven, B-3000 Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology and Immunology, VIB and University of Leuven, B-3000 Leuven, Belgium
| | - Kelli P A MacDonald
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Gabrielle T Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,The Royal Brisbane and Women's Hospital, Herston, Queensland 4029, Australia
| | - Iain Comerford
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shaun R McColl
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.,Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
309
|
Th17 Cell Plasticity and Functions in Cancer Immunity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:314620. [PMID: 26583099 PMCID: PMC4637016 DOI: 10.1155/2015/314620] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/01/2015] [Indexed: 12/12/2022]
Abstract
Th17 cells represent a particular subset of T helper lymphocytes characterized by high production of IL-17 and other inflammatory cytokines. Th17 cells participate in antimicrobial immunity at mucosal and epithelial barriers and particularly fight against extracellular bacteria and fungi. While a role for Th17 cells in promoting inflammation and autoimmune disorders has been extensively and elegantly demonstrated, it is still controversial whether and how Th17 cells influence tumor immunity. Although Th17 cells specifically accumulate in many different types of tumors compared to healthy tissues, the outcome might however differ from a tumor type to another. Th17 cells were consequently associated with both good and bad prognoses. The high plasticity of those cells toward cells exhibiting either anti-inflammatory or in contrast pathogenic functions might contribute to Th17 versatile functions in the tumor context. On one hand, Th17 cells promote tumor growth by inducing angiogenesis (via IL-17) and by exerting themselves immunosuppressive functions. On the other hand, Th17 cells drive antitumor immune responses by recruiting immune cells into tumors, activating effector CD8(+) T cells, or even directly by converting toward Th1 phenotype and producing IFN-γ. In this review, we are discussing the impact of the tumor microenvironment on Th17 cell plasticity and function and its implications in cancer immunity.
Collapse
|
310
|
Aguilo N, Alvarez-Arguedas S, Uranga S, Marinova D, Monzón M, Badiola J, Martin C. Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17-Dependent Mechanism. J Infect Dis 2015; 213:831-9. [PMID: 26494773 DOI: 10.1093/infdis/jiv503] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/14/2015] [Indexed: 01/20/2023] Open
Abstract
Some of the most promising novel tuberculosis vaccine strategies currently under development are based on respiratory vaccination, mimicking the natural route of infection. In this work, we have compared pulmonary and subcutaneous delivery of BCG vaccine in the tuberculosis-susceptible DBA/2 mouse strain, a model in which parenterally administered BCG vaccine does not protect against tuberculosis. Our data show that intranasally but not subcutaneously administered BCG confers robust protection against pulmonary tuberculosis challenge. In addition, our results indicate that pulmonary vaccination triggers a Mycobacterium tuberculosis-specific mucosal immune response orchestrated by interleukin 17A (IL-17A). Thus, IL-17A neutralization in vivo reduces protection and abrogates M. tuberculosis-specific immunoglobulin A (IgA) secretion to respiratory airways and lung expression of polymeric immunoglobulin receptor induced following intranasal vaccination. Together, our results demonstrate that pulmonary delivery of BCG can overcome the lack of protection observed when BCG is given parenterally, suggesting that respiratory tuberculosis vaccines could have an advantage in tuberculosis-endemic countries, where intradermally administered BCG has inefficient effectiveness against pulmonary tuberculosis.
Collapse
Affiliation(s)
- Nacho Aguilo
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Samuel Alvarez-Arguedas
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Monzón
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza
| | - Juan Badiola
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza
| | - Carlos Martin
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
311
|
Luo Y, Van Nguyen U, de la Fe Rodriguez PY, Devriendt B, Cox E. F4+ ETEC infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response. Vet Res 2015; 46:121. [PMID: 26490738 PMCID: PMC4618862 DOI: 10.1186/s13567-015-0264-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. Porcine-specific ETEC strains possess different fimbrial subtypes of which F4 fimbriae are the most frequently associated with ETEC-induced diarrhea in piglets. These F4 fimbriae are potent oral immunogens that induce protective F4-specific IgA antibody secreting cells at intestinal tissues. Recently, T-helper 17 (Th17) cells have been implicated in the protection of the host against extracellular pathogens. However, it remains unknown if Th17 effector responses are needed to clear ETEC infections. In the present study, we aimed to elucidate if ETEC elicits a Th17 response in piglets and if F4 fimbriae trigger a similar response. F4+ ETEC infection upregulated IL-17A, IL-17F, IL-21 and IL-23p19, but not IL-12 and IFN-γ mRNA expression in the systemic and mucosal immune system. Similarly, oral immunization with F4 fimbriae triggered a Th17 signature evidenced by an upregulated mRNA expression of IL-17F, RORγt, IL-23p19 and IL-21 in the peripheral blood mononuclear cells (PBMCs). Intriguingly, IL-17A mRNA levels were unaltered. To further evaluate this difference between systemic and mucosal immune responses, we assayed the cytokine mRNA profile of F4 fimbriae stimulated PBMCs. F4 fimbriae induced IL-17A, IL-17F, IL-22 and IL-23p19, but downregulated IL-17B mRNA expression. Altogether, these data indicate a Th17 dominated response upon oral immunization with F4 fimbriae and F4+ ETEC infection. Our work also highlights that IL-17B and IL-17F participate in the immune response to protect the host against F4+ ETEC infection and could aid in the design of future ETEC vaccines.
Collapse
Affiliation(s)
- Yu Luo
- Laboratory of Veterinary Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | - Ut Van Nguyen
- Laboratory of Veterinary Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | - Pedro Y de la Fe Rodriguez
- Department of Veterinary Medicine and Zootechnics, Universidad Central "Marta Abreu" de Las Villas, Carretera a Camajuani km 5½, 54830, Santa Clara, Villa Clara, Cuba.
| | - Bert Devriendt
- Laboratory of Veterinary Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | - Eric Cox
- Laboratory of Veterinary Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
312
|
Prota G, Christensen D, Andersen P, Medaglini D, Ciabattini A. Peptide-specific T helper cells identified by MHC class II tetramers differentiate into several subtypes upon immunization with CAF01 adjuvanted H56 tuberculosis vaccine formulation. Vaccine 2015; 33:6823-30. [PMID: 26494626 DOI: 10.1016/j.vaccine.2015.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 07/17/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
CD4(+) T-cell priming is an essential step in vaccination due to the key role of T helper cells in driving both effector and memory immune responses. Here we have characterized in C57BL/6 mice the T helper subtype differentiation among tetramer-specific CD4(+) T cells primed by subcutaneous immunization with the tuberculosis vaccine antigen H56 plus the adjuvant CAF01. Peptide-specific population identified by the MHC class II tetramers differentiated into several T helper subtypes upon antigen encounter, and the frequency of subpopulations differed according to their localization. Th1 (CXCR3(+)T-bet(+)), Tfh (CXCR5(+)PD-1(+)Bcl-6(+)) and RORγt(+) cells were induced in the lymph nodes draining the immunization site (dLN), while Th1 cells were the predominant subtype in the spleen. In addition, CD4(+) T cells co-expressing multiple T-cell lineage-specifying transcription factors were also detected. In the lungs, most of the tetramer-binding T cells were RORγt(+), while Tfh and Th1 cells were absent. After boosting, a higher frequency of tetramer-binding cells co-expressing the markers CD44 and CD127 was detected compared to primed cells, and cells showed a prevalent Th1 phenotype in both dLN and spleens, while Tfh cells were significantly reduced. In conclusion, these data demonstrate that parenteral immunization with H56 and CAF01 elicits a distribution of antigen-specific CD4(+) T cells in both lymphoid tissues and lungs, and gives rise to multiple T helper subtypes, that differ depending on localization and following reactivation.
Collapse
Affiliation(s)
- Gennaro Prota
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Annalisa Ciabattini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy.
| |
Collapse
|
313
|
Berek C. Eosinophils: important players in humoral immunity. Clin Exp Immunol 2015; 183:57-64. [PMID: 26291602 DOI: 10.1111/cei.12695] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 12/13/2022] Open
Abstract
Eosinophils perform numerous tasks. They are involved in inflammatory reactions associated with innate immune defence against parasitic infections and are also involved in pathological processes in response to allergens. Recently, however, it has become clear that eosinophils also play crucial non-inflammatory roles in the generation and maintenance of adaptive immune responses. Eosinophils, being a major source of the plasma cell survival factor APRIL (activation and proliferation-induced ligand), are essential not only for the long-term survival of plasma cells in the bone marrow, but also for the maintenance of these cells in the lamina propria which underlies the gut epithelium. At steady state under non-inflammatory conditions eosinophils are resident cells of the gastrointestinal tract, although only few are present in the major organized lymphoid tissue of the gut - the Peyer's patches (PP). Surprisingly, however, lack of eosinophils abolishes efficient class-switching of B cells to immunoglobulin (Ig)A in the germinal centres of PP. Thus, eosinophils are required to generate and to maintain mucosal IgA plasma cells, and as a consequence their absence leads to a marked reduction of IgA both in serum and in the gut-associated lymphoid tissues (GALT). Eosinophils thus have an essential part in long-term humoral immune protection, as they are crucial for the longevity of antibody-producing plasma cells in the bone marrow and, in addition, for gut immune homeostasis.
Collapse
Affiliation(s)
- C Berek
- B cell Immunology, Deutsches Rheuma Forschungszentrum, Berlin, Germany
| |
Collapse
|
314
|
Jones GW, Bombardieri M, Greenhill CJ, McLeod L, Nerviani A, Rocher-Ros V, Cardus A, Williams AS, Pitzalis C, Jenkins BJ, Jones SA. Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis. ACTA ACUST UNITED AC 2015; 212:1793-802. [PMID: 26417004 PMCID: PMC4612100 DOI: 10.1084/jem.20132307] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 08/28/2015] [Indexed: 01/31/2023]
Abstract
Decreased interleukin-27 signaling in humans and mice induces the formation of ectopic lymphoid-like structures (ELSs), which are associated with severe disease pathology and resistance to biological therapy in rheumatoid arthritis patients. Increased numbers of podoplanin-expressing Th17 cells in the absence of IL-27R signaling may be involved in driving ELS formation. Ectopic lymphoid-like structures (ELSs) reminiscent of secondary lymphoid organs often develop at sites of chronic inflammation where they contribute to immune-mediated pathology. Through evaluation of synovial tissues from rheumatoid arthritis (RA) patients, we now show that low interleukin-27 (IL-27) expression corresponds with an increased incidence of ELS and gene signatures associated with their development and activity. The presence of synovial ELS was also noted in mice deficient in the IL-27 receptor (IL-27R) after the onset of inflammatory arthritis. Here, pathology was associated with increased synovial expression of pro-inflammatory cytokines, homeostatic chemokines, and transcriptional regulators linked with lymphoid neogenesis. In both clinical and experimental RA, synovial ELS coincided with the heightened local expression of cytokines and transcription factors of the Th17 and T follicular helper (Tfh) cell lineages, and included podoplanin-expressing T cells within lymphoid aggregates. IL-27 inhibited the differentiation of podoplanin-expressing Th17 cells, and an increased number of these cells were observed in IL-27R–deficient mice with inflammatory arthritis. Thus, IL-27 appears to negatively regulate ELS development in RA through control of effector T cells. These studies open new opportunities for patient stratification and treatment.
Collapse
Affiliation(s)
- Gareth W Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Claire J Greenhill
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson (formerly Monash) Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Vidalba Rocher-Ros
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Anna Cardus
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Anwen S Williams
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson (formerly Monash) Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| |
Collapse
|
315
|
Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques. Mucosal Immunol 2015; 8:1144-53. [PMID: 25669148 PMCID: PMC4762909 DOI: 10.1038/mi.2015.5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 01/02/2015] [Indexed: 02/04/2023]
Abstract
We previously established a nanosized nasal vaccine delivery system by using a cationic cholesteryl group-bearing pullulan nanogel (cCHP nanogel), which is a universal protein-based antigen-delivery vehicle for adjuvant-free nasal vaccination. In the present study, we examined the central nervous system safety and efficacy of nasal vaccination with our developed cCHP nanogel containing pneumococcal surface protein A (PspA-nanogel) against pneumococcal infection in nonhuman primates. When [(18)F]-labeled PspA-nanogel was nasally administered to a rhesus macaque (Macaca mulatta), longer-term retention of PspA was noted in the nasal cavity when compared with administration of PspA alone. Of importance, no deposition of [(18)F]-PspA was seen in the olfactory bulbs or brain. Nasal PspA-nanogel vaccination effectively induced PspA-specific serum IgG with protective activity and mucosal secretory IgA (SIgA) Ab responses in cynomolgus macaques (Macaca fascicularis). Nasal PspA-nanogel-induced immune responses were mediated through T-helper (Th) 2 and Th17 cytokine responses concomitantly with marked increases in the levels of miR-181a and miR-326 in the serum and respiratory tract tissues, respectively, of the macaques. These results demonstrate that nasal PspA-nanogel vaccination is a safe and effective strategy for the development of a nasal vaccine for the prevention of pneumonia in humans.
Collapse
|
316
|
Cao AT, Yao S, Gong B, Nurieva RI, Elson CO, Cong Y. Interleukin (IL)-21 promotes intestinal IgA response to microbiota. Mucosal Immunol 2015; 8:1072-82. [PMID: 25586558 PMCID: PMC4501922 DOI: 10.1038/mi.2014.134] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/13/2014] [Indexed: 02/04/2023]
Abstract
Commensal microbiota-specific T helper type 17 (Th17) cells are enriched in the intestines, which can convert into T follicular helper (Tfh) in Peyer's patches, and are crucial for production of intestinal immunoglobulin A (IgA) against microbiota; however, the role of Th17 and Tfh cytokines in regulating the mucosal IgA response to enteric microbiota is still not completely known. In this study, we found that intestinal IgA was impaired in mice deficient in interleukin (IL)-17 or IL-21 signaling. IL-21, but not IL-17, is able to augment B-cell differentiation to IgA(+) cells as mediated by transforming growth factor β1 (TGFβ1) and accelerate IgA class switch recombination (CSR). IL-21 and retinoic acid (RA) induce IgA(+) B-cell development and IgA production and drives autocrine TGFβ1 production to initiate IgA CSR. Repletion of T-cell-deficient TCRβxδ(-/-) mice with Th17 cells specific for commensal bacterial antigen increased the levels of IgA(+) B cells and IgA production in the intestine, which was blocked by neutralizing IL-21. Thus IL-21 functions to strongly augment IgA production under intestinal environment. Furthermore, IL-21 promotes intestinal B-cell homing through α4β7 expression, alone or with TGFβ and RA. Together, IL-21 from microbiota-specific Th17 and/or Tfh cells contributes to robust intestinal IgA levels by enhancing IgA(+) CSR, IgA production and B-cell trafficking into the intestine.
Collapse
Affiliation(s)
- Anthony T. Cao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Roza I. Nurieva
- Department of Immunology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030
| | - Charles O. Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
317
|
Lochner M, Wang Z, Sparwasser T. The Special Relationship in the Development and Function of T Helper 17 and Regulatory T Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:99-129. [PMID: 26615094 DOI: 10.1016/bs.pmbts.2015.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T helper 17 (Th17) cells play an essential role in the clearance of extracellular pathogenic bacteria and fungi. However, this subset is critically involved in the pathology of many autoimmune diseases, e.g., psoriasis, multiple sclerosis, allergy, rheumatoid arthritis, and inflammatory bowel diseases in humans. Therefore, Th17 responses need to be tightly regulated in vivo to mediate effective host defenses against pathogens without causing excessive host tissue damage. Foxp3(+) regulatory T (Treg) cells play an important role in maintaining peripheral tolerance to self-antigens and in counteracting the inflammatory activity of effector T helper cell subsets. Although Th17 and Treg cells represent two CD4(+) T cell subsets with opposing principal functions, these cell types are functionally connected. In this review, we will first give an overview on the biology of Th17 cells and describe their development and in vivo function, followed by an account on the special developmental relationship between Th17 and Treg cells. We will describe the identification of Treg/Th17 intermediates and consider their lineage stability and function in vivo. Finally, we will discuss how Treg cells may regulate the Th17 cell response in the context of infection and inflammation, and elude on findings demonstrating that Treg cells can also have a prominent function in promoting the differentiation of Th17 cells.
Collapse
Affiliation(s)
- Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research: A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Zuobai Wang
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research: A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research: A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.
| |
Collapse
|
318
|
Ruff WE, Vieira SM, Kriegel MA. The role of the gut microbiota in the pathogenesis of antiphospholipid syndrome. Curr Rheumatol Rep 2015; 17:472. [PMID: 25475595 DOI: 10.1007/s11926-014-0472-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infectious triggers are associated with the induction of transient antiphospholipid antibodies. One therefore wonders if microbes that permanently colonize us play a role in the pathogenesis of antiphospholipid syndrome (APS). The microbiota represents the collection of all microorganisms colonizing humans and is necessary for normal host physiology. The microbiota, however, is a constant stress on the immune system, which is tasked with recognizing and eliminating pathogenic microbes while tolerating commensal populations. A growing body of literature supports a critical role for the commensal-immune axis in the development of autoimmunity against colonized barriers (e.g., gut or skin) and sterile organs (e.g., pancreas or joints). Whether these interactions affect the development and sustainment of autoreactive CD4(+) T cells and pathogenic autoantibodies in APS is unknown. This review provides an overview of the current understanding of the commensal-immune axis in autoimmunity with a focus on the potential relevance to APS. Additionally, we discuss emerging findings supporting the involvement of the gut microbiota in a spontaneous model of APS, the (NZW × BXSB)F1 hybrid, and formalize hypotheses to explain how interactions between the immune system and the microbiota may influence human APS etiopathogenesis.
Collapse
Affiliation(s)
- William E Ruff
- Department of Immunobiology, Yale University School of Medicine, 300 George St, Suite 353G, New Haven, CT, 06511, USA,
| | | | | |
Collapse
|
319
|
Wang S, Charbonnier LM, Noval Rivas M, Georgiev P, Li N, Gerber G, Bry L, Chatila TA. MyD88 Adaptor-Dependent Microbial Sensing by Regulatory T Cells Promotes Mucosal Tolerance and Enforces Commensalism. Immunity 2015; 43:289-303. [PMID: 26231118 DOI: 10.1016/j.immuni.2015.06.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/20/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
Commensal microbiota promote mucosal tolerance in part by engaging regulatory T (Treg) cells via Toll-like receptors (TLRs). We report that Treg-cell-specific deletion of the TLR adaptor MyD88 resulted in deficiency of intestinal Treg cells, a reciprocal increase in T helper 17 (Th17) cells and heightened interleukin-17 (IL-17)-dependent inflammation in experimental colitis. It also precipitated dysbiosis with overgrowth of segmented filamentous bacteria (SFB) and increased microbial loads in deep tissues. The Th17 cell dysregulation and bacterial dysbiosis were linked to impaired anti-microbial intestinal IgA responses, related to defective MyD88 adaptor- and Stat3 transcription factor-dependent T follicular regulatory and helper cell differentiation in the Peyer's patches. These findings establish an essential role for MyD88-dependent microbial sensing by Treg cells in enforcing mucosal tolerance and maintaining commensalism by promoting intestinal Treg cell formation and anti-commensal IgA responses.
Collapse
Affiliation(s)
- Sen Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Magali Noval Rivas
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Georgiev
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ning Li
- Center for Clinical and Translational Metagenomics, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Georg Gerber
- Center for Clinical and Translational Metagenomics, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lynn Bry
- Center for Clinical and Translational Metagenomics, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
320
|
The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol 2015; 36:460-70. [PMID: 26169256 DOI: 10.1016/j.it.2015.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/01/2015] [Accepted: 06/19/2015] [Indexed: 12/30/2022]
Abstract
The immune system has developed strategies to maintain a homeostatic relationship with the resident microbiota. IgA is central in holding this relationship, as the most dominant immunoglobulin isotype at the mucosal surface of the intestine. Recent studies report a role for IgA in shaping the composition of the intestinal microbiota and exploit strategies to characterise IgA-binding bacteria for their inflammatory potential. We review these findings here, and place them in context of the current understanding of the range of microorganisms that contribute to the IgA repertoire and the pathways that determine the quality of the IgA response. We examine why only certain intestinal microbes are coated with IgA, and discuss how understanding the determinants of this specific responsiveness may provide insight into diseases associated with dysbiosis.
Collapse
|
321
|
Mortensen R, Nissen TN, Blauenfeldt T, Christensen JP, Andersen P, Dietrich J. Adaptive Immunity against Streptococcus pyogenes in Adults Involves Increased IFN-γ and IgG3 Responses Compared with Children. THE JOURNAL OF IMMUNOLOGY 2015; 195:1657-64. [PMID: 26163588 DOI: 10.4049/jimmunol.1500804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/18/2015] [Indexed: 12/24/2022]
Abstract
Each year, millions of people are infected with Streptococcus pyogenes, leading to an estimated 500,000 annual deaths worldwide. For unknown reasons, school-aged children have substantially higher infection rates than adults. The goal for this study was to provide, to our knowledge, the first detailed characterization of the human adaptive immune response against S. pyogenes in both children and adults. We report that all adults in our study, as well as most children, showed immunity against the two conserved group A streptococci (GAS) Ags, streptococcal C5a peptidase and immunogenic secreted protein. The response primarily consisted of three subsets of Th1 T cells, in which the TNF-α(+) and IL-2(+)TNF-α(+) subsets were most frequent. Humoral immunity was dominated by IgG1 and IgG3, whereas the Th2-associated IgG4 isotype was only detected at very low amounts. IgG3 levels correlated significantly with IFN-γ, but not with IL-5, IL-13, IL-17, or TNF-α. Interestingly, children showed a similar pattern of Ag-specific cytokine release, but displayed significantly lower levels of IgG3 and IFN-γ compared with adults. Thus, human immune responses against S. pyogenes consist of a robust Th1 cellular memory response in combination with IgG1/IgG3-dominated humoral immunity that increase with age. The significance of these data regarding both the increased GAS infection rate in children and the development of protective GAS vaccines is discussed.
Collapse
Affiliation(s)
- Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen S, Denmark; Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; and
| | | | - Thomas Blauenfeldt
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; and
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen S, Denmark;
| |
Collapse
|
322
|
Mirlekar B, Patil S, Bopanna R, Chattopadhyay S. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis. Biochem Biophys Res Commun 2015; 464:647-53. [PMID: 26168735 DOI: 10.1016/j.bbrc.2015.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Treg cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by Treg cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of Treg phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic Treg cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing Treg cells in SMAR1(-/-) mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic Treg cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining Treg physiology during inflammatory disorders.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Sachin Patil
- Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Ramanamurthy Bopanna
- Experimental Animal Facility, National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Samit Chattopadhyay
- Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
323
|
Cañete JD, Celis R, Yeremenko N, Sanmartí R, van Duivenvoorde L, Ramírez J, Blijdorp I, García-Herrero CM, Pablos JL, Baeten DL. Ectopic lymphoid neogenesis is strongly associated with activation of the IL-23 pathway in rheumatoid synovitis. Arthritis Res Ther 2015; 17:173. [PMID: 26156866 PMCID: PMC4496927 DOI: 10.1186/s13075-015-0688-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction The functional relevance of synovial ectopic lymphoid neogenesis (ELN) in rheumatoid arthritis (RA) remains unknown. As ELN correlates with the degree of tissue inflammation, we investigated whether ELN was associated with specific cytokine profiles. Methods Synovial ELN was determined by immunohistology and long CD21 isoform (CD21L) expression. Cytokine expression was determined by multiplex enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction (PCR) as well as immunohistology in synovial fluid (SF) (n = 44) and tissue (ST) (n = 108), respectively. Production of ELN-associated chemokines by fibroblast-like synoviocytes (FLS) was studied in vitro. Results Screening analysis of SF by multiplex ELISA showed higher protein levels of interleukin (IL)-23 (p = 0.018) and IL-17F (p = 0.028) in ELN+ versus ELN- samples. Other cytokines, including IL-17A, IL-6, and tumor necrosis factor (TNF)-α, were not different. The association between IL-23 and ELN was not biased by disease activity or other clinical features and was confirmed by higher IL-23 mRNA expression in ELN+ versus ELN- ST samples (p = 0.030), a correlation between IL-23 and CD21L expression in the same samples (r = 0.70 p < 0.0001), and a similar correlation in two independent ST sample sets (r = 0.778 p < 0.0001 and r = 0.817 p = 0.011). IL-23 p19 staining was neither restricted nor enhanced in close proximity of ectopic lymphoid follicles, and neither IL-23 nor IL-17A stimulation induced expression of the ELN-associated CC chemokine ligand, CCL21 and CXC chemokine ligand CXCL13, by FLS. Downstream of IL-23, CD21L expression was significantly associated with IL-17F, IL-21, and IL-22, but not IL-17A in two independent ST sample sets. Conclusions Synovial ELN in RA is strongly associated with activation of the IL-23 pathway but not with IL-17A. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0688-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan D Cañete
- Arthritis Unit, Rheumatology Department, Hospital Clinic of Barcelona and IDIBAPS, c/ Villarroel, 170, 08036, Barcelona, Spain.
| | - Raquel Celis
- Arthritis Unit, Rheumatology Department, Hospital Clinic of Barcelona and IDIBAPS, c/ Villarroel, 170, 08036, Barcelona, Spain.
| | - Nataliya Yeremenko
- Amsterdam Rheumatology and Immunology Center/Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Raimon Sanmartí
- Arthritis Unit, Rheumatology Department, Hospital Clinic of Barcelona and IDIBAPS, c/ Villarroel, 170, 08036, Barcelona, Spain.
| | - Leonie van Duivenvoorde
- Amsterdam Rheumatology and Immunology Center/Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Julio Ramírez
- Arthritis Unit, Rheumatology Department, Hospital Clinic of Barcelona and IDIBAPS, c/ Villarroel, 170, 08036, Barcelona, Spain.
| | - Iris Blijdorp
- Amsterdam Rheumatology and Immunology Center/Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Carmen M García-Herrero
- Rheumatology Department, Instituto de Investigación Hospital 12 de Octubre (I + 12), Avda de Córdoba, s/n, 28041, Madrid, Spain.
| | - José L Pablos
- Rheumatology Department, Instituto de Investigación Hospital 12 de Octubre (I + 12), Avda de Córdoba, s/n, 28041, Madrid, Spain.
| | - Dominique L Baeten
- Amsterdam Rheumatology and Immunology Center/Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
324
|
Yuan S, Chen QP. Th17 cells and intestinal mucosal immunity. Shijie Huaren Xiaohua Zazhi 2015; 23:3094-3100. [DOI: 10.11569/wcjd.v23.i19.3094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T helper cell 17 (Th17) cells are identified as a new subset of T helper cells. Their differentiation is associated with a variety of cytokines and transcription factors, and they can secrete a variety of cytokines, such as interleukin (IL)-17 and IL-22, both of which can promote inflammation in the intestinal mucosa barrier and have a protective effect on organs. Probiotics
have been confirmed to have anti-inflammatory effects in the intestinal tract, the role of which may be associated with inhibiting Th17 cell activity. However, the stable number of Th17 cells requires the presence of intestinal symbiotic microbita. This paper will review the differentiation of Th17 cells and their role in intestinal mucosal immunity.
Collapse
|
325
|
Cholera toxin adjuvant promotes a balanced Th1/Th2/Th17 response independently of IL-12 and IL-17 by acting on Gsα in CD11b⁺ DCs. Mucosal Immunol 2015; 8:815-27. [PMID: 25425266 DOI: 10.1038/mi.2014.111] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 10/06/2014] [Indexed: 02/04/2023]
Abstract
Despite an extensive literature on the mechanism of action of cholera toxin (CT), we still lack critical information about how the toxin acts as an adjuvant and, especially, which dendritic cells (DCs) are the target cells. Although a T helper type 2 (Th2)-skewing effect of CT is most commonly reported, effective priming of Th17 cells as well as suppression of Th1 responses are well documented. However, the ability of CT to block interferon regulatory factor 8 (IRF8) function and interleukin (IL)-12 production in DCs, which blocks CD8α DC and Th1 cell development, is inconsistent with priming of Th1 and CD8 T cells in many other reports. This prompted us to investigate the adjuvant effect of CT in wild-type, IL-12p40-/-, Batf3-/-, and IL-17A-/- mice and in mice that selectively lack the Gsα target protein for CT adenosine diphosphate (ADP)-ribosylation in DCs. We found that CT promoted Th1 priming independently of IL-12, and whereas Th2 and also Th17 responses were augmented, the gut IgA responses did not require IL-17A. Adjuvanticity was intact in Batf3-/- mice, lacking CD8α(+) DCs, but completely lost in mice with Gsα-deficient CD11c cells. Thus, our data demonstrate that the adjuvant effect requires Gsα expression in CD11b(+) DCs, and that priming of mucosal IgA and CD4 T cells appears unbiased and is independent of IL-12 and IL-17A.
Collapse
|
326
|
PTPN2 controls differentiation of CD4⁺ T cells and limits intestinal inflammation and intestinal dysbiosis. Mucosal Immunol 2015; 8:918-29. [PMID: 25492475 DOI: 10.1038/mi.2014.122] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
Loss-of-function variants within the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) are associated with increased risk for Crohn's disease (CD). A disturbed regulation of T helper (Th) cell responses causing loss of tolerance against self- or commensal-derived antigens and an altered intestinal microbiota plays a pivotal role in CD pathogenesis. Loss of PTPN2 in the T-cell compartment causes enhanced induction of Th1 and Th17 cells, but impaired induction of regulatory T cells (Tregs) in several mouse colitis models, namely acute and chronic dextran sodium sulfate colitis, and T-cell transfer colitis models. This results in increased susceptibility to intestinal inflammation and intestinal dysbiosis which is comparable with that observed in CD patients. We detected inflammatory infiltrates in liver, kidney, and skin and elevated autoantibody levels indicating systemic loss of tolerance in PTPN2-deficient animals. CD patients featuring a loss-of-function PTPN2 variant exhibit enhanced Th1 and Th17 cell, but reduced Treg markers when compared with PTPN2 wild-type patients in serum and intestinal tissue samples. Our data demonstrate that dysfunction of PTPN2 results in aberrant T-cell differentiation and intestinal dysbiosis similar to those observed in human CD. Our findings indicate a novel and crucial role for PTPN2 in chronic intestinal inflammation.
Collapse
|
327
|
Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol 2015; 159:122-127. [PMID: 26141651 DOI: 10.1016/j.clim.2015.05.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed that the intestinal microbiota plays an important role in host physiology and pathophysiology in health and disease. One of the major mechanisms by which the gut microbiota influences the host is through its interactions with and effects on the host immune system. In this review, we discuss the reciprocal interactions between the host immune system and the gut microbiota, with a particular focus on individual microbes that impact the host through dramatic and specific interactions with the adaptive immune system. We highlight the idea that the presence or absence of specific immunologically important members of the microbiota can determine disease susceptibility and propose that the identification and characterization of these bacteria in humans will eventually allow us to elucidate the role of microbiota composition in human disease.
Collapse
Affiliation(s)
- Noah W Palm
- Department of Immunobiology, School of Medicine, Yale University
| | - Marcel R de Zoete
- Department of Immunobiology, School of Medicine, Yale University
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
328
|
Miranda PJ, Delgobo M, Marino GF, Paludo KS, da Silva Baptista M, de Souza Pinto SE. The Oral Tolerance as a Complex Network Phenomenon. PLoS One 2015; 10:e0130762. [PMID: 26115356 PMCID: PMC4483238 DOI: 10.1371/journal.pone.0130762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/23/2015] [Indexed: 11/18/2022] Open
Abstract
The phenomenon of oral tolerance refers to a local and systemic state of tolerance induced in the gut after its exposure to innocuous antigens. Recent findings have shown the interrelationship between cellular and molecular components of oral tolerance, but its representation through a network of interactions has not been investigated. Our work aims at identifying the causal relationship of each element in an oral tolerance network, and also to propose a phenomenological model that's capable of predicting the stochastic behavior of this network when under manipulation. We compared the changes of a "healthy" network caused by "knock-outs" (KOs) in two approaches: an analytical approach by the Perron Frobenius theory; and a computational approach, which we describe within this work in order to find numerical results for the model. Both approaches have shown the most relevant immunological components for this phenomena, that happens to corroborate the empirical results from animal models. Besides explain in a intelligible fashion how the components interacts in a complex manner, we also managed to describe and quantify the importance of KOs that hasn't been empirically tested.
Collapse
Affiliation(s)
| | - Murilo Delgobo
- Department of Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Giovani Favero Marino
- Department of Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Kátia Sabrina Paludo
- Department of Structural Biology, Molecular and Genetics, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Murilo da Silva Baptista
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
329
|
Dann SM, Manthey CF, Le C, Miyamoto Y, Gima L, Abrahim A, Cao AT, Hanson EM, Kolls JK, Raz E, Cong Y, Eckmann L. IL-17A promotes protective IgA responses and expression of other potential effectors against the lumen-dwelling enteric parasite Giardia. Exp Parasitol 2015; 156:68-78. [PMID: 26071205 DOI: 10.1016/j.exppara.2015.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022]
Abstract
Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide. It colonizes the lumen and epithelial surface of the small intestine, but does not invade the mucosa. Acute infection causes only minimal mucosal inflammation. Effective immune defenses exist, yet their identity and mechanisms remain incompletely understood. Interleukin (IL)-17A has emerged as an important cytokine involved in inflammation and antimicrobial defense against bacterial pathogens at mucosal surfaces. In this study, we demonstrate that IL-17A has a crucial function in host defense against Giardia infection. Using murine infection models with G. muris and G. lamblia, we observed marked and selective induction of intestinal IL-17A with peak expression after 2 weeks. Th17 cells in the lamina propria and innate immune cells in the epithelial compartment of the small intestine were responsible for the IL-17A response. Experiments in gene-targeted mice revealed that the cytokine, and its cognate receptor IL-17RA, were required for eradication of the parasite. The actions of the cytokine were mediated by hematopoietic cells, and were required for the transport of IgA into the intestinal lumen, since IL-17A deficiency led to marked reduction of fecal IgA levels, as well as for increased intestinal expression of several other potential effectors, including β-defensin 1 and resistin-like molecule β. In contrast, intestinal hypermotility, another major antigiardial defense mechanism, was not impacted by IL-17A loss. Taken together, these findings demonstrate that IL-17A and IL-17 receptor signaling are essential for intestinal defense against the important lumen-dwelling intestinal parasite Giardia.
Collapse
Affiliation(s)
- Sara M Dann
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Carolin F Manthey
- Department of Medicine, University of California, San Diego, CA, USA
| | - Christine Le
- Department of Medicine, University of California, San Diego, CA, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, CA, USA
| | - Lauren Gima
- Department of Medicine, University of California, San Diego, CA, USA
| | - Andrew Abrahim
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Anthony T Cao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Elaine M Hanson
- Department of Medicine, University of California, San Diego, CA, USA
| | - Jay K Kolls
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eyal Raz
- Department of Medicine, University of California, San Diego, CA, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
330
|
Shapiro JM, Cho JH, Sands BE, LeLeiko NS. Bridging the gap between host immune response and intestinal dysbiosis in inflammatory bowel disease: does immunoglobulin A mark the spot? Clin Gastroenterol Hepatol 2015; 13:842-6. [PMID: 25725444 DOI: 10.1016/j.cgh.2015.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, debilitating condition characterized by relapsing and remitting episodes of gastrointestinal inflammation. As the incidence and prevalence have increased, so has our understanding of the pathophysiology of this complex, immunologically mediated disease. With advances in bacterial and human gene sequencing technologies, a significant amount of work has focused on how alterations in the intestinal microbiome affect disease onset and progression. A recent study in Cell suggests that it may be possible to identify specific bacteria responsible for promoting a proinflammatory state by assessing the degree to which they are coated by the immunoglobulin (Ig) A. A combination of antibody-based bacterial cell sorting, flow cytometry, and 16s ribosomal RNA gene sequencing was used to identify IgA-coated bacteria from stool of specific pathogen-free mice. This technique was used to demonstrate that IgA-coated bacteria were indeed detectable and increased in a mouse model of colitis. Stool from patients with IBD was then used to generate 2 groups of IgA+ and IgA- bacterial consortia. When transplanted into specific pathogen-free mice, no initial clinical differences were noted. However, when mice with dextran sodium sulfate-induced colitis were transplanted with the IgA+ bacterial strains, they exhibited severe exacerbation of intestinal inflammation, whereas the IgA- group developed minimal symptoms. These findings suggest that bacteria highly coated with IgA are potentially responsible for driving gut inflammation in patients with IBD. These results may represent a critical advance in our understanding of the complex interactions between the host immune system and commensal microorganisms as it relates to the development and disease course of IBD. Future work will focus on how these findings can be translated into the development of individualized, microbiota-specific therapies.
Collapse
Affiliation(s)
- Jason M Shapiro
- Division of Pediatric Gastroenterology, Nutrition and Liver Diseases, Department of Pediatrics, Hasbro Children's Hospital/Rhode Island Hospital, Providence, Rhode Island; Warren Alpert School of Medicine at Brown University, Providence, Rhode Island.
| | - Judy H Cho
- Icahn School of Medicine at Mount Sinai, Dr Henry D. Janowitz Division of Gastroenterology, New York, New York
| | - Bruce E Sands
- Icahn School of Medicine at Mount Sinai, Dr Henry D. Janowitz Division of Gastroenterology, New York, New York
| | - Neal S LeLeiko
- Division of Pediatric Gastroenterology, Nutrition and Liver Diseases, Department of Pediatrics, Hasbro Children's Hospital/Rhode Island Hospital, Providence, Rhode Island; Warren Alpert School of Medicine at Brown University, Providence, Rhode Island
| |
Collapse
|
331
|
Kim SH, Yang IY, Kim J, Lee KY, Jang YS. Antimicrobial peptide LL-37 promotes antigen-specific immune responses in mice by enhancing Th17-skewed mucosal and systemic immunities. Eur J Immunol 2015; 45:1402-13. [PMID: 25655317 DOI: 10.1002/eji.201444988] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/13/2015] [Accepted: 02/03/2015] [Indexed: 01/17/2023]
Abstract
The human antimicrobial peptide LL-37 is known to have chemotactic and modulatory activities on various cells including monocytes, T cells, and epithelial cells. Given that LL-37 enhances chemotactic attraction and modulates the activity of DCs, it is conceivable that it might play a role as an immune adjuvant by skewing the immune environment toward immunostimulatory conditions. In this study, we characterized the mucosal adjuvant activity of LL-37 using model and pathogenic Ags. When LL-37-conjugated Ag was administered orally to mice, a tolerogenic Peyer's patch environment was altered to cell populations containing IL-6-secreting CD11c(+), CD11c(+) CD70(+), and Th17 cells capable of evoking a subsequent LL-37-conjugated Ag-specific immune response in both systemic and mucosal immune compartments. In addition, we showed presentation of formyl peptide receptor, an LL-37 receptor, on M cells, which may aid the initiation of an LL-37-mediated enhanced immune response through targeting and transcytosis of the conjugated Ag. Based on our findings, we conclude that LL-37 has potential as an oral mucosal adjuvant, not only by enhancing the delivery of LL-37-conjugated Ag to M cells, but also by triggering T-cell-mediated Ag-specific immune responses through modulation of the mucosal immune environment.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea.,Research Center of Bioactive Materials, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Korea
| | - In-Young Yang
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | - Ju Kim
- Jeonju Biomaterials Institute, Chonbuk National University, Jeonju, Korea
| | - Kyung-Yeol Lee
- Department of Oral Microbiology, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea.,Research Center of Bioactive Materials, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
332
|
Xiong N, Hu S. Regulation of intestinal IgA responses. Cell Mol Life Sci 2015; 72:2645-55. [PMID: 25837997 DOI: 10.1007/s00018-015-1892-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/20/2022]
Abstract
The intestine harbors enormous numbers of commensal bacteria and is under frequent attack from food-borne pathogens and toxins. A properly regulated immune response is critical for homeostatic maintenance of commensals and for protection against infection and toxins in the intestine. Immunoglobulin A (IgA) isotype antibodies function specifically in mucosal sites such as the intestines to help maintain intestinal health by binding to and regulating commensal microbiota, pathogens and toxins. IgA antibodies are produced by intestinal IgA antibody-secreting plasma cells generated in gut-associated lymphoid tissues from naïve B cells in response to stimulations of the intestinal bacteria and components. Research on generation, migration, and maintenance of IgA-secreting cells is important in our effort to understand the biology of IgA responses and to help better design vaccines against intestinal infections.
Collapse
Affiliation(s)
- Na Xiong
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA, 16802, USA,
| | | |
Collapse
|
333
|
Larena M, Holmgren J, Lebens M, Terrinoni M, Lundgren A. Cholera toxin, and the related nontoxic adjuvants mmCT and dmLT, promote human Th17 responses via cyclic AMP-protein kinase A and inflammasome-dependent IL-1 signaling. THE JOURNAL OF IMMUNOLOGY 2015; 194:3829-39. [PMID: 25786687 DOI: 10.4049/jimmunol.1401633] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/25/2015] [Indexed: 11/19/2022]
Abstract
We have examined the molecular pathways involved in the adjuvant action of cholera toxin (CT) and two novel nontoxic molecules, multiple-mutated CT (mmCT) and double-mutant heat-labile toxin (dmLT) on human T cell responses. Human PBMCs or isolated monocytes were stimulated in vitro with CT, mmCT, or dmLT plus a polyclonal stimulus (staphylococcal enterotoxin B) or specific bacterial Ags, and effects on expression of cytokines and signaling molecules were determined. CT, mmCT, and dmLT strongly enhanced IL-17A and to a lesser extent IL-13 responses, but had little effect on IFN-γ production or cell proliferation. Intracellular cytokine staining revealed that the enhanced IL-17A production was largely confined to CD4(+) T cells and coculture experiments showed that the IL-17A promotion was effectively induced by adjuvant-treated monocytes. Relative to CT, mmCT and dmLT induced at least 100-fold lower levels of cAMP, yet this cAMP was enough and essential for the promotion of Th17 responses. Thus, inhibition of cAMP-dependent protein kinase A was abolished, and stimulation with a cAMP analog mimicked the adjuvant effect. Furthermore, CT, mmCT, and dmLT induced IL-1β production and caspase-1 activation in monocytes, which was associated with increased expression of key proinflammatory and inflammasome-related genes, including NLRP1, NLRP3, and NLRC4. Inflammasome inhibition with a specific caspase-1 inhibitor, or blocking of IL-1 signaling by IL-1 receptor antagonist, abrogated the Th17-promoting effect. We conclude that CT, mmCT, and dmLT promote human Th17 responses via cAMP-dependent protein kinase A and caspase-1/inflammasome-dependent IL-1 signaling.
Collapse
Affiliation(s)
- Maximilian Larena
- University of Gothenburg Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, University of Gothenburg, 405 30 Sweden
| | - Jan Holmgren
- University of Gothenburg Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, University of Gothenburg, 405 30 Sweden
| | - Michael Lebens
- University of Gothenburg Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, University of Gothenburg, 405 30 Sweden
| | - Manuela Terrinoni
- University of Gothenburg Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, University of Gothenburg, 405 30 Sweden
| | - Anna Lundgren
- University of Gothenburg Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, University of Gothenburg, 405 30 Sweden
| |
Collapse
|
334
|
Kim YU, Lim H, Jung HE, Wetsel RA, Chung Y. Regulation of autoimmune germinal center reactions in lupus-prone BXD2 mice by follicular helper T cells. PLoS One 2015; 10:e0120294. [PMID: 25768299 PMCID: PMC4358919 DOI: 10.1371/journal.pone.0120294] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022] Open
Abstract
BXD2 mice spontaneously develop autoantibodies and subsequent glomerulonephritis, offering a useful animal model to study autoimmune lupus. Although initial studies showed a critical contribution of IL-17 and Th17 cells in mediating autoimmune B cell responses in BXD2 mice, the role of follicular helper T (Tfh) cells remains incompletely understood. We found that both the frequency of Th17 cells and the levels of IL-17 in circulation in BXD2 mice were comparable to those of wild-type. By contrast, the frequency of PD-1+ CXCR5+ Tfh cells was significantly increased in BXD2 mice compared with wild-type mice, while the frequency of PD-1+ CXCR5+ Foxp3+ follicular regulatory T (Tfr) cells was reduced in the former group. The frequency of Tfh cells rather than that of Th17 cells was positively correlated with the frequency of germinal center B cells as well as the levels of autoantibodies to dsDNA. More importantly, CXCR5+ CD4+ T cells isolated from BXD2 mice induced the production of IgG from naïve B cells in an IL-21-dependent manner, while CCR6+ CD4+ T cells failed to do so. These results together demonstrate that Tfh cells rather than Th17 cells contribute to the autoimmune germinal center reactions in BXD2 mice.
Collapse
Affiliation(s)
- Young Uk Kim
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America; Graduate School of Biomedical Sciences, the University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Hoyong Lim
- Laboratory of Immunobiology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Division of AIDS, Korea National Institute of Health, Cheongwon, Chungbuk, Republic of Korea
| | - Ha Eun Jung
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Rick A Wetsel
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America; Graduate School of Biomedical Sciences, the University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Yeonseok Chung
- Laboratory of Immunobiology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
335
|
Ruff WE, Kriegel MA. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol Med 2015; 21:233-44. [PMID: 25771098 DOI: 10.1016/j.molmed.2015.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
Abstract
The microbiota is considered to be an important factor influencing the pathogenesis of autoimmunity at both barrier sites and internal organs. Impinging on innate and adaptive immunity, commensals exert protective or detrimental effects on various autoimmune animal models. Human microbiome studies of autoimmunity remain largely descriptive, but suggest a role for dysbiosis in autoimmune disease. Humanized gnotobiotic approaches have advanced our understanding of immune-commensal interactions, but little is known about the mechanisms in autoimmunity. We propose that, similarly to infectious agents, the microbiota mediates autoimmunity via bystander activation, epitope spread, and, particularly under homeostatic conditions, via crossreactivity. This review presents an overview of the current literature concluding with outstanding questions in this field.
Collapse
Affiliation(s)
- William E Ruff
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Martin A Kriegel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
336
|
Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2015; 381:125-72. [PMID: 24839135 DOI: 10.1007/82_2014_372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Darah Christie
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
337
|
Busman-Sahay KO, Walrath T, Huber S, O'Connor W. Cytokine crowdsourcing: multicellular production of TH17-associated cytokines. J Leukoc Biol 2015; 97:499-510. [PMID: 25548251 PMCID: PMC5477895 DOI: 10.1189/jlb.3ru0814-386r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/14/2022] Open
Abstract
In the 2 decades since its discovery, IL-17A has become appreciated for mounting robust, protective responses against bacterial and fungal pathogens. When improperly regulated, however, IL-17A can play a profoundly pathogenic role in perpetuating inflammation and has been linked to a wide variety of debilitating diseases. IL-17A is often present in a composite milieu that includes cytokines produced by TH17 cells (i.e., IL-17F, IL-21, IL-22, and IL-26) or associated with other T cell lineages (e.g., IFN-γ). These combinatorial effects add mechanistic complexity and more importantly, contribute differentially to disease outcome. Whereas TH17 cells are among the best-understood cell types that secrete IL-17A, they are frequently neither the earliest nor dominant producers. Indeed, non-TH17 cell sources of IL-17A can dramatically alter the course and severity of inflammatory episodes. The dissection of the temporal regulation of TH17-associated cytokines and the resulting net signaling outcomes will be critical toward understanding the increasingly intricate role of IL-17A and TH17-associated cytokines in disease, informing our therapeutic decisions. Herein, we discuss important non-TH17 cell sources of IL-17A and other TH17-associated cytokines relevant to inflammatory events in mucosal tissues.
Collapse
Affiliation(s)
- Kathleen O Busman-Sahay
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Travis Walrath
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - William O'Connor
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
338
|
Abstract
Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance.
Collapse
Affiliation(s)
- David J Gasper
- Department of Pathobiological Sciences; Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Melba Marie Tejera
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - M Suresh
- Department of Pathobiological Sciences; Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
339
|
Lei YMK, Nair L, Alegre ML. The interplay between the intestinal microbiota and the immune system. Clin Res Hepatol Gastroenterol 2015; 39:9-19. [PMID: 25481240 PMCID: PMC4423786 DOI: 10.1016/j.clinre.2014.10.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 02/08/2023]
Abstract
The relationship between commensal microbes and their hosts has been studied for many years. Commensal microorganisms are known to have a significant role in regulating the physiology of their hosts and preventing pathogenic infections while the hosts' immune system is important in determining the composition of the microbiota. More recently, specific effects of the intestinal microbiota on the local and distal immune systems have been uncovered with important consequences for health and disease, and alterations in intestinal microbial composition has been associated with various disease states. Here, we will review the current understanding of the microbiota/immune system crosstalk, highlight the clinical consequences of changes in the microbiota and consider how to harness this symbiotic relationship to improve public health.
Collapse
|
340
|
Slack E, Balmer ML, Macpherson AJ. B cells as a critical node in the microbiota-host immune system network. Immunol Rev 2015; 260:50-66. [PMID: 24942681 DOI: 10.1111/imr.12179] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutualism with our intestinal microbiota is a prerequisite for healthy existence. This requires physical separation of the majority of the microbiota from the host (by secreted antimicrobials, mucus, and the intestinal epithelium) and active immune control of the low numbers of microbes that overcome these physical and chemical barriers, even in healthy individuals. In this review, we address how B-cell responses to members of the intestinal microbiota form a robust network with mucus, epithelial integrity, follicular helper T cells, innate immunity, and gut-associated lymphoid tissues to maintain host-microbiota mutualism.
Collapse
Affiliation(s)
- Emma Slack
- Institute for Microbiology, ETH Zürich, Zurich, Switzerland
| | | | | |
Collapse
|
341
|
Gutzeit C, Magri G, Cerutti A. Intestinal IgA production and its role in host-microbe interaction. Immunol Rev 2015; 260:76-85. [PMID: 24942683 DOI: 10.1111/imr.12189] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complex and diverse communities of bacteria establish mutualistic and symbiotic relationships with the gut after birth. The intestinal immune system responds to bacterial colonization by acquiring a state of hypo-responsiveness against commensals and active readiness against pathogens. The resulting homeostatic balance involves a continuous dialog between the microbiota and lymphocytes with the intermediation of epithelial and dendritic cells. This dialog causes massive production of immunoglobulin A (IgA), a non-inflammatory antibody specialized in mucosal protection. Here, we discuss recent advances on the regulation of intestinal IgA responses and their role in host-microbe interaction.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Immunology Institute, Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
342
|
Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, Degnan PH, Hu J, Peter I, Zhang W, Ruggiero E, Cho JH, Goodman AL, Flavell RA. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2015; 158:1000-1010. [PMID: 25171403 DOI: 10.1016/j.cell.2014.08.006] [Citation(s) in RCA: 895] [Impact Index Per Article: 99.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022]
Abstract
Specific members of the intestinal microbiota dramatically affect inflammatory bowel disease (IBD) in mice. In humans, however, identifying bacteria that preferentially affect disease susceptibility and severity remains a major challenge. Here, we used flow-cytometry-based bacterial cell sorting and 16S sequencing to characterize taxa-specific coating of the intestinal microbiota with immunoglobulin A (IgA-SEQ) and show that high IgA coating uniquely identifies colitogenic intestinal bacteria in a mouse model of microbiota-driven colitis. We then used IgA-SEQ and extensive anaerobic culturing of fecal bacteria from IBD patients to create personalized disease-associated gut microbiota culture collections with predefined levels of IgA coating. Using these collections, we found that intestinal bacteria selected on the basis of high coating with IgA conferred dramatic susceptibility to colitis in germ-free mice. Thus, our studies suggest that IgA coating identifies inflammatory commensals that preferentially drive intestinal disease. Targeted elimination of such bacteria may reduce, reverse, or even prevent disease development.
Collapse
Affiliation(s)
- Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Marcel R de Zoete
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA
| | - Thomas W Cullen
- Microbial Diversity Institute and Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Natasha A Barry
- Microbial Diversity Institute and Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jonathan Stefanowski
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Liming Hao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Patrick H Degnan
- Microbial Diversity Institute and Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Zhang
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Elizabeth Ruggiero
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Judy H Cho
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew L Goodman
- Microbial Diversity Institute and Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
343
|
Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2015; 41:529-42. [PMID: 25367570 DOI: 10.1016/j.immuni.2014.10.004] [Citation(s) in RCA: 1319] [Impact Index Per Article: 146.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 12/22/2022]
Abstract
Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal center formation, affinity maturation, and the development of most high-affinity antibodies and memory B cells. Tfh cell differentiation is a multistage, multifactorial process involving B cell lymphoma 6 (Bcl6) and other transcription factors. This article reviews understanding of Tfh cell biology, including their differentiation, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned about Tfh cell biology in the interest of applying that knowledge to biomedical needs.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
344
|
Lycke N, Bemark M, Spencer J. Mucosal B Cell Differentiation and Regulation. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
345
|
Fagarasan S, Macpherson AJ. The Regulation of IgA Production. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
346
|
KIYONO H, AZEGAMI T. The mucosal immune system: From dentistry to vaccine development. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:423-39. [PMID: 26460320 PMCID: PMC4729857 DOI: 10.2183/pjab.91.423] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interconnected inductive and effector sites. Intestinal Peyer's patches (PPs) are an inductive site containing antigen-sampling M cells and immunocompetent cells required to initiate antigen-specific immune responses. At effector sites, PP-originated antigen-specific IgA B cells become plasma cells to produce polymeric IgA and form secretory IgA by binding to poly-Ig receptor expressed on epithelial cells for protective immunity. The development of new-generation mucosal vaccines, including the rice-based oral vaccine MucoRice, on the basis of the coordinated mucosal immune system is a promising strategy for the control of mucosal infectious diseases.
Collapse
Affiliation(s)
- Hiroshi KIYONO
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: H. Kiyono, Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (e-mail: )
| | - Tatsuhiko AZEGAMI
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
347
|
|
348
|
Chorny A, Cerutti A. Regulation and Function of Mucosal IgA and IgD. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
349
|
|
350
|
Abstract
Animals and many of their chronic microbial inhabitants form relationships of symbiotic mutualism, which occurs when coexisting life-forms derive mutual benefit from stable associations. While microorganisms receive a secure habitat and constant food source from vertebrate hosts, they are required for optimal immune system development and occupy niches otherwise abused by pathogens. Microbes have also been shown to provide vertebrate hosts with metabolic capabilities that enhance energy and nutrient uptake from the diet. The immune system plays a central role in the establishment and maintenance of host-microbe homeostasis, and B lineage cells play a key role in this regulation. Here, I reviewed the structure and function of the microbiota and the known mechanisms of how nonpathogenic microbes influence B cell biology and immunoglobulin repertoire development early in life. I also discuss what is known about how B lineage cells contribute to the process of shaping the composition of commensal/mutualistic microbe membership.
Collapse
Affiliation(s)
- Duane R Wesemann
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|