301
|
Liu Y, Xu P, Rivara S, Liu C, Ricci J, Ren X, Hurley JH, Ablasser A. Clathrin-associated AP-1 controls termination of STING signalling. Nature 2022; 610:761-767. [PMID: 36261523 PMCID: PMC9605868 DOI: 10.1038/s41586-022-05354-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Stimulator of interferon genes (STING) functions downstream of cyclic GMP-AMP synthase in DNA sensing or as a direct receptor for bacterial cyclic dinucleotides and small molecules to activate immunity during infection, cancer and immunotherapy1-10. Precise regulation of STING is essential to ensure balanced immune responses and prevent detrimental autoinflammation11-16. After activation, STING, a transmembrane protein, traffics from the endoplasmic reticulum to the Golgi, where its phosphorylation by the protein kinase TBK1 enables signal transduction17-20. The mechanism that ends STING signalling at the Golgi remains unknown. Here we show that adaptor protein complex 1 (AP-1) controls the termination of STING-dependent immune activation. We find that AP-1 sorts phosphorylated STING into clathrin-coated transport vesicles for delivery to the endolysosomal system, where STING is degraded21. We identify a highly conserved dileucine motif in the cytosolic C-terminal tail (CTT) of STING that, together with TBK1-dependent CTT phosphorylation, dictates the AP-1 engagement of STING. A cryo-electron microscopy structure of AP-1 in complex with phosphorylated STING explains the enhanced recognition of TBK1-activated STING. We show that suppression of AP-1 exacerbates STING-induced immune responses. Our results reveal a structural mechanism of negative regulation of STING and establish that the initiation of signalling is inextricably associated with its termination to enable transient activation of immunity.
Collapse
Affiliation(s)
- Ying Liu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Pengbiao Xu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sophie Rivara
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Chong Liu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Ricci
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Xuefeng Ren
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
302
|
Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Cells 2022; 11:cells11193043. [PMID: 36231006 PMCID: PMC9563579 DOI: 10.3390/cells11193043] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Innate immune mechanisms initiate immune responses via pattern-recognition receptors (PRRs). Cyclic GMP-AMP synthase (cGAS), a member of the PRRs, senses diverse pathogenic or endogenous DNA and activates innate immune signaling pathways, including the expression of stimulator of interferon genes (STING), type I interferon, and other inflammatory cytokines, which, in turn, instructs the adaptive immune response development. This groundbreaking discovery has rapidly advanced research on host defense, cancer biology, and autoimmune disorders. Since cGAS/STING has enormous potential in eliciting an innate immune response, understanding its functional regulation is critical. As the most widespread and efficient regulatory mode of the cGAS-STING pathway, post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are generally considered a regulatory mechanism for protein destruction or renewal. In this review, we discuss cGAS-STING signaling transduction and its mechanism in related diseases and focus on the current different regulatory modalities of PTMs in the control of the cGAS-STING-triggered innate immune and inflammatory responses.
Collapse
|
303
|
Nishimoto S, Sata M, Fukuda D. Expanding role of deoxyribonucleic acid-sensing mechanism in the development of lifestyle-related diseases. Front Cardiovasc Med 2022; 9:881181. [PMID: 36176986 PMCID: PMC9513035 DOI: 10.3389/fcvm.2022.881181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
In lifestyle-related diseases, such as cardiovascular, metabolic, respiratory, and kidney diseases, chronic inflammation plays a causal role in their pathogenesis; however, underlying mechanisms of sterile chronic inflammation are not well-understood. Previous studies have confirmed the damage of cells in these organs in the presence of various risk factors such as diabetes, dyslipidemia, and cigarette smoking, releasing various endogenous ligands for pattern recognition receptors. These studies suggested that nucleic acids released from damaged tissues accumulate in these tissues, acting as an endogenous ligand. Undamaged DNA is an integral factor for the sustenance of life, whereas, DNA fragments, especially those from pathogens, are potent activators of the inflammatory response. Recent studies have indicated that inflammatory responses such as the production of type I interferon (IFN) induced by DNA-sensing mechanisms which contributes to self-defense system in innate immunity participates in the progression of inflammatory diseases by the recognition of nucleic acids derived from the host, including mitochondrial DNA (mtDNA). The body possesses several types of DNA sensors. Toll-like receptor 9 (TLR9) recognizes DNA fragments in the endosomes. In addition, the binding of DNA fragments in the cytosol activates cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS), resulting in the synthesis of the second messenger cyclic GMP-AMP (cGAMP). The binding of cGAMP to stimulator of interferon genes (STING) activates NF-κB and TBK-1 signaling and consequently the production of many inflammatory cytokines including IFNs. Numerous previous studies have demonstrated the role of DNA sensors in self-defense through the recognition of DNA fragments derived from pathogens. Beyond the canonical role of TLR9 and cGAS-STING, this review describes the role of these DNA-sensing mechanism in the inflammatory responses caused by endogenous DNA fragments, and in the pathogenesis of lifestyle-related diseases.
Collapse
Affiliation(s)
- Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Japan
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University, Osaka, Japan
- *Correspondence: Daiju Fukuda, ,
| |
Collapse
|
304
|
Zhang M, Zou Y, Zhou X, Zhou J. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Front Immunol 2022; 13:954129. [PMID: 36172373 PMCID: PMC9511411 DOI: 10.3389/fimmu.2022.954129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-STING signaling plays an integral role in the host immune response, and the abnormal activation of cGAS-STING is highly related to various autoimmune diseases. Therefore, targeting the cGAS-STING-TBK1 axis has become a promising strategy in therapy of autoimmune diseases. Herein, we summarized the key pathways mediated by the cGAS-STING-TBK1 axis and various cGAS-STING-TBK1 related autoimmune diseases, as well as the recent development of cGAS, STING, or TBK1 selective inhibitors and their potential application in therapy of cGAS-STING-TBK1 related autoimmune diseases. Overall, the review highlights that inhibiting cGAS-STING-TBK1 signaling is an attractive strategy for autoimmune disease therapy.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xujun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jinming Zhou,
| |
Collapse
|
305
|
Temple SEL, Ho G, Bennetts B, Boggs K, Vidic N, Mowat D, Christodoulou J, Schultz A, Gayagay T, Roscioli T, Zhu Y, Lunke S, Armstrong D, Harrison J, Kapur N, McDonald T, Selvadurai H, Tai A, Stark Z, Jaffe A. The role of exome sequencing in childhood interstitial or diffuse lung disease. Orphanet J Rare Dis 2022; 17:350. [PMID: 36085161 PMCID: PMC9463757 DOI: 10.1186/s13023-022-02508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Children's interstitial and diffuse lung disease (chILD) is a complex heterogeneous group of lung disorders. Gene panel approaches have a reported diagnostic yield of ~ 12%. No data currently exist using trio exome sequencing as the standard diagnostic modality. We assessed the diagnostic utility of using trio exome sequencing in chILD. We prospectively enrolled children meeting specified clinical criteria between 2016 and 2020 from 16 Australian hospitals. Exome sequencing was performed with analysis of an initial gene panel followed by trio exome analysis. A subset of critically ill infants underwent ultra-rapid trio exome sequencing as first-line test. RESULTS 36 patients [median (range) age 0.34 years (0.02-11.46); 11F] were recruited from multiple States and Territories. Five patients had clinically significant likely pathogenic/pathogenic variants (RARB, RPL15, CTCF, RFXANK, TBX4) and one patient had a variant of uncertain significance (VIP) suspected to contribute to their clinical phenotype, with VIP being a novel gene candidate. CONCLUSIONS Trio exomes (6/36; 16.7%) had a better diagnostic rate than gene panel (1/36; 2.8%), due to the ability to consider a broader range of underlying conditions. However, the aetiology of chILD in most cases remained undetermined, likely reflecting the interplay between low penetrant genetic and environmental factors.
Collapse
Affiliation(s)
- Suzanna E L Temple
- Department of Clinical Genetics, Liverpool Hospital, Sydney, NSW, Australia. .,School of Women's and Children's Health, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.
| | - Gladys Ho
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia.,Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Bruce Bennetts
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia.,Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Kirsten Boggs
- Australian Genomics Health Alliance, Melbourne, VIC, Australia.,Department of Clinical Genetics, Children's Hospital Westmead, Sydney, NSW, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, NSW, Australia
| | - Nada Vidic
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.,Australian Genomics Health Alliance, Melbourne, VIC, Australia
| | - David Mowat
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, NSW, Australia
| | - John Christodoulou
- Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, NSW, Australia.,Australian Genomics Health Alliance, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - André Schultz
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia.,Department of Respiratory Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,Division of Paediatrics, Faculty of Medicine, University of Western Australia, Perth, Australia
| | - Thet Gayagay
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Tony Roscioli
- Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, NSW, Australia.,Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia.,Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Ying Zhu
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Sebastian Lunke
- Australian Genomics Health Alliance, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - David Armstrong
- Department of Paediatrics, Monash University, Clayton Rd, Clayton, VIC, Australia.,Department of Respiratory and Sleep Medicine, Monash Children's Hospital, Clayton Rd, Clayton, VIC, Australia
| | - Joanne Harrison
- University of Melbourne, Melbourne, VIC, Australia.,Department of Respiratory and Sleep Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Nitin Kapur
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Hiran Selvadurai
- Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, NSW, Australia.,Children's Hospital Westmead, Sydney, NSW, Australia
| | - Andrew Tai
- Paediatric Respiratory and Sleep Department, Women's and Children's Hospital, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Zornitza Stark
- Australian Genomics Health Alliance, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.,Department Respiratory and Sleep Medicine, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
306
|
Stinson WA, Miner CA, Zhao FR, Lundgren AJ, Poddar S, Miner JJ. The IFN-γ receptor promotes immune dysregulation and disease in STING gain-of-function mice. JCI Insight 2022; 7:155250. [PMID: 36073546 PMCID: PMC9536275 DOI: 10.1172/jci.insight.155250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
STING gain-of-function mutations cause STING-associated vasculopathy with onset in infancy (SAVI) in humans, a disease characterized by spontaneous lung inflammation and fibrosis. Mice with STING gain-of-function mutations (SAVI mice) develop αβ T cell–dependent lung disease and also lack lymph nodes. Although SAVI has been regarded as a type I interferonopathy, the relative contributions of the three interferon receptors are incompletely understood. Here, we show that STING gain of function led to upregulation of IFN-γ–induced chemokines in the lungs of SAVI mice and that deletion of the type II IFN receptor (IFNGR1), but not the type I IFN receptor (IFNAR1) or type III IFN receptor (IFNλR1), ameliorated lung disease and restored lymph node development in SAVI mice. Furthermore, deletion of IFNGR1, but not IFNAR1 or IFNλR1, corrected the ratio of effector to Tregs in SAVI mice and in mixed bone marrow chimeric mice. Finally, cultured SAVI mouse macrophages were hyperresponsive to IFN-γ, but not IFN-β, in terms of Cxcl9 upregulation and cell activation. These results demonstrate that IFNGR1 plays a major role in autoinflammation and immune dysregulation mediated by STING gain of function.
Collapse
Affiliation(s)
- W Alexander Stinson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Cathrine A Miner
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fang R Zhao
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Annena Jane Lundgren
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Subhajit Poddar
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.,Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
307
|
Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 2022; 18:558-572. [PMID: 35732833 PMCID: PMC9214686 DOI: 10.1038/s41581-022-00589-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Cells are equipped with numerous sensors that recognize nucleic acids, which probably evolved for defence against viruses. Once triggered, these sensors stimulate the production of type I interferons and other cytokines that activate immune cells and promote an antiviral state. The evolutionary conserved enzyme cyclic GMP-AMP synthase (cGAS) is one of the most recently identified DNA sensors. Upon ligand engagement, cGAS dimerizes and synthesizes the dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP), which binds to the endoplasmic reticulum protein stimulator of interferon genes (STING) with high affinity, thereby unleashing an inflammatory response. cGAS-binding DNA is not restricted by sequence and must only be >45 nucleotides in length; therefore, cGAS can also be stimulated by self genomic or mitochondrial DNA. This broad specificity probably explains why the cGAS-STING pathway has been implicated in a number of autoinflammatory, autoimmune and neurodegenerative diseases; this pathway might also be activated during acute and chronic kidney injury. Therapeutic manipulation of the cGAS-STING pathway, using synthetic cyclic dinucleotides or inhibitors of cGAMP metabolism, promises to enhance immune responses in cancer or viral infections. By contrast, inhibitors of cGAS or STING might be useful in diseases in which this pro-inflammatory pathway is chronically activated.
Collapse
Affiliation(s)
| | - Jie An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Keith B Elkon
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
308
|
Tian X, Xu F, Zhu Q, Feng Z, Dai W, Zhou Y, You QD, Xu X. Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. Eur J Med Chem 2022; 244:114791. [DOI: 10.1016/j.ejmech.2022.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
|
309
|
Paradigm shift in monogenic autoinflammatory diseases and systemic vasculitis: The VEXAS syndrome. Med Clin (Barc) 2022; 159:489-496. [PMID: 36049972 DOI: 10.1016/j.medcli.2022.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
VEXAS syndrome was described by the end of 2020 as an autoinflammatory disease caused by post-zygotic variants in the UBA1 gene. VEXAS syndrome occurs in adult males with recurrent fever, arthralgia/arthritis, ear/nose chondritis, neutrophilic dermatosis, lung inflammation, venous thrombosis, and different types of vasculitis. Common laboratory changes include raised acute phase reactants and macrocytic anemia. The coexistence of myelodysplasia is frequent, and bone marrow vacuolization of myeloid and erythroid precursors is characteristic. Glucocorticoids are effective at medium-high doses, but the remaining immunosuppressive drugs, either conventional or biological, have showed limited or absent efficacy. Azacitidine has been associated with a good response, especially in patients with accompanying myelodysplastic syndrome. Allogeneic hematopoietic stem cell transplantation appears to be the only curative therapy by now. VEXAS syndrome has become a paradigm shift in the diagnosis and treatment of autoinflammatory diseases and systemic vasculitis.
Collapse
|
310
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
311
|
Du Y, Zhang H, Nie X, Qi Y, Shi S, Han Y, Zhou W, He C, Wang L. Link between sterile inflammation and cardiovascular diseases: Focus on cGAS-STING pathway in the pathogenesis and therapeutic prospect. Front Cardiovasc Med 2022; 9:965726. [PMID: 36072862 PMCID: PMC9441773 DOI: 10.3389/fcvm.2022.965726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Sterile inflammation characterized by unresolved chronic inflammation is well established to promote the progression of multiple autoimmune diseases, metabolic disorders, neurodegenerative diseases, and cardiovascular diseases, collectively termed as sterile inflammatory diseases. In recent years, substantial evidence has revealed that the inflammatory response is closely related to cardiovascular diseases. Cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway which is activated by cytoplasmic DNA promotes the activation of interferon regulatory factor 3 (IRF3) or nuclear factor-κB (NF-κB), thus leading to upregulation of the levels of inflammatory factors and interferons (IFNs). Therefore, studying the role of inflammation caused by cGAS-STING pathway in cardiovascular diseases could provide a new therapeutic target for cardiovascular diseases. This review focuses on that cGAS-STING-mediated inflammatory response in the progression of cardiovascular diseases and the prospects of cGAS or STING inhibitors for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Du
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hui Zhang
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Nie
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajun Qi
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shi Shi
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingying Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenchen Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chaoyong He
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Chaoyong He
| | - Lintao Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
- Lintao Wang
| |
Collapse
|
312
|
Transcription-independent regulation of STING activation and innate immune responses by IRF8 in monocytes. Nat Commun 2022; 13:4822. [PMID: 35973990 PMCID: PMC9381507 DOI: 10.1038/s41467-022-32401-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/26/2022] [Indexed: 12/27/2022] Open
Abstract
Sensing of cytosolic DNA of microbial or cellular/mitochondrial origin by cGAS initiates innate immune responses via the adaptor protein STING. It remains unresolved how the activity of STING is balanced between a productive innate immune response and induction of autoimmunity. Here we show that interferon regulatory factor 8 (IRF8) is essential for efficient activation of STING-mediated innate immune responses in monocytes. This function of IRF8 is independent of its transcriptional role in monocyte differentiation. In uninfected cells, IRF8 remains inactive via sequestration of its IRF-associated domain by its N- and C-terminal tails, which reduces its association with STING. Upon triggering the DNA sensing pathway, IRF8 is phosphorylated at Serine 151 to allow its association with STING via the IRF-associated domain. This is essential for STING polymerization and TBK1-mediated STING and IRF3 phosphorylation. Consistently, IRF8-deficiency impairs host defense against the DNA virus HSV-1, and blocks DNA damage-induced cellular senescence. Bone marrow-derived mononuclear cells which have an autoimmune phenotype due to deficiency of Trex1, respond to IRF-8 deletion with reduced pro-inflammatory cytokine production. Peripheral blood mononuclear cells from systemic lupus erythematosus patients are characterized by elevated phosphorylation of IRF8 at the same Serine residue we find to be important in STING activation, and in these cells STING is hyper-active. Taken together, the transcription-independent function of IRF8 we describe here appears to mediate STING activation and represents an important regulatory step in the cGAS/STING innate immune pathway in monocytes. The transcription factor IRF8 has been shown to regulate monocyte differentiation via its DNA-binding activity. Here authors show that IRF8 is also involved in cytosolic DNA sensing via its phosphorylation-dependent association to the adaptor protein STING, thus representing an important checkpoint between immune response and autoimmunity in monocytes.
Collapse
|
313
|
Ganeva M, Petrova G, Mihailova S, Gesheva N, Nedevska M, Boyadzhiev M, Shivachev P, Stefanov S. STING-associated vasculopathy with onset in infancy: the first case in Bulgaria and review of the literature. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2112909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Margarita Ganeva
- Department of Pediatric Rheumatology, University Children’s Hospital “Ivan Mitev”, Medical University of Sofia, Sofia, Bulgaria
| | - Guergana Petrova
- Department of Pediatric Diseases, Alexandrovska Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Snezhina Mihailova
- Department of Clinical Immunology with Stem Cell Bank, Alexandrovska Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Nevena Gesheva
- Department of Clinical Immunology with Stem Cell Bank, Alexandrovska Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Mariya Nedevska
- Imaging Studies Department, Saint Ekaterina University Multiprofile Hospital for Active Treatment, Medical University of Sofia, Sofia, Bulgaria
| | - Martin Boyadzhiev
- Pediatric Department, Saint Marina Hospital, Medical University of Varna, Varna, Bulgaria
| | - Petar Shivachev
- Pediatric Department, Saint Marina Hospital, Medical University of Varna, Varna, Bulgaria
| | - Stefan Stefanov
- Department of Pediatric Rheumatology, University Children’s Hospital “Ivan Mitev”, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
314
|
Renson T, Hamiwka L, Benseler S. Central nervous system manifestations of monogenic autoinflammatory disorders and the neurotropic features of SARS-CoV-2: Drawing the parallels. Front Pediatr 2022; 10:931179. [PMID: 36034552 PMCID: PMC9399631 DOI: 10.3389/fped.2022.931179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Central nervous system (CNS) involvement in monogenic autoinflammatory disorders (AID) is increasingly recognized and can be life threatening. Therefore, a low threshold to consider CNS disease should be maintained in patients with systemic inflammation. Hyperinflammation is also a key feature of severe acute COVID-19 and post COVID-19 entities such as multisystem inflammatory syndrome in children. Like AID, COVID-19 patients can present with severe CNS involvement. The impact of COVID-19 on AID and CNS involvement in particular is still obscure, nevertheless dreaded. In the current review, we synthesize the spectrum of CNS manifestations in monogenic AID. We explore common pathophysiological and clinical features of AID and COVID-19. Moreover, we assess the impact of immune dysregulation associated with SARS-CoV-2 infections and post COVID-19 hyperinflammation in AID. The striking commonalities found between both disease entities warrant caution in the management of AID patients during the current pandemic.
Collapse
Affiliation(s)
- Thomas Renson
- Division of Rheumatology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Lorraine Hamiwka
- Division of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Susanne Benseler
- Division of Rheumatology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
315
|
STING inhibitor ameliorates LPS-induced ALI by preventing vascular endothelial cells-mediated immune cells chemotaxis and adhesion. Acta Pharmacol Sin 2022; 43:2055-2066. [PMID: 34907359 PMCID: PMC9343420 DOI: 10.1038/s41401-021-00813-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Acute lung injury (ALI) is a common and devastating clinical disorder featured by excessive inflammatory responses. Stimulator of interferon genes (STING) is an indispensable molecule for regulating inflammation and immune response in multiple diseases, but the role of STING in the ALI pathogenesis is not well elucidated. In this study, we explored the molecular mechanisms of STING in regulating lipopolysaccharide (LPS)-induced lung injury. Mice were pretreated with a STING inhibitor C-176 (15, 30 mg/kg, i.p.) before LPS inhalation to induce ALI. We showed that LPS inhalation significantly increased STING expression in the lung tissues, whereas C-176 pretreatment dose-dependently suppressed the expression of STING, decreased the production of inflammatory cytokines including TNF-α, IL-6, IL-12, and IL-1β, and restrained the expression of chemokines and adhesion molecule vascular cell adhesion protein-1 (VCAM-1) in the lung tissues. Consistently, in vitro experiments conducted in TNF-α-stimulated HMEC-1cells (common and classic vascular endothelial cells) revealed that human STING inhibitor H-151 or STING siRNA downregulated the expression levels of adhesion molecule and chemokines in HMEC-1cells, accompanied by decreased adhesive ability and chemotaxis of immunocytes upon TNF-α stimulation. We further revealed that STING inhibitor H-151 or STING knockdown significantly decreased the phosphorylation of transcription factor STAT1, which subsequently influenced its binding to chemokine CCL2 and adhesive molecule VCAM-1 gene promoter. Collectively, STING inhibitor can alleviate LPS-induced ALI in mice by preventing vascular endothelial cells-mediated immune cell chemotaxis and adhesion, suggesting that STING may be a promising therapeutic target for the treatment of ALI.
Collapse
|
316
|
Zhao J, Xiao R, Zeng R, He E, Zhang A. Small molecules targeting cGAS-STING pathway for autoimmune disease. Eur J Med Chem 2022; 238:114480. [DOI: 10.1016/j.ejmech.2022.114480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
|
317
|
Beck DB, Werner A, Kastner DL, Aksentijevich I. Disorders of ubiquitylation: unchained inflammation. Nat Rev Rheumatol 2022; 18:435-447. [PMID: 35523963 PMCID: PMC9075716 DOI: 10.1038/s41584-022-00778-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 12/31/2022]
Abstract
Ubiquitylation is an essential post-translational modification that regulates intracellular signalling networks by triggering proteasomal substrate degradation, changing the activity of substrates or mediating changes in proteins that interact with substrates. Hundreds of enzymes participate in reversible ubiquitylation of proteins, some acting globally and others targeting specific proteins. Ubiquitylation is essential for innate immune responses, as it facilitates rapid regulation of inflammatory pathways, thereby ensuring sufficient but not excessive responses. A growing number of inborn errors of immunity are attributed to dysregulated ubiquitylation. These genetic disorders exhibit broad clinical manifestations, ranging from susceptibility to infection to autoinflammatory and/or autoimmune features, lymphoproliferation and propensity to malignancy. Many autoinflammatory disorders result from disruption of components of the ubiquitylation machinery and lead to overactivation of innate immune cells. An understanding of the disorders of ubiquitylation in autoinflammatory diseases could enable the development of novel management strategies.
Collapse
Affiliation(s)
- David B Beck
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Human Genetics and Genomics, New York University, New York, NY, USA
- Division of Rheumatology, Department of Medicine, New York University, New York, NY, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
318
|
Abstract
As brutally demonstrated by the COVID-19 pandemic, an effective immune system is essential for survival. Developed over evolutionary time, viral nucleic acid detection is a central pillar in the defensive armamentarium used to combat foreign microbial invasion. To ensure cellular homeostasis, such a strategy necessitates the efficient discrimination of pathogen-derived DNA and RNA from that of the host. In 2011, it was suggested that an upregulation of type I interferon signalling might serve as a defining feature of a novel set of Mendelian inborn errors of immunity, where antiviral sensors are triggered by host nucleic acids due to a failure of self versus non-self discrimination. These rare disorders have played a surprisingly significant role in informing our understanding of innate immunity and the relevance of type I interferon signalling for human health and disease. Here we consider what we have learned in this time, and how the field may develop in the future.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France.
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
319
|
Hussain B, Xie Y, Jabeen U, Lu D, Yang B, Wu C, Shang G. Activation of STING Based on Its Structural Features. Front Immunol 2022; 13:808607. [PMID: 35928815 PMCID: PMC9343627 DOI: 10.3389/fimmu.2022.808607] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-cGAMP-STING pathway is an important innate immune signaling cascade responsible for the sensing of abnormal cytosolic double-stranded DNA (dsDNA), which is a hallmark of infection or cancers. Recently, tremendous progress has been made in the understanding of the STING activation mechanism from various aspects. In this review, the molecular mechanism of activation of STING protein based on its structural features is briefly discussed. The underlying molecular mechanism of STING activation will enable us to develop novel therapeutics to treat STING-associated diseases and understand how STING has evolved to eliminate infection and maintain immune homeostasis in innate immunity.
Collapse
Affiliation(s)
- Behzad Hussain
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, The Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yufeng Xie
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Uzma Jabeen
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Defen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bo Yang
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, The Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Guijun Shang
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
- *Correspondence: Guijun Shang,
| |
Collapse
|
320
|
Koker O, Aktay Ayaz N. Autoimmune and autoinflammatory diseases with mucocutaneous manifestations: A pediatric rheumatology perspective. Int J Dermatol 2022; 62:723-736. [PMID: 35843911 DOI: 10.1111/ijd.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/25/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022]
Abstract
The presence of mucocutaneous manifestations has clinical significance, as it may be a part of the initial presentation or activation stage of both autoimmune and autoinflammatory rheumatic diseases. The cutaneous signs may display a particular morphological and topographic distribution according to taxonomy, whereas heterogeneity is likely observed among the individuals. The review aims to cluster and systematically approach the mucocutaneous manifestations met in autoimmune and autoinflammatory rheumatic diseases of childhood. The search strategy involved a comprehensive inquiry on Web of Science, PubMed, MEDLINE, and Embase databases using relevant search terms such as "dermatologic, cutaneous, mucocutaneous, skin, rash" for each disease and category. The awareness of the distinctive mucocutaneous manifestations and their correlation with rheumatic diseases provides a convenient definition, well-timed control of the underlying condition, and prevention of cosmetic issues. In the management of rheumatic diseases, planning the pertinent differential diagnosis and determining the requirement of histopathological assessment are essential with a multidisciplinary approach to rheumatology, dermatology, and allergy-immunology specialties.
Collapse
Affiliation(s)
- Oya Koker
- Istanbul Faculty of Medicine, Department of Pediatric Rheumatology, Istanbul University, Istanbul, Turkey
| | - Nuray Aktay Ayaz
- Istanbul Faculty of Medicine, Department of Pediatric Rheumatology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
321
|
Chen F, Wu R, Liu J, Kang R, Li J, Tang D. The STING1-MYD88 complex drives ACOD1/IRG1 expression and function in lethal innate immunity. iScience 2022; 25:104561. [PMID: 35769880 PMCID: PMC9234224 DOI: 10.1016/j.isci.2022.104561] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 01/18/2023] Open
Abstract
ACOD1 (also known as IRG1) has emerged as a regulator of immunometabolism that operates by producing metabolite itaconate. Here, we report a key role of STING1 (also known as STING and TMEM173) in mediating ACOD1 expression in myeloid cells in response to toll-like receptor (TLR) signaling. The activation of STING1 through exogenous cyclic dinucleotides (e.g., 3'3'-cGAMP) or endogenous gain-of-function mutation (e.g., V155M) enhances lipopolysaccharide-induced ACOD1 expression and itaconate production in macrophages and monocytes, whereas the deletion of STING1 blocks this process. The adaptor protein MYD88, instead of DNA sensor cyclic GMP-AMP synthase (CGAS), favors STING1-dependent ACOD1 expression. Mechanistically, MYD88 directly blocks autophagic degradation of STING1 and causes subsequent IRF3/JUN-mediated ACOD1 gene transcription. Consequently, the conditional deletion of STING1 in myeloid cells fails to produce ACOD1 and itaconate, thereby protecting mice against endotoxemia and polymicrobial sepsis. Our results, therefore, establish a direct link between TLR4 signaling and ACOD1 expression through the STING1-MYD88 complex during septic shock.
Collapse
Affiliation(s)
- Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
322
|
Waqas SFUH, Sohail A, Nguyen AHH, Usman A, Ludwig T, Wegner A, Malik MNH, Schuchardt S, Geffers R, Winterhoff M, Merkert S, Martin U, Olmer R, Lachmann N, Pessler F. ISG15 deficiency features a complex cellular phenotype that responds to treatment with itaconate and derivatives. Clin Transl Med 2022; 12:e931. [PMID: 35842904 PMCID: PMC9288839 DOI: 10.1002/ctm2.931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Congenital ISG15 deficiency is a rare autoinflammatory disorder that is driven by chronically elevated systemic interferon levels and predominantly affects central nervous system and skin. Methods and results We have developed induced pluripotent stem cell‐derived macrophages and endothelial cells as a model to study the cellular phenotype of ISG15 deficiency and identify novel treatments. ISG15–/– macrophages exhibited the expected hyperinflammatory responses, but normal phagocytic function. In addition, they displayed a multifaceted pathological phenotype featuring increased apoptosis/pyroptosis, oxidative stress, glycolysis, and acylcarnitine levels, but decreased glutamine uptake, BCAT1 expression, branched chain amino acid catabolism, oxidative phosphorylation, β‐oxidation, and NAD(P)H‐dependent oxidoreductase activity. Furthermore, expression of genes involved in mitochondrial biogenesis and respiratory chain complexes II–V was diminished in ISG15–/– cells. Defective mitochondrial respiration was restored by transduction with wild‐type ISG15, but only partially by a conjugation‐deficient variant, suggesting that some ISG15 functions in mitochondrial respiration require ISGylation to cellular targets. Treatment with itaconate, dimethyl‐itaconate, 4‐octyl‐itaconate, and the JAK1/2 inhibitor ruxolitinib ameliorated increased inflammation, propensity for cell death, and oxidative stress. Furthermore, the treatments greatly improved mitochondria‐related gene expression, BCAT1 levels, redox balance, and intracellular and extracellular ATP levels. However, efficacy differed among the compounds according to read‐out and cell type, suggesting that their effects on cellular targets are not identical. Indeed, only itaconates increased expression of anti‐oxidant genes NFE2L2, HMOX1, and GPX7, and dimethyl‐itaconate improved redox balance the most. Even though itaconate treatments normalized the elevated expression of interferon‐stimulated genes, ISG15–/– macrophages maintained their reduced susceptibility to influenza virus infection. Conclusions These findings expand the cellular phenotype of human ISG15 deficiency and reveal the importance of ISG15 for regulating oxidative stress, branched chain amino acid metabolism, and mitochondrial function in humans. The results validate ruxolitinib as treatment for ISG15 deficiency and suggest itaconate‐based medications as additional therapeutics for this rare disorder.
Collapse
Affiliation(s)
- Syed Fakhar-Ul-Hassnain Waqas
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaqib Sohail
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Current affiliation: Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ariane Hai Ha Nguyen
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Abdulai Usman
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Tobias Ludwig
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Andre Wegner
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Muhammad Nasir Hayat Malik
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sven Schuchardt
- Department of Bio and Environmental Analytics, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Moritz Winterhoff
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Centre for Individualised Infection Medicine, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
323
|
Wang JY, Young LR. Insights into the Pathogenesis of Pulmonary Fibrosis from Genetic Diseases. Am J Respir Cell Mol Biol 2022; 67:20-35. [PMID: 35294321 PMCID: PMC9273221 DOI: 10.1165/rcmb.2021-0557tr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis is a disease process associated with significant morbidity and mortality, with limited therapeutic options owing to an incomplete understanding of the underlying pathophysiology. Mechanisms driving the fibrotic cascade have been elucidated through studies of rare and common variants in surfactant-related and telomere-related genes in familial and sporadic forms of pulmonary fibrosis, as well as in multisystem Mendelian genetic disorders that present with pulmonary fibrosis. In this translational review, we outline insights into the pathophysiology of pulmonary fibrosis derived from genetic forms of the disease, with a focus on model systems, shared cellular and molecular mechanisms, and potential targets for therapy.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
324
|
Ryan TAJ, O'Neill LAJ. Innate immune signaling and immunothrombosis: New insights and therapeutic opportunities. Eur J Immunol 2022; 52:1024-1034. [PMID: 35569038 PMCID: PMC9543829 DOI: 10.1002/eji.202149410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 01/10/2023]
Abstract
Activation of the coagulation cascade is a critical, evolutionarily conserved mechanism that maintains hemostasis by rapidly forming blood clots in response to blood-borne infections and damaged blood vessels. Coagulation is a key component of innate immunity since it prevents bacterial dissemination and can provoke inflammation. The term immunothrombosis describes the process by which the innate immune response drives aberrant coagulation, which can result in a lethal condition termed disseminated intravascular coagulation, often seen in sepsis. In this review, we describe the recently uncovered molecular mechanisms underlying inflammasome- and STING-driven immunothrombosis induced by bacterial and viral infections, culminating in tissue factor (TF) activation and release. Current anticoagulant therapeutics, while effective, are associated with a life-threatening bleeding risk, requiring the urgent development of new treatments. Targeting immunothrombosis may provide a safer option. Thus, we highlight preclinical tools which target TF and/or block canonical (NLRP3) or noncanonical (caspase-11) inflammasome activation as well as STING-driven TF release and discuss clinically approved drugs which block key immunothrombotic processes and, therefore, may be redeployed as safer anticoagulants.
Collapse
Affiliation(s)
- Tristram A. J. Ryan
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
| | - Luke A. J. O'Neill
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
325
|
Wobma H, Perkins R, Bartnikas L, Dedeoğlu F, Chou J, Vleugels RA, Lo MS, Janssen E, Henderson LA, Whangbo J, Vargas SO, Fishman M, Krone KA, Casey A. Genetic diagnosis of immune dysregulation can lead to targeted therapy for interstitial lung disease: A case series and single center approach. Pediatr Pulmonol 2022; 57:1577-1587. [PMID: 35426264 PMCID: PMC9627679 DOI: 10.1002/ppul.25924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/08/2022]
Abstract
In recent years, a growing number of monogenic disorders have been described that are characterized by immune dysregulation. A subset of these "primary immune regulatory disorders" can cause severe interstitial lung disease, often recognized in late childhood or adolescence. Patients presenting to pulmonary clinic may have long and complex medical histories, but lack a unifying genetic diagnosis. It is crucial for pulmonologists to recognize features suggestive of multisystem immune dysregulation and to initiate genetic workup, since targeted therapies based on underlying genetics may halt or even reverse pulmonary disease progression. Through such an approach, our center has been able to diagnose and treat a cohort of patients with interstitial lung disease from gene defects that affect immune regulation. Here we present representative cases related to pathogenic variants in three distinct pathways and summarize disease manifestations and treatment approaches. We conclude with a discussion of our perspective on the outstanding challenges for diagnosing and managing these complex life-threatening and chronic disorders.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ryan Perkins
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lisa Bartnikas
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Fatma Dedeoğlu
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ruth Ann Vleugels
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mindy S Lo
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jennifer Whangbo
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Martha Fishman
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katie A Krone
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
326
|
Morere J, Hognon C, Miclot T, Jiang T, Dumont E, Barone G, Monari A, Bignon E. How Fragile We Are: Influence of Stimulator of Interferon Genes (STING) Variants on Pathogen Recognition and Immune Response Efficiency. J Chem Inf Model 2022; 62:3096-3106. [PMID: 35675714 DOI: 10.1021/acs.jcim.2c00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The stimulator of interferon genes (STING) protein is a cornerstone of the human immune response. Its activation by cGAMP in the presence of cytosolic DNA stimulates the production of type I interferons and inflammatory cytokines. In the human population, several STING variants exist and exhibit dramatic differences in their activity, impacting the efficiency of the host defense against infections. Understanding the molecular mechanisms of these variants opens perspectives for personalized medicine treatments against diseases such as viral infections, cancers, or autoinflammatory diseases. Through microsecond-scale molecular modeling simulations, contact analyses, and machine learning techniques, we reveal the dynamic behavior of four STING variants (wild type, G230A, R293Q, and G230A/R293Q) and rationalize the variability of efficiency observed experimentally. Our results show that the decrease in STING activity is linked to a stiffening of key structural elements of the binding cavity together with changes in the interaction patterns within the protein.
Collapse
Affiliation(s)
- Jeremy Morere
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Tom Miclot
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.,Department of Biological, Chemical and Pharmaceutical Sciences, Universita degli Studi di Palermo, via delle Scienze, 90126 Palermo, Italy
| | - Tao Jiang
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - Elise Dumont
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France.,Institut Universitaire de France, 5 rue Descartes, F-75005 Paris, France
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences, Universita degli Studi di Palermo, via delle Scienze, 90126 Palermo, Italy
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.,Université Paris Cité and CNRS, ITODYS, F-75006, Paris, France
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| |
Collapse
|
327
|
Ouyang W, Wang S, Hu J, Liu Z. Can the cGAS-STING Pathway Play a Role in the Dry Eye? Front Immunol 2022; 13:929230. [PMID: 35812407 PMCID: PMC9263829 DOI: 10.3389/fimmu.2022.929230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye is one of the most common ocular surface diseases in the world and seriously affects the quality of life of patients. As an immune-related disease, the mechanism of dry eye has still not been fully elucidated. The cGAS-STING pathway is a recently discovered pathway that plays an important role in autoimmune and inflammatory diseases by recognizing dsDNA. As an important signal to initiate inflammation, the release of dsDNA is associated with dry eye. Herein, we focused on the pathophysiology of the immune-inflammatory response in the pathogenesis of dry eye, attempted to gain insight into the involvement of dsDNA in the dry eye immune response, and investigated the mechanism of the cGAS-STING pathway involved in the immune-inflammatory response. We further proposed that the cGAS-STING pathway may participate in dry eye as a new mechanism linking dry eye and the immune-inflammatory response, thus providing a new direction for the mechanistic exploration of dry eye.
Collapse
Affiliation(s)
- Weijie Ouyang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Shoubi Wang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Xiamen University, Xiamen, China
- Xiamen Clinical Medical Center for Endocrine and Metabolic Diseases, Xiamen University, Xiamen, China
- Xiamen Diabetes Prevention and Treatment Center, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Diabetes Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiaoyue Hu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| |
Collapse
|
328
|
Li Y, Liu H, Zeng Z, Lin H, Chen X, Yuan X, Qiu J, Fu F, Chen Z, Kuang J. Ginsenoside Rb3 attenuates skin flap ischemia-reperfusion damage by inhibiting STING-IRF3 signaling. J Mol Histol 2022; 53:763-772. [PMID: 35732862 DOI: 10.1007/s10735-022-10081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
We investigate the protective effect of ginsenoside Rb3 on skin flap microvasculature following ischemia-reperfusion (I/R) injury and its regulatory mechanism. We used a rat model of I/R injury with the right iliolumbar artery and oxidative stress model of human dermal microvascular endothelial cells. The effects of Rb3 on skin flap tissue and endothelial cell survival, STING-IRF3 pathway activation, and endothelial cell adhesion were measured. Following reperfusion, the survival rate of rat perforator flaps in the Rb3-treated group gradually increased with increasing Rb3 concentration. The treatment also reduced the amount of STING protein, phosphorylated IRF3, and P-selectin in skin flap tissue, with this change being most obvious in microvascular endothelial cells. In vitro, activated IRF3 binds to the P-selectin promoter and induces P-selectin expression. Our results suggest that Rb3 plays a role in reducing I/R flap damage through negatively regulating STING-IRF3 activation to limit leukocyte-endothelial cell adhesion.
Collapse
Affiliation(s)
- Yuanbin Li
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
| | - Haifen Liu
- Department of Radiology, Hunan Provincial Hospital of Traditional Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Zhaohui Zeng
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
| | - Hui Lin
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
| | - Xin Chen
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
| | - Xianglian Yuan
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
| | - Jizhe Qiu
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
| | - Fengchun Fu
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
| | - Zhuang Chen
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China.
| | - Jianjun Kuang
- Department of Science and Technology, Hunan Academy of Chinese Medicine, Changsha, 410000, Hunan, China.
| |
Collapse
|
329
|
Gao KM, Motwani M, Tedder T, Marshak-Rothstein A, Fitzgerald KA. Radioresistant cells initiate lymphocyte-dependent lung inflammation and IFNγ-dependent mortality in STING gain-of-function mice. Proc Natl Acad Sci U S A 2022; 119:e2202327119. [PMID: 35696583 PMCID: PMC9231608 DOI: 10.1073/pnas.2202327119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Pediatric patients with constitutively active mutations in the cytosolic double-stranded-DNA-sensing adaptor STING develop an autoinflammatory syndrome known as STING-associated vasculopathy with onset in infancy (SAVI). SAVI patients have elevated interferon-stimulated gene expression and suffer from interstitial lung disease (ILD) with lymphocyte predominate bronchus-associated lymphoid tissue (BALT). Mice harboring SAVI mutations (STING V154M [VM]) that recapitulate human disease also develop lymphocyte-rich BALT. Ablation of either T or B lymphocytes prolongs the survival of SAVI mice, but lung immune aggregates persist, indicating that T cells and B cells can independently be recruited as BALT. VM T cells produced IFNγ, and IFNγR deficiency prolonged the survival of SAVI mice; however, T-cell-dependent recruitment of infiltrating myeloid cells to the lung was IFNγ independent. Lethally irradiated VM recipients fully reconstituted with wild type bone-marrow-derived cells still developed ILD, pointing to a critical role for VM-expressing radioresistant parenchymal and/or stromal cells in the recruitment and activation of pathogenic lymphocytes. We identified lung endothelial cells as radioresistant cells that express STING. Transcriptional analysis of VM endothelial cells revealed up-regulation of chemokines, proinflammatory cytokines, and genes associated with antigen presentation. Together, our data show that VM-expressing radioresistant cells play a key role in the initiation of lung disease in VM mice and provide insights for the treatment of SAVI patients, with implications for ILD associated with other connective tissue disorders.
Collapse
Affiliation(s)
- Kevin MingJie Gao
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Mona Motwani
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Thomas Tedder
- Department of Immunology, Duke University School of Medicine, Durham, NC 22710
- Department Pediatrics, Duke University School of Medicine, Durham, NC 22710
| | - Ann Marshak-Rothstein
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| |
Collapse
|
330
|
Ottone OK, Kim C, Collins JA, Risbud MV. The cGAS-STING Pathway Affects Vertebral Bone but Does Not Promote Intervertebral Disc Cell Senescence or Degeneration. Front Immunol 2022; 13:882407. [PMID: 35769461 PMCID: PMC9235924 DOI: 10.3389/fimmu.2022.882407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The DNA-sensing cGAS-STING pathway promotes the senescence-associated secretory phenotype (SASP) and mediates type-I interferon inflammatory responses to foreign viral and bacterial DNA as well as self-DNA. Studies of the intervertebral disc in humans and mice demonstrate associations between aging, increased cell senescence, and disc degeneration. Herein we assessed the role of STING in SASP promotion in STING gain- (N153S) and loss-of-function mouse models. N153S mice evidenced elevated circulating levels of proinflammatory markers including IL-1β, IL-6, and TNF-α, showed elevated monocyte and macrophage abundance in the vertebral marrow, and exhibited a mild trabecular and cortical bone phenotype in caudal vertebrae. Interestingly, despite systemic inflammation, the structural integrity of the disc and knee articular joint remained intact, and cells did not show a loss of their phenotype or elevated SASP. Transcriptomic analysis of N153S tissues demonstrated an upregulated immune response by disc cells, which did not closely resemble inflammatory changes in human tissues. Interestingly, STING-/- mice also showed a mild vertebral bone phenotype, but the absence of STING did not reduce the abundance of SASP markers or improve the age-associated disc phenotype. Overall, the analyses of N153S and STING-/- mice suggest that the cGAS-STING pathway is not a major contributor to SASP induction and consequent disc aging and degeneration but may play a minor role in the maintenance of trabecular bone in the vertebrae. This work contributes to a growing body of work demonstrating that systemic inflammation is not a key driver of disc degeneration.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Cheeho Kim
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Makarand V. Risbud,
| |
Collapse
|
331
|
Gao J, Zheng M, Wu X, Zhang H, Su H, Dang Y, Ma M, Wang F, Xu J, Chen L, Liu T, Chen J, Zhang F, Yang L, Xu Q, Hu X, Wang H, Fei Y, Chen C, Liu H. CDK inhibitor Palbociclib targets STING to alleviate autoinflammation. EMBO Rep 2022; 23:e53932. [PMID: 35403787 PMCID: PMC9171422 DOI: 10.15252/embr.202153932] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/29/2022] Open
Abstract
Aberrant activation of stimulator of interferon genes (STING) is tightly associated with multiple types of disease, including cancer, infection, and autoimmune diseases. However, the development of STING modulators for the therapy of STING-related diseases is still an unmet clinical need. We employed a high-throughput screening approach based on the interaction of small-molecule chemical compounds with recombinant STING protein to identify functional STING modulators. Intriguingly, the cyclin-dependent protein kinase (CDK) inhibitor Palbociclib was found to directly bind STING and inhibit its activation in both mouse and human cells. Mechanistically, Palbociclib targets Y167 of STING to block its dimerization, its binding with cyclic dinucleotides, and its trafficking. Importantly, Palbociclib alleviates autoimmune disease features induced by dextran sulphate sodium or genetic ablation of three prime repair exonuclease 1 (Trex1) in mice in a STING-dependent manner. Our work identifies Palbociclib as a novel pharmacological inhibitor of STING that abrogates its homodimerization and provides a basis for the fast repurposing of this Food and Drug Administration-approved drug for the therapy of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiani Gao
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Mengge Zheng
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xiangyang Wu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Hang Zhang
- Department of Optical Science and EngineeringShanghai Engineering Research Center of Ultra‐Precision Optical ManufacturingKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Fudan UniversityShanghaiChina
| | - Hang Su
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yifang Dang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Mingtong Ma
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Fei Wang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Junfang Xu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Li Chen
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Tianhao Liu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Jianxia Chen
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Fan Zhang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Li Yang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Qinghua Xu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xuefei Hu
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Heyong Wang
- Central LaboratoryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yiyan Fei
- Department of Optical Science and EngineeringShanghai Engineering Research Center of Ultra‐Precision Optical ManufacturingKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Fudan UniversityShanghaiChina
| | - Chang Chen
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Haipeng Liu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Central LaboratoryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Institute of Nuclear MedicineTongji University School of MedicineShanghaiChina
| |
Collapse
|
332
|
Kano N, Ong GH, Ori D, Kawai T. Pathophysiological Role of Nucleic Acid-Sensing Pattern Recognition Receptors in Inflammatory Diseases. Front Cell Infect Microbiol 2022; 12:910654. [PMID: 35734577 PMCID: PMC9207338 DOI: 10.3389/fcimb.2022.910654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pattern recognition receptors (PRRs) play critical roles in recognizing pathogen-derived nucleic acids and inducing innate immune responses, such as inflammation and type I interferon production. PRRs that recognize nucleic acids include members of endosomal Toll-like receptors, cytosolic retinoic acid inducible gene I-like receptors, cyclic GMP–AMP synthase, absent in melanoma 2-like receptors, and nucleotide binding oligomerization domain-like receptors. Aberrant recognition of self-derived nucleic acids by these PRRs or unexpected activation of downstream signaling pathways results in the constitutive production of type I interferons and inflammatory cytokines, which lead to the development of autoimmune or autoinflammatory diseases. In this review, we focus on the nucleic acid-sensing machinery and its pathophysiological roles in various inflammatory diseases.
Collapse
|
333
|
Hu S, Gao Y, Gao R, Wang Y, Qu Y, Yang J, Wei X, Zhang F, Ge J. The selective STING inhibitor H-151 preserves myocardial function and ameliorates cardiac fibrosis in murine myocardial infarction. Int Immunopharmacol 2022; 107:108658. [DOI: 10.1016/j.intimp.2022.108658] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
|
334
|
Anti-Inflammatory Effects of Red Rice Bran Extract Ameliorate Type I Interferon Production via STING Pathway. Foods 2022; 11:foods11111622. [PMID: 35681372 PMCID: PMC9180078 DOI: 10.3390/foods11111622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Type I interferons (IFNs-I) are inflammatory cytokines that play an essential role in the pathogenesis of inflammation and autoimmune diseases. Signaling through nucleic acid sensors causes the production of IFNs-I. A stimulator of interferon genes (STING) is a DNA sensor that signals transduction, leading to the production of IFNs-I after their activation. This study aims to determine the anti-inflammatory effects of red rice bran extract (RRBE) on macrophages through the activation of STING signaling. RAW264.7 macrophage cells were stimulated with STING agonist (DMXAA) with and without RRBE. Cells and supernatant were collected. The level of mRNA expression was determined by qPCR, and inflammatory cytokine production was investigated by ELISA. The results indicate that RRBE significantly lowers the transcription of STING and interferon-stimulated genes (ISGs). Moreover, RRBE suppresses the phosphorylation of STING, leading to a decrease in the expression of Irf3, a transcription factor that initiates IFN-I signaling. Our results provide evidence that red rice bran extract may be a protective compound for inflammatory diseases by targeting STING signaling.
Collapse
|
335
|
Ge X, Wang Y, Xie H, Li R, Zhang F, Zhao B, Du J. 1,25(OH) 2 D 3 blocks IFNβ production through regulating STING in epithelial layer of oral lichen planus. J Cell Mol Med 2022; 26:3751-3759. [PMID: 35644988 PMCID: PMC9258715 DOI: 10.1111/jcmm.17409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Stimulator of interferon genes (STING) is reported to exert vital functions in inflammatory responses and autoimmune diseases. Nevertheless, the status and roles of STING in oral lichen planus (OLP) remain elusive. Here, we state that STING and its downstream cytokine interferon‐β (IFNβ) expression is boosted in the oral keratinocytes from patients suffering OLP in comparison with those from healthy participants. Mechanistically, transcription factor GATA‐binding protein 1 (GATA1) which is highly increased in diseased samples specifically interacts with its element in the promoter of STING to enhance STING transcripts. 1,25(OH)2D3, the active form of vitamin D, is capable of restricting STING and IFNβ increases in oral keratinocyte models resembling OLP in vitro. Moreover, there is a negative correlation between vitamin D receptor (VDR) and STING or IFNβ in human samples. Using plasmids and small interfering RNA transfection technologies, we find 1,25(OH)2D3 regulates STING and IFNβ through a mechanism controlled by the hypoxia‐inducible factor‐1α (HIF‐1α)‐GATA1 axis. Collectively, our findings unveil that 1,25(OH)2D3 lowers STING and IFNβ overexpression in the context of OLP.
Collapse
Affiliation(s)
- Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yaxian Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Hanting Xie
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
336
|
Kong X, Zuo H, Huang HD, Zhang Q, Chen J, He C, Hu Y. STING as an emerging therapeutic target for drug discovery: Perspectives from the global patent landscape. J Adv Res 2022; 44:119-133. [PMID: 35636721 PMCID: PMC9936525 DOI: 10.1016/j.jare.2022.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/15/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The STimulator of INterferon Genes (STING) plays an essential role in the innate immune system by inducing the expression of type I interferons (IFNs) and inflammatory cytokines upon sensing cytosolic DNA. Although modulating STING has shown promise as a potential treatment for cancers and inflammatory and autoimmune diseases in substantial pre-clinical studies, current preliminary clinical results of STING agonists have demonstrated limited anti-tumor efficacy. Currently, there is ongoing R&D targeting STING and focusing on the delivery of next-generation therapeutics. Whereas no comprehensive analysis on the STING patent landscape has been conducted to fill the gap between basic research progress and drug development and commercialization. AIM OF REVIEW This study summarized the current agents in the clinical stage and global patenting profiles to help identify the current status, development trends, and emerging technologies of the nascent field of STING modulation. KEY SCIENTIFIC CONCEPTS OF REVIEW Rapidly increasing R&D efforts and outcomes targeting STING were indicated by the recently increasing number and pharmacologic classes of drug candidates in clinic as well as in emergent technological patenting activities. Despite the overall fragmental ownership of patents, several pioneers that have advanced the clinical evaluation of novel STING agonists have established the basis of STING-relevant inventions through their influential patents in the field. These patents also facilitated progress on novel STING modulators, relevant delivery systems, pharmaceutical compositions, and combination strategies with the potential for further enhancing therapeutic outcomes by targeting STING.
Collapse
Affiliation(s)
- Xiangjun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China,Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao 999078, China
| | - Huali Zuo
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China,School of Life and Health Sciences, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China,School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China,School of Life and Health Sciences, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| | - Qianru Zhang
- School of Pharmacy, Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Guizhou 563000, China
| | - Jiayu Chen
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Guizhou 563000, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
337
|
Wobma H, Shin DS, Chou J, Dedeoğlu F. Dysregulation of the cGAS-STING Pathway in Monogenic Autoinflammation and Lupus. Front Immunol 2022; 13:905109. [PMID: 35693769 PMCID: PMC9186411 DOI: 10.3389/fimmu.2022.905109] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 01/19/2023] Open
Abstract
One of the oldest mechanisms of immune defense against pathogens is through detection of foreign DNA. Since human DNA is compartmentalized into the nucleus, its presence in the cytosol heralds a potential threat. The cGAS-STING pathway is one of the most important cytosolic DNA sensing pathways and leads to interferon signaling, inflammasome activation, autophagy, and cell death. While STING signaling is protective at physiologic levels, chronic activation of this pathway can instead drive autoinflammation and autoimmunity. Here we discuss several monogenic disorders of the STING pathway that highlight its impact on both innate and adaptive immunity in the progressive loss of tolerance. The potential relevance of STING signaling in systemic lupus erythematosus is then discussed with a focus on future avenues for monitoring and targeting this pathway.
Collapse
|
338
|
Hong Z, Mei J, Guo H, Zhu J, Wang C. Intervention of cGAS‒STING signaling in sterile inflammatory diseases. J Mol Cell Biol 2022; 14:mjac005. [PMID: 35084490 PMCID: PMC9122663 DOI: 10.1093/jmcb/mjac005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Sterile inflammation characterized by unresolved chronic inflammation is well established to promote the progression of multiple autoimmune diseases, metabolic disorders, neurodegenerative diseases, and cardiovascular diseases, collectively termed 'sterile inflammatory diseases'. By recognizing host-derived DNA, cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activates endoplasmic reticulum-associated stimulator of interferon genes (STING), which leads to the induction of type I interferons and inflammatory cytokines or immunogenic cell death that promotes sterile inflammation. Additionally, the DNA/cGAS-independent mode of STING activation has also been characterized in the progression of several sterile inflammatory diseases. This review focuses on the molecular mechanism of cGAS-dependent and cGAS-independent STING signaling under various disease conditions, particularly highlighting the diverse initiators upon this signaling pathway. We also summarize recent advances in the discovery of antagonists targeting cGAS and STING and the evaluation of their efficiencies in preclinical models. Finally, we discuss potential differences in the clinical applications of the specific antagonists, which may shed light on the precision therapeutic interventions.
Collapse
Affiliation(s)
- Ze Hong
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahao Mei
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Hanli Guo
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
339
|
Zhu H, Zhang R, Yi L, Tang YD, Zheng C. UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation. J Med Virol 2022; 94:4490-4501. [PMID: 35577759 DOI: 10.1002/jmv.27860] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/07/2022]
Abstract
STING (stimulator of interferon genes) is a pivotal innate immune adaptor, and its functions during DNA virus infections have been extensively documented. However, its homeostatic regulation is not well understood. Our study demonstrates that UNC93B1 is a crucial checker for STING to prevent hyperactivation. Ectopic expression of UNC93B1 attenuates IFN-β promoter activity and the transcriptions of IFN-β, ISG54, and ISG56 genes. Moreover, UNC93B1 also blocks the IRF3 nuclear translocation induced by ectopic expression of both cGAS and STING and reduces the stability of STING by facilitating its autophagy-lysosome degradation, which can be reversed by lysosome inhibitors. Mechanistically, UNC93B1 interacts with STING and suppresses STING-activated downstream signaling by delivering STING to the lysosomes for degradation depending on its trafficking capability. UNC93B1 knockout (KO) in human embryonic kidney 293T (HEK293T) cells facilitates IFN-β promoter activity, IFN-β, ISG54, and ISG56 transcriptions IRF3 nuclear translocation induced by ectopic expression of cGAS and STING. Infected with herpes simplex virus-1 (HSV-1), UNC93B1 knockdown BJ cells or primary peritoneal macrophages from Unc93b1-deficient (Unc93b1-/- ) mice show enhanced IFN-β, ISG54, and ISG56 transcriptions, TBK1 phosphorylation, and reduced STING degradation and viral replication. In addition, Unc93b1-/- mice exhibit higher IFN-β, ISG54, and ISG56 transcriptions and lower mortality upon HSV-1 infection in vivo. Collectively, these findings demonstrate that UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation and provide novel insights into the function of UNC93B1 in antiviral innate immunity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huifang Zhu
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rongzhao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Li Yi
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
340
|
Guffroy A, Dieudonné Y, Gies V, Danion F. Complex Allele with Additive Gain-of-Function STING1 Variants in a Patient with Cavitating Lung Lesions and Aspergillosis. J Clin Immunol 2022; 42:1156-1159. [PMID: 35556195 DOI: 10.1007/s10875-022-01284-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Aurélien Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France. .,INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000, Strasbourg, France. .,Faculty of Medicine, Université de Strasbourg, F-67000, Strasbourg, France.
| | - Yannick Dieudonné
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France.,INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000, Strasbourg, France.,Faculty of Medicine, Université de Strasbourg, F-67000, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France.,INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000, Strasbourg, France.,Faculty of Pharmacy, Université de Strasbourg, F-67400, Illkirch, France
| | - François Danion
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000, Strasbourg, France. .,Faculty of Medicine, Université de Strasbourg, F-67000, Strasbourg, France. .,Department of Infectious Diseases and Tropical Medicine, Strasbourg University Hospital, F-67000, Strasbourg, France.
| | | |
Collapse
|
341
|
Tanaka T, Shiba T, Honda Y, Izawa K, Yasumi T, Saito MK, Nishikomori R. Induced Pluripotent Stem Cell-Derived Monocytes/Macrophages in Autoinflammatory Diseases. Front Immunol 2022; 13:870535. [PMID: 35603217 PMCID: PMC9120581 DOI: 10.3389/fimmu.2022.870535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of autoinflammation, first proposed in 1999, refers to a seemingly unprovoked episode of sterile inflammation manifesting as unexplained fever, skin rashes, and arthralgia. Autoinflammatory diseases are caused mainly by hereditary abnormalities of innate immunity, without the production of autoantibodies or autoreactive T cells. The revolutionary discovery of induced pluripotent stem cells (iPSCs), whereby a patient’s somatic cells can be reprogrammed into an embryonic pluripotent state by forced expression of a defined set of transcription factors, has the transformative potential to enable in vitro disease modeling and drug candidate screening, as well as to provide a resource for cell replacement therapy. Recent reports demonstrate that recapitulating a disease phenotype in vitro is feasible for numerous monogenic diseases, including autoinflammatory diseases. In this review, we provide a comprehensive overview of current advances in research into autoinflammatory diseases involving iPSC-derived monocytes/macrophages. This review may aid in the planning of new studies of autoinflammatory diseases.
Collapse
Affiliation(s)
- Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatrics, Japanese Red Cross Otsu Hospital, Otsu, Japan
- *Correspondence: Takayuki Tanaka,
| | - Takeshi Shiba
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Yoshitaka Honda
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
342
|
Rong Y, Zhang S, Nandi N, Wu Z, Li L, Liu Y, Wei Y, Zhao Y, Yuan W, Zhou C, Xiao G, Levine B, Yan N, Mou S, Deng L, Tang Z, Liu X, Kramer H, Zhong Q. STING controls energy stress-induced autophagy and energy metabolism via STX17. J Biophys Biochem Cytol 2022; 221:213198. [PMID: 35510944 PMCID: PMC9082627 DOI: 10.1083/jcb.202202060] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
The stimulator of interferon genes (STING) plays a critical role in innate immunity. Emerging evidence suggests that STING is important for DNA or cGAMP-induced non-canonical autophagy, which is independent of a large part of canonical autophagy machineries. Here, we report that, in the absence of STING, energy stress-induced autophagy is upregulated rather than downregulated. Depletion of STING in Drosophila fat cells enhances basal- and starvation-induced autophagic flux. During acute exercise, STING knockout mice show increased autophagy flux, exercise endurance, and altered glucose metabolism. Mechanistically, these observations could be explained by the STING-STX17 interaction. STING physically interacts with STX17, a SNARE that is essential for autophagosome biogenesis and autophagosome-lysosome fusion. Energy crisis and TBK1-mediated phosphorylation both disrupt the STING-STX17 interaction, allow different pools of STX17 to translocate to phagophores and mature autophagosomes, and promote autophagic flux. Taken together, we demonstrate a heretofore unexpected function of STING in energy stress-induced autophagy through spatial regulation of autophagic SNARE STX17.
Collapse
Affiliation(s)
- Yueguang Rong
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nilay Nandi
- Department of Neuroscience and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhe Wu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yuehan Wei
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Zhao
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Weigang Yuan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Chuchu Zhou
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shan Mou
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liufu Deng
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaiming Tang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Helmut Kramer
- Department of Neuroscience and Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX,Helmut Kramer:
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
343
|
Sylvester M, Son A, Schwartz DM. The Interactions Between Autoinflammation and Type 2 Immunity: From Mechanistic Studies to Epidemiologic Associations. Front Immunol 2022; 13:818039. [PMID: 35281022 PMCID: PMC8907424 DOI: 10.3389/fimmu.2022.818039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Autoinflammatory diseases are a group of clinical syndromes characterized by constitutive overactivation of innate immune pathways. This results in increased production of or responses to monocyte- and neutrophil-derived cytokines such as interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Type 1 interferon (IFN). By contrast, clinical allergy is caused by dysregulated type 2 immunity, which is characterized by expansion of T helper 2 (Th2) cells and eosinophils, as well as overproduction of the associated cytokines IL-4, IL-5, IL-9, and IL-13. Traditionally, type 2 immune cells and autoinflammatory effectors were thought to counter-regulate each other. However, an expanding body of evidence suggests that, in some contexts, autoinflammatory pathways and cytokines may potentiate type 2 immune responses. Conversely, type 2 immune cells and cytokines can regulate autoinflammatory responses in complex and context-dependent manners. Here, we introduce the concepts of autoinflammation and type 2 immunity. We proceed to review the mechanisms by which autoinflammatory and type 2 immune responses can modulate each other. Finally, we discuss the epidemiology of type 2 immunity and clinical allergy in several monogenic and complex autoinflammatory diseases. In the future, these interactions between type 2 immunity and autoinflammation may help to expand the spectrum of autoinflammation and to guide the management of patients with various autoinflammatory and allergic diseases.
Collapse
Affiliation(s)
- McKella Sylvester
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
344
|
Zhang D, Liu Y, Zhu Y, Zhang Q, Guan H, Liu S, Chen S, Mei C, Chen C, Liao Z, Xi Y, Ouyang S, Feng XH, Liang T, Shen L, Xu P. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol 2022; 24:766-782. [PMID: 35501370 DOI: 10.1038/s41556-022-00894-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases.
Collapse
Affiliation(s)
- Dan Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yutong Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Hongxing Guan
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Shengduo Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Shasha Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chen Mei
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ying Xi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Cancer Center, Zhejiang University, Hangzhou, China.
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China. .,Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China. .,Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
345
|
Abstract
Inflammation plays indispensable roles in building the immune responses such as acquired immunity against harmful pathogens. Furthermore, it is essential for maintaining biological homeostasis in ever-changing conditions. Pattern-recognition receptors (PRRs) reside in cell membranes, endosomes or cytoplasm, and function as triggers for inflammatory responses. Binding of pathogen- or self-derived components, such as DNA, to PRRs activates downstream signaling cascades, resulting in the production of a series of pro-inflammatory cytokines and type I interferons (IFNs). While these series of responses are essential for host defense, the unexpected release of DNA from the nucleus or mitochondria of host cells can lead to autoimmune and autoinflammatory diseases. In this review, we focus on DNA-sensing mechanisms via PRRs and the disorders and extraordinary conditions caused by self-derived DNA.
Collapse
Affiliation(s)
- Daisuke Ori
- Division of Biological Science, Graduate School of Science and Technology, Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Division of Biological Science, Graduate School of Science and Technology, Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
346
|
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, Adang LA, Armangue T, Barchus K, Cordova DR, Crow YJ, Dale RC, Durrant KL, Eleftheriou D, Fazzi EM, Gattorno M, Gavazzi F, Hanson EP, Lee-Kirsch MA, Montealegre Sanchez GA, Neven B, Orcesi S, Ozen S, Poli MC, Schumacher E, Tonduti D, Uss K, Aletaha D, Feldman BM, Vanderver A, Brogan PA, Goldbach-Mansky R. The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology Points to Consider for Diagnosis and Management of Autoinflammatory Type I Interferonopathies: CANDLE/PRAAS, SAVI, and AGS. Arthritis Rheumatol 2022; 74:735-751. [PMID: 35315249 DOI: 10.1002/art.42087] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI), and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of "points to consider" to improve diagnosis, treatment, and long-term monitoring of patients with these rare diseases. METHODS Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates, and an allied health care professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires, and consensus methodology, "points to consider" to guide patient management were developed. RESULTS The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment, and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI, and AGS. CONCLUSION These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment, and management of patients with CANDLE/PRAAS, SAVI, and AGS and aim to standardize and improve care, quality of life, and disease outcomes.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Lovro Lamot
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Micol Romano
- University of Western Ontario, London, Ontario, Canada
| | | | - David Piskin
- University of Western Ontario, London Health Sciences Center, and Lawson Health Research Institute, London, Ontario, Canada
| | - Sofia Torreggiani
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and UOC Pediatria a Media Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura A Adang
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thais Armangue
- Sant Joan de Deu Children's Hospital and IDIBAPS-Hospital Clinic; University of Barcelona, Barcelona, Spain
| | - Kathe Barchus
- Autoinflammatory Alliance, San Francisco, California
| | - Devon R Cordova
- Aicardi-Goutieres Syndrome Americas Association, Manhattan Beach, California
| | - Yanick J Crow
- University of Edinburgh, Edinburgh, UK, and Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, University of Paris, Paris, France
| | - Russell C Dale
- University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Durrant
- Autoinflammatory Alliance and Kaiser San Francisco Hospital, San Francisco, California
| | | | - Elisa M Fazzi
- ASST Civil Hospital and University of Brescia, Brescia, Italy
| | | | - Francesco Gavazzi
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, and University of Brescia, Brescia, Italy
| | - Eric P Hanson
- Riley Hospital for Children and Indiana University School of Medicine, Indianapolis
| | | | | | - Bénédicte Neven
- Necker Children's Hospital, AP-HP, Institut Imagine Institut des Maladies Genetiques, University of Paris, Paris, France
| | - Simona Orcesi
- IRCCS Mondino Foundation and University of Pavia, Pavia, Italy
| | - Seza Ozen
- Hacettepe University, Ankara, Turkey
| | | | | | | | - Katsiaryna Uss
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Brian M Feldman
- Hospital for Sick Children and University of Toronto Institute of Health Policy Management and Evaluation, Toronto, Ontario, Canada
| | - Adeline Vanderver
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia
| | | | | |
Collapse
|
347
|
Polyethylenimine/cGAMP Nanocomplexes for STING-Mediated Cancer Immunotherapy: Formulation and Characterization Using Orthogonal Techniques. Processes (Basel) 2022. [DOI: 10.3390/pr10050882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cyclic GMP-AMP (cGAMP) has lately been extensively investigated in cancer immunotherapy due its activation of the innate immunity stimulation of interferon genes (STING) pathway within antigen presenting cells (APC) leading to an increase in tumor specific CD8+ T cells. As negatively charged dinucleotides are prone to enzymatic degradation before being taken up by APC, there is a need for an appropriate carrier. Therefore, polyethylenimine (PEI), a gold standard for oligonucleotide delivery, was selected. Molecular weight, type of PEI and N/P ratio between PEI/cGAMP were investigated in terms of toxicity, efficacy and physicochemical properties of the nanocomplexes (NCs) such as size, zeta potential and shape. Due to lack of nano-medicine regulations and the need for a case-by case assessment, here we examine these parameters by several orthogonal methods, such as dynamic light scattering (DLS), nanoparticle tracking analysis (NTA) and online asymmetric flow field flow fractionation (AF4) connected to DLS. N/P ratio of 2/1 ratio using linear PEI 25 kDa resulted in larger, positively charged particles of elongated shape, which were shown to have the best toxicity/efficacy ratio among different PEIs and ratios tested.
Collapse
|
348
|
Steiner A, Hrovat-Schaale K, Prigione I, Yu CH, Laohamonthonkul P, Harapas CR, Low RRJ, De Nardo D, Dagley LF, Mlodzianoski MJ, Rogers KL, Zillinger T, Hartmann G, Gantier MP, Gattorno M, Geyer M, Volpi S, Davidson S, Masters SL. Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nat Commun 2022; 13:2321. [PMID: 35484149 PMCID: PMC9051092 DOI: 10.1038/s41467-022-29946-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coatomer complex I (COPI) mediates retrograde vesicular trafficking from Golgi to the endoplasmic reticulum (ER) and within Golgi compartments. Deficiency in subunit alpha causes COPA syndrome and is associated with type I IFN signalling, although the upstream innate immune sensor involved was unknown. Using in vitro models we find aberrant activation of the STING pathway due to deficient retrograde but probably not intra-Golgi transport. Further we find the upstream cytosolic DNA sensor cGAS as essentially required to drive type I IFN signalling. Genetic deletion of COPI subunits COPG1 or COPD similarly induces type I IFN activation in vitro, which suggests that inflammatory diseases associated with mutations in other COPI subunit genes may exist. Finally, we demonstrate that inflammation in COPA syndrome patient peripheral blood mononuclear cells and COPI-deficient cell lines is ameliorated by treatment with the small molecule STING inhibitor H-151, suggesting targeted inhibition of the cGAS/STING pathway as a promising therapeutic approach.
Collapse
Affiliation(s)
- Annemarie Steiner
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Institute of Structural Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ignazia Prigione
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ronnie Ren Jie Low
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3168, Australia
| | - Laura F Dagley
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Technology and Biology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Michael J Mlodzianoski
- Center for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Kelly L Rogers
- Center for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Institute of Immunology, Philipps-University Marburg, BMFZ, 35043, Marburg, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, 53127, Bonn, Germany
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Marco Gattorno
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefano Volpi
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
- University of Genoa, 16126, Genoa, Italy
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
349
|
Scanu A, Lorenzin M, Luisetto R, Galozzi P, Ortolan A, Oliviero F, Doria A, Ramonda R. Identification in synovial fluid of a new potential pathogenic player in arthropathies. Exp Biol Med (Maywood) 2022; 247:1061-1066. [PMID: 35470716 DOI: 10.1177/15353702221087966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
STING (stimulator of interferon genes) has been recognized as an important signaling molecule in the innate immune response to cytosolic nucleic acids. Although it has been proposed that STING signaling pathway may play a pathogenic role in developing autoimmune and autoinflammatory diseases, its involvement in rheumatic disease processes remains to be elucidated. Here, we evaluated STING protein levels, expression and relationship with inflammatory parameters in synovial fluid (SF) of patients with psoriatic arthritis (PsA), rheumatoid arthritis (RA), gout, calcium pyrophosphate crystal-induced arthritis (CPP-IA), osteoarthritis (OA), and OA with CPP crystals (OA + CPP). The correlation with its negative regulator, nuclear factor erythroid 2-related factor 2 (Nrf2), was also investigated. SFs from 72 patients were analyzed for white blood cell (WBC) count, polymorphonuclear cell percentage (PMN%), and IL-1β, IL-6, IL-8, extra- and intracellular STING levels. STING and Nrf2 expression was also determined. WBC count and PMN% were greater in SF from inflammatory arthritis, while they were lower in OA groups. RA and gouty SFs have the highest levels of IL-1β, IL-8, and IL-6; while OA and OA + CPP showed the lowest concentrations. Gout and RA had the highest intracellular STING levels, while extracellular STING was greater in CPP-IA and OA SFs. STING was not detectable in PsA. STING mRNA was lower in PsA than other arthritides. Nrf2 mRNA was not detectable in OA. This study determines the presence of STING in SF of different arthritides, except for PsA, and suggests that it may be involved in pathogenesis and progression of arthropathies.
Collapse
Affiliation(s)
- Anna Scanu
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova 35128, Italy
| | - Paola Galozzi
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Augusta Ortolan
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| |
Collapse
|
350
|
Liu J, Yuan L, Ruan Y, Deng B, Yang Z, Ren Y, Li L, Liu T, Zhao H, Mai R, Chen J. Novel CRBN-Recruiting Proteolysis-Targeting Chimeras as Degraders of Stimulator of Interferon Genes with In Vivo Anti-Inflammatory Efficacy. J Med Chem 2022; 65:6593-6611. [PMID: 35452223 DOI: 10.1021/acs.jmedchem.1c01948] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The activation of the cyclic GMP-AMP synthase-stimulator of interferon gene (STING) pathway has been associated with the pathogenesis of many autoimmune and inflammatory disorders, and small molecules targeting STING have emerged as a new therapeutic strategy for the treatment of these diseases. While several STING inhibitors have been identified with potent anti-inflammatory effects, we would like to explore STING degraders based on the proteolysis-targeting chimera (PROTAC) technology as an alternative strategy to target the STING pathway. Thus, we designed and synthesized a series of STING protein degraders based on a small-molecule STING inhibitor (C-170) and pomalidomide (a CRBN ligand). These compounds demonstrated moderate STING-degrading activities. Among them, SP23 achieved the highest degradation potency with a DC50 of 3.2 μM. Importantly, SP23 exerted high anti-inflammatory efficacy in a cisplatin-induced acute kidney injury mouse model by modulating the STING signaling pathway. Taken together, SP23 represents the first PROTAC degrader of STING deserving further investigation as a new anti-inflammatory agent.
Collapse
Affiliation(s)
- Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yong Ruan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bulian Deng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Zicao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Huiting Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ruiyao Mai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|