301
|
Yan X, Remond M, Zheng Z, Hoibian E, Soulage C, Chambert S, Andraud C, Van der Sanden B, Ganachaud F, Bretonnière Y, Bernard J. General and Scalable Approach to Bright, Stable, and Functional AIE Fluorogen Colloidal Nanocrystals for in Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25154-25165. [PMID: 29979019 DOI: 10.1021/acsami.8b07859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fluorescent nanoparticles built from aggregation-induced emission-active organic molecules (AIE-FONs) have emerged as powerful tools in life science research for in vivo bioimaging of organs, biosensing, and therapy. However, the practical use of such biotracers has been hindered owing to the difficulty of designing bright nanoparticles with controlled dimensions (typically below 200 nm), narrow size dispersity and long shelf stability. In this article, we present a very simple yet effective approach to produce monodisperse sub-200 nm AIE fluorescent organic solid dispersions with excellent redispersibility and colloidal stability in aqueous medium by combination of nanoprecipitation and freeze-drying procedures. By selecting polymer additives that simultaneously act as stabilizers, promoters of amorphous-crystalline transition, and functionalization/cross-linking platforms, we demonstrate a straightforward access to stable nanocrystalline FONs that exhibit significantly higher brightness than their amorphous precursors and constitute efficient probes for in vivo imaging of the normal and tumor vasculature. FONs design principles reported here are universal, applicable to a range of fluorophores with different chemical structures and crystallization abilities, and are suitable for high-throughput production and manufacturing of functional imaging probes.
Collapse
Affiliation(s)
- Xibo Yan
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| | - Maxime Remond
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Zheng Zheng
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Elsa Hoibian
- CarMeN Laboratory , Univ-Lyon, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1 , F-69621 Villeurbanne , France
| | - Christophe Soulage
- CarMeN Laboratory , Univ-Lyon, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1 , F-69621 Villeurbanne , France
| | - Stéphane Chambert
- Univ Lyon, INSA-Lyon, CNRS, Université Lyon 1, CPE Lyon, ICBMS, UMR 5246 , Bâtiment Jules Verne, 20 Avenue Albert Einstein , F-69621 Villeurbanne , France
| | - Chantal Andraud
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Boudewijn Van der Sanden
- Intravital Microscopy Plateform, France Life Imaging, Unit Biomedical Radio-Pharmaceutics, Medical Faculty , INSERM U1039 and University Grenoble Alpes , 38706 La Tronche , France
| | - François Ganachaud
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| | - Yann Bretonnière
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Julien Bernard
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| |
Collapse
|
302
|
Neto LMM, Zufelato N, de Sousa-Júnior AA, Trentini MM, da Costa AC, Bakuzis AF, Kipnis A, Junqueira-Kipnis AP. Specific T cell induction using iron oxide based nanoparticles as subunit vaccine adjuvant. Hum Vaccin Immunother 2018; 14:2786-2801. [PMID: 29913109 DOI: 10.1080/21645515.2018.1489192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Metal-based nanoparticles (NPs) stimulate innate immunity; however, they have never been demonstrated to be capable of aiding the generation of specific cellular immune responses. Therefore, our objective was to evaluate whether iron oxide-based NPs have adjuvant properties in generating cellular Th1, Th17 and TCD8 (Tc1) immune responses. For this purpose, a fusion protein (CMX) composed of Mycobacterium tuberculosis antigens was used as a subunit vaccine. Citrate-coated MnFe2O4 NPs were synthesized by co-precipitation and evaluated by transmission electron microscopy. The vaccine was formulated by homogenizing NPs with the recombinant protein, and protein corona formation was determined by dynamic light scattering and field-emission scanning electron microscopy. The vaccine was evaluated for the best immunization route and strategy using subcutaneous and intranasal routes with 21-day intervals between immunizations. When administered subcutaneously, the vaccine generated specific CD4+IFN-γ+ (Th1) and CD8+IFN-γ+ responses. Intranasal vaccination induced specific Th1, Th17 (CD4+IL-17+) and Tc1 responses, mainly in the lungs. Finally, a mixed vaccination strategy (2 subcutaneous injections followed by one intranasal vaccination) induced a Th1 (in the spleen and lungs) and splenic Tc1 response but was not capable of inducing a Th17 response in the lungs. This study shows for the first time a subunit vaccine with iron oxide based NPs as an adjuvant that generated cellular immune responses (Th1, Th17 and TCD8), thereby exhibiting good adjuvant qualities. Additionally, the immune response generated by the subcutaneous administration of the vaccine diminished the bacterial load of Mtb challenged animals, showing the potential for further improvement as a vaccine against tuberculosis.
Collapse
Affiliation(s)
| | - Nicholas Zufelato
- b Instituto de Física, Universidade Federal de Goiás (IF-UFG) , Brasil
| | | | - Monalisa Martins Trentini
- a Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás (IPTSP-UFG) , Brasil
| | - Adeliane Castro da Costa
- a Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás (IPTSP-UFG) , Brasil
| | | | - André Kipnis
- a Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás (IPTSP-UFG) , Brasil
| | | |
Collapse
|
303
|
Xia F, Hou W, Liu Y, Wang W, Han Y, Yang M, Zhi X, Li C, Qi D, Li T, Martinez de la Fuente J, Zhang C, Song J, Cui D. Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials 2018; 170:1-11. [DOI: 10.1016/j.biomaterials.2018.03.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/02/2023]
|
304
|
Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc Natl Acad Sci U S A 2018; 115:6590-6595. [PMID: 29891702 DOI: 10.1073/pnas.1806153115] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
With suppressed photon scattering and diminished autofluorescence, in vivo fluorescence imaging in the 1,500- to 1,700-nm range of the near-IR (NIR) spectrum (NIR-IIb window) can afford high clarity and deep tissue penetration. However, there has been a lack of NIR-IIb fluorescent probes with sufficient brightness and aqueous stability. Here, we present a bright fluorescent probe emitting at ∼1,600 nm based on core/shell lead sulfide/cadmium sulfide (CdS) quantum dots (CSQDs) synthesized in organic phase. The CdS shell plays a critical role of protecting the lead sulfide (PbS) core from oxidation and retaining its bright fluorescence through the process of amphiphilic polymer coating and transferring to water needed for imparting aqueous stability and compatibility. The resulting CSQDs with a branched PEG outer layer exhibited a long blood circulation half-life of 7 hours and enabled through-skin, real-time imaging of blood flows in mouse vasculatures at an unprecedented 60 frames per second (fps) speed by detecting ∼1,600-nm fluorescence under 808-nm excitation. It also allowed through-skin in vivo confocal 3D imaging of tumor vasculatures in mice with an imaging depth of ∼1.2 mm. The PEG-CSQDs accumulated in tumor effectively through the enhanced permeation and retention effect, affording a high tumor-to-normal tissue ratio up to ∼32 owing to the bright ∼1,600-nm emission and nearly zero autofluorescence background resulting from a large ∼800-nm Stoke's shift. The aqueous-compatible CSQDs are excreted through the biliary pathway without causing obvious toxicity effects, suggesting a useful class of ∼1,600-nm emitting probes for biomedical research.
Collapse
|
305
|
|
306
|
BSA/Chitosan Polyelectrolyte Complex: A Platform for Enhancing the Loading and Cancer Cell-Uptake of Resveratrol. Macromol Res 2018. [DOI: 10.1007/s13233-018-6112-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
307
|
Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2018; 2:578-588. [PMID: 31015631 PMCID: PMC6192054 DOI: 10.1038/s41551-018-0236-8] [Citation(s) in RCA: 665] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
Abstract
Tumour-associated macrophages (TAMs) are abundant in many cancers, and often display an immune-suppressive M2-like phenotype that fosters tumour growth and promotes resistance to therapy. Yet macrophages are highly plastic and can also acquire an anti-tumourigenic M1-like phenotype. Here, we show that R848, an agonist of the toll-like receptors (TLRs) TLR7 and TLR8 identified in a morphometric-based screen, is a potent driver of the M1 phenotype in vitro and that R848-loaded β-cyclodextrin nanoparticles (CDNPs) lead to efficient drug delivery to TAMs in vivo. As a monotherapy, the administration of CDNP-R848 in multiple tumour models in mice altered the functional orientation of the tumour immune microenvironment towards an M1 phenotype, leading to controlled tumour growth and protecting the animals against tumour rechallenge. When used in combination with the immune checkpoint inhibitor anti-PD-1, we observed improved immunotherapy response rates, also in a tumour model resistant to anti-PD-1 therapy. Our findings demonstrate the ability of rationally engineered drug–nanoparticle combinations to efficiently modulate TAMs for cancer immunotherapy.
Collapse
|
308
|
Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun X, Wang X, Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018; 8:3284-3307. [PMID: 29930730 PMCID: PMC6010979 DOI: 10.7150/thno.25220] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/29/2018] [Indexed: 12/23/2022] Open
Abstract
In the past decade, iron oxide nanoparticles (IONPs) have attracted more and more attention for their excellent physicochemical properties and promising biomedical applications. In this review, we summarize and highlight recent progress in the design, synthesis, biocompatibility evaluation and magnetic theranostic applications of IONPs, with a special focus on cancer treatment. Firstly, we provide an overview of the controlling synthesis strategies for fabricating zero-, one- and three-dimensional IONPs with different shapes, sizes and structures. Then, the in vitro and in vivo biocompatibility evaluation and biotranslocation of IONPs are discussed in relation to their chemo-physical properties including particle size, surface properties, shape and structure. Finally, we also highlight significant achievements in magnetic theranostic applications including magnetic resonance imaging (MRI), magnetic hyperthermia and targeted drug delivery. This review provides a background on the controlled synthesis, biocompatibility evaluation and applications of IONPs as cancer theranostic agents and an overview of the most up-to-date developments in this area.
Collapse
Affiliation(s)
- Wensheng Xie
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenhu Guo
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 10083, China
| | - Fei Gao
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi 710069, China
| | - Qin Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Bor-shuang Liaw
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiang Cai
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
309
|
Villa I, Villa C, Monguzzi A, Babin V, Tervoort E, Nikl M, Niederberger M, Torrente Y, Vedda A, Lauria A. Demonstration of cellular imaging by using luminescent and anti-cytotoxic europium-doped hafnia nanocrystals. NANOSCALE 2018; 10:7933-7940. [PMID: 29671445 DOI: 10.1039/c8nr00724a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Luminescent nanoparticles are researched for their potential impact in medical science, but no materials approved for parenteral use have been available so far. To overcome this issue, we demonstrate that Eu3+-doped hafnium dioxide nanocrystals can be used as non-toxic, highly stable probes for cellular optical imaging and as radiosensitive materials for clinical treatment. Furthermore, viability and biocompatibility tests on artificially stressed cell cultures reveal their ability to buffer reactive oxygen species, proposing an anti-cytotoxic feature interesting for biomedical applications.
Collapse
Affiliation(s)
- Irene Villa
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Abstract
Purpose of Review Ischemic heart disease is caused by atherosclerosis, the build-up of plaque in the coronary arteries, which can lead to the development of heart attacks and heart muscle damage. Despite the advent of medical and surgical therapy to prevent and treat atherosclerosis and its adverse clinical effects, ischemic heart disease remains a leading cause of morbidity and mortality. Recent studies have suggested that the immune system may play a greater role in the development of plaque rupture and adverse left ventricular remodeling after myocardial infarction. Understanding the molecular processes by which inflammation contributes to the pathophysiology of ischemic heart disease is, therefore, worthwhile. This review focuses on new molecular imaging techniques to visualize immune cells to study their contribution to ischemic heart disease. Recent Findings A common technique applied to imaging inflammation in ischemic heart disease is targeting the up-regulation and trafficking of immune cells, which may contribute to the adverse consequences associated with atherosclerosis. In the past five years, advances in cell labeling for imaging with PET and MRI, including radioisotopes and nanoparticles, have confirmed that inflammatory cells can be visualized in vivo and in greater abundance in unstable cardiovascular disease and in areas of ischemic damage. The major criticisms of these studies to date include their small sample size, lack of histological correlation, limited association with long-term outcomes, and bias toward macrophage imaging. Summary While much progress has been made in imaging inflammation in ischemic heart disease over the past five years, additional studies in larger cohorts with histological validation and outcome correlation are needed. Nevertheless, imaging inflammation using PET or MRI has the potential to become an important adjunct tool to improve the diagnosis, risk stratification, and therapeutic monitoring of patients with ischemic heart disease.
Collapse
|
311
|
Röding M, Billeter M. Massively parallel approximate Bayesian computation for estimating nanoparticle diffusion coefficients, sizes and concentrations using confocal laser scanning microscopy. J Microsc 2018; 271:174-182. [PMID: 29676793 DOI: 10.1111/jmi.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
Abstract
We implement a massively parallel population Monte Carlo approximate Bayesian computation (PMC-ABC) method for estimating diffusion coefficients, sizes and concentrations of diffusing nanoparticles in liquid suspension using confocal laser scanning microscopy and particle tracking. The method is based on the joint probability distribution of diffusion coefficients and the time spent by a particle inside a detection region where particles are tracked. We present freely available central processing unit (CPU) and graphics processing unit (GPU) versions of the analysis software, and we apply the method to characterize mono- and bidisperse samples of fluorescent polystyrene beads.
Collapse
Affiliation(s)
- M Röding
- RISE Research Institutes of Sweden, Bioscience and Materials, Göteborg, Sweden
| | - M Billeter
- Department of Space, Earth and Environment, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
312
|
Harrison EB, Azam SH, Pecot CV. Targeting Accessories to the Crime: Nanoparticle Nucleic Acid Delivery to the Tumor Microenvironment. Front Pharmacol 2018; 9:307. [PMID: 29670528 PMCID: PMC5893903 DOI: 10.3389/fphar.2018.00307] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Nucleic acid delivery for cancer holds extraordinary promise. Increasing expression of tumor suppressor genes or inhibition of oncogenes in cancer cells has important therapeutic potential. However, several barriers impair progress in cancer gene delivery. These include effective delivery to cancer cells and relevant intracellular compartments. Although viral gene delivery can be effective, it has the disadvantages of being immuno-stimulatory, potentially mutagenic and lacking temporal control. Various nanoparticle (NP) platforms have been developed to overcome nucleic acid delivery hurdles, but several challenges still exist. One such challenge has been the accumulation of NPs in non-cancer cells within the tumor microenvironment (TME) as well as the circulation. While uptake by these cancer-associated cells is considered to be an off-target effect in some contexts, several strategies have now emerged to utilize NP-mediated gene delivery to intentionally alter the TME. For example, the similarity of NPs in shape and size to pathogens promotes uptake by antigen presenting cells, which can be used to increase immune stimulation and promote tumor killing by T-lymphocytes. In the era of immunotherapy, boosting the ability of the immune system to eliminate cancer cells has proven to be an exciting new area in cancer nanotechnology. Given the importance of cancer-associated cells in tumor growth and metastasis, targeting these cells in the TME opens up new therapeutic applications for NPs. This review will cover evidence for non-cancer cell accumulation of NPs in animal models and patients, summarize characteristics that promote NP delivery to different cell types, and describe several therapeutic strategies for gene modification within the TME.
Collapse
Affiliation(s)
- Emily B. Harrison
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Salma H. Azam
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chad V. Pecot
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
313
|
Pavitra E, Seeta Rama Raju G, Nagaraju GP, Nagaraju G, Han YK, Huh YS, Yu JS. TPAOH assisted size-tunable Gd 2O 3@mSi core-shell nanostructures for multifunctional biomedical applications. Chem Commun (Camb) 2018; 54:747-750. [PMID: 29308475 DOI: 10.1039/c7cc07975c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report a facile and large-scale synthesis of size-tunable and nontoxic mesoporous silica-coated Gd2O3:Eu3+ (Gd@mSi) core-shell nanostructures using a TPAOH assisted modified UHP technique. The role of TPAOH in controlling the particle size was evaluated. The potentiality of these Gd@mSi core-shell nanoparticles before and after folic acid conjugation was established by in vitro fluorescence microscopy of the U2OS cell lines for cancer imaging and therapy.
Collapse
Affiliation(s)
- E Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon-22212, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
314
|
Lechuga-Vieco AV, Groult H, Pellico J, Mateo J, Enríquez JA, Ruiz-Cabello J, Herranz F. Protein corona and phospholipase activity drive selective accumulation of nanomicelles in atherosclerotic plaques. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:643-650. [DOI: 10.1016/j.nano.2017.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/27/2017] [Accepted: 12/23/2017] [Indexed: 10/24/2022]
|
315
|
Li Y, Liu TM. Discovering Macrophage Functions Using In Vivo Optical Imaging Techniques. Front Immunol 2018; 9:502. [PMID: 29599778 PMCID: PMC5863475 DOI: 10.3389/fimmu.2018.00502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022] Open
Abstract
Macrophages are an important component of host defense and inflammation and play a pivotal role in immune regulation, tissue remodeling, and metabolic regulation. Since macrophages are ubiquitous in human bodies and have versatile physiological functions, they are involved in virtually every disease, including cancer, diabetes, multiple sclerosis, and atherosclerosis. Molecular biological and histological methods have provided critical information on macrophage biology. However, many in vivo dynamic behaviors of macrophages are poorly understood and yet to be discovered. A better understanding of macrophage functions and dynamics in pathogenesis will open new opportunities for better diagnosis, prognostic assessment, and therapeutic intervention. In this article, we will review the advances in macrophage tracking and analysis with in vivo optical imaging in the context of different diseases. Moreover, this review will cover the challenges and solutions for optical imaging techniques during macrophage intravital imaging.
Collapse
Affiliation(s)
- Yue Li
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Tzu-Ming Liu
- Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
316
|
Zhong JX, Clegg JR, Ander EW, Peppas NA. Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization. J Biomed Mater Res A 2018; 106:1677-1686. [PMID: 29453807 DOI: 10.1002/jbm.a.36371] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/24/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018.
Collapse
Affiliation(s)
- Justin X Zhong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas
| | - John R Clegg
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas.,Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Eric W Ander
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas.,Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas.,Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas.,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas.,Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
317
|
Zhou S, Zhu J, Li Y, Feng L. A high brightness probe of polymer nanoparticles for biological imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:228-235. [PMID: 29149694 DOI: 10.1016/j.saa.2017.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of ~75nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.
Collapse
Affiliation(s)
- Sirong Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Jiarong Zhu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Yaping Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
318
|
Lin LR, Xiao Y, Liu W, Chen YY, Zhu XZ, Gao ZX, Gao K, Tong ML, Zhang HL, Li SL, Lin HL, Li WD, Liang XM, Lin Y, Liu LL, Yang TC. Development of tissue inflammation accompanied by NLRP3 inflammasome activation in rabbits infected with Treponema pallidum strain Nichols. BMC Infect Dis 2018; 18:101. [PMID: 29490620 PMCID: PMC5831842 DOI: 10.1186/s12879-018-2993-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background The inflammasome responses in Treponema pallidum infection have been poorly understood to date. This study aimed to investigate the expression of the nucleotide-binding leucine-rich receptor protein 3 (NLRP3) inflammasome in the development of tissue inflammation in rabbits infected with T. pallidum. Methods Forty-five rabbits were randomly assigned to a blank group or an infection group, and the latter was divided into no benzathine penicillin G (BPG) and BPG treatment subgroups. Rabbits in the infection group were injected intradermally with 0.1 mL of a 107/mL T. pallidum suspension at 10 marked sites along the back, and the blank group was treated with normal saline. The BPG treatment subgroup received 200,000 U of BPG administered intramuscularly twice, at 14 d and 21 d post-infection. The development of lesions was observed, and biopsies of the injection site and various organs, including the kidney, liver, spleen, lung, and testis, were obtained for NLRP3, caspase-1, and interleukin-1β (IL-1β) mRNA analysis during infection. Blood was also collected for the determination of IL-1β concentration. Results Rabbits infected with T. pallidum (both the BPG treatment and no BPG treatment subgroups), exhibited NLRP3 inflammasome activation and IL-1β secretion in cutaneous lesions, showing a trend in elevation to decline; NLRP3 mRNA expression reached a peak at 18 d in the BPG treatment subgroup and 21 d in the no BPG treatment subgroup and returned to “normal” levels [vs. the blank group (P > 0.05)] at 42 d post-infection. The trend was similar to the change in cutaneous lesions in the infected rabbits, which reached a peak at 16 d in the BPG treatment subgroup and 18 d in the no BPG treatment subgroup. NLRP3, caspase-1, and IL-1β mRNA expression levels were slightly different in different organs. NLRP3 inflammasome activation was also observed in the kidney, liver, lung, spleen and testis. IL-1β expression was observed in the kidney, liver, lung and spleen; however, there was no detectable level of IL-1β in the testes of the infected rabbits. Conclusions This study established a clear link between NLRP3 inflammasome activation and the development of tissue inflammation in rabbits infected with T. pallidum. BPG therapy imperceptibly adjusted syphilitic inflammation.
Collapse
Affiliation(s)
- Li-Rong Lin
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Yao Xiao
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Wei Liu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Yu-Yan Chen
- Xiamen Fifth Hospital, Xiamen, Fujian Province, China
| | - Xiao-Zhen Zhu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Zheng-Xiang Gao
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Kun Gao
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Man-Li Tong
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Hui-Lin Zhang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Shu-Lian Li
- Xiamen Huli District Maternity and Child Care Hospital, Xiamen, Fujian Province, China
| | - Hui-Ling Lin
- Xiamen Huli District Maternity and Child Care Hospital, Xiamen, Fujian Province, China
| | - Wen-Dong Li
- Xiamen Huli District Maternity and Child Care Hospital, Xiamen, Fujian Province, China
| | - Xian-Ming Liang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Yong Lin
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China. .,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China.
| | - Li-Li Liu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China. .,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China.
| | - Tian-Ci Yang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China. .,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China.
| |
Collapse
|
319
|
Yao S, Fan J, Chen Z, Zong Y, Zhang J, Sun Z, Zhang L, Tai R, Liu Z, Chen C, Jiang H. Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells. IUCRJ 2018; 5:141-149. [PMID: 29765603 PMCID: PMC5947718 DOI: 10.1107/s2052252517017912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/15/2017] [Indexed: 05/20/2023]
Abstract
Knowledge of the interactions between nanomaterials and large-size mammalian cells, including cellular uptake, intracellular localization and translocation, has greatly advanced nanomedicine and nanotoxicology. Imaging techniques that can locate nanomaterials within the structures of intact large-size cells at nanoscale resolution play crucial roles in acquiring this knowledge. Here, the quantitative imaging of intracellular nanomaterials in three dimensions was performed by combining dual-energy contrast X-ray microscopy and an iterative tomographic algorithm termed equally sloped tomography (EST). Macrophages with a size of ∼20 µm that had been exposed to the potential antitumour agent [Gd@C82(OH)22] n were investigated. Large numbers of nanoparticles (NPs) aggregated within the cell and were mainly located in phagosomes. No NPs were observed in the nucleus. Imaging of the nanomedicine within whole cells advanced the understanding of the high-efficiency antitumour activity and the low toxicity of this agent. This imaging technique can be used to probe nanomaterials within intact large-size cells at nanometre resolution uniformly in three dimensions and may greatly benefit the fields of nanomedicine and nanotoxicology.
Collapse
Affiliation(s)
- Shengkun Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
| | - Jiadong Fan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
| | - Zhiyun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People’s Republic of China
| | - Yunbing Zong
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| | - Jianhua Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| | - Zhibin Sun
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, 239 Zhangheng Road, Pudong New District, Shanghai 201204, People’s Republic of China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, 239 Zhangheng Road, Pudong New District, Shanghai 201204, People’s Republic of China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People’s Republic of China
| | - Huaidong Jiang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| |
Collapse
|
320
|
Abdollah MRA, Carter TJ, Jones C, Kalber TL, Rajkumar V, Tolner B, Gruettner C, Zaw-Thin M, Baguña Torres J, Ellis M, Robson M, Pedley RB, Mulholland P, T M de Rosales R, Chester KA. Fucoidan Prolongs the Circulation Time of Dextran-Coated Iron Oxide Nanoparticles. ACS NANO 2018; 12:1156-1169. [PMID: 29341587 DOI: 10.1021/acsnano.7b06734] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The magnetic properties and safety of dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) have facilitated their clinical use as MRI contrast agents and stimulated research on applications for SPIONs in particle imaging and magnetic hyperthermia. The wider clinical potential of SPIONs, however, has been limited by their rapid removal from circulation via the reticuloendothelial system (RES). We explored the possibility of extending SPION circulatory time using fucoidan, a seaweed-derived food supplement, to inhibit RES uptake. The effects of fucoidan on SPION biodistribution were evaluated using ferucarbotran, which in its pharmaceutical formulation (Resovist) targets the RES. Ferucarbotran was radiolabeled at the iron oxide core with technetium-99m (99mTc; t1/2 = 6 h) or zirconium-89 (89Zr; t1/2 = 3.3 days). Results obtained with 99mTc-ferucarbotran demonstrated that administration of fucoidan led to a 4-fold increase in the circulatory half-life (t1/2 slow) from 37.4 to 150 min (n = 4; P < 0.0001). To investigate whether a longer circulatory half-life could lead to concomitant increased tumor uptake, the effects of fucoidan were tested with 89Zr-ferucarbotran in mice bearing syngeneic subcutaneous (GL261) tumors. In this model, the longer circulatory half-life achieved with fucoidan was associated with a doubling in tumor SPION uptake (n = 5; P < 0.001). Fucoidan was also effective in significantly increasing the circulatory half-life of perimag-COOH, a commercially available SPION with a larger hydrodynamic size (130 nm) than ferucarbotran (65 nm). These findings indicate successful diversion of SPIONs away from the hepatic RES and show realistic potential for future clinical applications.
Collapse
Affiliation(s)
- Maha R A Abdollah
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE) , El Shorouk City, Misr- Ismalia Desert Road, Cairo 11837, Egypt
| | - Thomas J Carter
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - Clare Jones
- School of Biomedical Engineering & Imaging Sciences, King's College London (KCL) , St Thomas' Hospital, London SE1 7EH, U.K
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London , London WC1E 6DD, U.K
| | - Vineeth Rajkumar
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - Berend Tolner
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - Cordula Gruettner
- Micromod Partikeltechnologie GmbH , Friedrich-Barnewitz-Str. 4, D-18119 Rostock, Germany
| | - May Zaw-Thin
- Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London , London WC1E 6DD, U.K
| | - Julia Baguña Torres
- School of Biomedical Engineering & Imaging Sciences, King's College London (KCL) , St Thomas' Hospital, London SE1 7EH, U.K
| | - Matthew Ellis
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Institute of Neurology (ION), University College London (UCL) , Queen Square, London WC1N 3BG, U.K
| | - Mathew Robson
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - R Barbara Pedley
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - Paul Mulholland
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London (KCL) , St Thomas' Hospital, London SE1 7EH, U.K
| | - Kerry Ann Chester
- UCL Cancer Institute, University College London (UCL) , Paul O'Gorman Building, 72 Huntley Street, London WC1E 6JD, U.K
| |
Collapse
|
321
|
Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2018; 119:6459-6506. [PMID: 29465222 DOI: 10.1021/acs.chemrev.7b00663] [Citation(s) in RCA: 576] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.
Collapse
Affiliation(s)
- Qinqin Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China.,Research & Development Center, Shandong Buchang Pharmaceutical Company, Limited, Heze 274000 , China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China.,Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
322
|
Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, Miller MA, Carlson JC, Freeman GJ, Anthony RM, Weissleder R, Pittet MJ. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 2018; 9:9/389/eaal3604. [PMID: 28490665 DOI: 10.1126/scitranslmed.aal3604] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/07/2016] [Accepted: 03/16/2017] [Indexed: 12/11/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the immune checkpoint anti-programmed cell death protein 1 (aPD-1) have demonstrated impressive benefits for the treatment of some cancers; however, these drugs are not always effective, and we still have a limited understanding of the mechanisms that contribute to their efficacy or lack thereof. We used in vivo imaging to uncover the fate and activity of aPD-1 mAbs in real time and at subcellular resolution in mice. We show that aPD-1 mAbs effectively bind PD-1+ tumor-infiltrating CD8+ T cells at early time points after administration. However, this engagement is transient, and aPD-1 mAbs are captured within minutes from the T cell surface by PD-1- tumor-associated macrophages. We further show that macrophage accrual of aPD-1 mAbs depends both on the drug's Fc domain glycan and on Fcγ receptors (FcγRs) expressed by host myeloid cells and extend these findings to the human setting. Finally, we demonstrate that in vivo blockade of FcγRs before aPD-1 mAb administration substantially prolongs aPD-1 mAb binding to tumor-infiltrating CD8+ T cells and enhances immunotherapy-induced tumor regression in mice. These investigations yield insight into aPD-1 target engagement in vivo and identify specific Fc/FcγR interactions that can be modulated to improve checkpoint blockade therapy.
Collapse
Affiliation(s)
- Sean P Arlauckas
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Maya Kitaoka
- Center for Immunology and Infectious Disease, Massachusetts General Hospital, 149 8th Street, Charlestown, MA 02129, USA
| | - Michael F Cuccarese
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Katherine S Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Jonathan C Carlson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robert M Anthony
- Center for Immunology and Infectious Disease, Massachusetts General Hospital, 149 8th Street, Charlestown, MA 02129, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA. .,Department of Radiology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| |
Collapse
|
323
|
|
324
|
Chen MW, Zhang X, Lu LJ, Zhang F, Duan XH, Zheng CS, Chen YY, Shen J. Monitoring of macrophage recruitment enhanced by Toll-like receptor 4 activation with MR imaging in nerve injury. Muscle Nerve 2018; 58:123-132. [PMID: 29424947 DOI: 10.1002/mus.26097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Macrophage recruitment is critical for nerve regeneration after an injury. The aim of this study was to investigate whether ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle-based MRI could be used to monitor the enhanced macrophage recruitment by Toll-like receptor 4 (TLR4) activation in nerve injury. METHODS Rats received intraperitoneal injections of either lipopolysaccharide (LPS) or phosphate buffered saline (PBS) or no injection (controls) after a sciatic nerve crush injury. After intravenous injection of the USPIOs (LPS and PBS groups) or PBS (control group), MRI was performed and correlated with histological findings. RESULTS LPS group showed more remarkable hypointense signals on T2*-weighted imaging and lower T2 values in the crushed nerves than PBS group. The hypointense signal areas were associated with an enhanced recruitment of iron-loaded macrophages to the injured nerves. DISCUSSION USPIO-enhanced MRI can be used to monitor the enhanced macrophage recruitment by means of TLR4 signal pathway activation in nerve injury. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Mei-Wei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Lie-Jing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Chu-Shan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Yue-Yao Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| |
Collapse
|
325
|
Helfen A, Roth J, Ng T, Eisenblaetter M. In Vivo Imaging of Pro- and Antitumoral Cellular Components of the Tumor Microenvironment. J Nucl Med 2018; 59:183-188. [PMID: 29217734 DOI: 10.2967/jnumed.117.198952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Tumor development and growth, as well as metastatic spread, are strongly influenced by various, mostly innate, immune cells, which are recruited to the tumor site and driven to establish a specific tumor-supportive microenvironment. The contents of this microenvironment, such as myeloid cells, are a major factor in the overall prognosis of malignant disease, addressed by a constantly growing armament of therapeutic interventions targeting tumor-supportive immune cells. Current clinical imaging has long ignored the growing need for diagnostic approaches addressing these microenvironmental contents-approaches enabling a sensitive and specific classification of tumor immune crosstalk and the resulting tumor-associated immune cell activity. In this focus article we review the present status of, and promising developments in, the in vivo molecular imaging of tumor immune components designed to allow for inferences to be made on the cross-talk between tumor cells and the immune system. Current imaging modalities based on the infiltrating cell types are briefly discussed.
Collapse
Affiliation(s)
- Anne Helfen
- Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Muenster, Muenster, Germany
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, Department of Research Oncology, Guy's Hospital, King's College London, London, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Michel Eisenblaetter
- Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
326
|
Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, Wiesner UB, Yang L, Grodzinski P. Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS NANO 2018; 12:24-43. [PMID: 29257865 PMCID: PMC6589353 DOI: 10.1021/acsnano.7b05108] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ongoing research into the application of nanotechnology for cancer treatment and diagnosis has demonstrated its advantages within contemporary oncology as well as its intrinsic limitations. The National Cancer Institute publishes the Cancer Nanotechnology Plan every 5 years since 2005. The most recent iteration helped codify the ongoing basic and translational efforts of the field and displayed its breadth with several evolving areas. From merely a technological perspective, this field has seen tremendous growth and success. However, an incomplete understanding of human cancer biology persists relative to the application of nanoscale materials within contemporary oncology. As such, this review presents several evolving areas in cancer nanotechnology in order to identify key clinical and biological challenges that need to be addressed to improve patient outcomes. From this clinical perspective, a sampling of the nano-enabled solutions attempting to overcome barriers faced by traditional therapeutics and diagnostics in the clinical setting are discussed. Finally, a strategic outlook of the future is discussed to highlight the need for next-generation cancer nanotechnology tools designed to address critical gaps in clinical cancer care.
Collapse
Affiliation(s)
- Christopher M Hartshorn
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Corresponding Author,
| | - Michelle S Bradbury
- Department of Radiology and Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York, 10065, United States
| | - Gregory M Lanza
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63108, United States
| | - Andre E Nel
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jianghong Rao
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, California 94305, United States
| | - Andrew Z. Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14843, United States
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Piotr Grodzinski
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Corresponding Author,
| |
Collapse
|
327
|
Detection of ZrO₂ Nanoparticles in Lung Tissue Sections by Time-of-Flight Secondary Ion Mass Spectrometry and Ion Beam Microscopy. NANOMATERIALS 2018; 8:nano8010044. [PMID: 29342982 PMCID: PMC5791131 DOI: 10.3390/nano8010044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/15/2017] [Accepted: 12/28/2017] [Indexed: 12/31/2022]
Abstract
The increasing use of nanoparticles (NP) in commercial products requires elaborated techniques to detect NP in the tissue of exposed organisms. However, due to the low amount of material, the detection and exact localization of NP within tissue sections is demanding. In this respect, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Ion Beam Microscopy (IBM) are promising techniques, because they both offer sub-micron lateral resolutions along with high sensitivities. Here, we compare the performance of the non-material-consumptive IBM and material-consumptive ToF-SIMS for the detection of ZrO2 NP (primary size 9–10 nm) in rat lung tissue. Unfixed or methanol-fixed air-dried cryo-sections were subjected to IBM using proton beam scanning or to three-dimensional ToF-SIMS (3D ToF-SIMS) using either oxygen or argon gas cluster ion beams for complete sample sputtering. Some sample sites were analyzed first by IBM and subsequently by 3D ToF-SIMS, to compare results from exactly the same site. Both techniques revealed that ZrO2 NP particles occurred mostly agglomerated in phagocytic cells with only small quantities being associated to the lung epithelium, with Zr, S, and P colocalized within the same biological structures. However, while IBM provided quantitative information on element distribution, 3D ToF-SIMS delivered a higher lateral resolution and a lower limit of detection under these conditions. We, therefore, conclude that 3D ToF-SIMS, although not yet a quantitative technique, is a highly valuable tool for the detection of NP in biological tissue.
Collapse
|
328
|
Abstract
Multifunctional nanoparticles with superior imaging properties and therapeutic effects have been extensively developed for the nanomedicine. However, tumor-intrinsic barriers and tumor heterogeneity have resulted in low in vivo therapeutic efficacy. The poor in vivo targeting efficiency in passive and active targeting of nanotherapeutics along with the toxicity of nanoparticles has been a major problem in nanomedicine. Recently, image-guided nanomedicine, which can deliver nanoparticles locally using non-invasive imaging and interventional oncology techniques, has been paid attention as a new opportunity of nanomedicine. This short review will discuss the existing challenges in nanomedicine and describe the prospects for future image-guided nanomedicine.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
| |
Collapse
|
329
|
Pham BTT, Colvin EK, Pham NTH, Kim BJ, Fuller ES, Moon EA, Barbey R, Yuen S, Rickman BH, Bryce NS, Bickley S, Tanudji M, Jones SK, Howell VM, Hawkett BS. Biodistribution and Clearance of Stable Superparamagnetic Maghemite Iron Oxide Nanoparticles in Mice Following Intraperitoneal Administration. Int J Mol Sci 2018; 19:E205. [PMID: 29320407 PMCID: PMC5796154 DOI: 10.3390/ijms19010205] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/17/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022] Open
Abstract
Nanomedicine is an emerging field with great potential in disease theranostics. We generated sterically stabilized superparamagnetic iron oxide nanoparticles (s-SPIONs) with average core diameters of 10 and 25 nm and determined the in vivo biodistribution and clearance profiles. Healthy nude mice underwent an intraperitoneal injection of these s-SPIONs at a dose of 90 mg Fe/kg body weight. Tissue iron biodistribution was monitored by atomic absorption spectroscopy and Prussian blue staining. Histopathological examination was performed to assess tissue toxicity. The 10 nm s-SPIONs resulted in higher tissue-iron levels, whereas the 25 nm s-SPIONs peaked earlier and cleared faster. Increased iron levels were detected in all organs and body fluids tested except for the brain, with notable increases in the liver, spleen, and the omentum. The tissue-iron returned to control or near control levels within 7 days post-injection, except in the omentum, which had the largest and most variable accumulation of s-SPIONs. No obvious tissue changes were noted although an influx of macrophages was observed in several tissues suggesting their involvement in s-SPION sequestration and clearance. These results demonstrate that the s-SPIONs do not degrade or aggregate in vivo and intraperitoneal administration is well tolerated, with a broad and transient biodistribution. In an ovarian tumor model, s-SPIONs were shown to accumulate in the tumors, highlighting their potential use as a chemotherapy delivery agent.
Collapse
Affiliation(s)
- Binh T T Pham
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW 2065, Australia.
- Sydney Medical School-Northern, University of Sydney, Sydney, NSW 2006, Australia.
| | - Nguyen T H Pham
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Byung J Kim
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Emily S Fuller
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW 2065, Australia.
- Sydney Medical School-Northern, University of Sydney, Sydney, NSW 2006, Australia.
| | - Elizabeth A Moon
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW 2065, Australia.
| | - Raphael Barbey
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Samuel Yuen
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW 2065, Australia.
| | - Barry H Rickman
- Sydney School of Veterinary Science, University of Sydney Teaching Hospital Camden, Camden, NSW 2570, Australia.
| | - Nicole S Bryce
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | | | - Marcel Tanudji
- Sirtex Medical Limited, North Sydney, NSW 2060, Australia.
| | | | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW 2065, Australia.
- Sydney Medical School-Northern, University of Sydney, Sydney, NSW 2006, Australia.
| | - Brian S Hawkett
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
330
|
Song G, Chen M, Zhang Y, Cui L, Qu H, Zheng X, Wintermark M, Liu Z, Rao J. Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging. NANO LETTERS 2018; 18:182-189. [PMID: 29232142 PMCID: PMC5995329 DOI: 10.1021/acs.nanolett.7b03829] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Iron oxides nanoparticles tailored for magnetic particle imaging (MPI) have been synthesized, and their MPI signal intensity is three-times that of commercial MPI contrast (Ferucarbotran, also called Vivotrax) and seven-times that of MRI contrast (Feraheme) at the same Fe concentration. MPI tailored iron oxide nanoparticles were encapsulated with semiconducting polymers to produce Janus nanoparticles that possessed optical and magnetic properties for MPI and fluorescence imaging. Janus particles were applied to cancer cell labeling and in vivo tracking, and as few as 250 cells were imaged by MPI after implantation, corresponding to an amount of 7.8 ng of Fe. Comparison with MRI and fluorescence imaging further demonstrated the advantages of our Janus particles for MPI-super sensitivity, unlimited tissue penetration, and linear quantitativity.
Collapse
Affiliation(s)
- Guosheng Song
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California, 94305-5484, USA
| | - Min Chen
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California, 94305-5484, USA
| | - Yanrong Zhang
- Department of Radiology, Neuroimaging and Neurointervention Division Stanford University Hospital 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Liyang Cui
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California, 94305-5484, USA
| | - Haibo Qu
- Department of Radiology, Neuroimaging and Neurointervention Division Stanford University Hospital 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Xianchuang Zheng
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California, 94305-5484, USA
| | - Max Wintermark
- Department of Radiology, Neuroimaging and Neurointervention Division Stanford University Hospital 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California, 94305-5484, USA
| |
Collapse
|
331
|
Martinez JO, Molinaro R, Hartman KA, Boada C, Sukhovershin R, De Rosa E, Kuri D, Zhang S, Evangelopoulos M, Carter AM, Bibb JA, Cooke JP, Tasciotti E. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics 2018; 8:1131-1145. [PMID: 29464004 PMCID: PMC5817115 DOI: 10.7150/thno.22078] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/09/2017] [Indexed: 12/30/2022] Open
Abstract
Activation of the vascular endothelium is characterized by increased expression of vascular adhesion molecules and chemokines. This activation occurs early in the progression of several diseases and triggers the recruitment of leukocytes. Inspired by the tropism of leukocytes, we investigated leukocyte-based biomimetic nanoparticles (i.e., leukosomes) as a novel theranostic platform for inflammatory diseases. Methods: Leukosomes were assembled by combining phospholipids and membrane proteins from leukocytes. For imaging applications, phospholipids modified with rhodamine and gadolinium were used. Leukosomes incubated with antibodies blocking lymphocyte function-associated antigen 1 (LFA-1) and CD45 were administered to explore their roles in targeting inflammation. In addition, relaxometric assessment of NPs was evaluated. Results: Liposomes and leukosomes were both spherical in shape with sizes ranging from 140-170 nm. Both NPs successfully integrated 8 and 13 µg of rhodamine and gadolinium, respectively, and demonstrated less than 4% variation in physicochemical features. Leukosomes demonstrated a 16-fold increase in breast tumor accumulation relative to liposomes. Furthermore, quantification of leukosomes in tumor vessels demonstrated a 4.5-fold increase in vessel lumens and a 14-fold increase in vessel walls. Investigating the targeting mechanism of action revealed that blockage of LFA-1 on leukosomes resulted in a 95% decrease in tumor accumulation. Whereas blockage of CD45 yielded a 60% decrease in targeting and significant increases in liver and spleen accumulation. In addition, when administered in mice with atherosclerotic plaques, leukosomes exhibited a 4-fold increase in the targeting of inflammatory vascular lesions. Lastly, relaxometric assessment of NPs demonstrated that the incorporation of membrane proteins into leukosomes did not impact the r1 and r2 relaxivities of the NPs, demonstrating 6 and 30 mM-1s-1, respectively. Conclusion: Our study demonstrates the ability of leukosomes to target activated vasculature and exhibit superior accumulation in tumors and vascular lesions. The versatility of the phospholipid backbone within leukosomes permits the incorporation of various contrast agents. Furthermore, leukosomes can potentially be loaded with therapeutics possessing diverse physical properties and thus warrant further investigation toward the development of powerful theranostic agents.
Collapse
|
332
|
Kratz H, Taupitz M, Ariza de Schellenberger A, Kosch O, Eberbeck D, Wagner S, Trahms L, Hamm B, Schnorr J. Novel magnetic multicore nanoparticles designed for MPI and other biomedical applications: From synthesis to first in vivo studies. PLoS One 2018; 13:e0190214. [PMID: 29300729 PMCID: PMC5754082 DOI: 10.1371/journal.pone.0190214] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Synthesis of novel magnetic multicore particles (MCP) in the nano range, involves alkaline precipitation of iron(II) chloride in the presence of atmospheric oxygen. This step yields green rust, which is oxidized to obtain magnetic nanoparticles, which probably consist of a magnetite/maghemite mixed-phase. Final growth and annealing at 90°C in the presence of a large excess of carboxymethyl dextran gives MCP very promising magnetic properties for magnetic particle imaging (MPI), an emerging medical imaging modality, and magnetic resonance imaging (MRI). The magnetic nanoparticles are biocompatible and thus potential candidates for future biomedical applications such as cardiovascular imaging, sentinel lymph node mapping in cancer patients, and stem cell tracking. The new MCP that we introduce here have three times higher magnetic particle spectroscopy performance at lower and middle harmonics and five times higher MPS signal strength at higher harmonics compared with Resovist®. In addition, the new MCP have also an improved in vivo MPI performance compared to Resovist®, and we here report the first in vivo MPI investigation of this new generation of magnetic nanoparticles.
Collapse
Affiliation(s)
- Harald Kratz
- Charité –Universitätsmedizin Berlin, Institute of Radiology, Berlin, Germany
| | - Matthias Taupitz
- Charité –Universitätsmedizin Berlin, Institute of Radiology, Berlin, Germany
| | | | - Olaf Kosch
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Susanne Wagner
- Charité –Universitätsmedizin Berlin, Institute of Radiology, Berlin, Germany
| | - Lutz Trahms
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Bernd Hamm
- Charité –Universitätsmedizin Berlin, Institute of Radiology, Berlin, Germany
| | - Jörg Schnorr
- Charité –Universitätsmedizin Berlin, Institute of Radiology, Berlin, Germany
| |
Collapse
|
333
|
Marín-Barba M, Gavilán H, Gutiérrez L, Lozano-Velasco E, Rodríguez-Ramiro I, Wheeler GN, Morris CJ, Morales MP, Ruiz A. Unravelling the mechanisms that determine the uptake and metabolism of magnetic single and multicore nanoparticles in a Xenopus laevis model. NANOSCALE 2018; 10:690-704. [PMID: 29242877 DOI: 10.1039/c7nr06020c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multicore superparamagnetic nanoparticles have been proposed as ideal tools for some biomedical applications because of their high magnetic moment per particle, high specific surface area and long term colloidal stability. Through controlled aggregation and packing of magnetic cores it is possible to obtain not only single-core but also multicore and hollow spheres with internal voids. In this work, we compare toxicological properties of single and multicore nanoparticles. Both types of particles showed moderate in vitro toxicity (MTT assay) tested in Hep G2 (human hepatocellular carcinoma) and Caco-2 (human colorectal adenocarcinoma) cells. The influence of surface chemistry in their biological behavior was also studied after functionalization with O,O'-bis(2-aminoethyl) PEG (2000 Da). For the first time, these nanoparticles were evaluated in a Xenopus laevis model studying their whole organism toxicity and their impact upon iron metabolism. The degree of activation of the metabolic pathway depends on the size and surface charge of the nanoparticles which determine their uptake. The results also highlight the potential of Xenopus laevis model bridging the gap between in vitro cell-based assays and rodent models for toxicity assessment to develop effective nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- M Marín-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Yoon SH, Lee C, Park J, Goo JM, Park JY. In-vivo Visualization of Iron Oxide Enhancement in Focal Pulmonary Inflammatory Lesions Using a Three-Dimensional Radial Gradient-Echo-Based Ultrashort Echo Time Sequence: A Preliminary Study. Korean J Radiol 2018; 19:153-157. [PMID: 29354012 PMCID: PMC5768497 DOI: 10.3348/kjr.2018.19.1.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022] Open
Abstract
Objective To preliminarily evaluate technical feasibility of a dual-echo ultrashort echo time (UTE) subtraction MR imaging by using concurrent dephasing and excitation (CODE) sequence for visualization of iron-oxide enhancement in focal inflammatory pulmonary lesions. Materials and Methods A UTE pulmonary MR imaging before and after the injection of clinically usable superparamagnetic iron-oxide nanoparticles, ferumoxytol, was conducted using CODE sequence with dual echo times of 0.14 ms for the first echo and 4.15 ms for the second echo on 3T scanner in two rabbits concurrently having granulomatous lung disease and lung cancer in separate lobes. A mean ratio of standardized signal intensity (SI) was calculated for comparison of granulomatous lesion and cancer at first echo, second echo, and subtracted images. Lesions were pathologically evaluated with Prussian blue and immunohistochemistry staining. Results Post-contrast subtracted CODE images visualized exclusive enhancement of iron oxide in granulomatous disease, but not in the cancer (mean ratio of SI, 2.15 ± 0.68 for granulomatous lesion versus 1.00 ± 0.07 for cancer; p value = 0.002). Prussian blue and corresponding anti-rabbit macrophage IgG-staining suggested an intracellular uptake of iron-oxide nanoparticles in macrophages of granulomatous lesions. Conclusion Dual-echo UTE subtraction MR imaging using CODE sequence depicts an exclusive positive enhancement of iron-oxide nanoparticle in rabbits in focal granulomatous inflammatory lesions.
Collapse
Affiliation(s)
- Soon Ho Yoon
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Chanhee Lee
- Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon 16419, Korea
| | - Jinil Park
- Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon 16419, Korea
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Jang-Yeon Park
- Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
335
|
Kevadiya BD, Woldstad C, Ottemann BM, Dash P, Sajja BR, Lamberty B, Morsey B, Kocher T, Dutta R, Bade AN, Liu Y, Callen SE, Fox HS, Byrareddy SN, McMillan JM, Bronich TK, Edagwa BJ, Boska MD, Gendelman HE. Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution. Theranostics 2018; 8:256-276. [PMID: 29290806 PMCID: PMC5743473 DOI: 10.7150/thno.22764] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/06/2017] [Indexed: 01/23/2023] Open
Abstract
RATIONALE Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, "multimodal imaging theranostic nanoprobes" were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy.
Collapse
Affiliation(s)
- Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Brendan M. Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prasanta Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Benjamin Lamberty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rinku Dutta
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon E. Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn M. McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael D. Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
336
|
Raudonyte-Svirbutaviciene E, Neagu A, Vickackaite V, Jasulaitiene V, Zarkov A, Tai CW, Katelnikovas A. Two-step photochemical inorganic approach to the synthesis of Ag-CeO2 nanoheterostructures and their photocatalytic activity on tributyltin degradation. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
337
|
Wang J, Barback CV, Ta CN, Weeks J, Gude N, Mattrey RF, Blair SL, Trogler WC, Lee H, Kummel AC. Extended Lifetime In Vivo Pulse Stimulated Ultrasound Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:222-229. [PMID: 28829305 PMCID: PMC5868352 DOI: 10.1109/tmi.2017.2740784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An on-demand long-lived ultrasound contrast agent that can be activated with single pulse stimulated imaging (SPSI) has been developed using hard shell liquid perfluoropentane filled silica 500-nm nanoparticles for tumor ultrasound imaging. SPSI was tested on LnCAP prostate tumor models in mice; tumor localization was observed after intravenous (IV) injection of the contrast agent. Consistent with enhanced permeability and retention, the silica nanoparticles displayed an extended imaging lifetime of 3.3±1 days (mean±standard deviation). With added tumor specific folate functionalization, the useful lifetime was extended to 12 ± 2 days; in contrast to ligand-based tumor targeting, the effect of the ligands in this application is enhanced nanoparticle retention by the tumor. This paper demonstrates for the first time that IV injected functionalized silica contrast agents can be imaged with an in vivo lifetime ~500 times longer than current microbubble-based contrast agents. Such functionalized long-lived contrast agents may lead to new applications in tumor monitoring and therapy.
Collapse
|
338
|
Derivatives of 2,5-Diaryl-1,3-Oxazole and 2,5-Diaryl-1,3,4-Oxadiazole as Environment-Sensitive Fluorescent Probes for Studies of Biological Membranes. REVIEWS IN FLUORESCENCE 2017 2018. [DOI: 10.1007/978-3-030-01569-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
339
|
De Matteis V, Rinaldi R. Toxicity Assessment in the Nanoparticle Era. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:1-19. [PMID: 29453529 DOI: 10.1007/978-3-319-72041-8_1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The wide use of engineered nanomaterials in many fields, ranging from biomedical, agriculture, environment, cosmetic, urged the scientific community to understand the processes behind their potential toxicity, in order to develop new strategies for human safety. As a matter of fact, there is a big discrepancy between the increased classes of nanoparticles and the consequent applications versus their toxicity assessment. Nanotoxicology is defined as the science that studies the effects of engineered nanodevices and nanostructures in living organisms. This chapter analyzes the physico-chemical properties of the most used nanoparticles, the way they enter the living organism and their cytoxicity mechanisms at cellular exposure level. Moreover, the current state of nanoparticles risk assessment is reported and analyzed.
Collapse
Affiliation(s)
- Valeria De Matteis
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italy.
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italy
| |
Collapse
|
340
|
Katsuki S, Matoba T, Koga JI, Nakano K, Egashira K. Anti-inflammatory Nanomedicine for Cardiovascular Disease. Front Cardiovasc Med 2017; 4:87. [PMID: 29312961 PMCID: PMC5743792 DOI: 10.3389/fcvm.2017.00087] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease, in the development of which inflammation mediated by innate immune cells plays a critical role, is one of the leading causes of death worldwide. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are a widely used lipid-lowering drug that has lipid-independent vasculoprotective effects, such as improvement of endothelial dysfunction, antioxidant properties, and inhibitory effects on inflammation. Despite recent advances in lipid-lowering therapy, clinical trials of statins suggest that anti-inflammatory therapy beyond lipid-lowering therapy is indispensible to further reduce cardiovascular events. One possible therapeutic option to the residual risk is to directly intervene in the inflammatory process by utilizing a nanotechnology-based drug delivery system (nano-DDS). Various nano-sized materials are currently developed as DDS, including micelles, liposomes, polymeric nanoparticles, dendrimers, carbon nanotubes, and metallic nanoparticles. The application of nano-DDS to coronary artery disease is a feasible strategy since the inflammatory milieu enhances incorporation of nano-sized materials into mononuclear phagocytic system and permeability of target lesions, which confers nano-DDS on “passive-targeting” property. Recently, we have developed a polymeric nanoparticle-incorporating statin to maximize its anti-inflammatory property. This statin nanoparticle has been tested in various disease models, including plaque destabilization and rupture, myocardial ischemia-reperfusion injury, and ventricular remodeling after acute myocardial infarction, and its clinical application is in progress. In this review, we present current development of DDS and future perspective on the application of anti-inflammatory nanomedicine to treat life-threatening cardiovascular diseases.
Collapse
Affiliation(s)
- Shunsuke Katsuki
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jun-Ichiro Koga
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation, Kyushu University, Fukuoka, Japan
| | - Kaku Nakano
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation, Kyushu University, Fukuoka, Japan
| | - Kensuke Egashira
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
341
|
Ochando J, Braza MS. Nanoparticle-Based Modulation and Monitoring of Antigen-Presenting Cells in Organ Transplantation. Front Immunol 2017; 8:1888. [PMID: 29312352 PMCID: PMC5743935 DOI: 10.3389/fimmu.2017.01888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Donor-specific unresponsiveness while preserving an intact immune function remains difficult to achieve in organ transplantation. Induction of tolerance requires a fine modulation of the interconnected innate and adaptive immune systems. Antigen-presenting cells (APCs) predominate during allograft rejection and create a highly inflammatory context where allospecific T cells are primed. Currently, the available protocols to prevent allograft rejection include a cocktail of drugs that are efficient in the short-term, but with severe long-term side effects and considerable toxicity. Consequently, better and less burdensome strategies are needed to promote indefinite allograft survival. Targeted delivery of immunosuppressive drugs that prevent the alloimmune response may address some of these problems. Nanoparticle-based approaches represent a promising strategy to negatively modulate the alloresponse by specifically delivering small compounds to APCs in vivo. Nanoparticles are also used as integrating imaging moieties to monitor inflammation for diagnostic purposes. Therefore, nanotechnology approaches represent an attractive strategy to deliver and monitor the efficacy of immunosuppressive therapy in organ transplantation with the potential to improve the clinical treatment of transplant patients.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, United States
| | - Mounia S Braza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, United States
| |
Collapse
|
342
|
Gao J, Li R, Wang F, Liu X, Zhang J, Hu L, Shi J, He B, Zhou Q, Song M, Zhang B, Qu G, Liu S, Jiang G. Determining the Cytotoxicity of Rare Earth Element Nanoparticles in Macrophages and the Involvement of Membrane Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13938-13948. [PMID: 29121463 DOI: 10.1021/acs.est.7b04231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rare earthelement nanomaterials (REE NPs) hold considerable promise, with high availability and potential applications as superconductors, imaging agents, glass additives, fertilizers additives and feed additives. These results in potential REE NP exposure to humans and the environment through different routes and adverse effects induced by biological application of these materials are becoming an increasing concern. This study investigates the cytotoxicity of REE NPs: nLa2O3, nEu2O3, nDy2O3 and nYb2O3 from 2.5 to 80 μg/mL, in macrophages. A significant difference was observed in the extent of cytotoxicity induced in macrophages by differential REE NPs. The high-atomic number materials (i.e., nYb2O3) tending to be no toxic whereas low-atomic number materials (nLa2O3 and nEu2O3 and nDy2O3) induced 75.1%, 53.6% and 20.7% dead cells. With nLa2O3 as the representative material, we demonstrated that nLa2O3 induced cellular membrane permeabilization, through the sequestration of phosphates from membrane. The further mechanistic investigation established that membrane damage induced intracellular calcium increased to 3.0- to 7.3-fold compared to control cells. This caused the sustained overload of mitochondrial calcium by approximately 2.4-fold, which regulated cell necrosis. In addition, the injury of cellular membrane led to the release of cathepsins into cytosol which also contributed to cell death. This detailed investigation of signaling pathways driving REE NP-induced toxicity to macrophages is essential for better understanding of their potential health risks to humans and the environment.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Ruibin Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou, Jiangsu 215123, People's Republic of China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Xiaolei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
343
|
Molecular insights for the biological interactions between polyethylene glycol and cells. Biomaterials 2017; 147:1-13. [DOI: 10.1016/j.biomaterials.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/18/2017] [Accepted: 09/02/2017] [Indexed: 12/13/2022]
|
344
|
Thapa B, Diaz-Diestra D, Beltran-Huarac J, Weiner BR, Morell G. Enhanced MRI T 2 Relaxivity in Contrast-Probed Anchor-Free PEGylated Iron Oxide Nanoparticles. NANOSCALE RESEARCH LETTERS 2017; 12:312. [PMID: 28454478 PMCID: PMC5407416 DOI: 10.1186/s11671-017-2084-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/16/2017] [Indexed: 05/19/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs, ~11-nm cores) were PEGylated without anchoring groups and studied as efficient MRI T 2 contrast agents (CAs). The ether group of PEG is efficiently and directly linked to the positively charged surface of SPIONs, and mediated through a dipole-cation covalent interaction. Anchor-free PEG-SPIONs exhibit a spin-spin relaxivity of 123 ± 6 mM-1s-1, which is higher than those of PEG-SPIONs anchored with intermediate biomolecules, iron oxide nanoworms, or Feridex. They do not induce a toxic response for Fe concentrations below 2.5 mM, as tested on four different cell lines with and without an external magnetic field. Magnetic resonance phantom imaging studies show that anchor-free PEG-SPIONs produce a significant contrast in the range of 0.1-0.4 [Fe] mM. Our findings reveal that the PEG molecules attached to the cores immobilize water molecules in large regions of ~85 nm, which would lead to blood half-life of a few tens of minutes. This piece of research represents a step forward in the development of next-generation CAs for nascent-stage cancer detection. Contrast-probed anchor-free PEGylated iron oxide contrast agent.
Collapse
Affiliation(s)
- Bibek Thapa
- Department of Physics, University of Puerto Rico, San Juan, PR 00931 USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926 USA
- Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 USA
| | - Daysi Diaz-Diestra
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926 USA
- Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 USA
- Department of Chemistry, University of Puerto Rico, San Juan, PR 00931 USA
| | - Juan Beltran-Huarac
- Department of Physics, University of Puerto Rico, San Juan, PR 00931 USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926 USA
| | - Brad R. Weiner
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926 USA
- Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 USA
- Department of Chemistry, University of Puerto Rico, San Juan, PR 00931 USA
| | - Gerardo Morell
- Department of Physics, University of Puerto Rico, San Juan, PR 00931 USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926 USA
- Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 USA
| |
Collapse
|
345
|
Fairclough M, Ellis B, Boutin H, Jones A, McMahon A, Alzabin S, Gennari A, Prenant C. Development of a method for the preparation of zirconium-89 radiolabelled chitosan nanoparticles as an application for leukocyte trafficking with positron emission tomography. Appl Radiat Isot 2017; 130:7-12. [DOI: 10.1016/j.apradiso.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023]
|
346
|
Jeong H, Alarcón‐Correa M, Mark AG, Son K, Lee T, Fischer P. Corrosion-Protected Hybrid Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700234. [PMID: 29270338 PMCID: PMC5737107 DOI: 10.1002/advs.201700234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/04/2017] [Indexed: 05/05/2023]
Abstract
Nanoparticles composed of functional materials hold great promise for applications due to their unique electronic, optical, magnetic, and catalytic properties. However, a number of functional materials are not only difficult to fabricate at the nanoscale, but are also chemically unstable in solution. Hence, protecting nanoparticles from corrosion is a major challenge for those applications that require stability in aqueous solutions and biological fluids. Here, this study presents a generic scheme to grow hybrid 3D nanoparticles that are completely encapsulated by a nm thick protective shell. The method consists of vacuum-based growth and protection, and combines oblique physical vapor deposition with atomic layer deposition. It provides wide flexibility in the shape and composition of the nanoparticles, and the environments against which particles are protected. The work demonstrates the approach with multifunctional nanoparticles possessing ferromagnetic, plasmonic, and chiral properties. The present scheme allows nanocolloids, which immediately corrode without protection, to remain functional, at least for a week, in acidic solutions.
Collapse
Affiliation(s)
- Hyeon‐Ho Jeong
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
- Institute of MaterialsÉcole Polytechnique Fédérale de Lausanne (EPFL)CH‐1015LausanneSwitzerland
| | - Mariana Alarcón‐Correa
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
- Institute for Physical ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Andrew G. Mark
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| | - Kwanghyo Son
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| | - Tung‐Chun Lee
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
- UCL Institute for Materials Discovery and Department of ChemistryUniversity College LondonChristopher Ingold Building, 20 Gordon StreetLondonWC1H 0AJUK
| | - Peer Fischer
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
- Institute for Physical ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
347
|
Liberale L, Dallegri F, Carbone F, Montecucco F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost 2017; 117:7-18. [PMID: 27683760 DOI: 10.1160/th16-08-0593] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
SummaryMacrophages are highly heterogeneous and plastic cells. They were shown to play a critical role in all stages of atherogenesis, from the initiation to the necrotic core formation and plaque rupture. Lesional macrophages primarily derive from blood monocyte, but local macrophage proliferation as well as differentiation from smooth muscle cells have also been described. Within atherosclerotic plaques, macrophages rapidly respond to changes in the microenvironment, shifting between pro- (M1) or anti-inflammatory (M2) functional phenotypes. Furthermore, different stimuli have been associated with differentiation of newly discovered M2 subtypes: IL-4/IL-13 (M2a), immunecomplex (M2b), IL-10/glucocorticoids (M2c), and adenosine receptor agonist (M2d). More recently, additional intraplaque macrophage phenotypes were also recognized in response to CXCL4 (M4), oxidized phospholipids (Mox), haemoglobin/haptoglobin complexes (HAmac/M(Hb)), and heme (Mhem). Such macrophage polarization was described as a progression among multiple phenotypes, which reflect the activity of different transcriptional factors and the cross-talk between intracellular signalling. Finally, the distribution of macrophage subsets within different plaque areas was markedly associated with cardiovascular (CV) vulnerability. The aim of this review is to update the current knowledge on the role of macrophage subsets in atherogenesis. In addition, the molecular mechanisms underlying macrophage phenotypic shift will be summarised and discussed. Finally, the role of intraplaque macrophages as predictors of CV events and the therapeutic potential of these cells will be discussed.
Collapse
|
348
|
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 2017; 34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
349
|
Ankrah AO, Glaudemans AWJM, Maes A, Van de Wiele C, Dierckx RAJO, Vorster M, Sathekge MM. Tuberculosis. Semin Nucl Med 2017; 48:108-130. [PMID: 29452616 DOI: 10.1053/j.semnuclmed.2017.10.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is currently the world's leading cause of infectious mortality. Imaging plays an important role in the management of this disease. The complex immune response of the human body to Mycobacterium tuberculosis results in a wide array of clinical manifestations, making clinical and radiological diagnosis challenging. 18F-FDG-PET/CT is very sensitive in the early detection of TB in most parts of the body; however, the lack of specificity is a major limitation. 18F-FDG-PET/CT images the whole body and provides a pre-therapeutic metabolic map of the infection, enabling clinicians to accurately assess the burden of disease. It enables the most appropriate site of biopsy to be selected, stages the infection, and detects disease in previously unknown sites. 18F-FDG-PET/CT has recently been shown to be able to identify a subset of patients with latent TB infection who have subclinical disease. Lung inflammation as detected by 18F-FDG-PET/CT has shown promising signs that it may be a useful predictor of progression from latent to active infection. A number of studies have identified imaging features that might improve the specificity of 18F-FDG-PET/CT at some sites of extrapulmonary TB. Other PET tracers have also been investigated for their use in TB, with some promising results. The potential role and future perspectives of PET/CT in imaging TB is considered. Literature abounds on the very important role of 18F-FDG-PET/CT in assessing therapy response in TB. The use of 18F-FDG for monitoring response to treatment is addressed in a separate review.
Collapse
Affiliation(s)
- Alfred O Ankrah
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Alex Maes
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa; Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium; Department of Morphology and Medical Imaging, University Hospital Leuven, Leuven, Belgium
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa; Department of Nuclear Medicine and Radiology, University of Ghent, Ghent, Belgium
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa.
| |
Collapse
|
350
|
Qu G, Liu W, Zhao Y, Gao J, Xia T, Shi J, Hu L, Zhou W, Gao J, Wang H, Luo Q, Zhou Q, Liu S, Yu X, Jiang G. Improved Biocompatibility of Black Phosphorus Nanosheets by Chemical Modification. Angew Chem Int Ed Engl 2017; 56:14488-14493. [PMID: 28892587 PMCID: PMC5698710 DOI: 10.1002/anie.201706228] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 12/31/2022]
Abstract
Black phosphorus nanosheets (BPs) show great potential for various applications including biomedicine, thus their potential side effects and corresponding improvement strategy deserve investigation. Here, in vitro and in vivo biological effects of BPs with and without titanium sulfonate ligand (TiL4 ) modification are investigated. Compared to bare BPs, BPs with TiL4 modification (TiL4 @BPs) can efficiently escape from macrophages uptake, and reduce cytotoxicity and proinflammation. The corresponding mechanisms are also discussed. These findings may not only guide the applications of BPs, but also propose an efficient strategy to further improve the biocompatibility of BPs.
Collapse
Affiliation(s)
- Guangbo Qu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wei Liu
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and QuarantineBeijing100176P. R. China
| | - Yuetao Zhao
- Institute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Tian Xia
- Division of NanomedicineDepartment of MedicineUniversity of California Los AngelesCalifornia90095USA
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
| | - Wenhua Zhou
- Institute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Jiejun Gao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
| | - Huaiyu Wang
- Institute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Qian Luo
- Institute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
| | - Xue‐Feng Yu
- Institute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
| |
Collapse
|