301
|
De Paepe B, Zschüntzsch J. Scanning for Therapeutic Targets within the Cytokine Network of Idiopathic Inflammatory Myopathies. Int J Mol Sci 2015; 16:18683-713. [PMID: 26270565 PMCID: PMC4581266 DOI: 10.3390/ijms160818683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/17/2022] Open
Abstract
The idiopathic inflammatory myopathies (IIM) constitute a heterogeneous group of chronic disorders that include dermatomyositis (DM), polymyositis (PM), sporadic inclusion body myositis (IBM) and necrotizing autoimmune myopathy (NAM). They represent distinct pathological entities that, most often, share predominant inflammation in muscle tissue. Many of the immunopathogenic processes behind the IIM remain poorly understood, but the crucial role of cytokines as essential regulators of the intramuscular build-up of inflammation is undisputed. This review describes the extensive cytokine network within IIM muscle, characterized by strong expression of Tumor Necrosis Factors (TNFα, LTβ, BAFF), Interferons (IFNα/β/γ), Interleukins (IL-1/6/12/15/18/23) and Chemokines (CXCL9/10/11/13, CCL2/3/4/8/19/21). Current therapeutic strategies and the exploration of potential disease modifying agents based on manipulation of the cytokine network are provided. Reported responses to anti-TNFα treatment in IIM are conflicting and new onset DM/PM has been described after administration of anti-TNFα agents to treat other diseases, pointing to the complex effects of TNFα neutralization. Treatment with anti-IFNα has been shown to suppress the IFN type 1 gene signature in DM/PM patients and improve muscle strength. Beneficial effects of anti-IL-1 and anti-IL-6 therapy have also been reported. Cytokine profiling in IIM aids the development of therapeutic strategies and provides approaches to subtype patients for treatment outcome prediction.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Center, Laboratory for Neuropathology, 10K12E, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Centre, Göttingen University, 37075 Göttingen, Germany.
| |
Collapse
|
302
|
Rose-John S, Scheller J, Schaper F. "Family reunion"--A structured view on the composition of the receptor complexes of interleukin-6-type and interleukin-12-type cytokines. Cytokine Growth Factor Rev 2015; 26:471-4. [PMID: 26235233 DOI: 10.1016/j.cytogfr.2015.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Fred Schaper
- Institute of Biology, Otto-von-Guericke-University, Universitätsplatz 2, 39106 Magdeburg, Germany.
| |
Collapse
|
303
|
Braun GS, Nagayama Y, Maruta Y, Heymann F, van Roeyen CR, Klinkhammer BM, Boor P, Villa L, Salant DJ, Raffetseder U, Rose-John S, Ostendorf T, Floege J. IL-6 Trans-Signaling Drives Murine Crescentic GN. J Am Soc Nephrol 2015; 27:132-42. [PMID: 26041841 DOI: 10.1681/asn.2014111147] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/20/2015] [Indexed: 01/07/2023] Open
Abstract
The role of IL-6 signaling in renal diseases remains controversial, with data describing both anti-inflammatory and proinflammatory effects. IL-6 can act via classic signaling, engaging its two membrane receptors gp130 and IL-6 receptor (IL-6R). Alternatively, IL-6 trans-signaling requires soluble IL-6R (sIL-6R) to act on IL-6R-negative cells that express gp130. Here, we characterize the role of both pathways in crescentic nephritis. Patients with crescentic nephritis had significantly elevated levels of IL-6 in both serum and urine. Similarly, nephrotoxic serum-induced nephritis (NTN) in BALB/c mice was associated with elevated serum IL-6 levels. Levels of serum sIL-6R and renal downstream signals of IL-6 (phosphorylated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3) increased over time in this model. Simultaneous inhibition of both IL-6 signaling pathways using anti-IL-6 antibody did not have a significant impact on NTN severity. In contrast, specific inhibition of trans-signaling using recombinant sgp130Fc resulted in milder disease. Vice versa, specific activation of trans-signaling using a recombinant IL-6-sIL-6R fusion molecule (Hyper-IL-6) significantly aggravated NTN and led to increased systolic BP in NTN mice. This correlated with increased renal mRNA synthesis of the Th17 cell cytokine IL-17A and decreased synthesis of resistin-like alpha (RELMalpha)-encoding mRNA, a surrogate marker of lesion-mitigating M2 macrophage subtypes. Collectively, our data suggest a central role for IL-6 trans-signaling in crescentic nephritis and offer options for more effective and specific therapeutic interventions in the IL-6 system.
Collapse
Affiliation(s)
- Gerald S Braun
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany;
| | - Yoshikuni Nagayama
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Division of Nephrology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Yuichi Maruta
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Division of Nephrology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Felix Heymann
- Division of Gastroenterology, Metabolic Diseases and Intensive Care, RWTH Aachen University, Aachen, Germany
| | - Claudia R van Roeyen
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - Barbara M Klinkhammer
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Luigi Villa
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - David J Salant
- Department of Medicine, Section of Nephrology, Boston University School of Medicine, Boston, MA; and
| | - Ute Raffetseder
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - Jürgen Floege
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| |
Collapse
|
304
|
Fang D, Kong LY, Cai J, Li S, Liu XD, Han JS, Xing GG. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model. Pain 2015; 156:1124-1144. [PMID: 25775359 DOI: 10.1097/j.pain.0000000000000158] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the pathogenesis of bone cancer pain still remain largely unknown. Previously, we have reported that sensitization of primary sensory dorsal root ganglion (DRG) neurons contributes to the pathogenesis of bone cancer pain in rats. In addition, numerous preclinical and clinical studies have revealed the pathological roles of interleukin-6 (IL-6) in inflammatory and neuropathic hyperalgesia. In this study, we investigated the role and the underlying mechanisms of IL-6 in the development of bone cancer pain using in vitro and in vivo approaches. We first demonstrated that elevated IL-6 in DRG neurons plays a vital role in the development of nociceptor sensitization and bone cancer-induced pain in a rat model through IL-6/soluble IL-6 receptor (sIL-6R) trans-signaling. Moreover, we revealed that functional upregulation of transient receptor potential vanilloid channel type 1 (TRPV1) in DRG neurons through the activation of Janus kinase (JAK)/phosphatidylinositol 3-kinase (PI3K) signaling pathway contributes to the effects of IL-6 on the pathogenesis of bone cancer pain. Therefore, suppression of functional upregulation of TRPV1 in DRG neurons by the inhibition of JAK/PI3K pathway, either before surgery or after surgery, reduces the hyperexcitability of DRG neurons and pain hyperalgesia in bone cancer rats. We here disclose a novel intracellular pathway, the IL-6/JAK/PI3K/TRPV1 signaling cascade, which may underlie the development of peripheral sensitization and bone cancer-induced pain.
Collapse
Affiliation(s)
- Dong Fang
- Neuroscience Research Institute, Peking University, Beijing, China Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
305
|
Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 2015; 15:335-49. [PMID: 25976513 PMCID: PMC4786079 DOI: 10.1038/nri3843] [Citation(s) in RCA: 715] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fever is a cardinal response to infection that has been conserved in warm-blooded and cold-blooded vertebrates for more than 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. In this Review, we discuss our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction and during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. We also discuss the emerging evidence suggesting that the adrenergic signalling pathways associated with thermogenesis shape immune cell function.
Collapse
Affiliation(s)
- Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| | - Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| |
Collapse
|
306
|
Ullah MA, Revez JA, Loh Z, Simpson J, Zhang V, Bain L, Varelias A, Rose-John S, Blumenthal A, Smyth MJ, Hill GR, Sukkar MB, Ferreira MAR, Phipps S. Allergen-induced IL-6 trans-signaling activates γδ T cells to promote type 2 and type 17 airway inflammation. J Allergy Clin Immunol 2015; 136:1065-73. [PMID: 25930193 DOI: 10.1016/j.jaci.2015.02.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/08/2015] [Accepted: 02/26/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND A variant in the IL-6 receptor (IL-6R) gene increases asthma risk and is predicted to decrease IL-6 classic signaling and increase IL-6 trans-signaling. This suggests that inhibition of IL-6 trans-signaling, but not classic signaling, might suppress allergic airway inflammation. OBJECTIVES We sought to determine whether IL-6 signaling contributes to (1) acute experimental asthma induced by clinically relevant allergens and (2) variation in asthma clinical phenotypes in asthmatic patients. METHODS Mice were sensitized to house dust mite (HDM) or cockroach at day 0, treated with IL-6R inhibitors at day 13, and challenged with the same allergen at days 14 to 17. End points were measured 3 hours after the final challenge. IL-6 and soluble IL-6 receptor (sIL-6R) expression in induced sputum of asthmatic patients was correlated with asthma clinical phenotypes. RESULTS Both HDM and cockroach induced a type 2/type 17 cytokine profile and mixed granulocytic inflammation in the airways. Both allergens increased IL-6 expression in the airways, but only cockroach induced sIL-6R expression. Therefore HDM challenge promoted IL-6 classic signaling but not trans-signaling; in this model treatment with anti-IL-6R did not suppress airway inflammation. In contrast, cockroach-induced inflammation involved activation of IL-6 trans-signaling and production of IL-17A by γδ T cells. Anti-IL-6R, selective blockade of sIL-6R, or γδ T-cell deficiency significantly attenuated cockroach-induced inflammation. Asthmatic patients with high airway IL-6 and sIL-6R levels were enriched for the neutrophilic and mixed granulocytic subtypes. CONCLUSION Experimental asthma associated with both high IL-6 and high sIL-6R levels in the airways is attenuated by treatment with IL-6R inhibitors.
Collapse
Affiliation(s)
- Md Ashik Ullah
- Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, Australia; Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, University of Queensland, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Joana A Revez
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Zhixuan Loh
- Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Jennifer Simpson
- Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Vivian Zhang
- Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Lisa Bain
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-Universität of Kiel, Kiel, Germany
| | - Antje Blumenthal
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Medicine, University of Queensland, Herston, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Department of Bone Marrow Transplantation, Royal Brisbane Hospital, Brisbane, Australia
| | - Maria B Sukkar
- Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, Australia; School of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | | | - Simon Phipps
- Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, University of Queensland, Brisbane, Australia.
| |
Collapse
|
307
|
Copp SW, Stone AJ, Li J, Kaufman MP. Role played by interleukin-6 in evoking the exercise pressor reflex in decerebrate rats: effect of femoral artery ligation. Am J Physiol Heart Circ Physiol 2015; 309:H166-73. [PMID: 25910806 DOI: 10.1152/ajpheart.00195.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/21/2015] [Indexed: 11/22/2022]
Abstract
IL-6 signaling via the soluble IL-6 receptor (sIL-6r) has been shown to increase primary afferent responsiveness to noxious stimuli. This finding prompted us to test the hypothesis that IL-6 and sIL-6r would increase the exercise pressor reflex in decerebrate rats with freely perfused femoral arteries. We also tested the hypothesis that soluble glycoprotein (sgp)130, an inhibitor of IL-6/sIL-6r signaling, would decrease the exaggerated exercise pressor reflex that is found in decerebrate rats with ligated femoral arteries. In rats with freely perfused femoral arteries, coinjection of 50 ng of IL-6 and sIL-6r into the arterial supply of the hindlimb significantly increased the peak pressor response to static (control: 14 ± 3 mmHg and IL-6/sIL-6r: 17 ± 2 mmHg, P = 0.03) and intermittent isometric (control: 10 ± 2 mmHg and IL-6/sIL-6r: 15 ± 4 mmHg, P = 0.03) hindlimb muscle contraction. In rats with ligated femoral arteries, injection of 50 ng of sgp130 into the arterial supply of the hindlimb reduced the peak pressor response to static (control: 24 ± 2 mmHg and sgp130: 16 ± 3 mmHg, P = 0.01) and intermittent isometric (control: 16 ± 2 mmHg and sgp130: 13 ± 2 mmHg, P = 0.04) hindlimb muscle contraction, whereas there was no effect of sgp130 on the exercise pressor reflex in rats with freely perfused femoral arteries. We conclude that coinjection of exogenous IL-6 and sIL-6r increased the exercise pressor reflex in rats with freely perfused femoral arteries. More importantly, we also conclude that IL-6 and sIL-6r play an endogenous role in evoking the exercise pressor reflex in rats with ligated femoral arteries but not in rats with freely perfused femoral arteries.
Collapse
Affiliation(s)
- Steven W Copp
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Audrey J Stone
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jianhua Li
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Marc P Kaufman
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
308
|
IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16:448-57. [DOI: 10.1038/ni.3153] [Citation(s) in RCA: 1715] [Impact Index Per Article: 171.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
|
309
|
Chiesa C, Pacifico L, Natale F, Hofer N, Osborn JF, Resch B. Fetal and early neonatal interleukin-6 response. Cytokine 2015; 76:1-12. [PMID: 25890877 DOI: 10.1016/j.cyto.2015.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
In 1998, a systemic fetal cytokine response, defined as a plasma interleukin-6 (IL-6) value above 11 pg/mL, was reported to be a major independent risk factor for the subsequent development of neonatal morbid events even after adjustments for gestational age and other confounders. Since then, the body of literature investigating the use of blood concentrations of IL-6 as a hallmark of the fetal inflammatory response syndrome (FIRS), a diagnostic marker of early-onset neonatal sepsis (EONS) and a risk predictor of white matter injury (WMI), has grown rapidly. In this article, we critically review: IL-6 biological functions; current evidence on the association between IL-6, preterm birth, FIRS and EONS; IL-6 reference intervals and dynamics in the early neonatal period; IL-6 response during the immediate postnatal period and perinatal confounders; accuracy and completeness of IL-6 diagnostic studies for EONS (according to the Standards for Reporting of Diagnostic Accuracy statement); and recent breakthroughs in the association between fetal blood IL-6, EONS, and WMI.
Collapse
Affiliation(s)
- Claudio Chiesa
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy.
| | - Lucia Pacifico
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabio Natale
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University of Rome, 00161 Rome, Italy
| | - Nora Hofer
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, AT-8036 Graz, Austria
| | - John F Osborn
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Bernhard Resch
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, AT-8036 Graz, Austria
| |
Collapse
|
310
|
Pothoven KL, Norton JE, Hulse KE, Suh LA, Carter RG, Rocci E, Harris KE, Shintani-Smith S, Conley DB, Chandra RK, Liu MC, Kato A, Gonsalves N, Grammer LC, Peters AT, Kern RC, Bryce PJ, Tan BK, Schleimer RP. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J Allergy Clin Immunol 2015; 136:737-746.e4. [PMID: 25840724 DOI: 10.1016/j.jaci.2015.01.043] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Epithelial barrier dysfunction is thought to play a role in many mucosal diseases, including asthma, chronic rhinosinusitis (CRS), and eosinophilic esophagitis. OBJECTIVE The objective of this study was to investigate the role of oncostatin M (OSM) in epithelial barrier dysfunction in human mucosal disease. METHODS OSM expression was measured in tissue extracts, nasal secretions, and bronchoalveolar lavage fluid. The effects of OSM stimulation on barrier function of normal human bronchial epithelial cells and nasal epithelial cells cultured at the air-liquid interface were assessed by using transepithelial electrical resistance and fluorescein isothiocyanate-dextran flux. Dual-color immunofluorescence was used to evaluate the integrity of tight junction structures in cultured epithelial cells. RESULTS Analysis of samples from patients with CRS showed that OSM mRNA and protein levels were highly increased in nasal polyps compared with those seen in control uncinate tissue (P < .05). OSM levels were also increased in bronchoalveolar lavage fluid of allergic asthmatic patients after segmental allergen challenge and in esophageal biopsy specimens from patients with eosinophilic esophagitis. OSM stimulation of air-liquid interface cultures resulted in reduced barrier function, as measured by decreased transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran flux (P < .05). Alterations in barrier function by OSM were reversible, and the viability of epithelial cells was unaffected. OSM levels in lysates of nasal polyps and uncinate tissue positively correlated with levels of α2-macroglobulin, a marker of epithelial leak, in localized nasal secretions (r = 0.4855, P < .05). CONCLUSIONS These results suggest that OSM might play a role in epithelial barrier dysfunction in patients with CRS and other mucosal diseases.
Collapse
Affiliation(s)
- Kathryn L Pothoven
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Erin Rocci
- Stritch School of Medicine, Loyola University Chicago, Chicago, Ill
| | - Kathleen E Harris
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Rakesh K Chandra
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Mark C Liu
- Divisions of Allergy and Clinical Immunology, Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Md
| | - Atsushi Kato
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Nirmala Gonsalves
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Paul J Bryce
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
311
|
Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol 2015; 34:75-82. [PMID: 25749511 DOI: 10.1016/j.coi.2015.02.008] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 12/12/2022]
Abstract
Interleukin-6 has long been recognized as a prototypic pro-inflammatory cytokine that is involved in the pathogenesis of all inflammatory diseases. Activation of the gp130 homodimer by IL-6 leads to the initiation of Jak/STAT signaling, a pathway that is often constitutively switched on in inflammatory malignancies. However, a plethora of studies in the last decade has convincingly shown that only signaling via the soluble IL-6R (trans-signaling) accounts for the deleterious effects of IL-6, whereas classic signaling via the membrane-bound receptor is essential for the regenerative and anti-bacterial effects of IL-6 (classic signaling). In this review, we highlight recent developments in the field of IL-6 research, and specifically focus on advances towards a safe and specific inhibition of IL-6 trans-signaling.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany
| | | | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany.
| |
Collapse
|
312
|
Kraakman MJ, Kammoun HL, Allen TL, Deswaerte V, Henstridge DC, Estevez E, Matthews VB, Neill B, White DA, Murphy AJ, Peijs L, Yang C, Risis S, Bruce CR, Du XJ, Bobik A, Lee-Young RS, Kingwell BA, Vasanthakumar A, Shi W, Kallies A, Lancaster GI, Rose-John S, Febbraio MA. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab 2015; 21:403-16. [PMID: 25738456 DOI: 10.1016/j.cmet.2015.02.006] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/21/2014] [Accepted: 02/06/2015] [Indexed: 01/01/2023]
Abstract
Interleukin-6 (IL-6) plays a paradoxical role in inflammation and metabolism. The pro-inflammatory effects of IL-6 are mediated via IL-6 "trans-signaling," a process where the soluble form of the IL-6 receptor (sIL-6R) binds IL-6 and activates signaling in inflammatory cells that express the gp130 but not the IL-6 receptor. Here we show that trans-signaling recruits macrophages into adipose tissue (ATM). Moreover, blocking trans-signaling with soluble gp130Fc protein prevents high-fat diet (HFD)-induced ATM accumulation, but does not improve insulin action. Importantly, however, blockade of IL-6 trans-signaling, unlike complete ablation of IL-6 signaling, does not exacerbate obesity-induced weight gain, liver steatosis, or insulin resistance. Our data identify the sIL-6R as a critical chemotactic signal for ATM recruitment and suggest that selectively blocking IL-6 trans-signaling may be a more favorable treatment option for inflammatory diseases, compared with current treatments that completely block the action of IL-6 and negatively impact upon metabolic homeostasis.
Collapse
Affiliation(s)
- Michael J Kraakman
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Helene L Kammoun
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Tamara L Allen
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Virginie Deswaerte
- Vascular Biology and Atherosclerosis Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Emma Estevez
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Vance B Matthews
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Bronwyn Neill
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - David A White
- Experimental Cardiology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Lone Peijs
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Christine Yang
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Steve Risis
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Clinton R Bruce
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Xiao-Jun Du
- Experimental Cardiology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Bronwyn A Kingwell
- Metabolic and Vascular Physiology Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Wei Shi
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Computing and Information Systems, University of Melbourne, Parkville, VIC 3010, Australia
| | - Axel Kallies
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Graeme I Lancaster
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, BakerIDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia.
| |
Collapse
|
313
|
Goumas FA, Holmer R, Egberts JH, Gontarewicz A, Heneweer C, Geisen U, Hauser C, Mende MM, Legler K, Röcken C, Becker T, Waetzig GH, Rose-John S, Kalthoff H. Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. Int J Cancer 2015; 137:1035-46. [PMID: 25604508 DOI: 10.1002/ijc.29445] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal human tumors, with radical surgical resection as the only curative treatment option. However, resection is only possible in a small fraction of patients, and about 80% of the patients develop recurrencies. PDAC development is facilitated by the cytokine interleukin-6 (IL-6), which acts via classic and trans-signaling. Both pathways are inhibited by the anti-IL-6-receptor antibody tocilizumab, whereas the fusion protein sgp130Fc specifically blocks trans-signaling. Here, we show that conservative or adjuvant therapy with both inhibitors reduces tumor growth in an orthotopic model of human Colo357 cells in SCID/bg mice. In the conservative setting, median primary tumor weight was reduced 2.4-fold for tocilizumab and 4.4-fold for sgp130Fc. sgp130Fc additionally led to a decrease in microvessel density, which was not observed with tocilizumab. In the adjuvant therapeutic setting after surgical resection of the primary tumor, treatment with tocilizumab or sgp130Fc decreased the local recurrence rate from 87.5% in the control group to 62.5 or 50%, respectively. Furthermore, the median weight of the local recurrent tumors was clearly diminished, and both inhibitors reduced the number of distant metastases. A significant reduction of tumor weight and metastases-comparable to gemcitabine treatment-was also observed with both inhibitors in another model using the poorly differentiated PancTuI cells. Our findings demonstrate the inhibition of IL-6 as a new treatment option in PDAC.
Collapse
Affiliation(s)
- Freya A Goumas
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Reinhild Holmer
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jan-Hendrik Egberts
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Artur Gontarewicz
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carola Heneweer
- Clinic for Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ulf Geisen
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Charlotte Hauser
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maria-Margarete Mende
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Karen Legler
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Becker
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
314
|
Fonseka TM, McIntyre RS, Soczynska JK, Kennedy SH. Novel investigational drugs targeting IL-6 signaling for the treatment of depression. Expert Opin Investig Drugs 2015; 24:459-75. [PMID: 25585966 DOI: 10.1517/13543784.2014.998334] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Elevated levels of IL-6 have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). Convergent evidence suggests that IL-6 primarily mediates proinflammatory functions via the soluble IL-6 receptor/trans-signaling, and anti-inflammatory functions via a transmembrane receptor (IL-6R). A targeted approach to selectively inhibit IL-6 trans-signaling may offer putative antidepressant effects. AREAS COVERED This review addresses three primary domains. The first focuses on the biological role of IL-6 within inflammation and its signal transduction pathways. The second addresses the potential contributions of IL-6 to the pathophysiology of MDD, and the mechanisms that may mediate these effects. Finally, the article outlines the therapeutic benefits of incorporating anti-inflammatory properties into the pharmacological treatment of MDD, and proposes inhibition of IL-6 signaling as a viable treatment strategy. EXPERT OPINION To improve drug development for the treatment of MDD, there is a critical need to identify promising targets. Target identification will require guidance from a strategic framework such as The Research Domain Criteria, and convincing evidence relating known targets to brain function under both physiological and pathological conditions. Although current evidence provides rationale for administering anti-IL-6 treatments in MDD, further studies confirming safety, target affinity and therapeutic benefits are warranted.
Collapse
Affiliation(s)
- Trehani M Fonseka
- University of Toronto, University Health Network, Department of Psychiatry , 200 Elizabeth Street, 8-EN-238, Toronto, M5G 2C4, ON , Canada +1 416 340 3888 ; +1 416 340 4198 ;
| | | | | | | |
Collapse
|
315
|
Abstract
Both experimental and clinical evidence accumulated over the last couple of decades has linked inflammatory activation to the initiation and progression of chronic heart failure (HF). Circulating levels of inflammatory mediators are associated with cardiac function and inform risk prediction in patients, but the effect of anti-inflammatory therapy in HF remains uncertain. Interleukin (IL)-6 type cytokines are central to the inflammatory response, and convey their signals through the ubiquitously expressed glycoprotein (gp) 130 receptor subunit. IL-6-type/gp130 signaling therefore represents an inflammatory nexus, with inherent potential for disease modification. This review focuses on the current knowledge of IL-6/gp130 signaling in relation to HF, with a particular emphasis on the role of soluble gp130 (sgp130), a signaling pathway modulator. Biological aspects of sgp130 and IL-6 signaling are discussed, as are potential novel therapeutic approaches to modulate this central inflammatory signaling pathway.
Collapse
|
316
|
Vagal nerve stimulation blocks interleukin 6-dependent synaptic hyperexcitability induced by lipopolysaccharide-induced acute stress in the rodent prefrontal cortex. Brain Behav Immun 2015; 43:149-58. [PMID: 25128387 PMCID: PMC4727901 DOI: 10.1016/j.bbi.2014.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/24/2023] Open
Abstract
The ratio between synaptic inhibition and excitation (sI/E) is a critical factor in the pathophysiology of neuropsychiatric disease. We recently described a stress-induced interleukin-6 dependent mechanism leading to a decrease in sI/E in the rodent temporal cortex. The aim of the present study was to determine whether a similar mechanism takes place in the prefrontal cortex, and to elaborate strategies to prevent or attenuate it. We used aseptic inflammation (single acute injections of lipopolysaccharide, LPS, 10mg/kg) as stress model, and patch-clamp recording on a prefrontal cortical slice preparation from wild-type rat and mice, as well as from transgenic mice in which the inhibitor of IL-6 trans-signaling sgp130Fc was produced in a brain-specific fashion (sgp130Fc mice). The anti-inflammatory reflex was activated either by vagal nerve stimulation or peripheral administration of the nicotinic α7 receptor agonist PHA543613. We found that the IL-6-dependent reduction in prefrontal cortex synaptic inhibition was blocked in sgp130Fc mice, or - in wild-type animals - upon application sgp130Fc. Similar results were obtained by activating the "anti-inflammatory reflex" - a neural circuit regulating peripheral immune response - by stimulation of the vagal nerve or through peripheral administration of the α7 nicotinic receptor agonist PHA543613. Our results indicate that the prefrontal cortex is an important potential target of IL-6 mediated trans-signaling, and suggest a potential new avenue in the treatment of a large class of hyperexcitable neuropsychiatric conditions, including epilepsy, schizophrenic psychoses, anxiety disorders, autism spectrum disorders, and depression.
Collapse
|
317
|
IL12Rβ1ΔTM is a secreted product of il12rb1 that promotes control of extrapulmonary tuberculosis. Infect Immun 2014; 83:560-71. [PMID: 25404030 DOI: 10.1128/iai.01230-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
IL12RB1 is a human gene that is important for resistance to Mycobacterium tuberculosis infection. IL12RB1 is expressed by multiple leukocyte lineages, and encodes a type I transmembrane protein (IL12Rβ1) that associates with IL12p40 and promotes the development of host-protective T(H)1 cells. Recently, we observed that il12rb1—the mouse homolog of IL12RB1—is alternatively spliced by leukocytes to produce a second isoform (IL12Rβ1ΔTM) that has biological properties distinct from IL12Rβ1. Although the expression of IL12Rβ1ΔTM is elicited by M. tuberculosis in vivo, and its overexpression enhances IL12p40 responsiveness in vitro, the contribution of IL12Rβ1ΔTM to controlling M. tuberculosis infection has not been tested. Here, we demonstrate that IL12Rβ1ΔTM represents a secreted product of il12rb1 that, when absent from mice, compromises their ability to control M. tuberculosis infection in extrapulmonary organs. Furthermore, elevated M. tuberculosis burdens in IL12Rβ1ΔTM-deficient animals are associated with decreased lymph node cellularity and a decline in TH1 development. Collectively, these data support a model wherein IL12Rβ1ΔTM is a secreted product of il12rb1 that promotes resistance to M. tuberculosis infection by potentiating T(H) cells response to IL-12.
Collapse
|
318
|
Schröder J, Moll JM, Baran P, Grötzinger J, Scheller J, Floss DM. Non-canonical interleukin 23 receptor complex assembly: p40 protein recruits interleukin 12 receptor β1 via site II and induces p19/interleukin 23 receptor interaction via site III. J Biol Chem 2014; 290:359-70. [PMID: 25371211 DOI: 10.1074/jbc.m114.617597] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
IL-23, composed of the cytokine subunit p19 and the soluble α receptor subunit p40, binds to a receptor complex consisting of the IL-23 receptor (IL-23R) and the IL-12 receptor β1 (IL-12Rβ1). Complex formation was hypothesized to follow the "site I-II-III" architectural paradigm, with site I of p19 being required for binding to p40, whereas sites II and III of p19 mediate binding to IL-12Rβ1 and IL-23R, respectively. Here we show that the binding mode of p19 to p40 and of p19 to IL-23R follow the canonical site I and III paradigm but that interaction of IL-23 to IL-12Rβ1 is independent of site II in p19. Instead, binding of IL-23 to the cytokine binding module of IL-12Rβ1 is mediated by domains 1 and 2 of p40 via corresponding site II amino acids of IL-12Rβ1. Moreover, domains 2 and 3 of p40 were sufficient for complex formation with p19 and to induce binding of p19 to IL-23R. The Fc-tagged fusion protein of p40_D2D3/p19 did, however, not act as a competitive IL-23 antagonist but, at higher concentrations, induced proliferation via IL-23R but independent of IL-12Rβ1. On the basis of our experimental validation, we propose a non-canonical topology of the IL-23·IL-23R·IL-12Rβ1 complex. Furthermore, our data help to explain why p40 is an antagonist of IL-23 and IL-12 signaling and show that site II of p19 is dispensable for IL-23 signaling.
Collapse
Affiliation(s)
- Jutta Schröder
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany and
| | - Jens M Moll
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany and
| | - Paul Baran
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany and
| | - Joachim Grötzinger
- the Institute of Biochemistry, Medical Faculty, Christian Albrechts University, 24098 Kiel, Germany
| | - Jürgen Scheller
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany and
| | - Doreen M Floss
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany and
| |
Collapse
|
319
|
miR-98 suppresses melanoma metastasis through a negative feedback loop with its target gene IL-6. Exp Mol Med 2014; 46:e116. [PMID: 25277211 PMCID: PMC4221693 DOI: 10.1038/emm.2014.63] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/17/2022] Open
Abstract
Dysregulated microRNA (miRNA) expression has a critical role in tumor development and metastasis. However, the mechanism by which miRNAs control melanoma metastasis is unknown. Here, we report reduced miR-98 expression in melanoma tissues with increasing tumor stage as well as metastasis; its expression is also negatively associated with melanoma patient survival. Furthermore, we demonstrate that miR-98 inhibits melanoma cell migration in vitro as well as metastatic tumor size in vivo. We also found that IL-6 is a target gene of miR-98, and IL-6 represses miR-98 levels via the Stat3-NF-κB-lin28B pathway. In an in vivo melanoma model, we demonstrate that miR-98 reduces melanoma metastasis and increases survival in part by reducing IL-6 levels; it also decreases Stat3 and p65 phosphorylation as well as lin28B mRNA levels. These results suggest that miR-98 inhibits melanoma metastasis in part through a novel miR-98-IL-6-negative feedback loop.
Collapse
|
320
|
Le TTT, Karmouty-Quintana H, Melicoff E, Le TTT, Weng T, Chen NY, Pedroza M, Zhou Y, Davies J, Philip K, Molina J, Luo F, George AT, Garcia-Morales LJ, Bunge RR, Bruckner BA, Loebe M, Seethamraju H, Agarwal SK, Blackburn MR. Blockade of IL-6 Trans signaling attenuates pulmonary fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3755-68. [PMID: 25172494 PMCID: PMC4169999 DOI: 10.4049/jimmunol.1302470] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 07/31/2014] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with progressive fibrosis and death within 2-3 y of diagnosis. IPF incidence and prevalence rates are increasing annually with few effective treatments available. Inhibition of IL-6 results in the attenuation of pulmonary fibrosis in mice. It is unclear whether this is due to blockade of classical signaling, mediated by membrane-bound IL-6Rα, or trans signaling, mediated by soluble IL-6Rα (sIL-6Rα). Our study assessed the role of sIL-6Rα in IPF. We demonstrated elevations of sIL-6Rα in IPF patients and in mice during the onset and progression of fibrosis. We demonstrated that protease-mediated cleavage from lung macrophages was important in production of sIL-6Rα. In vivo neutralization of sIL-6Rα attenuated pulmonary fibrosis in mice as seen by reductions in myofibroblasts, fibronectin, and collagen in the lung. In vitro activation of IL-6 trans signaling enhanced fibroblast proliferation and extracellular matrix protein production, effects relevant in the progression of pulmonary fibrosis. Taken together, these findings demonstrate that the production of sIL-6Rα from macrophages in the diseased lung contributes to IL-6 trans signaling that in turn influences events crucial in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thanh-Thuy T Le
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030; University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | | | - Thanh-Truc T Le
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Mesias Pedroza
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030; University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030; Biology of Inflammation Center, Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Kemly Philip
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Jose Molina
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Fayong Luo
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Anuh T George
- Biology of Inflammation Center, Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Luis J Garcia-Morales
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX 77030; and
| | - Raquel R Bunge
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX 77030; and
| | - Brian A Bruckner
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX 77030; and Methodist J.C. Walter Jr. Transplant Center, The Methodist Hospital, Houston, TX 77030
| | - Matthias Loebe
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX 77030; and Methodist J.C. Walter Jr. Transplant Center, The Methodist Hospital, Houston, TX 77030
| | - Harish Seethamraju
- Methodist J.C. Walter Jr. Transplant Center, The Methodist Hospital, Houston, TX 77030
| | - Sandeep K Agarwal
- Biology of Inflammation Center, Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030; University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030;
| |
Collapse
|
321
|
Müller J, Gorressen S, Grandoch M, Feldmann K, Kretschmer I, Lehr S, Ding Z, Schmitt JP, Schrader J, Garbers C, Heusch G, Kelm M, Scheller J, Fischer JW. Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction. Basic Res Cardiol 2014; 109:440. [PMID: 25236954 DOI: 10.1007/s00395-014-0440-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 11/26/2022]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that orchestrates the immune response to a wide variety of pathophysiologic challenges but also contributes to tissue homeostasis. Furthermore, IL-6 is elevated in patients with acute myocardial infarction. Hyaluronan (HA) is an extracellular carbohydrate that has been implicated in wound healing and accumulates after acute myocardial infarction (AMI). Aim of this study was to investigate the involvement of IL-6 in the regulation of the HA-matrix in the early phase of infarct healing. In the present study, we show by the use of a blocking anti-IL-6 antibody, that endogenous IL-6 rapidly but transiently increased HA-synthase (HAS) 1 and 2 expression resulting in the formation of a HA-rich matrix acutely after AMI in mice. In vitro, IL-6 induced HAS1 and 2 via STAT3 phosphorylation in cardiac fibroblasts (CF) and supported a myofibroblastic phenotype in a HA-dependent manner. Furthermore, CCL5 and MCP1 expression were dependent on IL-6, HA-synthesis and the HA-receptor CD44 as shown in cultured CF derived from CD44 knockout mice. In vivo after AMI, blocking IL-6 decreased HA-matrix formation in the peri-infarct region and alpha-smooth muscle actin-positive myofibroblasts. Blocking IL-6 also reduced neutrophil infiltration in infarcted left ventricles. Moreover, treatment with the blocking IL-6 antibody reduced cardiac ejection fraction and increased infarct size 3 weeks after AMI. These findings support a functionally important role for IL-6 in CF by transiently inducing a HA-rich matrix that in turn promotes a myofibroblastic phenotype and inflammatory responses, and ultimately establishes a cardioprotective program after AMI.
Collapse
Affiliation(s)
- Julia Müller
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Calabrese LH, Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev Rheumatol 2014; 10:720-7. [PMID: 25136784 DOI: 10.1038/nrrheum.2014.127] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL-6 has been linked to numerous diseases associated with inflammation, including rheumatoid arthritis, inflammatory bowel disease, vasculitis and several types of cancer. Moreover, IL-6 is important in the induction of hepatic acute-phase proteins for the trafficking of acute and chronic inflammatory cells, the differentiation of adaptive T-cell responses, and tissue regeneration and homeostatic regulation. Studies have investigated IL-6 biology using cell-bound IL-6 receptors expressed predominantly on hepatocytes and certain haematopoietic cells versus activation mediated by IL-6 and soluble IL-6 receptors via a second protein, gp130, which is expressed throughout the body. Advances in this research elucidating the differential effects of IL-6 activation provide important insights into the role of IL-6 in health and disease, as well as its potential as a therapeutic target. Knowledge of the basic biology of IL-6 and its signalling pathways can better inform both the research agenda for IL-6-based targeted therapies as well as the clinical use of strategies affecting IL-6-mediated inflammation. This Review covers novel, emerging aspects of the biology of IL-6, which might lead to more specific blockade of IL-6 signalling without compromising the protective function of this cytokine in the body's defence against infections.
Collapse
Affiliation(s)
- Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Stefan Rose-John
- Department of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| |
Collapse
|
323
|
Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F, Janz S. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res 2014; 59:188-202. [PMID: 24845460 PMCID: PMC4209159 DOI: 10.1007/s12026-014-8528-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on the biologic and molecular genetic underpinnings of multiple myeloma (MM) have identified the pleiotropic, pro-inflammatory cytokine, interleukin-6 (IL-6), as a factor crucial to the growth, proliferation and survival of myeloma cells. IL-6 is also a potent stimulator of osteoclastogenesis and a sculptor of the tumor microenvironment in the bone marrow of patients with myeloma. This knowledge has engendered considerable interest in targeting IL-6 for therapeutic purposes, using a variety of antibody- and small-molecule-based therapies. However, despite the early recognition of the importance of IL-6 for myeloma and the steady progress in our knowledge of IL-6 in normal and malignant development of plasma cells, additional efforts will be required to translate the promise of IL-6 as a target for new myeloma therapies into significant clinical benefits for patients with myeloma. This review summarizes published research on the role of IL-6 in myeloma development and describes ongoing efforts by the University of Iowa Myeloma Multidisciplinary Oncology Group to develop new approaches to the design and testing of IL-6-targeted therapies and preventions of MM.
Collapse
Affiliation(s)
- Timothy R Rosean
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
324
|
Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 2014; 70:11-20. [PMID: 24986424 DOI: 10.1016/j.cyto.2014.05.024] [Citation(s) in RCA: 437] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/13/2023]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine with well-defined pro- and anti-inflammatory properties. Although only small amounts in the picogram range can be detected in healthy humans, IL-6 expression is highly and transiently up-regulated in nearly all pathophysiological states. IL-6 induces intracellular signaling pathways after binding to its membrane-bound receptor (IL-6R), which is only expressed on hepatocytes and certain subpopulations of leukocytes (classic signaling). Transduction of the signal is mediated by the membrane-bound β-receptor glycoprotein 130 (gp130). In a second pathway, named trans-signaling, IL-6 binds to soluble forms of the IL-6R (sIL-6R), and this agonistic IL-6/sIL-6R complexes can in principle activate all cells due to the uniform expression of gp130. Importantly, several soluble forms of gp130 (sgp130) are found in the human blood, which are considered to be the natural inhibitors of IL-6 trans-signaling. Most pro-inflammatory roles of IL-6 have been attributed to the trans-signaling pathway, whereas anti-inflammatory and regenerative signaling, including the anti-bacterial acute phase response of the liver, is mediated by IL-6 classic signaling. In this simplistic view, only a minority of cell types expresses the IL-6R and is therefore responsive for IL-6 classic signaling, whereas gp130 is ubiquitously expressed throughout the human body. However, several reports point towards a much more complex situation. A plethora of factors, including proteases, cytokines, chemical drugs, and intracellular signaling pathways, are able to modulate the cellular expression of the membrane-bound and soluble forms of IL-6R and gp130. In this review, we summarize current knowledge of regulatory mechanisms that control and regulate the dynamic expression of IL-6 and its two receptors.
Collapse
Affiliation(s)
- Janina Wolf
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany.
| | - Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany.
| |
Collapse
|
325
|
Sommer J, Garbers C, Wolf J, Trad A, Moll JM, Sack M, Fischer R, Grötzinger J, Waetzig GH, Floss DM, Scheller J. Alternative intronic polyadenylation generates the interleukin-6 trans-signaling inhibitor sgp130-E10. J Biol Chem 2014; 289:22140-50. [PMID: 24973212 DOI: 10.1074/jbc.m114.560938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Interleukin (IL)-6 signals via a receptor complex composed of the signal-transducing β-receptor gp130 and the non-signaling membrane-bound or soluble IL-6 receptor α (IL-6R, sIL-6R), which is referred to as classic and trans-signaling, respectively. IL-6 trans-signaling is functionally associated with the development of chronic inflammatory diseases and cancer. Soluble gp130 (sgp130) variants are natural inhibitors of trans-signaling. Differential splicing yields sgp130 isoforms. Here, we describe that alternative intronic polyadenylation in intron 10 of the gp130 transcript results in a novel mRNA coding for an sgp130 protein isoform (sgp130-E10) of 70-80 kDa. The sgp130-E10 protein was expressed in vivo in human peripheral blood mononuclear cells. To assess the biological activity of sgp130-E10, we expressed this variant as Fc-tagged fusion protein (sgp130-E10Fc). Recombinant sgp130-E10Fc binds to a complex of IL-6 and sIL-6R, but not to IL-6 alone, and specifically inhibits IL-6 trans-signaling. Thus, it might play an important role in the regulation of trans-signaling in vivo.
Collapse
Affiliation(s)
- Jan Sommer
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Christoph Garbers
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Janina Wolf
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Ahmad Trad
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Jens M Moll
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Markus Sack
- the Institute of Molecular Biotechnology, RWTH Aachen University, 52062 Aachen, and
| | - Rainer Fischer
- the Institute of Molecular Biotechnology, RWTH Aachen University, 52062 Aachen, and
| | - Joachim Grötzinger
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | | | - Doreen M Floss
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Jürgen Scheller
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf,
| |
Collapse
|
326
|
Sangith N, Srinivasaraghavan K, Sahu I, Desai A, Medipally S, Somavarappu AK, Verma C, Venkatraman P. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules. FEBS Open Bio 2014; 4:571-83. [PMID: 25009770 PMCID: PMC4087146 DOI: 10.1016/j.fob.2014.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/21/2022] Open
Abstract
The structure and functions of PSMD9, a proteasomal chaperone, are uncharacterized. PDZ-like domain of PSMD9 may recognize C-terminal residues in proteins. Using conserved C-terminal motifs in human proteome, we identify novel binding partners. hnRNPA1, GH, IL6-receptor, S14 and E12 interact with PSMD9 via a specific C-terminal motif. We predict and confirm residues in the PDZ domain that are involved in this interaction.
PSMD9 (Proteasome Macropain non-ATPase subunit 9), a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a) proteins with conserved C-termini may share common functions and (b) PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein), S14 (a ribosomal protein), CSH1 (a growth hormone), E12 (a transcription factor) and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM) at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions.
Collapse
Affiliation(s)
- Nikhil Sangith
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Kannan Srinivasaraghavan
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; Experimental Therapeutics Centre (A*STAR), 31 Biopolis Street, #03-01 Helios, Singapore 138669, Singapore
| | - Indrajit Sahu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Ankita Desai
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Spandana Medipally
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Arun Kumar Somavarappu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Chandra Verma
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore ; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Prasanna Venkatraman
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| |
Collapse
|
327
|
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2563-2582. [PMID: 24892271 DOI: 10.1016/j.bbamcr.2014.05.014] [Citation(s) in RCA: 1437] [Impact Index Per Article: 130.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
Abstract
Inflammation occurs as a result of exposure of tissues and organs to harmful stimuli such as microbial pathogens, irritants, or toxic cellular components. The primary physical manifestations of inflammation are redness, swelling, heat, pain, and loss of function to the affected area. These processes involve the major cells of the immune system, including monocytes, macrophages, neutrophils, basophils, dendritic cells, mast cells, T-cells, and B-cells. However, examination of a range of inflammatory lesions demonstrates the presence of specific leukocytes in any given lesion. That is, the inflammatory process is regulated in such a way as to ensure that the appropriate leukocytes are recruited. These events are in turn controlled by a host of extracellular molecular regulators, including members of the cytokine and chemokine families that mediate both immune cell recruitment and complex intracellular signalling control mechanisms that characterise inflammation. This review will focus on the role of the main cytokines, chemokines, and their receptors in the pathophysiology of auto-inflammatory disorders, pro-inflammatory disorders, and neurological disorders involving inflammation.
Collapse
Affiliation(s)
- Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| | - Belinda Nedjai
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College, South Kensington, London SW7 2AZ, United Kingdom
| | - Tara Hurst
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, Whitechapel, London E1 2AT, United Kingdom
| |
Collapse
|
328
|
Wonnerth A, Katsaros KM, Krychtiuk KA, Speidl WS, Kaun C, Thaler K, Huber K, Wojta J, Maurer G, Seljeflot I, Arnesen H, Weiss TW. Glycoprotein 130 polymorphism predicts soluble glycoprotein 130 levels. Metabolism 2014; 63:647-53. [PMID: 24629561 DOI: 10.1016/j.metabol.2014.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 01/29/2014] [Accepted: 02/09/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Interleukin-6 (IL-6) is a key cytokine in inflammatory diseases. It exerts its biological function via binding to a homodimer of its signal transducer glycoprotein 130 (gp130). Soluble gp130 (sgp130) is the natural inhibitor of IL-6 trans-signalling. The aim of this study was to test a possible influence of the gp130 genotype on sgp130 serum levels. MATERIAL AND METHODS In two separate populations, subjects were genotyped for the gp130 polymorphism G148C. Sgp130, IL-6 and soluble interleukin-6 receptor (sIL-6R) levels were measured. The OSLO population consisted of 546 male subjects at high risk for CAD. The VIENNA population consisted of 299 male subjects with angiographically proven CAD. RESULTS In the OSLO population, 124 (22.7%) subjects were hetero- or homozygote for the rare C allele. Individuals carrying the polymorphism had significantly higher levels of sgp130. In a multivariate linear regression model this association remained significant (adjusted p=0.001). In the VIENNA population, 48 (16.1%) subjects were hetero- or homozygote for the rare C allele. Consistent with the former study, sgp130 levels were significantly higher in carriers of the polymorphism compared to wildtype carriers (adjusted p=0.038). In the VIENNA population, sgp130 levels were significantly higher in diabetic patients. In the OSLO population, sgp130 was higher in patients with increased body mass index and in smokers (p<0.05). CONCLUSIONS Sgp130 serum levels are significantly higher in subjects carrying the gp130 polymorphism G148C compared to wildtype carriers. This finding proposes a possible genetical influence on sgp130 levels which may alter individual coping mechanisms in inflammatory diseases.
Collapse
Affiliation(s)
- Anna Wonnerth
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Katharina M Katsaros
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research
| | | | - Walter S Speidl
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research
| | - Kylie Thaler
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Cluster for Cardiovascular Research; Department of Cardiology and Emergency Medicine, Wilhelminenspital, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research
| | - Gerald Maurer
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Ingebjorg Seljeflot
- Centre of Clinical Heart Research, Oslo University Hospital, Ulleval, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Harald Arnesen
- Centre of Clinical Heart Research, Oslo University Hospital, Ulleval, Norway
| | - Thomas W Weiss
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Department of Cardiology and Emergency Medicine, Wilhelminenspital, Vienna, Austria
| |
Collapse
|
329
|
The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014; 2014:561459. [PMID: 24876674 PMCID: PMC4021678 DOI: 10.1155/2014/561459] [Citation(s) in RCA: 1113] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/12/2014] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1β, TNFα, IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed.
Collapse
|
330
|
Dietrich C, Candon S, Ruemmele FM, Devergne O. A soluble form of IL-27Rα is a natural IL-27 antagonist. THE JOURNAL OF IMMUNOLOGY 2014; 192:5382-9. [PMID: 24771852 DOI: 10.4049/jimmunol.1303435] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-27 is a cytokine of the IL-12 family that plays a key role in the regulation of inflammatory and T cell responses. Its receptor is composed of IL-27Rα and gp130 and activates the STAT pathway. We show in this study, using an ELISA that we developed, that a naturally occurring soluble form of IL-27Rα (sIL-27Rα) is produced by human activated CD4(+) and CD8(+) T cells, B cells, myeloid cells, and various cell lines. sIL-27Rα is present at a mean concentration of 10,344 ± 1,274 pg/ml in the sera from healthy individuals. Biochemical studies showed that sIL-27Rα is released as two N-glycosylated variants of ∼ 90 and ∼ 70 kDa. In IL-27Rα-transfected COS7 cells, primary cells, and cell lines, production of sIL-27Rα is inhibited by the metalloprotease inhibitors GM6001 and TAPI-0. Importantly, natural sIL-27Rα binds rIL-27, inhibits IL-27 binding to its cell surface receptor, and is a potent inhibitor of IL-27 signaling, as shown by its ability to specifically block IL-27-mediated STAT activation, at low molar excess over IL-27. Also, we found that serum levels of sIL-27Rα were elevated in patients with Crohn's disease, a Th1-mediated disease. These findings suggest that sIL-27Rα may play important immunoregulatory functions under normal and pathological conditions.
Collapse
Affiliation(s)
- Céline Dietrich
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Université Paris Descartes, Sorbonne Paris Cité, 75 015 Paris, France; Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, 75 015 Paris, France
| | - Sophie Candon
- Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, 75 015 Paris, France; INSERM U1013, Université Paris Descartes, Sorbonne Paris Cité, 75 015 Paris, France; and
| | - Frank M Ruemmele
- Service de Gastroentérologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, 75 015 Paris, France
| | - Odile Devergne
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Université Paris Descartes, Sorbonne Paris Cité, 75 015 Paris, France; Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, 75 015 Paris, France;
| |
Collapse
|
331
|
Drozdzik M, Szlarb N, Kurzawski M. Interleukin-6 level and gene polymorphism in spontaneous miscarriage. ACTA ACUST UNITED AC 2014; 82:171-6. [PMID: 24032723 DOI: 10.1111/tan.12179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/07/2013] [Accepted: 07/15/2013] [Indexed: 01/31/2023]
Abstract
The aetiology of spontaneous miscarriage, the most common pregnancy complication, remains undefined. One of postulated factors involved in miscarriage pathology is interleukin 6 (IL-6). Therefore, the aim of the study was to evaluate IL-6 and interleukin 6 receptor (IL-6R) gene polymorphisms in patients with spontaneous miscarriage. One hundred fifty-seven patients diagnosed with spontaneous miscarriage and age and gestational time matched controls were included in the case-control study. In all study participants circulating IL-6 levels (chemiluminescent immunoassay) and IL6-174G>C as well as IL6R rs2228145:A>C polymorphisms were evaluated. The distribution of IL6 as well as IL6R alleles and genotypes were similar in the controls and patients with miscarriage. Only a trend of more frequent appearance of -174GC+CC and C allele in the patients with miscarriage was noted. Blood serum concentrations of IL-6 were significantly elevated in patients with miscarriage vs those with physiological pregnancy. Likewise, IL-6 concentrations differ significantly with the types of miscarriage. The highest concentrations of the cytokine was seen in subjects with incomplete miscarriage (4.28 ± 4.88 pg/ml) followed by imminent miscarriage (2.97 ± 2.42 pg/ml), and then missed miscarriage (2.07 ± 1.90 pg/ml), being significantly the lowest in missed miscarriage group. No association between the IL6 genotype and IL-6 serum concentration were noted, both in the miscarriage group and in the control group. The findings of the study support the role of IL-6 in spontaneous miscarriage irrespectively of its type. However, no correlation between circulating IL-6 and IL6 gene polymorphism, as well as IL-6 and IL-6R polymorphisms associations with spontaneous miscarriage were revealed.
Collapse
Affiliation(s)
- M Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | | | | |
Collapse
|
332
|
Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci 2014; 34:2503-13. [PMID: 24523541 DOI: 10.1523/jneurosci.2830-13.2014] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
IL-6 is implicated in the pathogenesis of various neuroinflammatory and neurodegenerative disorders of the CNS. IL-6 signals via binding to either the membrane bound IL-6Rα (classic signaling) or soluble (s)IL-6Ra (trans-signaling) that then form a complex with gp130 to activate the JAK/STAT signaling pathway. The importance of classic versus trans-signaling in mediating IL-6 actions in the living CNS is relatively unknown and was the focus of this investigation. Bigenic mice (termed GFAP-IL6/sgp130 mice) were generated with CNS-restricted, astrocyte-targeted production of IL-6 and coproduction of the specific inhibitor of IL-6 trans-signaling, human sgp130-Fc. Transgene-encoded IL-6 mRNA levels were similar in the brain of GFAP-IL6 and GFAP-IL6/sgp130 mice. However, GFAP-IL6/sgp130 mice had decreased pY(705)-STAT3 in the brain due to a reduction in the total number of pY(705)-STAT3-positive cells and a marked loss of pY(705)-STAT3 in specific cell types. Blockade of trans-signaling in the brain of the GFAP-IL6 mice significantly attenuated Serpina3n but not SOCS3 gene expression, whereas vascular changes including angiogenesis and blood-brain barrier leakage as well as gliosis were also reduced significantly. Hippocampal neurogenesis which was impaired in GFAP-IL6 mice was rescued in young GFAP-IL6 mice with cerebral sgp130 production. Finally, degenerative changes in the cerebellum characteristic of GFAP-IL6 mice were absent in GFAP-IL6/sgp130 mice. The findings indicate that in the CNS: (1) sgp130 is able to block IL-6 trans-signaling, (2) trans-signaling is important for IL-6 cellular communication with selective cellular and molecular targets, and (3) blocking of trans-signaling alleviates many of the detrimental effects of IL-6.
Collapse
|
333
|
Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in the tumor microenvironment. Semin Immunol 2014; 26:38-47. [PMID: 24602448 DOI: 10.1016/j.smim.2014.01.008] [Citation(s) in RCA: 507] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/23/2014] [Indexed: 01/11/2023]
Abstract
Within the tumor microenvironment, IL-6 signaling is generally considered a malevolent player, assuming a dark visage that promotes tumor progression. Chronic IL-6 signaling is linked to tumorigenesis in numerous mouse models as well as in human disease. IL-6 acts intrinsically on tumor cells through numerous downstream mediators to support cancer cell proliferation, survival, and metastatic dissemination. Moreover, IL-6 can act extrinsically on other cells within the complex tumor microenvironment to sustain a pro-tumor milieu by supporting angiogenesis and tumor evasion of immune surveillance. A lesser known role for IL-6 signaling has recently emerged in which it plays a beneficial role, presenting a fairer face that opposes tumor growth by mobilizing anti-tumor T cell immune responses to attain tumor control. Accumulating evidence establishes IL-6 as a key player in the activation, proliferation and survival of lymphocytes during active immune responses. IL-6 signaling can also resculpt the T cell immune response, shifting it from a suppressive to a responsive state that can effectively act against tumors. Finally, IL-6 plays an indispensable role in boosting T cell trafficking to lymph nodes and to tumor sites, where they have the opportunity to become activated and execute their cytotoxic effector functions, respectively. Here, we discuss the dual faces of IL-6 signaling in the tumor microenvironment; the dark face that drives malignancy, and the fairer aspect that promotes anti-tumor adaptive immunity.
Collapse
Affiliation(s)
- Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | | | - Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
334
|
Maes M, Anderson G, Kubera M, Berk M. Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin Ther Targets 2014; 18:495-512. [PMID: 24548241 DOI: 10.1517/14728222.2014.888417] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Increased IL-6 and soluble IL-6 receptor (sIL-6R) levels in depressed patients was first shown over 20 years ago. The pro-inflammatory effects of IL-6 are predominantly mediated by IL-6 trans-signalling via the sIL-6R, whereas IL-6R membrane signalling has anti-inflammatory effects. AREAS COVERED We review data on IL-6 and sIL-6R in inflammation, depression, animal models of depression and the effects of different classes of antidepressants. The biological context for IL-6 trans-signalling as a pathogenic factor in depression involves its role in the acute phase response, disorders in zinc and the erythron, hypothalamic-pituitary-adrenal axis activation, induction of the tryptophan catabolite pathway, oxidative stress, bacterial translocation, transition towards sensitisation, autoimmune processes and neuroprogression and the multicausal aetiology of depression, considering that psychosocial stressors and comorbid immune-inflammatory diseases are associated with the onset of depression. EXPERT OPINION The homeostatic functions of IL-6 imply that ubiquitous IL-6 inhibitors, for example, tocilizumab, may not be the optimal treatment target in depression. A more promising target may be to increase soluble glycoprotein 130 (sgp130) inhibition of IL-6 trans-signalling, while allowing the maintenance of IL-6R membrane signalling. Future research should delineate the effects of treatments with sgp130Fc in combination with antidepressants in various animal models of chronic depression.
Collapse
Affiliation(s)
- Michael Maes
- Deakin University, Department of Psychiatry , Geelong , Australia
| | | | | | | |
Collapse
|
335
|
Interleukin-6 signal transduction and its role in hepatic lipid metabolic disorders. Cytokine 2014; 66:133-42. [PMID: 24491813 DOI: 10.1016/j.cyto.2013.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/14/2013] [Accepted: 12/30/2013] [Indexed: 01/12/2023]
Abstract
Hepatic lipid dysregulation can lead to spectrum of metabolic disease conditions including metabolic syndrome (MS), fatty liver and diabetes. Liver lipids are regulated by a complex set of extra-hepatic and intra-hepatic factors including cellular cross-talk with variety of cells, inducing various cytokines. Interleukin 6(IL-6) is a pleiotropic cytokine that exerts both pro-inflammatory and anti-inflammatory effects on hepatic system through either JNK/STAT or ERK/MAPK signaling. Although, IL-6 has shown to protect the liver from fat storage in both rodent and human models and various IL-6(-/-) studies have supported this notion yet a question remains over its deleterious pro-inflammatory effects on hepatocytes. IL-6 ability to produce reactive oxygen species (ROS) and subsequently disturb the hepatic lipid balance has created a conundrum. Furthermore, IL-6 has shown to behave differently under different disease states within hepatocytes and hence, modulating the hepatic lipids accordingly. This review deals with the role of IL-6 on hepatic lipid metabolism and analyzes various data presented on this topic.
Collapse
|
336
|
A multiscale model of interleukin-6-mediated immune regulation in Crohn's disease and its application in drug discovery and development. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e89. [PMID: 24402116 PMCID: PMC3910013 DOI: 10.1038/psp.2013.64] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/14/2013] [Indexed: 02/07/2023]
Abstract
In this study, we have developed a multiscale systems model of interleukin (IL)-6-mediated immune regulation in Crohn's disease, by integrating intracellular signaling with organ-level dynamics of pharmacological markers underlying the disease. This model was linked to a general pharmacokinetic model for therapeutic monoclonal antibodies and used to comparatively study various biotherapeutic strategies targeting IL-6-mediated signaling in Crohn's disease. Our work illustrates techniques to develop mechanistic models of disease biology to study drug-system interaction. Despite a sparse training data set, predictions of the model were qualitatively validated by clinical biomarker data from a pilot trial with tocilizumab. Model-based analysis suggests that strategies targeting IL-6, IL-6Rα, or the IL-6/sIL-6Rα complex are less effective at suppressing pharmacological markers of Crohn's than dual targeting the IL-6/sIL-6Rα complex in addition to IL-6 or IL-6Rα. The potential value of multiscale system pharmacology modeling in drug discovery and development is also discussed.CPT: Pharmacometrics & Systems Pharmacology (2014) 3, e89; doi:10.1038/psp.2013.64; advance online publication 8 January 2014.
Collapse
|
337
|
Meyer C, Berg K, Eydeler-Haeder K, Lorenzen I, Grötzinger J, Rose-John S, Hahn U. Stabilized Interleukin-6 receptor binding RNA aptamers. RNA Biol 2013; 11:57-65. [PMID: 24440854 DOI: 10.4161/rna.27447] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that is involved in the progression of various inflammatory diseases, such as rheumatoid arthritis and certain cancers; for example, multiple myeloma or hepatocellular carcinoma. To interfere with IL-6-dependent diseases, targeting IL-6 receptor (IL-6R)-presenting tumor cells using aptamers might be a valuable strategy to broaden established IL-6- or IL-6R-directed treatment regimens. Recently, we reported on the in vitro selection of RNA aptamers binding to the human IL-6 receptor (IL-6R) with nanomolar affinity. One aptamer, namely AIR-3A, was 19 nt in size and able to deliver bulky cargos into IL-6R-presenting cells. As AIR-3A is a natural RNA molecule, its use for in vivo applications might be limited due to its susceptibility to ubiquitous ribonucleases. Aiming at more robust RNA aptamers targeting IL-6R, we now report on the generation of stabilized RNA aptamers for potential in vivo applications. The new 2'-F-modified RNA aptamers bind to IL-6R via its extracellular portion with low nanomolar affinity comparable to the previously identified unmodified counterpart. Aptamers do not interfere with the IL-6 receptor complex formation. The work described here represents one further step to potentially apply stabilized IL-6R-binding RNA aptamers in IL-6R-connected diseases, like multiple myeloma and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Cindy Meyer
- Laboratory of RNA Molecular Biology; Howard Hughes Medical Institute; The Rockefeller University; New York, NY USA
| | - Katharina Berg
- Institute of Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Katja Eydeler-Haeder
- Institute of Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Inken Lorenzen
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Ulrich Hahn
- Institute of Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| |
Collapse
|
338
|
Ritschel VN, Seljeflot I, Arnesen H, Halvorsen S, Weiss T, Eritsland J, Andersen GØ. IL-6 signalling in patients with acute ST-elevation myocardial infarction. RESULTS IN IMMUNOLOGY 2013; 4:8-13. [PMID: 24707455 DOI: 10.1016/j.rinim.2013.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 12/30/2022]
Abstract
Cytokines of the IL-6 family have been related to infarct size and prognosis in patients with myocardial infarction. The aims of the present study were to elucidate possible associations between myocardial necrosis and left ventricular impairment and members of the IL-6 transsignalling system including soluble (s) IL-6R and (s) glycoprotein 130 (sgp130) in patients with ST-elevation myocardial infarction (STEMI) treated with primary PCI. In blood samples from 1028 STEMI patients, collected in-hosptial, we found significant correlations between peak TnT and IL-6 and CRP (p < 0.001, all) and between IL-6 and CRP and LV ejection fraction and NT-proBNP (p < 0.001, all). On the contrary, no significant associations were found between peak TnT and sgp130 or sIL-6R. Furthermore sgp130 was significantly elevated in diabetic patients and also associated with the glucometabolic state. In conclusion, circulating levels of IL-6 and CRP, but not the soluble forms of the receptor (sIL-6R) or the receptor signalling subunit (sgp130) were associated with the extent of myocardial necrosis. The biological importance of the IL-6/gp130-mediated signalling pathways in patients with acute myocardial infarction and dysglycemia should be further elucidated.
Collapse
Affiliation(s)
- Vibeke N Ritschel
- Center for Clinical Heart Research, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Department of Cardiology, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Center of Heart Failure Research, University of Oslo, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Faculty of Medicine, University of Oslo, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Department of Cardiology, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Center of Heart Failure Research, University of Oslo, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Faculty of Medicine, University of Oslo, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Department of Cardiology, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Center of Heart Failure Research, University of Oslo, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Faculty of Medicine, University of Oslo, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway
| | - Sigrun Halvorsen
- Department of Cardiology, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Center of Heart Failure Research, University of Oslo, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway
| | - Thomas Weiss
- 3rd Medical Department for Cardiology and Emergency Medicine, Wilhelminenhospital, 1160 Vienna, Austria
| | - Jan Eritsland
- Department of Cardiology, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Center of Heart Failure Research, University of Oslo, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway
| | - Geir Ø Andersen
- Center for Clinical Heart Research, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Department of Cardiology, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway ; Center of Heart Failure Research, University of Oslo, Ullevål, Kirkeveien 166, N-0450 Oslo, Norway
| |
Collapse
|
339
|
Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN INFLAMMATION 2013; 2013:512103. [PMID: 24381786 PMCID: PMC3870656 DOI: 10.1155/2013/512103] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
Oncostatin M is a secreted cytokine involved in homeostasis and in diseases involving chronic inflammation. It is a member of the gp130 family of cytokines that have pleiotropic functions in differentiation, cell proliferation, and hematopoetic, immunologic, and inflammatory networks. However, Oncostatin M also has activities novel to mediators of this cytokine family and others and may have fundamental roles in mechanisms of inflammation in pathology. Studies have explored Oncostatin M functions in cancer, bone metabolism, liver regeneration, and conditions with chronic inflammation including rheumatoid arthritis, lung and skin inflammatory disease, atherosclerosis, and cardiovascular disease. This paper will review Oncostatin M biology in a historical fashion and focus on its unique activities, in vitro and in vivo, that differentiate it from other cytokines and inspire further study or consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street, West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
340
|
Scheller J, Garbers C, Rose-John S. Interleukin-6: from basic biology to selective blockade of pro-inflammatory activities. Semin Immunol 2013; 26:2-12. [PMID: 24325804 DOI: 10.1016/j.smim.2013.11.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 12/16/2022]
Abstract
Cytokines receptors exist in membrane bound and soluble form. A soluble form of the human IL-6R is generated by limited proteolysis and alternative splicing. The complex of IL-6 and soluble IL-6R stimulates target cells not stimulated by IL-6 alone, since they do not express the membrane bound IL-6R. We have named this process trans-signaling. Soluble gp130 is the natural inhibitor of IL-6/soluble IL-6R complex responses. Recombinant soluble gp130 protein is a molecular tool to discriminate between gp130 responses via membrane bound and soluble IL-6R responses. Neutralizing monoclonal antibodies for global blockade of IL-6 signaling and the sgp130Fc protein for selective blockade of IL-6 trans-signaling have been used in several animal models of human diseases. Using the sgp130Fc protein or sgp130Fc transgenic mice we demonstrate in models of inflammatory bowel disease, peritonitis, rheumatoid arthritis, atherosclerosis pancreatitis, colon cancer, ovarian cancer and pancreatic cancer, that IL-6 trans-signaling via the soluble IL-6R is the crucial step in the development and the progression of the disease. Therefore, sgp130Fc is a novel therapeutic agent for the treatment of chronic inflammatory diseases and cancer and it undergoes phase I clinical trials as an anti-inflammatory drug since June 2013.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Christoph Garbers
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, Kiel, Germany.
| |
Collapse
|
341
|
Trilling M, Le VTK, Rashidi-Alavijeh J, Katschinski B, Scheller J, Rose-John S, Androsiac GE, Jonjić S, Poli V, Pfeffer K, Hengel H. “Activated” STAT Proteins: A Paradoxical Consequence of Inhibited JAK-STAT Signaling in Cytomegalovirus-Infected Cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:447-58. [DOI: 10.4049/jimmunol.1203516] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
342
|
Liu SC, Tsang NM, Chiang WC, Chang KP, Hsueh C, Liang Y, Juang JL, Chow KPN, Chang YS. Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Invest 2013; 123:5269-83. [PMID: 24270418 DOI: 10.1172/jci63428] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022] Open
Abstract
Radioresistance of EBV-associated nasopharyngeal carcinoma (NPC) is associated with poor prognosis for patients with this form of cancer. Here, we found that NPC patients had increased serum levels of leukemia inhibitory factor (LIF) and that higher LIF levels correlated with local tumor recurrence. Furthermore, in vitro studies with NPC cells and in vivo xenograft mouse studies demonstrated that LIF critically contributes to NPC tumor growth and radioresistance. Using these model systems, we found that LIF treatment activated the mTORC1/p70S6K signaling pathway, enhanced tumor growth, inhibited DNA damage responses, and enhanced radioresistance. Treatment with either soluble LIF receptor (sLIFR), a LIF antagonist, or the mTOR inhibitor rapamycin reversed LIF-mediated effects, resulting in growth arrest and increased sensitivity to γ irradiation. Immunohistochemical (IHC) analyses of human NPC biopsies revealed that LIF and LIFR were overexpressed in tumor cells and that LIF expression correlated with the presence of the activated p-p70S6K. Finally, we found that the EBV-encoded protein latent membrane protein 1 (LMP1) enhances LIF production. Together, our findings indicate that LIF promotes NPC tumorigenesis and suggest that serum LIF levels may predict local recurrence and radiosensitivity in NPC patients.
Collapse
|
343
|
Dewitz C, Möller-Hackbarth K, Schweigert O, Reiss K, Chalaris A, Scheller J, Rose-John S. T-cell immunoglobulin and mucin domain 2 (TIM-2) is a target of ADAM10-mediated ectodomain shedding. FEBS J 2013; 281:157-74. [PMID: 24164679 DOI: 10.1111/febs.12583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/21/2022]
Abstract
T-cell immunoglobulin and mucin domain (TIM)-2 is expressed on activated B cells. Here, we provide evidence that murine TIM-2 is a target of ADAM10-mediated ectodomain shedding, resulting in the generation of a soluble form of TIM-2. We identified ADAM10 but not ADAM17 as the major sheddase of TIM-2, as shown by pharmacological ADAM10 inhibition and with ADAM10-deficient and ADAM17-deficient murine embryonic fibroblasts. Ionomycin-induced or 2'(3')-O-(4-benzoylbenzoyl) ATP triethylammonium salt-induced shedding of TIM-2 was abrogated by deletion of 10 juxtamembrane amino acids from the stalk region but not by deletion of two further N-terminally located blocks of 10 amino acids, indicating a membrane-proximal cleavage site. TIM-2 lacking the intracellular domain was cleaved after ionomycin or 2' (3')-O-(4-benzoylbenzoyl) ATP triethylammonium salt treatment, indicating that this domain was not involved in the regulation of ectodomain shedding. Moreover, TIM-2 shedding was negatively controlled by calmodulin. Shed and soluble TIM-2 interacted with H-ferritin. In summary, we describe TIM-2 as a novel target for ADAM10-mediated ectodomain shedding, and reveal the involvement of ADAM proteases in cellular iron homeostasis.
Collapse
Affiliation(s)
- Christin Dewitz
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
344
|
Yao X, Huang J, Zhong H, Shen N, Faggioni R, Fung M, Yao Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther 2013; 141:125-39. [PMID: 24076269 DOI: 10.1016/j.pharmthera.2013.09.004] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with significant functions in the regulation of the immune system. As a potent pro-inflammatory cytokine, IL-6 plays a pivotal role in host defense against pathogens and acute stress. However, increased or deregulated expression of IL-6 significantly contributes to the pathogenesis of various human diseases. Numerous preclinical and clinical studies have revealed the pathological roles of the IL-6 pathway in inflammation, autoimmunity, and cancer. Based on the rich body of studies on biological activities of IL-6 and its pathological roles, therapeutic strategies targeting the IL-6 pathway are in development for cancers, inflammatory and autoimmune diseases. Several anti-IL-6/IL-6 receptor monoclonal antibodies developed for targeted therapy have demonstrated promising results in both preclinical studies and clinical trials. Tocilizumab, an anti-IL-6 receptor antibody, is effective in the treatment of various autoimmune and inflammatory conditions notably rheumatoid arthritis. It is the only IL-6 pathway targeting agent approved by the regulatory agencies for clinical use. Siltuximab, an anti-IL-6 antibody, has been shown to have potential benefits treating various human cancers either as a single agent or in combination with other chemotherapy drugs. Several other anti-IL-6-based therapies are also under clinical development for various diseases. IL-6 antagonism has been shown to be a potential therapy for these disorders refractory to conventional drugs. New strategies, such as combination of IL-6 blockade with inhibition of other signaling pathways, may further improve IL-6-targeted immunotherapy of human diseases.
Collapse
Affiliation(s)
- Xin Yao
- MedImmune, LLC, Gaithersburg, MD 20878, USA
| | | | | | - Nan Shen
- Joint Molecular Rheumatology Laboratory of Institute of Health Sciences and Shanghai Renji Hospital, Shanghai, China
| | | | | | - Yihong Yao
- MedImmune, LLC, Gaithersburg, MD 20878, USA.
| |
Collapse
|
345
|
Burger R. Impact of interleukin-6 in hematological malignancies. ACTA ACUST UNITED AC 2013; 40:336-43. [PMID: 24273487 DOI: 10.1159/000354194] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022]
Abstract
Almost 3 decades have passed since the discovery and cloning of IL-6, and a tremendous amount of work has contributed to the current knowledge of the biological functions of this cytokine, its receptor, and the signaling pathways that are activated. The understanding of the role of IL-6 in human disease has led to the development of novel therapeutic strategies that block the biological functions of IL-6. In clinical studies, IL-6 and IL-6 receptor antibodies have proven efficacy in rheumatoid arthritis, systemic juvenile idiopathic arthritis, and Castleman's disease, conditions that are known to be driven by IL-6. The focus of this overview is the role of IL-6 in the pathophysiology of hematological malignancies.
Collapse
Affiliation(s)
- Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, Germany
| |
Collapse
|
346
|
Spehlmann ME, Manthey CF, Dann SM, Hanson E, Sandhu SS, Liu LY, Abdelmalak FK, Diamanti MA, Retzlaff K, Scheller J, Rose-John S, Greten FR, Wang JY, Eckmann L. Trp53 deficiency protects against acute intestinal inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:837-47. [PMID: 23772033 PMCID: PMC3710108 DOI: 10.4049/jimmunol.1201716] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The p53 protein has not only important tumor suppressor activity but also additional immunological and other functions, whose nature and extent are just beginning to be recognized. In this article, we show that p53 has a novel inflammation-promoting action in the intestinal tract, because loss of p53 or the upstream activating kinase, ATM, protects against acute intestinal inflammation in murine models. Mechanistically, deficiency in p53 leads to increased survival of epithelial cells and lamina propria macrophages, higher IL-6 expression owing to enhanced glucose-dependent NF-κB activation, and increased mucosal STAT3 activation. Blockade or loss of IL-6 signaling reverses the protective effects of p53 deficiency. Conversely, IL-6 treatment protects against acute colitis in a manner dependent on STAT3 signaling and induction of cytoprotective factors in epithelial cells. Together, these results indicate that p53 promotes inflammation in the intestinal tract through suppression of epithelium-protective factors, thus significantly expanding the spectrum of physiological and immunological p53 activities unrelated to cancer formation.
Collapse
Affiliation(s)
- Martina E. Spehlmann
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Carolin F. Manthey
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sara M. Dann
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Elaine Hanson
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sukhman S. Sandhu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Linus Y. Liu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Farid K. Abdelmalak
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michaela A. Diamanti
- 2nd Department of Medicine, Klinikum rechts der Isar, Technical University, Munich, Munich, Germany
| | - Kristin Retzlaff
- 2nd Department of Medicine, Klinikum rechts der Isar, Technical University, Munich, Munich, Germany
| | - Jürgen Scheller
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Florian R. Greten
- 2nd Department of Medicine, Klinikum rechts der Isar, Technical University, Munich, Munich, Germany
| | - Jean Y.J. Wang
- Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
347
|
Moriasi C, Subramaniam D, Awasthi S, Ramalingam S, Anant S. Prevention of colitis-associated cancer: natural compounds that target the IL-6 soluble receptor. Anticancer Agents Med Chem 2013; 12:1221-38. [PMID: 22583410 DOI: 10.2174/187152012803833080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 12/17/2022]
Abstract
The risk of developing colorectal cancer increases in patients with inflammatory bowel disease (IBD) and a growing body of evidence shows the critical role of interleukin (IL-6) in this process. IL-6 is both a pro- and anti-inflammatory cytokine whose effects are mediated through activation of STAT3. Recent studies have also demonstrated that IL-6 trans-signaling through its soluble receptor occurs in IBD and cancer. IL-6 trans-signaling therefore is emerging as an attractive approach to diminish the inflammatory signals in conditions of chronic inflammation. The purpose of cancer chemoprevention is to either delay the onset or progression from precancerous lesions. Natural compounds because of their low toxicity render themselves excellent candidates that can be administered over the lifetime of an individual. With the focus of managing IBD over a long time and preventing onset of colitis-associated cancer, we believe that there should be increased research focus on identifying chemopreventive compounds that can render themselves to long term use possibly for the lifetime of predisposed individuals. Here, we review the role of IL-6 signaling in IBD and colitis-associated cancer and underscore the importance of searching for natural compounds that would target the IL-6 trans-signaling pathway as a way to diminish chronic inflammatory conditions in the gastrointestinal tract and possibly hamper the progression to colon cancer. We propose that effective screening and identification of natural chemopreventive compounds that target IL-6 trans-signaling has important implications for the development of optimal strategies against cancer development triggered by inflammation.
Collapse
Affiliation(s)
- Cate Moriasi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
348
|
Engineered monoclonal antibody with novel antigen-sweeping activity in vivo. PLoS One 2013; 8:e63236. [PMID: 23667591 PMCID: PMC3646756 DOI: 10.1371/journal.pone.0063236] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
Monoclonal antibodies are widely used to target disease-related antigens. However, because conventional antibody binds to the antigen but cannot eliminate the antigen from plasma, and rather increases the plasma antigen concentration by reducing the clearance of the antigen, some clinically important antigens are still difficult to target with monoclonal antibodies because of the huge dosages required. While conventional antibody can only bind to the antigen, some natural endocytic receptors not only bind to the ligands but also continuously eliminate them from plasma by pH-dependent dissociation of the ligands within the acidic endosome and subsequent receptor recycling to the cell surface. Here, we demonstrate that an engineered antibody, named sweeping antibody, having both pH-dependent antigen binding (to mimic the receptor-ligand interaction) and increased binding to cell surface neonatal Fc receptor (FcRn) at neutral pH (to mimic the cell-bound form of the receptor), selectively eliminated the antigen from plasma. With this novel antigen-sweeping activity, antibody without in vitro neutralizing activity exerted in vivo efficacy by directly eliminating the antigen from plasma. Moreover, conversion of conventional antibody with in vitro neutralizing activity into sweeping antibody further potentiated the in vivo efficacy. Depending on the binding affinity to FcRn at neutral pH, sweeping antibody reduced antigen concentration 50- to 1000-fold compared to conventional antibody. Thereby, sweeping antibody antagonized excess amounts of antigen in plasma against which conventional antibody was completely ineffective, and could afford marked reduction of dosage to a level that conventional antibody can never achieve. Thus, the novel mode of action of sweeping antibody provides potential advantages over conventional antibody and may allow access to the target antigens which were previously undruggable by conventional antibody.
Collapse
|
349
|
Braun O, Dewitz C, Möller-Hackbarth K, Scheller J, Schiffelholz T, Baier PC, Rose-John S. Effects of Blockade of Peripheral Interleukin-6 Trans-Signaling on Hippocampus-Dependent and Independent Memory in Mice. J Interferon Cytokine Res 2013; 33:254-60. [DOI: 10.1089/jir.2012.0096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Olga Braun
- Department of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christin Dewitz
- Department of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology-II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Schiffelholz
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Christian Baier
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
350
|
Baran P, Nitz R, Grötzinger J, Scheller J, Garbers C. Minimal interleukin 6 (IL-6) receptor stalk composition for IL-6 receptor shedding and IL-6 classic signaling. J Biol Chem 2013; 288:14756-68. [PMID: 23564454 DOI: 10.1074/jbc.m113.466169] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Signaling of the pleiotropic cytokine Interleukin-6 (IL-6) is coordinated by membrane-bound and soluble forms of the IL-6 receptor (IL-6R) in processes called classic and trans-signaling, respectively. The soluble IL-6R is mainly generated by ADAM10- and ADAM17-mediated ectodomain shedding. Little is known about the role of the 52-amino acid-residue-long IL-6R stalk region in shedding and signal transduction. Therefore, we generated and analyzed IL-6R stalk region deletion variants for cleavability and biological activity. Deletion of 10 amino acids of the stalk region surrounding the ADAM17 cleavage site substantially blocked IL-6R proteolysis by ADAM17 but only slightly affected proteolysis by ADAM10. Interestingly, additional deletion of the remaining five juxtamembrane-located amino acids also abrogated ADAM10-mediated IL-6R shedding. Larger deletions within the stalk region, that do not necessarily include the ADAM17 cleavage site, also reduced ADAM10 and ADAM17-mediated IL-6R shedding, questioning the importance of cleavage site recognition. Furthermore, we show that a 22-amino acid-long stalk region is minimally required for IL-6 classic signaling. The gp130 cytokine binding sites are separated from the plasma membrane by ~96 Å. 22 amino acid residues, however, span maximally 83.6 Å (3.8 Å/amino acid), indicating that the three juxtamembrane fibronectin domains of gp130 are not necessarily elongated but somehow flexed to allow IL-6 classic signaling. Our findings underline a dual role of the IL-6R stalk region in IL-6 signaling. In IL-6 trans-signaling, it regulates proper proteolysis by ADAM10 and ADAM17. In IL-6 classic-signaling, it acts as a spacer to ensure IL-6·IL-6R·gp130 signal complex formation.
Collapse
Affiliation(s)
- Paul Baran
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|