301
|
Jung H, Kim D, Kang YY, Kim H, Lee JB, Mok H. CpG incorporated DNA microparticles for elevated immune stimulation for antigen presenting cells. RSC Adv 2018; 8:6608-6615. [PMID: 35540407 PMCID: PMC9078369 DOI: 10.1039/c7ra13293j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/22/2019] [Accepted: 01/30/2018] [Indexed: 11/21/2022] Open
Abstract
As emerging evidence supports the immune stimulating capability of the CpG oligodeoxynucleotides (ODN), CpG-based adjuvants have been widely used. For efficient induction of immune responses, current issues affecting the use of nucleic acid-based adjuvants, e.g. stability in physiological conditions, delivery to immune cells, and successful release within the phagolysosome, should be addressed. Here, we present CpG-based DNA microparticles (DNA-MPs) fabricated by complementary rolling circle amplification (cRCA) as adjuvants for enhancing immune response and production of selective antibody production. Using cRCA method, the sizes of CpG-based DNA-MPs were finely controlled (0.5 and 1 μm) with superior and provided mismatched single stranded form of CpG ODN region for specific cleavage site by DNase II within the phagolysosome. Fabricated CpG-based 1 μm DNA-MPs (DNA-MP-1.0) were successfully internalized into primary macrophages and macrophage cell line (RAW264.7 cells), and elicited superior cytokine production e.g. TNF-α and IL-6, compared to conventional CpG ODNs. After in vivo administration of DNA-MP-1.0 with model antigen ovalbumin (OVA), significantly elevated OVA-specific antibody production was observed. With this in mind, DNA-MP-1.0 could serve as a novel type of adjuvant for the activation of macrophages and the following production of selective antibodies without any noticeable toxicity in vitro and in vivo. As emerging evidence supports the immune stimulating capability of the CpG oligodeoxynucleotides (ODN), CpG-based adjuvants have been widely used.![]()
Collapse
Affiliation(s)
- Heejung Jung
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Dajeong Kim
- Department of Chemical Engineering
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Hyejin Kim
- Department of Chemical Engineering
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 05029
- Republic of Korea
| |
Collapse
|
302
|
Chen J, Zhang D, Zou Y, Wang Z, Hao M, Zheng M, Xue X, Pan X, Lu Y, Wang J, Shi B. Developing a pH-sensitive Al(OH)3 layer-mediated UCNP@Al(OH)3/Au nanohybrid for photothermal therapy and fluorescence imaging in vivo. J Mater Chem B 2018; 6:7862-7870. [DOI: 10.1039/c8tb02213e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A pH-responsive and hydrophilic Al(OH)3 mediating layer makes possible the promising integration of photothermal therapy and fluorescence imaging based on upconversion nanoparticles (UCNPs).
Collapse
Affiliation(s)
- Jian Chen
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Dongya Zhang
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Yan Zou
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Zhongjie Wang
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Mingcong Hao
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy
- Nankai University
- Tianjin 300350
- China
| | - Xiaoxi Pan
- School of Food Science and Nutrition
- University of Leeds
- Leeds
- UK
| | - Yiqing Lu
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Jiefei Wang
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| |
Collapse
|
303
|
Masson JD, Crépeaux G, Authier FJ, Exley C, Gherardi RK. Critical analysis of reference studies on the toxicokinetics of aluminum-based adjuvants. J Inorg Biochem 2017; 181:87-95. [PMID: 29307441 DOI: 10.1016/j.jinorgbio.2017.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
We reviewed the three toxicokinetic reference studies commonly used to suggest that aluminum (Al)-based adjuvants are innocuous. A single experimental study was carried out using isotopic 26Al (Flarend et al., Vaccine, 1997). This study used aluminum salts resembling those used in vaccines but ignored adjuvant uptake by cells that was not fully documented at the time. It was conducted over a short period of time (28days) and used only two rabbits per adjuvant. At the endpoint, Al elimination in the urine accounted for 6% for Al hydroxide and 22% for Al phosphate, both results being incompatible with rapid elimination of vaccine-derived Al in urine. Two theoretical studies have evaluated the potential risk of vaccine Al in infants, by reference to an oral "minimal risk level" (MRL) extrapolated from animal studies. Keith et al. (Vaccine, 2002) used a high MRL (2mg/kg/d), an erroneous model of 100% immediate absorption of vaccine Al, and did not consider renal and blood-brain barrier immaturity. Mitkus et al. (Vaccine, 2011) only considered solubilized Al, with erroneous calculations of absorption duration. Systemic Al particle diffusion and neuro-inflammatory potential were omitted. The MRL they used was both inappropriate (oral Al vs. injected adjuvant) and still too high (1mg/kg/d) regarding recent animal studies. Both paucity and serious weaknesses of reference studies strongly suggest that novel experimental studies of Al adjuvants toxicokinetics should be performed on the long-term, including both neonatal and adult exposures, to ensure their safety and restore population confidence in Al-containing vaccines.
Collapse
Affiliation(s)
- Jean-Daniel Masson
- INSERM U955 E10, Biologie du système neuromusculaire, Faculté de Médecine, Université Paris Est Créteil, Créteil 94010, France
| | - Guillemette Crépeaux
- INSERM U955 E10, Biologie du système neuromusculaire, Faculté de Médecine, Université Paris Est Créteil, Créteil 94010, France; Génétique médicale comparée des affections neuromusculaires, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du général de Gaulle, 9400 Maisons-Alfort, France
| | - François-Jérôme Authier
- INSERM U955 E10, Biologie du système neuromusculaire, Faculté de Médecine, Université Paris Est Créteil, Créteil 94010, France
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG, UK
| | - Romain K Gherardi
- INSERM U955 E10, Biologie du système neuromusculaire, Faculté de Médecine, Université Paris Est Créteil, Créteil 94010, France.
| |
Collapse
|
304
|
Wang X, Li X, Ito A, Sogo Y, Watanabe Y, Tsuji NM, Ohno T. Biodegradable Metal Ion-Doped Mesoporous Silica Nanospheres Stimulate Anticancer Th1 Immune Response in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43538-43544. [PMID: 29192493 DOI: 10.1021/acsami.7b16118] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Modern vaccines usually require accompanying adjuvants to increase the immune response to antigens. Aluminum (alum) compounds are the most commonly used adjuvants in human vaccinations for infection diseases. However, alum adjuvants are nondegradable, cause side effects due to the persistence of alum at injection sites, and are rather ineffective for cancer immunotherapy, which requires the Th1 immune response. Recently, we have shown that a plain mesoporous silica (MS) adjuvant can stimulate Th1 anticancer immunity for cancer vaccines. Herein, MS nanospheres doped with Ca, Mg, and Zn (MS-Ca, MS-Mg, and MS-Zn) showed significantly higher degradation rates than pure MS. Moreover, MS-Ca, MS-Mg, and MS-Zn nanospheres stimulated anticancer immune response and increased the CD4+ and CD8+ T cell populations in spleen. The MS-Ca, MS-Mg, and MS-Zn nanospheres with improved biodegradability and excellent ability to induce Th1 anticancer immunity show potential for clinical applications as cancer immunoadjuvants.
Collapse
Affiliation(s)
- Xiupeng Wang
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Xia Li
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Atsuo Ito
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yu Sogo
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yohei Watanabe
- Biomedical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Noriko M Tsuji
- Biomedical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tadao Ohno
- School of Life Dentistry at Tokyo, The Nippon Dental University , Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan
| |
Collapse
|
305
|
Barilaro G, Spaziani Testa C, Cacciani A, Donato G, Dimko M, Mariotti A. ASIA syndrome, calcinosis cutis and chronic kidney disease following silicone injections. A case-based review. Immunol Res 2017; 64:1142-1149. [PMID: 27665458 DOI: 10.1007/s12026-016-8871-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An immunologic adjuvant is a substance that enhances the antigen-specific immune response preferably without triggering one on its own. Silicone, a synthetic polymer used for reconstructive and cosmetic purposes, can cause, once injected, local and/or systemic reactions and trigger manifestations of autoimmunity, occasionally leading to an overt autoimmune disease. Siliconosis, calcinosis cutis with hypercalcemia and chronic kidney disease have all been reported in association with silicone injection. Here, we describe a case of autoimmune/auto-inflammatory syndrome induced by adjuvants, calcinosis cutis and chronic kidney disease after liquid silicone multiple injections in a young man who underwent a sex reassignment surgery, followed by a review of the literature. To our knowledge, this is the first report describing the concomitance of the three clinical conditions in the same patients. The link between silicone and the immune system is not completely understood yet and requires further reports and investigations with long-term data, in order to identify the main individual and genetical risk factors predisposing to the wide spectrum of the adjuvant-induced responses.
Collapse
Affiliation(s)
- Giuseppe Barilaro
- Clinical Immunology Unit, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00161, Rome, Italy.
| | - Claudia Spaziani Testa
- Clinical Immunology Unit, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00161, Rome, Italy
| | - Antonella Cacciani
- Clinical Immunology Unit, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00161, Rome, Italy
| | - Giuseppe Donato
- Clinical Immunology Unit, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00161, Rome, Italy
| | - Mira Dimko
- Nephrology Unit, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00161, Rome, Italy
| | - Amalia Mariotti
- Nephrology Unit, Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00161, Rome, Italy
| |
Collapse
|
306
|
Svensson A, Sandberg T, Siesjö P, Eriksson H. Sequestering of damage-associated molecular patterns (DAMPs): a possible mechanism affecting the immune-stimulating properties of aluminium adjuvants. Immunol Res 2017; 65:1164-1175. [PMID: 29181774 PMCID: PMC5712329 DOI: 10.1007/s12026-017-8972-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aluminium-based adjuvants (ABAs) have been used in human and veterinary vaccines for decades, and for a long time, the adjuvant properties were believed to be mediated by an antigen depot at the injection site, prolonging antigen exposure to the immune system. The depot hypothesis is today more or less abandoned, and instead replaced by the assumption that ABAs induce an inflammation at the injection site. Induction of an inflammatory response is consistent with immune activation initiated by recognition of molecular patterns associated with danger or damage (DAMPs), and the latter are derived from endogenous molecules that normally reside intracellularly. When extracellularly expressed, because of damage, stress or cell death, a sterile inflammation is induced. In this paper, we report the induction of DAMP release by viable cells after phagocytosis of aluminium-based adjuvants. Two of the most commonly used ABAs in pharmaceutical vaccine formulations, aluminium oxyhydroxide and aluminium hydroxyphosphate, induced a vigorous extracellular expression of the two DAMP molecules calreticulin and HMGB1. Concomitantly, extracellular adjuvant particles adsorbed the DAMP molecules released by the cells whereas IL-1β, a previously reported inflammatory mediator induced by ABAs, was not absorbed by the adjuvants. Induction of extracellular expression of the two DAMP molecules was more prominent using aluminium hydroxyphosphate compared to aluminium oxyhydroxide, whereas the extracellular adsorption of the DAMP molecules was more pronounced with the latter. Furthermore, it is hypothesised how induction of DAMP expression by ABAs and their concomitant adsorption by extracellular adjuvants may affect the inflammatory properties of ABAs.
Collapse
Affiliation(s)
| | - Tove Sandberg
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06, Malmö, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Neurosurgery, Department of Clinical Sciences, BMC D14, Lund University, SE-221 84, Lund, Sweden
| | - Håkan Eriksson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06, Malmö, Sweden.
| |
Collapse
|
307
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
308
|
Abstract
Immunisation of the newborn represents a key global strategy in overcoming morbidity and mortality due to infection in early life. Potential limitations, however, include poor immunogenicity, safety concerns and the development of tolerogenicity or hypo-responsiveness to either the same antigen and/or concomitant antigens administered at birth or in the subsequent months. Furthermore, the neonatal immunological milieu is polarised towards Th2-type immunity with dampening of Th1-type responses and impaired humoral immunity, resulting in qualitatively and quantitatively poorer antibody responses compared to older infants. Innate immunity also shows functional deficiency in antigen-presenting cells: the expression and signalling of Toll-like receptors undergo maturational changes associated with distinct functional responses. Nevertheless, the effectiveness of BCG, hepatitis B and oral polio vaccines, the only immunisations currently in use in the neonatal period, is proof of concept that vaccines can be successfully administered to the newborn via different routes of delivery to induce a range of protective mechanisms for three different diseases. In this review paper, we discuss the rationale for and challenges to neonatal immunisation, summarising progress made in the field, including lessons learnt from newborn vaccines in the pipeline. Furthermore, we explore important maternal, infant and environmental co-factors that may impede the success of current and future neonatal immunisation strategies. A variety of approaches have been proposed to overcome the inherent regulatory constraints of the newborn innate and adaptive immune system, including alternative routes of delivery, novel vaccine configurations, improved innate receptor agonists and optimised antigen-adjuvant combinations. Crucially, a dual strategy may be employed whereby immunisation at birth is used to prime the immune system in order to improve immunogenicity to subsequent homologous or heterologous boosters in later infancy. Similarly, potent non-specific immunomodulatory effects may be elicited when challenged with unrelated antigens, with the potential to reduce the overall risk of infection and allergic disease in early life.
Collapse
Affiliation(s)
- Anja Saso
- Centre of International Child Health, Department of Paediatrics, Imperial College London, W2 1NY, London, UK
| | - Beate Kampmann
- Centre of International Child Health, Department of Paediatrics, Imperial College London, W2 1NY, London, UK.
- Vaccines and Immunity Theme, MRC Unit The Gambia, Fajara, The Gambia.
| |
Collapse
|
309
|
Riehl M, Harms M, Hanefeld A, Baleeiro RB, Walden P, Mäder K. Combining R-DOTAP and a particulate antigen delivery platform to trigger dendritic cell activation: Formulation development and in-vitro interaction studies. Int J Pharm 2017; 532:37-46. [DOI: 10.1016/j.ijpharm.2017.08.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
|
310
|
Morris G, Puri BK, Frye RE. The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab Brain Dis 2017; 32:1335-1355. [PMID: 28752219 PMCID: PMC5596046 DOI: 10.1007/s11011-017-0077-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
The conceptualisation of autistic spectrum disorder and Alzheimer's disease has undergone something of a paradigm shift in recent years and rather than being viewed as single illnesses with a unitary pathogenesis and pathophysiology they are increasingly considered to be heterogeneous syndromes with a complex multifactorial aetiopathogenesis, involving a highly complex and diverse combination of genetic, epigenetic and environmental factors. One such environmental factor implicated as a potential cause in both syndromes is aluminium, as an element or as part of a salt, received, for example, in oral form or as an adjuvant. Such administration has the potential to induce pathology via several routes such as provoking dysfunction and/or activation of glial cells which play an indispensable role in the regulation of central nervous system homeostasis and neurodevelopment. Other routes include the generation of oxidative stress, depletion of reduced glutathione, direct and indirect reductions in mitochondrial performance and integrity, and increasing the production of proinflammatory cytokines in both the brain and peripherally. The mechanisms whereby environmental aluminium could contribute to the development of the highly specific pattern of neuropathology seen in Alzheimer's disease are described. Also detailed are several mechanisms whereby significant quantities of aluminium introduced via immunisation could produce chronic neuropathology in genetically susceptible children. Accordingly, it is recommended that the use of aluminium salts in immunisations should be discontinued and that adults should take steps to minimise their exposure to environmental aluminium.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Richard E Frye
- College of Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, 72202, USA
| |
Collapse
|
311
|
Abstract
INTRODUCTION A survey of FDA-approved biologicals focused upon the development of immunotherapies over time to gain insight on the challenges and trends of vaccine development today. Areas covered: A total of 135 different immune-based therapies were broadly divided into passive or active immunotherapies. Whereas just over half of passive immunotherapies targeted infectious diseases, the vast majority of active immunotherapy products (vaccines) were directed against a handful of viral and bacterial pathogens. We also analyze changes in vaccine strategy, including the use of viable antigens and subunit approaches. Expert commentary: An analysis of vaccine innovators revealed an ever-increasing presence of the private sector and a relatively diminishing role for the public sector . Whereas North American companies have contributed to the approval of two-thirds of vaccines, European companies have regained parity in terms of hosting innovators of vaccine research and development.
Collapse
Affiliation(s)
- Rebekah H Griesenauer
- a Center for Research Innovation in Biotechnology , Washington University in St Louis , St Louis , MO , USA
| | - Michael S Kinch
- a Center for Research Innovation in Biotechnology , Washington University in St Louis , St Louis , MO , USA
| |
Collapse
|
312
|
Djurisic S, Jakobsen JC, Petersen SB, Kenfelt M, Gluud C. Aluminium adjuvants used in vaccines versus placebo or no intervention. Cochrane Database Syst Rev 2017. [DOI: 10.1002/14651858.cd012805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Snezana Djurisic
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; Copenhagen Denmark
| | - Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Sjaelland Denmark DK-2100
| | - Sesilje B Petersen
- Bispebjerg Hospital; Department of Occupational and Environmental Medicine; Copenhagen Denmark
| | | | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Sjaelland Denmark DK-2100
| |
Collapse
|
313
|
Li P, Song H, Zhang H, Yang P, Zhang C, Huang P, Kong D, Wang W. Engineering biodegradable guanidyl-decorated PEG-PCL nanoparticles as robust exogenous activators of DCs and antigen cross-presentation. NANOSCALE 2017; 9:13413-13418. [PMID: 28876002 DOI: 10.1039/c7nr04470d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoparticles (NPs)-based adjuvants are attracting much attention in the development of vaccines. Previously, we reported a type of guanidyl-decorated polymeric NPs used as antigen delivery carriers for the first time. However, its un-degradability may restrict potential clinical translation. More importantly, the specific cellular pathway by which dendritic cells (DCs) endocytosed these NPs and the relationship among guanidyl with the antigen cross-presentation, cytokine secretion, and lymph node targeting still remain unclear. Here, we show NPs assembled by biodegradable methoxyl poly(ethylene glycol)-block-poly(ε-caprolactone)-graft-poly(2-(guanidyl) ethyl methacrylate) (mPEG-b-PCL-g-PGEM, PECG) copolymers can robustly activate DCs and promote their maturation; additionally antigen cross-presentation was improved both in vitro and in vivo. Significantly, our results also demonstrate the increase of surface guanidyl on nanoparticles modulates the depot effect and lymph node drainage of PECG NPs-based adjuvants, as well as immune responses, by regulating the secretion of cytokines including IFN-γ and TNF-α. Our study provides insights into the action of guanidyl-decorated nanoscale adjuvants and new adjuvants for vaccines containing protein antigens. We anticipate the strategy of guanidyl decoration to be a starting point for the development of more exciting immunoadjuvants.
Collapse
Affiliation(s)
- Pan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | | | | | | | | | | | | | | |
Collapse
|
314
|
Abstract
INTRODUCTION Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis. In 2016, the WHO estimated 10.5 million new cases and 1.8 million deaths, making this disease the leading cause of death by an infectious agent. The current and projected TB situation necessitates the development of new vaccines with improved attributes compared to the traditional BCG method. Areas covered: In this review, the authors describe the most promising candidate vaccines against TB and discuss additional key elements in vaccine development, such as animal models, new adjuvants and immunization routes and new strategies for the identification of candidate vaccines. Expert opinion: At present, around 13 candidate vaccines for TB are in the clinical phase of evaluation; however, there is still no substitute for the BCG vaccine. One major impediment to developing an effective vaccine is our lack of understanding of several of the mechanisms associated with infection and the immune response against TB. However, the recent implementation of an entirely new set of technological advances will facilitate the proposal of new candidates. Finally, development of a new vaccine will require a major coordination of effort in order to achieve its effective administration to the people most in need of it.
Collapse
|
315
|
Marciani DJ. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases. Autoimmunity 2017; 50:393-402. [PMID: 28906131 DOI: 10.1080/08916934.2017.1373766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A promising treatment for T-cell-mediated autoimmune diseases is the induction of immune tolerance by modulating the immune response against self-antigens, an objective that may be achieved by vaccination. There are two main types of vaccines currently under development. The tolerogenic vaccines, composed of proteins formed by a cytokine fused to a self-antigen, which usually induce tolerance by eliminating the T-cells that are immune reactive against the self-antigen. The immunogenic vaccines, comprised of a self-antigen plus a sole Th2 adjuvant either free or conjugated, that alleviate autoimmunity by switching the immune response against the self-antigen, from a damaging pro-inflammatory Th1/Th17 to an anti-inflammatory Th2 immunity. Another type of vaccines is the DNA vaccines, where cells transiently express the self-antigen encoded by DNA, which induces a Th2 immunity. Actually, DNA vaccines can benefit from the presence of an adjuvant that elicits a systemic sole Th2 immunity to enhance the initially weak immune response characteristic of these vaccines. While in the tolerogenic vaccines, cytokines are the endogenous immunomodulators, in the immunogenic vaccines, the adjuvants are exogenous agents that elicit Th2 immunity with a production of anti-inflammatory cytokines and antibodies against the self-antigen. Because the commonly used Th2 adjuvant alum, fails to induce an effective immunity in the elderly population, it is unlikely that it would be widely used. Another Th2 adjuvant, the oil/water emulsions mixed with the antigen, while effective in vaccines against infectious agents, due to potential aldehydes in their formulation may be not suitable for autoimmune vaccines. A unique compound is glatiramer, which seems to be both a random polypeptide antigen and an immune modulator that biases the response to Th2 immunity. Its mechanism of action seems to implicate binding to MHC-II, which alters the outcome of T-cell signaling, leading to anergy. Glatiramer, while effective in the treatment of multiple sclerosis has not shown efficacy in other autoimmune diseases. An important new group of promising sole Th2 adjuvants are the fucosylated glycans, which by binding to DC-SIGN bias dendritic cells to Th2 immunity while inhibiting Th1/Th7 immunities. These glycans are similar to those produced by parasitic helminths to prevent inflammatory responses by mammalian hosts. A novel group of sole Th2 adjuvants are some plant-derived fucosylated triterpene glycosides, which share the immune modulatory properties from the fucosylated glycans. These glycosides have also an aldehyde group that delivers an alternative co-stimulatory signal to T-cells, averting the anergy associated with aging due to the loss of the CD28 receptor on T-cells. Hence, the development of vaccines to treat and/or prevent autoimmune conditions and some proteopathies, will significantly benefit from the availability of new sole Th2 adjuvants that while inducing an anti-inflammatory immunity, they do not abrogate pro-inflammatory Th1/Th17 immunities.
Collapse
|
316
|
Vadalà M, Poddighe D, Laurino C, Palmieri B. Vaccination and autoimmune diseases: is prevention of adverse health effects on the horizon? EPMA J 2017; 8:295-311. [PMID: 29021840 PMCID: PMC5607155 DOI: 10.1007/s13167-017-0101-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/31/2017] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases, including multiple sclerosis and type 1 diabetes mellitus, affect about 5% of the worldwide population. In the last decade, reports have accumulated on various autoimmune disorders, such as idiopathic thrombocytopenia purpura, myopericarditis, primary ovarian failure, and systemic lupus erythematosus (SLE), following vaccination. In this review, we discuss the possible underlying mechanisms of autoimmune reactions following vaccinations and review cases of autoimmune diseases that have been correlated with vaccination. Molecular mimicry and bystander activation are reported as possible mechanisms by which vaccines can cause autoimmune reactions. The individuals who might be susceptible to develop these reactions could be especially not only those with previous post-vaccination phenomena and those with allergies but also in individuals who are prone to develop autoimmune diseases, such as those with a family history of autoimmunity or with known autoantibodies, and the genetic predisposed individuals. Further research is encouraged into the direct associations between vaccines and autoimmune conditions, and the biological mechanisms behind them.
Collapse
Affiliation(s)
- Maria Vadalà
- Department of General Surgery and Surgical Specialties, Medical School, Surgical Clinic, University of Modena and Reggio Emilia, Modena, Italy
- Network of the Second Opinion, Modena, MO Italy
| | - Dimitri Poddighe
- Department of Pediatrics, ASST Melegnano e Martesana, Milano, Italy
| | - Carmen Laurino
- Department of General Surgery and Surgical Specialties, Medical School, Surgical Clinic, University of Modena and Reggio Emilia, Modena, Italy
- Network of the Second Opinion, Modena, MO Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, Medical School, Surgical Clinic, University of Modena and Reggio Emilia, Modena, Italy
- Network of the Second Opinion, Modena, MO Italy
| |
Collapse
|
317
|
Bo R, Sun Y, Zhou S, Ou N, Gu P, Liu Z, Hu Y, Liu J, Wang D. Simple nanoliposomes encapsulating Lycium barbarum polysaccharides as adjuvants improve humoral and cellular immunity in mice. Int J Nanomedicine 2017; 12:6289-6301. [PMID: 28894367 PMCID: PMC5584898 DOI: 10.2147/ijn.s136820] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The success of subunit vaccines has been hampered by the problems of weak or short-term immunity and the lack of availability of nontoxic, potent adjuvants. It would be desirable to develop safe and efficient adjuvants with the aim of improving the cellular immune response against the target antigen. In this study, the targeting and sustained release of simple nanoliposomes containing Lycium barbarum polysaccharides (LBP) as an efficacious immune adjuvant to improve immune responses were explored. LBP liposome (LBPL) with high entrapment efficiency (86%) were obtained using a reverse-phase evaporation method and then used to encapsulate the model antigen, ovalbumin (OVA). We demonstrated that the as-synthesized liposome loaded with OVA and LBP (LBPL-OVA) was stable for 45 days and determined the encapsulation stability of OVA at 4°C and 37°C and the release profile of OVA from LBPL-OVA was investigated in pH 7.4 and pH 5.0. Further in vivo investigation showed that the antigen-specific humoral response was correlated with antigen delivery to the draining lymph nodes. The LBPL-OVA were also associated with high levels of uptake by key dendritic cells in the draining lymph nodes and they efficiently stimulated CD4+ and CD8+ T cell proliferation in vivo, further promoting antibody production. These features together elicited a significant humoral and celluar immune response, which was superior to that produced by free antigen alone.
Collapse
Affiliation(s)
- Ruonan Bo
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Yaqin Sun
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Shuzhen Zhou
- Foshan City Nanhai Eastern Along Pharmaceutical Co., Ltd, Foshan, China
| | - Ning Ou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| |
Collapse
|
318
|
Chauhan N, Banerjee P, Khatri VK, Canciamille A, Gilles J, Kalyanasundaram R. Improving the efficacy of a prophylactic vaccine formulation against lymphatic filariasis. Parasitol Res 2017; 116:2821-2830. [PMID: 28828575 DOI: 10.1007/s00436-017-5593-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022]
Abstract
Mass drug administration (MDA) is the current strategy for interrupting the transmission of lymphatic filariasis (LF) infection and control of the disease in endemic areas. However, subject non-compliance has resulted in the presence of several "transmission hotspots" in the endemic regions threatening the reemergence of LF. This situation is further complicated by the fact that the drugs used in MDA are not effective against adult LF worms, a major concern for the control strategy. Thus, there is clearly a need for an effective and sustainable approach to control LF. Prophylactic vaccine combined with targeted treatment of infected patients and vector control is suggested as a more sustainable strategy to eliminate LF infection from endemic regions. A multivalent vaccine (rBmHAT) developed in our laboratory conferred about 90% protection in rodents. However, when we tested the rBmHAT vaccine along with alum in rhesus macaques, only about 40% protection was achieved and the immune response obtained was Th2 biased. In an attempt to improve the vaccine, in this study, we tested two vaccine antigens (rBmHAT and rBmHAX) along with two adjuvant formulations [alum + GLA (AL019) and mannosylated chitosan (MCA)] in a mouse model. Our results show that rBmHAT is a better vaccine antigen than rBmHAX. Combination of rBmHAT with AL019 or MCA adjuvants gave 94 and 88% protection, respectively, against challenge infections. Immunized animals developed antigen-specific memory T cells that secreted significant levels of IL-4, IFN-γ, and IL-17 suggesting the generation of a balanced Th1/Th2 responses following immunization. A major advantage of MCA adjuvant is that the vaccine booster doses can be administered orally. These studies thus showed that rBmHAT is a better vaccine antigen and can be given in combination with AL019 or MCA adjuvant to obtain excellent results.
Collapse
Affiliation(s)
- Nikhil Chauhan
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Priyankana Banerjee
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Vishal K Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Andrew Canciamille
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Jessica Gilles
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Ramaswamy Kalyanasundaram
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA.
| |
Collapse
|
319
|
Counoupas C, Pinto R, Nagalingam G, Britton WJ, Petrovsky N, Triccas JA. Delta inulin-based adjuvants promote the generation of polyfunctional CD4 + T cell responses and protection against Mycobacterium tuberculosis infection. Sci Rep 2017; 7:8582. [PMID: 28819247 PMCID: PMC5561132 DOI: 10.1038/s41598-017-09119-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/19/2017] [Indexed: 01/16/2023] Open
Abstract
There is an urgent need for the rational design of safe and effective vaccines to protect against chronic bacterial pathogens such as Mycobacterium tuberculosis. Advax™ is a novel adjuvant based on delta inulin microparticles that enhances immunity with a minimal inflammatory profile and has entered human trials to protect against viral pathogens. In this report we determined if Advax displays broad applicability against important human pathogens by assessing protective immunity against infection with M. tuberculosis. The fusion protein CysVac2, comprising the M. tuberculosis antigens Ag85B (Rv1886c) and CysD (Rv1285) formulated with Advax provided significant protection in the lungs of M. tuberculosis-infected mice. Protection was associated with the generation of CysVac2-specific multifunctional CD4+ T cells (IFN-γ+TNF+IL-2+). Addition to Advax of the TLR9 agonist, CpG oligonucleotide (AdvaxCpG), improved both the immunogenicity and protective efficacy of CysVac2. Immunisation with CysVac2/AdvaxCpG resulted in heightened release of the chemoattractants, CXCL1, CCL3, and TNF, and rapid influx of monocytes and neutrophils to the site of vaccination, with pronounced early priming of CysVac2-specific CD4+ T cells. As delta inulin adjuvants have shown an excellent safety and tolerability profile in humans, CysVac2/AdvaxCpG is a strong candidate for further preclinical evaluation for progression to human trials.
Collapse
Affiliation(s)
- Claudio Counoupas
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Rachel Pinto
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Gayathri Nagalingam
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Warwick J Britton
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Nikolai Petrovsky
- Department of Endocrinology, Flinders University, Adelaide, Australia
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, Australia
| | - James A Triccas
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia.
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia.
| |
Collapse
|
320
|
Milicic A, Rollier CS, Tang CK, Longley R, Hill AVS, Reyes-Sandoval A. Adjuvanting a viral vectored vaccine against pre-erythrocytic malaria. Sci Rep 2017; 7:7284. [PMID: 28779101 PMCID: PMC5544665 DOI: 10.1038/s41598-017-07246-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/22/2017] [Indexed: 02/02/2023] Open
Abstract
The majority of routinely given vaccines require two or three immunisations for full protective efficacy. Single dose vaccination has long been considered a key solution to improving the global immunisation coverage. Recent infectious disease outbreaks have further highlighted the need for vaccines that can achieve full efficacy after a single administration. Viral vectors are a potent immunisation platform, benefiting from intrinsic immuno-stimulatory features while retaining excellent safety profile through the use of non-replicating viruses. We investigated the scope for enhancing the protective efficacy of a single dose adenovirus-vectored malaria vaccine in a mouse model of malaria by co-administering it with vaccine adjuvants. Out of 11 adjuvants, only two, Abisco®-100 and CoVaccineHTTM, enhanced vaccine efficacy and sterile protection following malaria challenge. The CoVaccineHTTM adjuvanted vaccine induced significantly higher proportion of antigen specific central memory CD8+ cells, and both adjuvants resulted in increased proportion of CD8+ T cells expressing the CD107a degranulation marker in the absence of IFNγ, TNFα and IL2 production. Our results show that the efficacy of vaccines designed to induce protective T cell responses can be positively modulated with chemical adjuvants and open the possibility of achieving full protection with a single dose immunisation.
Collapse
Affiliation(s)
- Anita Milicic
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Christine S Rollier
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Choon Kit Tang
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Rhea Longley
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Population Health and Immunity, Walter & Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052 Australia and Mahidol Vivax Research Unit (MVRU) Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
321
|
Han S, Sun L, He F, Che H. Anti-allergic activity of glycyrrhizic acid on IgE-mediated allergic reaction by regulation of allergy-related immune cells. Sci Rep 2017; 7:7222. [PMID: 28775294 PMCID: PMC5543155 DOI: 10.1038/s41598-017-07833-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022] Open
Abstract
Glycyrrhizic acid (GA), the major bioactive triterpene glycoside of glycyrrhiza, has been shown to possess a wide range of pharmacological properties, including anti-inflammatory and anti-viral properties. However, few studies have examined the anti-allergic activity and exact mechanism of action of GA. In the present work, the anti-allergic activity and possible mechanisms of action of GA on an immunoglobulin (Ig) E-mediated allergic reaction has been studied using three models of allergic reaction in vivo and in vitro. Active systemic allergic reaction in Balb/c mice showed that GA can suppress the increased level of IL-4 to restore the immune balance of TH1/TH2 cells in a dose-dependent manner. Additionally, GA attenuated significantly the B cells producing allergen-specific IgE and IgG1 partly because of the low levels of TH2 cytokines. Both passive cutaneous anaphylaxis in vivo and an RBL-2H3 cell-based immunological assay in vitro indicated that GA acted as a "mast cell stabilizer", as it inhibited mast cell degranulation and decreased vascular permeability by inhibiting the expression of Orai1, STIM1 and TRPC1, which blocked extracellular Ca2+ influxes. The current study suggests that GA may serve as an effective anti-allergic agent derived from food for the prevention and treatment of IgE-mediated allergic reaction.
Collapse
Affiliation(s)
- Shiwen Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Lu Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Feng He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| |
Collapse
|
322
|
Cimica V, Galarza JM. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol 2017; 183:99-108. [PMID: 28780375 DOI: 10.1016/j.clim.2017.08.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/11/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
The development of virus-like particle (VLP) technology has had an enormous impact on modern vaccinology. In order to optimize the efficacy and safety of VLP-based vaccines, adjuvants are included in most vaccine formulations. To date, most licensed VLP-based vaccines utilize the classic aluminum adjuvant compositions. Certain challenging pathogens and weak immune responder subjects may require further optimization of the adjuvant formulation to maximize the magnitude and duration of the protective immunity. Indeed, novel classes of adjuvants such as liposomes, agonists of pathogen recognition receptors, polymeric particles, emulsions, cytokines and bacterial toxins, can be used to further improve the immunostimulatory activity of a VLP-based vaccine. This review describes the current advances in adjuvant technology for VLP-based vaccines directed at viral diseases, and discusses the basic principles for designing adjuvant formulations for enhancing the vaccine immunogenicity.
Collapse
Affiliation(s)
- Velasco Cimica
- TechnoVax, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Jose M Galarza
- TechnoVax, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| |
Collapse
|
323
|
Lin Y, Wang X, Huang X, Zhang J, Xia N, Zhao Q. Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines 2017; 16:895-906. [DOI: 10.1080/14760584.2017.1355733] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yahua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| |
Collapse
|
324
|
Li X, Hufnagel S, Xu H, Valdes SA, Thakkar SG, Cui Z, Celio H. Aluminum (Oxy)Hydroxide Nanosticks Synthesized in Bicontinuous Reverse Microemulsion Have Potent Vaccine Adjuvant Activity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22893-22901. [PMID: 28621928 PMCID: PMC5556926 DOI: 10.1021/acsami.7b03965] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insoluble aluminum salts such as aluminum (oxy)hydroxide are commonly used as vaccine adjuvants. Recently, there is evidence suggesting that the adjuvant activity of aluminum salt-based materials is tightly related to their physicochemical properties, including nanometer-scale size, shape with long aspect ratio, and low degree of crystallinity. Herein, for the first time, the bicontinuous reverse microemulsion (RM) technique was utilized to synthesize stick-like monodisperse aluminum (oxy)hydroxide nanoparticles with a long aspect ratio of ∼10, length of ∼80 nm, and low degree of crystallinity (denoted as Al-nanosticks). Moreover, the relationship between the physicochemical properties of Al-nanosticks and the bicontinuous RM was discussed. Compared to the commercial Alhydrogel, which contains micrometer-scale aluminum oxyhydroxide particular aggregates with moderate degree of crystallinity, the Al-nanosticks are more effective in adsorbing and delivering antigens (e.g., ovalbumin, OVA) into antigen-presenting cells, activating inflammasomes, and potentiating OVA-specific antibody responses in a mouse model. It is concluded that the aluminum (oxy)hydroxide nanosticks synthesized in the bicontinuous RM are promising new aluminum salt-based vaccine adjuvants.
Collapse
Affiliation(s)
- Xu Li
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, U.S.A
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, U.S.A
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, U.S.A
| | - Solange A. Valdes
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, U.S.A
| | - Sachin G. Thakkar
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, U.S.A
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, U.S.A
- Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Molecular Biology, Hohhot, Inner Mongolia, China
| | - Hugo Celio
- The University of Texas at Austin, Texas Materials Institute, Austin, Texas, U.S.A
| |
Collapse
|
325
|
Association of chitosan and aluminium as a new adjuvant strategy for improved vaccination. Int J Pharm 2017; 527:103-114. [DOI: 10.1016/j.ijpharm.2017.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
|
326
|
Masson JD, Crépeaux G, Authier FJ, Exley C, Gherardi R. Adjuvants aluminiques des vaccins : analyse critique des études toxicocinétiques de référence. ANNALES PHARMACEUTIQUES FRANÇAISES 2017; 75:245-256. [DOI: 10.1016/j.pharma.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 01/26/2023]
|
327
|
Abstract
The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.
Collapse
|
328
|
Sinani G, Sessevmez M, Koray Gök M, Özgümüş S, Okyar A, Oya Alpar H, Cevher E. Nasal vaccination with poly(β-amino ester)-poly(d,l-lactide-co-glycolide) hybrid nanoparticles. Int J Pharm 2017. [PMID: 28629979 DOI: 10.1016/j.ijpharm.2017.06.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mucosal vaccination stimulates both mucosal and systemic immunity. However, mucosal applications of vaccine antigens in their free form generally result in poor systemic immune responses and need adjuvantation. In this study, bovine serum albumin loaded, new hybridised poly(β-amino ester)-poly(d,l-lactide-co-glycolide) nanoparticles were prepared by double emulsion-solvent evaporation method, characterised and evaluated in vivo as nasal vaccine carriers. Cationic spherical particles with a mean size of 240nm, good physical stability and high encapsulation efficiency were obtained. Protein structure was not affected throughout preparation and minimal toxicity was shown in Calu-3 and A549 cells. Nasal vaccination with these nanoparticles revealed markedly higher humoral immune responses compared with free antigen following intranasal and subcutaneous immunisation. Mucosal immune response was also stimulated and cytokine titres indicated that Th1 and Th2 pathways were successfully activated. This study shows that the formulated hybrid nanoparticles can be a promising carrier for nasal immunisation of poor antigenic proteins.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Kemerburgaz University, 34147 Istanbul, Turkey
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - M Koray Gök
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University, 34320 Istanbul, Turkey
| | - Saadet Özgümüş
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University, 34320 Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - H Oya Alpar
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Kemerburgaz University, 34147 Istanbul, Turkey; School of Pharmacy, University of London, WC1N 1AX London, UK
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey.
| |
Collapse
|
329
|
Watad A, Quaresma M, Brown S, Cohen Tervaert JW, Rodríguez-Pint I, Cervera R, Perricone C, Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld’s syndrome) – An update. Lupus 2017; 26:675-681. [DOI: 10.1177/0961203316686406] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) has been widely described in many studies conducted thus far. The syndrome incorporates five immune-mediated conditions, all associated with previous exposure to various agents such as vaccines, silicone implants and several others. The emergence of ASIA syndrome is associated with individual genetic predisposition, for instance those carrying HLA-DRB1*01 or HLA-DRB4 and results from exposure to external or endogenous factors triggering autoimmunity. Such factors have been demonstrated as able to induce autoimmunity in both animal models and humans via a variety of proposed mechanisms. In recent years, physicians have become more aware of the existence of ASIA syndrome and the relationship between adjuvants exposure and autoimmunity and more cases are being reported. Accordingly, we have created a registry that includes at present more than 300 ASIA syndrome cases that have been reported by different physicians worldwide, describing various autoimmune conditions induced by diverse adjuvants. In this review, we have summarized the updated literature on ASIA syndrome and the knowledge accumulated since 2013 in order to elucidate the association between the exposure to various adjuvant agents and its possible clinical manifestations. Furthermore, we especially referred to the relationship between ASIA syndrome and systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS).
Collapse
Affiliation(s)
- A Watad
- Department of Medicine B, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Israel
| | - M Quaresma
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Israel
| | - S Brown
- Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | - R Cervera
- Department of Autoimmune Diseases, Hospital Clinic, Spain
| | - C Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialita Mediche, Sapienza Universita di Roma, Italy
| | - Y Shoenfeld
- Department of Medicine B, Sheba Medical Center, Tel-Hashomer, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Israel
- Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Tel-Aviv University, Israel
| |
Collapse
|
330
|
Gehring S, Pietrzak-Nguyen A, Fichter M, Landfester K. Novel strategies in vaccine design: can nanocapsules help prevent and treat hepatitis B? Nanomedicine (Lond) 2017; 12:1205-1207. [DOI: 10.2217/nnm-2016-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Stephan Gehring
- Children's Hospital, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Anette Pietrzak-Nguyen
- Children's Hospital, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Michael Fichter
- Children's Hospital, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | | |
Collapse
|
331
|
In HJ, Lim H, Lee JA, Kim HJ, Kim JW, Hyeon JY, Yeo SG, Lee JW, Yoo JS, Choi YK, Lee SW. An inactivated hand-foot-and-mouth disease vaccine using the enterovirus 71 (C4a) strain isolated from a Korean patient induces a strong immunogenic response in mice. PLoS One 2017; 12:e0178259. [PMID: 28542556 PMCID: PMC5443535 DOI: 10.1371/journal.pone.0178259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/26/2017] [Indexed: 01/28/2023] Open
Abstract
Enterovirus 71 (EV71) is a major causative agent of hand-foot-and-mouth disease (HFMD) frequently occurring in children. HFMD induced by EV71 can cause serious health problems and has been reported worldwide, particularly in the Asia-Pacific region. In this study, we assessed the immunogenicity of a formalin-inactivated HFMD vaccine using an EV71 strain (FI-EV71 C4a) isolated from a Korean patient. The vaccine candidate was evaluated in mice to determine the vaccination doses and vaccine schedules. BALB/c mice were intramuscularly administered 5, 10, or 20 μg FI-EV71 vaccine, followed by a booster 2 weeks later. EV71-specific antibodies and neutralizing antibodies were induced and maintained until the end of the experimental period in all vaccinated groups. To determine the effectiveness of adjuvant for the EV71 vaccine, three adjuvants, i.e., aluminium hydroxide gel, monophosphoryl lipid A, and polyinosinic-polycytidylic acid, were administered separately with the FI-EV71 vaccine to mice via the intramuscular route. Mice administered the FI-EV71 vaccine formulated with all three adjuvants induced a significantly increased antibody response compared with that of the single adjuvant groups. The vaccinated group with triple adjuvants exhibited more rapid induction of EV71-specific and neutralizing antibodies than the other groups. These results suggested that the role of adjuvant in inactivated vaccine was important for eliciting effective immune responses against EV71. In conclusion, our results showed that FI-EV71 was a potential candidate vaccine for prevention of EV71 infection.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Dose-Response Relationship, Immunologic
- Enterovirus A, Human/immunology
- Enterovirus A, Human/isolation & purification
- Female
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Hand, Foot and Mouth Disease/virology
- Humans
- Immunity, Cellular
- Immunization Schedule
- Immunoglobulin G/biosynthesis
- Mice
- Mice, Inbred BALB C
- Models, Animal
- Republic of Korea
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/pharmacology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- Hyun Ju In
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
- College of Medicine and Medical Research Institute, Chungbuk National University, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Heeji Lim
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
- College of Medicine and Medical Research Institute, Chungbuk National University, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Jung-Ah Lee
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Hye Jin Kim
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Jin-Won Kim
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Ji-Yeon Hyeon
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Sang-Gu Yeo
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - June-Woo Lee
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Jung Sik Yoo
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Sang-Won Lee
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
332
|
Malm M, Heinimäki S, Vesikari T, Blazevic V. Rotavirus capsid VP6 tubular and spherical nanostructures act as local adjuvants when co-delivered with norovirus VLPs. Clin Exp Immunol 2017; 189:331-341. [PMID: 28407442 PMCID: PMC5543502 DOI: 10.1111/cei.12977] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 01/19/2023] Open
Abstract
A subunit protein vaccine candidate based on norovirus (NoV) virus‐like particles (VLPs) and rotavirus (RV) VP6 protein against acute childhood gastroenteritis has been proposed recently. RV VP6 forms different oligomeric nanostructures, including tubes and spheres when expressed in vitro, which are highly immunogenic in different animal models. We have shown recently that recombinant VP6 nanotubes have an adjuvant effect on immunogenicity of NoV VLPs in mice. In this study, we investigated if the adjuvant effect is dependent upon a VP6 dose or different VP6 structural assemblies. In addition, local and systemic adjuvant effects as well as requirements for antigen co‐delivery and co‐localization were studied. The magnitude and functionality of NoV GII.4‐specific antibodies and T cell responses were tested in mice immunized with GII.4 VLPs alone or different combinations of VLPs and VP6. A VP6 dose‐dependent adjuvant effect on GII.4‐specific antibody responses was observed. The adjuvant effect was found to be strictly dependent upon co‐administration of NoV GII.4 VLPs and VP6 at the same anatomic site and at the same time. However, the adjuvant effect was not dependent on the types of oligomers used, as both nanotubes and nanospheres exerted adjuvant effect on GII.4‐specific antibody generation and, for the first time, T cell immunity. These findings elucidate the mechanisms of VP6 adjuvant effect in vivo and support its use as an adjuvant in a combination NoV and RV vaccine.
Collapse
Affiliation(s)
- M Malm
- Vaccine Research Center, University of Tampere, Tampere, Finland
| | - S Heinimäki
- Vaccine Research Center, University of Tampere, Tampere, Finland
| | - T Vesikari
- Vaccine Research Center, University of Tampere, Tampere, Finland
| | - V Blazevic
- Vaccine Research Center, University of Tampere, Tampere, Finland
| |
Collapse
|
333
|
The Use of Xanthan Gum as Vaccine Adjuvant: An Evaluation of Immunostimulatory Potential in BALB/c Mice and Cytotoxicity In Vitro. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3925024. [PMID: 28555192 PMCID: PMC5438839 DOI: 10.1155/2017/3925024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/11/2017] [Accepted: 04/16/2017] [Indexed: 11/17/2022]
Abstract
The successful production of new, safe, and effective vaccines that generate immunological memory is directly related to adjuvant feature, which is responsible for increasing and/or modulating the immune response. Several compounds display adjuvant activity, including carbohydrates. These compounds play important roles in the immune response, as well as having biocompatible properties in vaccine formulations. One such carbohydrate is xanthan gum, a polysaccharide that is produced by the plant-pathogenic bacterium Xanthomonas spp., which has adjuvant attributes. This study evaluated the immune response induced by xanthan gum associated with ovalbumin in BALB/c mice, which were subcutaneously immunized, in terms of antibody production (IgG1, IgG2a, IgG2b, and IgG3), and assessed the levels of IFN-γ in the splenocyte culture using indirect ELISA. Furthermore, we investigated in vitro cytotoxicity of xanthan in the embryo fibroblasts cell line of the NIH/3T3 mouse by MTT assay and propidium iodide uptake assay. The mice immunized with ovalbumin plus xanthan gum exhibited higher antibody IgG1 responses than control groups. Furthermore, the xanthan polysaccharide was capable of increasing the immunogenicity of antigens by producing IFN-γ and did not exhibit cytotoxicity effects in NIH/3T3 mouse fibroblast cells, considered a promising candidate for vaccine adjuvant.
Collapse
|
334
|
Virus-Like Particle (VLP) Plus Microcrystalline Tyrosine (MCT) Adjuvants Enhance Vaccine Efficacy Improving T and B Cell Immunogenicity and Protection against Plasmodium berghei/vivax. Vaccines (Basel) 2017; 5:vaccines5020010. [PMID: 28468322 PMCID: PMC5492007 DOI: 10.3390/vaccines5020010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 02/01/2023] Open
Abstract
Vaccination is the most effective prophylactic tool against infectious diseases. Despite continued efforts to control malaria, the disease still generally represents a significant unmet medical need. Microcrystalline tyrosine (MCT) is a well described depot used in licensed allergy immunotherapy products and in clinical development. However, its proof of concept in prophylactic vaccines has only recently been explored. MCT has never been used in combination with virus-like particles (VLPs), which are considered to be one of the most potent inducers of cellular and humoral immune responses in mice and humans. In the current study we assessed the potential of MCT to serve as an adjuvant in the development of a vaccine against malaria either alone or combined with VLP using Plasmodium vivax thrombospondin-related adhesive protein (TRAP) as a target antigen. We chemically coupled PvTRAP to VLPs derived from the cucumber mosaic virus fused to a universal T-cell epitope of the tetanus toxin (CMVtt), formulated with MCT and compared the induced immune responses to PvTRAP formulated in PBS or Alum. The protective capacity of the various formulations was assessed using Plasmodium berghei expressing PvTRAP. All vaccine formulations using adjuvants and/or VLP increased humoral immunogenicity for PvTRAP compared to the antigen alone. The most proficient responder was the group of mice immunized with the vaccine formulated with PvTRAP-VLP + MCT. The VLP-based vaccine formulated in MCT also induced the strongest T cell response and conferred best protection against challenge with recombinant Plasmodium berghei. Thus, the combination of VLP with MCT may take advantage of the properties of each component and appears to be an alternative biodegradable depot adjuvant for development of novel prophylactic vaccines.
Collapse
|
335
|
Enhancing immune responses to a DNA vaccine encoding Toxoplasma gondii GRA14 by calcium phosphate nanoparticles as an adjuvant. Immunol Lett 2017; 185:40-47. [DOI: 10.1016/j.imlet.2017.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
|
336
|
Hamaoka S, Naito Y, Katoh H, Shimizu M, Kinoshita M, Akiyama K, Kainuma A, Moriyama K, Ishii KJ, Sawa T. Efficacy comparison of adjuvants in PcrV vaccine against Pseudomonas aeruginosa pneumonia. Microbiol Immunol 2017; 61:64-74. [PMID: 28370521 DOI: 10.1111/1348-0421.12467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 11/27/2022]
Abstract
Vaccination against the type III secretion system of P. aeruginosa is a potential prophylactic strategy for reducing the incidence and improving the poor prognosis of P. aeruginosa pneumonia. In this study, the efficacies of three different adjuvants, Freund's adjuvant (FA), aluminum hydroxide (alum) and CpG oligodeoxynucleotide (ODN), were examined from the viewpoint of inducing PcrV-specific immunity against virulent P. aeruginosa. Mice that had been immunized intraperitoneally with recombinant PcrV formulated with one of the above adjuvants were challenged intratracheally with a lethal dose of P. aeruginosa. The PcrV-FA immunized group attained a survival rate of 91%, whereas the survival rates of the PcrV-alum and PcrV-CpG groups were 73% and 64%, respectively. In terms of hypothermia recovery after bacterial instillation, PcrV-alum was the most protective, followed by PcrV-FA and PcrV-CpG. The lung edema index was lower in the PcrV-CpG vaccination group than in the other groups. PcrV-alum immunization was associated with the greatest decrease in myeloperoxidase in infected lungs, and also decreased the number of lung bacteria to a similar number as in the PcrV-FA group. There was less neutrophil recruitment in the lungs of mice vaccinated with PcrV-alum or PcrV-CpG than in those of mice vaccinated with PcrV-FA or PcrV alone. Overall, in terms of mouse survival the PcrV-CpG vaccine, which could be a relatively safe next-generation vaccine, showed a comparable effect to the PcrV-alum vaccine.
Collapse
Affiliation(s)
- Saeko Hamaoka
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshifumi Naito
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hideya Katoh
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masaru Shimizu
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mao Kinoshita
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Koichi Akiyama
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Kainuma
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, School of Medicine, Kyorin University, Mitaka 181-8611, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
337
|
Yılmaz Ç, Apak A, Özcengiz E, Özcengiz G. Immunogenicity and protective efficacy of recombinant iron superoxide dismutase protein from Bordetella pertussis in mice models. Microbiol Immunol 2017; 60:717-724. [PMID: 27761933 DOI: 10.1111/1348-0421.12445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/29/2016] [Accepted: 10/16/2016] [Indexed: 11/29/2022]
Abstract
Whooping cough (pertussis) is a highly contagious respiratory infection caused by Bordetella pertussis. Although availability of effective pertussis vaccines reportedly decreases the incidence of the disease, B. pertussis circulation in populations has not been eliminated. Thus, it is necessary to find new protein candidates with greater immune protective capacities than the currently available acellular pertussis vaccines. In this study, iron superoxide dismutase (FeSOD) gene (sodB) was cloned, expressed in Escherichia coli and recombinant FeSOD protein thence purified. The recombinant protein (rFeSOD) was formulated with aluminum hydroxide (Alum) or monophosphoryl lipid A (MPLA) and injected intraperitoneally to immunize mice, after which IgG1, IgG2a and IFN-γ titers were measured to assess humoral and cellular responses, respectively, to these immunizations. The extent of bacterial colonization in lungs of intranasally challenged mice was determined 5, 8 and 14 days post-challenge. IgG1 and IgG2a responses were significantly stronger in mice that had been immunized with rFeSOD-MPLA than in those that had received rFeSOD-Alum (P < 0.05). Additionally, IgG2a titers were higher in mice vaccinated with recombinant protein FeSOD (rFeSOD) formulated with MPLA, especially after the second immunization. Immunization with rFeSOD-MPLA also provided a modest, but significant decrease in bacterial counts in lungs of mice (P < 0.05). Antigen specific-IFN-γ responses were significantly stronger in the group vaccinated with rFeSOD-MPLA, which could account for the lower bacterial counts. These findings suggest that rFeSOD protein formulated with MPLA has potential as an acellular pertussis vaccine candidate component.
Collapse
Affiliation(s)
- Çiğdem Yılmaz
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.,Department of Biology, Amasya University, Amasya, Turkey
| | - Aycan Apak
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Erkan Özcengiz
- Berk Pharma, METU Technopolis, Middle East Technical University, Ankara, Turkey
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
338
|
Heath MD, Swan NJ, Marriott AC, Silman NJ, Hallis B, Prevosto C, Gooch KE, Skinner MA. Comparison of a novel microcrystalline tyrosine adjuvant with aluminium hydroxide for enhancing vaccination against seasonal influenza. BMC Infect Dis 2017; 17:232. [PMID: 28347293 PMCID: PMC5369220 DOI: 10.1186/s12879-017-2329-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/17/2017] [Indexed: 12/01/2022] Open
Abstract
Background Vaccination against seasonal influenza strains is recommended for “high risk” patient groups such as infants, elderly and those with respiratory or circulatory diseases. However, efficacy of the trivalent influenza vaccine (TIV) is poor in many cases and in the event of an influenza pandemic, mono-valent vaccines have been rapidly developed and deployed. One of the main issues with use of vaccine in pandemic situations is the lack of a suitable quantity of vaccine early enough during the pandemic to exert a major influence on the transmission of virus and disease outcome. One approach is to use a dose-sparing regimen which inevitably involves enhancing the efficacy using adjuvants. Methods In this study we compare the use of a novel microcrystalline tyrosine (MCT) adjuvant, which is currently used in a niche area of allergy immunotherapy, for its ability to enhance the efficacy of a seasonal TIV preparation. The efficacy of the MCT adjuvant formulation was compared to alum adjuvanted TIV and to TIV administered without adjuvant using a ferret challenge model to determine vaccine efficacy. Results The MCT was found to possess high protein-binding capacity. In the two groups where TIV was formulated with adjuvant, the immune response was found to be higher (as determined by HAI titre) than vaccine administered without adjuvant and especially so after challenge with a live influenza virus. Vaccinated animals exhibited lower viral loads (as determined using RT-PCR) than control animals where no vaccine was administered. Conclusions The attributes of each adjuvant in stimulating single-dose protection against a poorly immunogenic vaccine was demonstrated. The properties of MCT that lead to the reported effectiveness warrants further exploration in this and other vaccine targets - particularly where appropriate immunogenic, biodegradable and stable alternative adjuvants are sought. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2329-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M D Heath
- Allergy Therapeutics Ltd, Dominion Way, West Sussex, BN14 8SA, UK.
| | - N J Swan
- Allergy Therapeutics Ltd, Dominion Way, West Sussex, BN14 8SA, UK
| | - A C Marriott
- Public Health England, PHE Porton, Porton Down, Salisbury, SP4 0JG, UK
| | - N J Silman
- Public Health England, PHE Porton, Porton Down, Salisbury, SP4 0JG, UK
| | - B Hallis
- Public Health England, PHE Porton, Porton Down, Salisbury, SP4 0JG, UK
| | - C Prevosto
- Public Health England, PHE Porton, Porton Down, Salisbury, SP4 0JG, UK.,Present address: Kings College, Guys Campus, London, SE1 3QD, UK
| | - K E Gooch
- Public Health England, PHE Porton, Porton Down, Salisbury, SP4 0JG, UK
| | - M A Skinner
- Allergy Therapeutics Ltd, Dominion Way, West Sussex, BN14 8SA, UK
| |
Collapse
|
339
|
Porcine Dendritic Cells as an In Vitro Model to Assess the Immunological Behaviour of Streptococcus suis Subunit Vaccine Formulations and the Polarizing Effect of Adjuvants. Pathogens 2017; 6:pathogens6010013. [PMID: 28327531 PMCID: PMC5371901 DOI: 10.3390/pathogens6010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Accepted: 03/18/2017] [Indexed: 01/03/2023] Open
Abstract
An in vitro porcine bone marrow-derived dendritic cell (DC) culture was developed as a model for evaluating immune polarization induced by adjuvants when administered with immunogens that may become vaccine candidates if appropriately formulated. The swine pathogen Streptococcus suis was chosen as a prototype to evaluate proposed S. suis vaccine candidates in combination with the adjuvants Poly I:C, Quil A ®, Alhydrogel ®, TiterMax Gold ® and Stimune ®. The toll-like receptor ligand Poly I:C and the saponin Quil A ® polarized swine DC cytokines towards a type 1 phenotype, with preferential production of IL-12 and TNF-α. The water-in-oil adjuvants TiterMax Gold ® and Stimune ® favoured a type 2 profile as suggested by a marked IL-6 release. In contrast, Alhydrogel ® induced a type 1/type 2 mixed cytokine profile. The antigen type differently modified the magnitude of the adjuvant effect, but overall polarization was preserved. This is the first comparative report on swine DC immune activation by different adjuvants. Although further swine immunization studies would be required to better characterize the induced responses, the herein proposed in vitro model is a promising approach that helps assessing behaviour of the vaccine formulation rapidly at the pre-screening stage and will certainly reduce numbers of animals used while advancing vaccinology science.
Collapse
|
340
|
Polymers in the Delivery of siRNA for the Treatment of Virus Infections. Top Curr Chem (Cham) 2017; 375:38. [PMID: 28324594 PMCID: PMC7100576 DOI: 10.1007/s41061-017-0127-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 01/13/2023]
Abstract
Viral diseases remain a major cause of death worldwide. Despite advances in vaccine and antiviral drug technology, each year over three million people die from a range of viral infections. Predominant viruses include human immunodeficiency virus, hepatitis viruses, and gastrointestinal and respiratory viruses. Now more than ever, robust, easily mobilised and cost-effective antiviral strategies are needed to combat both known and emerging disease threats. RNA interference and small interfering (si)RNAs were initially hailed as a “magic bullet”, due to their ability to inhibit the synthesis of any protein via the degradation of its complementary messenger RNA sequence. Of particular interest was the potential for attenuating viral mRNAs contributing to the pathogenesis of disease that were not able to be targeted by vaccines or antiviral drugs. However, it was soon discovered that delivery of active siRNA molecules to the infection site in vivo was considerably more difficult than anticipated, due to a number of physiological barriers in the body. This spurred a new wave of investigation into nucleic acid delivery vehicles which could facilitate safe, targeted and effective administration of the siRNA as therapy. Amongst these, cationic polymer delivery vehicles have emerged as a promising candidate as they are low-cost and easy to produce at an industrial scale, and bind to the siRNA by non-specific electrostatic interactions. These nanoparticles (NPs) can be functionally designed to target the infection site, improve uptake in infected cells, release the siRNA inside the endosome and facilitate delivery into the cell cytoplasm. They may also have the added benefit of acting as adjuvants. This chapter provides a background around problems associated with the translation of siRNA as antiviral treatments, reviews the progress made in nucleic acid therapeutics and discusses current methods and progress in overcoming these challenges. It also addresses the importance of combining physicochemical characterisation of the NPs with in vitro and in vivo data.
Collapse
|
341
|
Sack B, Kappe SHI, Sather DN. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection. Expert Rev Vaccines 2017; 16:403-414. [PMID: 28277097 DOI: 10.1080/14760584.2017.1295853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.
Collapse
Affiliation(s)
- Brandon Sack
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| | - Stefan H I Kappe
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| | - D Noah Sather
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| |
Collapse
|
342
|
Alpha-D-glucan nanoparticulate adjuvant induces a transient inflammatory response at the injection site and targets antigen to migratory dendritic cells. NPJ Vaccines 2017; 2:4. [PMID: 29263865 PMCID: PMC5627279 DOI: 10.1038/s41541-017-0007-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/17/2017] [Accepted: 01/31/2017] [Indexed: 12/26/2022] Open
Abstract
Biodegradable nanoparticles with functionalized surfaces are attractive candidates as vaccine adjuvants. Nano-11 are cationic dendrimer-like α-D-glucan nanoparticles with a diameter of 70–80 nm. Mice injected with antigen formulated with Nano-11 developed antibody titers that were similar or greater than antigen with aluminum adjuvant. Utilizing an in vivo imaging system, Nano-11 was shown to remain at the injection site after administration and cleared gradually over the course of 3 weeks. Injection of Nano-11 induced a transient inflammatory response characterized by recruitment of a mixed population of inflammatory cells, predominantly monocytes and macrophages with relatively few neutrophils. Recruited Mac-2+macrophages efficiently phagocytized the majority of Nano-11 at the injection site. Fluorescently labeled Nano-11 was present in cells in the draining lymph nodes 1 day after injection, with the majority contained in migratory dendritic cells. Injection of ovalbumin adsorbed to Nano-11 resulted in an increase of ovalbumin-containing cells in draining lymph nodes. Nano-11 delivered more antigen to antigen-presenting cells on a per cell basis and demonstrated more specific targeting to highly immunopotentiating migratory dendritic cells compared with soluble or aluminum hydroxide adsorbed ovalbumin. These results support the efficacy of Nano-11 and its potential use as a next generation vaccine adjuvant. A plant-derived nanoparticle boosts the immune system’s response to foreign stimuli, such as vaccines, through newly discovered mechanisms. Harm HogenEsch and his team from Purdue University, USA, previously discovered that their formulated nanoparticle adjuvant, Nano-11, increased immune responses to stimuli in mice. Adjuvants are formulations often co-administered with vaccines to promote interaction with the host’s immune system, conferring greater protection. In this study, the scientists found that Nano-11 functions by inducing a temporary inflammation, attracting immune cells to the injection site. The nanoparticles also facilitate the transport of the stimuli to the lymph nodes. Nano-11 is metabolized without deposition in any major internal organs, suggesting a positive safety profile. As current aluminum-based adjuvants are sometimes poorly effective and can cause local adverse reactions, nanoparticle-based potentiators such as Nano-11 may form the next generation of adjuvants.
Collapse
|
343
|
Sevimli S, Knight FC, Gilchuk P, Joyce S, Wilson JT. Fatty Acid-Mimetic Micelles for Dual Delivery of Antigens and Imidazoquinoline Adjuvants. ACS Biomater Sci Eng 2017; 3:179-194. [PMID: 29046894 PMCID: PMC5642296 DOI: 10.1021/acsbiomaterials.6b00408] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vaccine design has undergone a shift towards the use of purified protein subunit vaccines, which offer increased safety and greater control over antigen specificity, but at the expense of immunogenicity. Here we report the development of a new polymer-based vaccine delivery platform engineered to enhance immunity through the co-delivery of protein antigens and the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ). Owing to the preferential solubility of IMQ in fatty acids, a series of block copolymer micelles with a fatty acid-mimetic core comprising lauryl methacrylate (LMA) and methacrylic acid (MAA), and a poly(ethylene glycol) methyl ether methacrylate (PEGMA) corona decorated with pyridyl disulfide ethyl methacrylate (PDSM) moieties for antigen conjugation were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Carriers composed of 50 mole% LMA (LMA50) demonstrated the highest IMQ loading (2.2 w/w%) and significantly enhanced the immunostimulatory capacity of IMQ to induce dendritic cell maturation and proinflammatory cytokine production. Conjugation of a model antigen, ovalbumin (OVA), to the corona of IMQ-loaded LMA50 micelles enhanced in vitro antigen uptake and cross-presentation on MHC class I (MHC-I). A single intranasal (IN) immunization of mice with carriers co-loaded with IMQ and OVA elicited significantly higher pulmonary and systemic CD8+ T cell responses and increased serum IgG titer relative to a soluble formulation of antigen and adjuvant. Collectively, these data demonstrate that rationally designed fatty acid-mimetic micelles enhance intracellular antigen and IMQ delivery and have potential as synthetic vectors for enhancing the immunogenicity of subunit vaccines.
Collapse
Affiliation(s)
- Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue
| | - Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North
- Department of Veterans Administration Tennessee Valley Healthcare System, 1310 24th Avenue South
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North
- Department of Veterans Administration Tennessee Valley Healthcare System, 1310 24th Avenue South
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2301 Vanderbilt Place, Nashville, TN 37235, USA
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2301 Vanderbilt Place, Nashville, TN 37235, USA
| |
Collapse
|
344
|
Tobias J, Jasinska J, Baier K, Kundi M, Ede N, Zielinski C, Wiedermann U. Enhanced and long term immunogenicity of a Her-2/neu multi-epitope vaccine conjugated to the carrier CRM197 in conjunction with the adjuvant Montanide. BMC Cancer 2017; 17:118. [PMID: 28183282 PMCID: PMC5301331 DOI: 10.1186/s12885-017-3098-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background We previously identified three short single peptides (P4, P6 and P7) representing different B-cell epitopes on the extracellular domain of Her-2/neu for a vaccine that was tested in a phase-I clinical trial. Here we describe the improvement of the multi peptide vaccine by fusing the single peptides to a hybrid peptide P467. Methods After coupling to either virosomes or to diphtheria toxoid CRM197 (CRM), the hybrid peptide was tested in different concentrations in combination with either Montanide or Aluminium hydroxide (Alum) in preclinical studies. Results Already low amount (10 μg) of P467 conjugated to CRM led to faster onset of high antibody levels compared to the P467-virosome. The formulation P467-CRM-Montanide induced higher serum IgG antibody titers, compared with P467-CRM-Alum, as examined by ELISA using recombinant Her-2/neu or Her-2/neu natively expressed on the tumor cell line SK-BR-3. Compared to P467-CRM-Alum, higher in vitro production of IL-2 and IFNγ in the Montanide-immunized mice was induced after re-stimulation of splenocytes with CRM but also with P467, indicating a clear Th1-biased response. In contrast to the single B cell peptides, the hybrid peptide led to T cell proliferation and cytokine production as CD4 T cell epitopes were generated in the fusion region of the single peptides P4 and P6 or P6 and P7. Additionally, a significantly higher proportion IFNγ-producing CD8+ T cells was found in the P467-CRM-Montanide immunized mice, probably by Montanide-driven bystander activation. Importantly, anti-P467 IgG antibodies exhibited anti-tumor properties and the combination of anti-P467 specific IgG with Herceptin® was found to inhibit the proliferation of Her-2/neu-overexpressing cell line SK-BR-3 in a significantly higher capacity than Herceptin® alone. Conclusions Fusion of the B cell peptides has led to additional generation of CD4 T cell epitopes, and this P467-multi epitope vaccine was found to induce polyclonal antibody responses with anti-proliferative capacity against Her-2/neu. The hybrid vaccine together with Montanide induced higher and long-lasting antibody levels, Th1-biased cellular responses being superior to vaccination with the single B cell peptides. This vaccine formulation is now planned to be evaluated in a phase Ib/II study in Her-2/neu overexpressing cancer patients.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Joanna Jasinska
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Karin Baier
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Michael Kundi
- Institute of Environmental Health, Medical University of Vienna, 1090, Vienna, Austria
| | - Nicholas Ede
- Imugene Ltd., Suite 1, 1233 High Street, Armadale, Melbourne, VIC, 3143, Australia
| | - Christoph Zielinski
- Division of Oncology, Department of Medicine I, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| |
Collapse
|
345
|
Mirotti L, Alberca Custódio RW, Gomes E, Rammauro F, de Araujo EF, Garcia Calich VL, Russo M. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10. Front Immunol 2017; 8:47. [PMID: 28220116 PMCID: PMC5289984 DOI: 10.3389/fimmu.2017.00047] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/11/2017] [Indexed: 11/21/2022] Open
Abstract
Aluminum-containing adjuvants usually referred as Alum are considered as T helper type-2 (Th2) adjuvants, while agonists of toll-like receptors (TLRs) are viewed as adjuvants that favor Th1/Th17 immunity. Alum has been used in numerous vaccine formulations; however, its undesired pro-Th2 adjuvant activity constitutes a caveat for Alum-based vaccines. Combining Alum with TLR-dependent, pro-Th1/Th17 adjuvants might dampen the pro-Th2 activity and improve the effectiveness of vaccine formulations. Here, using the ovalbumin (OVA) model of allergic lung inflammation, we found that sensitization with the synthetic TLR9 agonist, which is composed of oligodeoxynucleotides containing CpG motifs adsorbed to Alum, inhibited the development of OVA-induced lung allergic Th2 responses without shifting toward a Th1 pattern. The conversion of T cell immunity from the polarized allergic Th2 response to a non-polarized form by sensitization with OVA/Alum/CpG was dependent on MyD88 signaling in myeloid cells. Notably, sensitization of IL-10-deficient mice with OVA/Alum/CpG resulted in the development of neutrophilic lung inflammation associated with IFNγ production. However, in IL-10/IL-12-deficient mice, it resulted in neutrophilic inflammation dominated by IL-17 production. We conclude that OVA/Alum/CpG sensitization signaling via MyD88 and IL-10 molecules results in non-polarized immunity. Conversely, OVA/Alum/CpG sensitization in presence of MyD88 but absence of IL-10 or IL-10/IL-12 molecules results, respectively, in neutrophilic inflammation associated with IFNγ or IL-17 production. Our work provides novel OVA models of lung inflammation and suggests that Alum/CpG-based formulations might be of potential use in anti-allergic or anti-infectious processes.
Collapse
Affiliation(s)
- Luciana Mirotti
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | | | - Eliane Gomes
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Florencia Rammauro
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Eliseu Frank de Araujo
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Vera Lucia Garcia Calich
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
346
|
Simultaneous enhancement of cellular and humoral immunity by the high salt formulation of Al(OH) 3 adjuvant. Cell Res 2017; 27:586-589. [PMID: 28106074 PMCID: PMC5385609 DOI: 10.1038/cr.2017.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
347
|
Ziegler A, Soldner C, Lienenklaus S, Spanier J, Trittel S, Riese P, Kramps T, Weiss S, Heidenreich R, Jasny E, Guzmán CA, Kallen KJ, Fotin-Mleczek M, Kalinke U. A New RNA-Based Adjuvant Enhances Virus-Specific Vaccine Responses by Locally Triggering TLR- and RLH-Dependent Effects. THE JOURNAL OF IMMUNOLOGY 2017; 198:1595-1605. [DOI: 10.4049/jimmunol.1601129] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
|
348
|
Virginio VG, Bandeira NC, Leal FMDA, Lancellotti M, Zaha A, Ferreira HB. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines. Heliyon 2017; 3:e00225. [PMID: 28194450 PMCID: PMC5291748 DOI: 10.1016/j.heliyon.2016.e00225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022] Open
Abstract
The adjuvant potential of two mesoporous silica nanoparticles (MSNs), SBa-15 and SBa-16, was assessed in combination with a recombinant HSP70 surface polypeptide domain from Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP). The recombinant antigen (HSP70212-600), previously shown as immunogenic in formulation with classic adjuvants, was used to immunize BALB/c mice in combination with SBa-15 or SBa-16 MSNs, and the effects obtained with these formulations were compared to those obtained with alum, the adjuvant traditionally used in anti-PEP bacterins. The HSP70212-600 + SBa-15 vaccine elicited a strong humoral immune response, with high serum total IgG levels, comparable to those obtained using HSP70212-600 + alum. The HSP70212-600 + SBa-16 vaccine elicited a moderate humoral immune response, with lower levels of total IgG. The cellular immune response was assessed by the detection of IFN-γ, IL-4 and IL-10 in splenocyte culture supernatants. The HSP70212-600 + SBa-15 vaccine increased IFN-γ, IL-4 and IL-10 levels, while no stimulation was detected with the HSP70212-600 + SBa-16 vaccine. The HSP70212-600 + SBa-15 vaccine induced a mixed Th1/Th2-type response, with an additional IL-10 mediated anti-inflammatory effect, both of relevance for an anti-PEP vaccine. Alum adjuvant controls stimulated an unspecific cellular immune response, with similar levels of cytokines detected in mice immunized either with HSP70212-600 + alum or with the adjuvant alone. The better humoral and cellular immune responses elicited in mice indicated that SBa-15 has adjuvant potential, and can be considered as an alternative to the use of alum in veterinary vaccines. The use of SBa-15 with HSP70212-600 is also promising as a potential anti-PEP subunit vaccine formulation.
Collapse
Affiliation(s)
- Veridiana Gomes Virginio
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Natalia Costantin Bandeira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Munhoz Dos Anjos Leal
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Marcelo Lancellotti
- Laboratório de Biotecnologia, Instituto de Biologia, Departamento de Bioquímica, UNICAMP, Campinas, SP, Brazil; Faculdade de Ciências Farmacêuticas, UNICAMP, Campinas, SP, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
349
|
Enhanced Protective Immunogenicity of Homodimeric Borrelia burgdorferi Outer Surface Protein C. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00306-16. [PMID: 27733423 DOI: 10.1128/cvi.00306-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022]
Abstract
Lyme borreliosis is caused by tick-transmitted spirochetes of the Borrelia burgdorferi sensu lato group and is the most common vector-borne disease in the United States and Europe. Outer surface protein C (OspC) is a 23-kDa outer surface lipoprotein expressed during spirochete transmission from the tick to the vertebrate host. In a previous study, we found that immunization with a recombinant disulfide-bridged dimeric form of OspC (D-OspC) stimulates increased antibody responses relative to immunization with commonly employed monomeric OspC. Here, we report that mice immunized with dimeric OspC proteins also exhibited enhanced protection against infection with the cognate B. burgdorferi strain. Mice were protected by four immunizations containing as little as 100 ng of dimeric OspC, suggesting that this form of the protein can induce protective immunity within a dose range reasonable for a human or veterinary vaccine. In contrast, monomeric OspC was only partially protective at much higher doses. IgG subclass analysis revealed that D-OspC-immunized animals mainly possessed anti-OspC-IgG1. In contrast, infected animals develop anti-OspC restricted to the IgG3 isotype. A subset of antibodies generated by dimeric OspC immunization did not recognize the monomeric variant, indicating that unique epitopes exist on the dimeric form. Moreover, monoclonal antibodies that recognized only dimeric OspC protected mice from B. burgdorferi challenge, whereas another monoclonal that recognized both immunogens was not protective. These studies suggest that this dimeric OspC presents distinctive epitopes that generate antibodies protective against B. burgdorferi infection and could be a useful vaccine component.
Collapse
|
350
|
Welsby I, Detienne S, N'Kuli F, Thomas S, Wouters S, Bechtold V, De Wit D, Gineste R, Reinheckel T, Elouahabi A, Courtoy PJ, Didierlaurent AM, Goriely S. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21. Front Immunol 2017; 7:663. [PMID: 28105029 PMCID: PMC5215313 DOI: 10.3389/fimmu.2016.00663] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
The adjuvant properties of the saponin QS-21 have been known for decades. It is a component of the Adjuvant System AS01 that is used in several vaccine candidates. QS-21 strongly potentiates both cellular and humoral immune responses to purified antigens, yet how it activates immune cells is largely unknown. Here, we report that QS-21 directly activated human monocyte-derived dendritic cells (moDCs) and promoted a pro-inflammatory transcriptional program. Cholesterol-dependent QS-21 endocytosis followed by lysosomal destabilization and Syk kinase activation were prerequisites for this response. Cathepsin B, a lysosomal cysteine protease, was essential for moDC activation in vitro and contributed to the adjuvant effects of QS-21 in vivo. Collectively, these findings provide new insights into the pathways involved in the direct activation of antigen-presenting cells by a clinically relevant QS-21 formulation.
Collapse
Affiliation(s)
- Iain Welsby
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| | - Sophie Detienne
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| | - Francisca N'Kuli
- Cell Biology Unit, de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Séverine Thomas
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| | | | | | - Dominique De Wit
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| | | | - Thomas Reinheckel
- Medical Faculty, Institute for Molecular Medicine and Cell Research, Albert Ludwigs University , Freiburg , Germany
| | | | - Pierre J Courtoy
- Cell Biology Unit, de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | | | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| |
Collapse
|