301
|
Aleksandrova K, Leise J, Priesner C, Aktas M, Apel M, Assenmacher M, Bürger I, Richter A, Altefrohne P, Schubert C, Holzinger A, Barden M, Bezler V, von Bergwelt-Baildon M, Borchmann P, Goudeva L, Glienke W, Arseniev L, Esser R, Abken H, Koehl U. Automated manufacturing and characterization of clinical grade autologous CD20 CAR T cells for the treatment of patients with stage III/IV melanoma. Front Immunol 2024; 15:1328368. [PMID: 39386211 PMCID: PMC11461191 DOI: 10.3389/fimmu.2024.1328368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/02/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Point-of-care (POC) manufacturing of chimeric antigen receptor (CAR) modified T cell has expanded rapidly over the last decade. In addition to the use of CD19 CAR T cells for hematological diseases, there is a growing interest in targeting a variety of tumor-associated epitopes. Methods Here, we report the manufacturing and characterization of autologous anti-CD20 CAR T cells from melanoma patients within phase I clinical trial (NCT03893019). Using a second-generation lentiviral vector for the production of the CD20 CAR T cells on the CliniMACS Prodigy®. Results We demonstrated consistency in cell composition and functionality of the products manufactured at two different production sites. The T cell purity was >98.5%, a CD4/CD8 ratio between 2.5 and 5.5 and transduction rate between 34% and 61% on day 12 (harvest). Median expansion rate was 53-fold (range, 42-65-fold) with 1.7-3.8×109 CAR T cells at harvest, a sufficient number for the planned dose escalation steps (1×105/kg, 1×106/kg, 1×107/kg BW). Complementary research of some of the products pointed out that the CAR+ cells expressed mainly central memory T-cell phenotype. All tested CAR T cell products were capable to translate into T cell activation upon engagement of CAR target cells, indicated by the increase in pro-inflammatory cytokine release and by the increase in CAR T cell amplification. Notably, there were some interindividual, cell-intrinsic differences at the level of cytokine release and amplification. CAR-mediated T cell activation depended on the level of CAR cognate antigen. Discussion In conclusion, the CliniMACS Prodigy® platform is well suited for decentralized POC manufacturing of anti-CD20 CAR T cells and may be likewise applicable for the rapid and automated manufacturing of CAR T cells directed against other targets. Clinical trial registration https://clinicaltrials.gov/study/NCT03893019?cond=Melanoma&term=NCT03893019&rank=1, identifier NCT03893019.
Collapse
Affiliation(s)
- Krasimira Aleksandrova
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Jana Leise
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Christoph Priesner
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Murat Aktas
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Michael Apel
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Iris Bürger
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Richter
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | | | - Astrid Holzinger
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Markus Barden
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Valerie Bezler
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | | | - Peter Borchmann
- Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Lilia Goudeva
- Institute of Transfusion Medicine and Transplant Engineering (ITMTE), Hannover Medical School, Hannover, Germany
| | - Wolfgang Glienke
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Lubomir Arseniev
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Ruth Esser
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Hinrich Abken
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Ulrike Koehl
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
302
|
Gascard PD, Wang X, Nosrati M, Kim KB, Kashani-Sabet M, Tlsty TD, Leong SP, Hendrix MJC. Higher Nodal expression is often associated with poorer survival in patients diagnosed with melanoma and treated with anti-PD1 therapy. Pathol Oncol Res 2024; 30:1611889. [PMID: 39376672 PMCID: PMC11456440 DOI: 10.3389/pore.2024.1611889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Advanced melanoma is considered the most aggressive and deadly form of skin cancer whose incidence has been rising over the past three decades. In the absence of treatment, the median overall survival for advanced-stage metastatic disease is less than 6 months. Although most melanomas detected at an early stage can be cured with surgery, a subset of these eventually metastasize. Therefore, a critical need exists to identify unique molecular features that would be predictive of long-term outcome and response to specific therapies. Recent promising therapeutic regimens have included the use of immune checkpoint inhibitors, such as anti-PD1 antibodies. However, the ability to identify responders and non-responders to this therapy remains elusive. To address this challenge at the molecular level, previously our laboratory identified the emergence of a stem cell phenotype associated with advanced melanoma and other aggressive forms of cancer. Underlying this phenotype is the aberrant re-expression of the embryonic morphogen "Nodal". Particularly noteworthy, we have observed Nodal to remain in advanced tumors of non-responders to standard-of-care therapies (i.e., BRAFi). This pilot study is the first proof-of-principle attempt to predict treatment response survival outcome in a small cohort of melanoma patients receiving anti-PD1 immune checkpoint inhibitor therapy - based on their Nodal expression profile. Using advanced multiplex immunohistochemistry-based digital pathology, the major finding of this preliminary study indicates that higher Nodal expression is often associated with poorer overall survival after anti-PD1 therapy, reaching nearly statistical relevance.
Collapse
Affiliation(s)
- Philippe D. Gascard
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Xianhong Wang
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Mehdi Nosrati
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Kevin B. Kim
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Mohammed Kashani-Sabet
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Thea D. Tlsty
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Stanley P. Leong
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Mary J. C. Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, United States
| |
Collapse
|
303
|
Xue D, Li N, Yang J, Men K, Li L, Jiang H, Zhao X, Zhang S. Sarcopenia predicts immune-related adverse events due to anti-PD-1/PD-L1 therapy in patients with advanced lung cancer. Front Oncol 2024; 14:1450020. [PMID: 39376979 PMCID: PMC11456396 DOI: 10.3389/fonc.2024.1450020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of a number of patients with advanced cancer, and while this has resulted in increased survival times, it has also led to the emergence of novel immune-related adverse events (irAEs). In individuals with advanced cancer, sarcopenia is a significant symptom of cachexia and is linked to poor nutritional status and increased mortality. The present study aimed to evaluate sarcopenia and other risk variables that can affect the emergence of irAEs in patients with lung cancer. Methods A single-center retrospective analysis of 129 patients with advanced lung cancer treated with programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) checkpoint inhibitors was conducted from August 2020 to August 2022. Data on baseline characteristics and adverse events of participants were collected. Computed tomography was used to determine the skeletal muscle index at the third lumbar vertebra (L3-SMI) and whether sarcopenia is present. Results The median age of all participants was 60 years old (range, 52-66 years), with men accounting for 68.9% of the total patient cohort. The present study showed that 44 (34%) participants presented with any degree of irAEs, and 79 (61.2%) patients presented with sarcopenia. There were no statistically significant differences in baseline characteristics, such as age and sex, between patients who presented with irAEs and those without irAEs. Using logistic regression analysis, individuals with sarcopenia were 2.635-times more likely to experience any grade of irAEs than those without sarcopenia. Discussion irAEs are prevalent side effects of PD-1/PD-L1 inhibitor therapy for patients with cancer. By diagnosing and treating sarcopenia early, it is possible to lower the potential risk of irAEs in patients with advanced cancer. Furthermore, sarcopenia can be utilized as a predictor of irAEs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
304
|
Babajani A, Naseri M, Vakhshiteh F, Ghods R, Madjd Z. Editorial: Immunotherapeutic strategies to target cancer stem cells: state of the art in basic research to clinical application. Front Immunol 2024; 15:1490569. [PMID: 39376570 PMCID: PMC11456472 DOI: 10.3389/fimmu.2024.1490569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Naseri
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
305
|
Yao L, Krasnick BA, Bi Y, Sethuraman S, Goedegebuure S, Weerasinghe A, Wetzel C, Gao Q, Oyedeji A, Mudd J, Wyczalkowski MA, Wendl M, Ding L, Fields RC. Treatment resistance to melanoma therapeutics on a single cell level. Sci Rep 2024; 14:21915. [PMID: 39300183 DOI: 10.1038/s41598-024-72255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Therapy targeting the BRAF-MEK cascade created a treatment revolution for patients with BRAF mutant advanced melanoma. Unfortunately, 80% patients treated will progress by 5 years follow-up. Thus, it is imperative we study mechanisms of melanoma progression and therapeutic resistance. We created a scRNA (single cell RNA) atlas of 128,230 cells from 18 tumors across the treatment spectrum, discovering melanoma cells clustered strongly by transcriptome profiles of patients of origins. Our cell-level investigation revealed gains of 1q and 7q as likely early clonal events in metastatic melanomas. By comparing patient tumors and their derivative cell lines, we observed that PD1 responsive tumor fraction disappears when cells are propagated in vitro. We further established three anti-BRAF-MEK treatment resistant cell lines using three BRAF mutant tumors. ALDOA and PGK1 were found to be highly expressed in treatment resistant cell populations and metformin was effective in targeting the resistant cells. Our study suggests that the investigation of patient tumors and their derivative lines is essential for understanding disease progression, treatment response and resistance.
Collapse
Affiliation(s)
- Lijun Yao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Bradley A Krasnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ye Bi
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Sunantha Sethuraman
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Simon Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Amila Weerasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Chris Wetzel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingsong Gao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Abimbola Oyedeji
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Michael Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
306
|
Okuda-Hiwatashi S, Amagai R, Fujimura T, Kambayashi Y, Watanabe-Takahashi M, Yamazaki E, Tamabuchi E, Itabashi C, Hashimoto A, Asano Y. The Evaluation of Immune Checkpoint Inhibitors and BRAF/MEK Inhibitors in Different Therapy Lines for Metastatic Melanoma: A Retrospective Study. J Clin Med 2024; 13:5560. [PMID: 39337055 PMCID: PMC11432506 DOI: 10.3390/jcm13185560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Nivolumab plus ipilimumab (nivo/ipi) combination therapy is highly effective in treating advanced melanoma, but serious immune-related adverse events (irAEs) are prevalent. The overall response rate (ORR) of the BRAF inhibitor plus MEK inhibitor (BRAFi/MEKi) combination therapy for BRAFV600-mutant advanced melanoma surpasses that of immune checkpoint inhibitors (ICIs). However, the OS and PFS of BRAFi/MEKi combination therapy are inferior to those of ICIs. Methods: We retrospectively evaluated 22 melanoma patients treated with nivo/ipi therapy and 13 patients treated with encorafenib plus binimetinib (enco/bini) between November 2018 and July 2023. Results: The ORR of nivo/ipi for metastatic melanoma patients was significantly higher in the first-line cohort [60.0% (95% CI: 31.2-83.3%)] than in the second-line or beyond cohort [8.3% (95% CI: 0-37.5%)], whereas the ORR of enco/bini was comparable between the first-line cohort [75.0% (95% CI: 28.9-96.6%)] and the second-line or beyond cohort [77.8% (95% CI: 44.3-94.7%)]. The median PFS of nivo/ipi significantly improved in the first-line cohort [7.7 months (95% CI: 2.0-11.9)] compared to the second-line or beyond cohort [2.3 months (95% CI: 0.5-6.0)] (p = 0.0109). In addition to efficacy, the incidence of grade 3 or greater AEs was comparable in the first-line and second-line or beyond cohorts. Conclusions: Although our present data are based on a small number of cases, they suggest that nivo/ipi should be administered as the first-line therapy for the treatment of BRAFV600-mutant metastatic melanoma, rather than enco/bini, aligning with findings from previous clinical trials.
Collapse
Affiliation(s)
| | | | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (S.O.-H.); (R.A.); (Y.K.); (M.W.-T.); (E.Y.); (E.T.); (C.I.); (A.H.); (Y.A.)
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Deng Z, Liu J, Yu YV, Jin YN. Machine learning-based identification of an immunotherapy-related signature to enhance outcomes and immunotherapy responses in melanoma. Front Immunol 2024; 15:1451103. [PMID: 39355255 PMCID: PMC11442245 DOI: 10.3389/fimmu.2024.1451103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Background Immunotherapy has revolutionized skin cutaneous melanoma treatment, but response variability due to tumor heterogeneity necessitates robust biomarkers for predicting immunotherapy response. Methods We used weighted gene co-expression network analysis (WGCNA), consensus clustering, and 10 machine learning algorithms to develop the immunotherapy-related gene model (ITRGM) signature. Multi-omics analyses included bulk and single-cell RNA sequencing of melanoma patients, mouse bulk RNA sequencing, and pathology sections of melanoma patients. Results We identified 66 consensus immunotherapy prognostic genes (CITPGs) using WGCNA and differentially expressed genes (DEGs) from two melanoma cohorts. The CITPG-high group showed better prognosis and enriched immune activities. DEGs between CITPG-high and CITPG-low groups in the TCGA-SKCM cohort were analyzed in three additional melanoma cohorts using univariate Cox regression, resulting in 44 consensus genes. Using 101 machine learning algorithm combinations, we constructed the ITRGM signature based on seven model genes. The ITRGM outperformed 37 published signatures in predicting immunotherapy prognosis across the training cohort, three testing cohorts, and a meta-cohort. It effectively stratified patients into high-risk or low-risk groups for immunotherapy response. The low-risk group, with high levels of model genes, correlated with increased immune characteristics such as tumor mutation burden and immune cell infiltration, indicating immune-hot tumors with a better prognosis. The ITRGM's relationship with the tumor immune microenvironment was further validated in our experiments using pathology sections with GBP5, an important model gene, and CD8 IHC analysis. The ITRGM also predicted better immunotherapy response in eight cohorts, including urothelial carcinoma and stomach adenocarcinoma, indicating broad applicability. Conclusions The ITRGM signature is a stable and robust predictor for stratifying melanoma patients into 'immune-hot' and 'immune-cold' tumors, enhancing prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Zaidong Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
| | - Jie Liu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University,
Wuhan, China
| | - Youngnam N. Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University,
Wuhan, China
| |
Collapse
|
308
|
Stinson JA, Barbosa MMP, Sheen A, Momin N, Fink E, Hampel J, Selting KA, Kamerer RL, Bailey KL, Wittrup KD, Fan TM. Tumor-Localized Interleukin-2 and Interleukin-12 Combine with Radiation Therapy to Safely Potentiate Regression of Advanced Malignant Melanoma in Pet Dogs. Clin Cancer Res 2024; 30:4029-4043. [PMID: 38980919 PMCID: PMC11398984 DOI: 10.1158/1078-0432.ccr-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Cytokines IL2 and IL12 exhibit potent anticancer activity but suffer a narrow therapeutic window due to off-tumor immune cell activation. Engineering cytokines with the ability to bind and associate with tumor collagen after intratumoral injection potentiated response without toxicity in mice and was previously safe in pet dogs with sarcoma. Here, we sought to test the efficacy of this approach in dogs with advanced melanoma. PATIENTS AND METHODS This study examined 15 client-owned dogs with histologically or cytologically confirmed malignant melanoma that received a single 9-Gy fraction of radiotherapy, followed by six cycles of combined collagen-anchored IL2 and IL12 therapy every 2 weeks. Cytokine dosing followed a 3 + 3 dose escalation design, with the initial cytokine dose chosen from prior evaluation in canine sarcomas. No exclusion criteria for tumor stage or metastatic burden, age, weight, or neuter status were applied for this trial. RESULTS Median survival regardless of the tumor stage or dose level was 256 days, and 10/13 (76.9%) dogs that completed treatment had CT-measured tumor regression at the treated lesion. In dogs with metastatic disease, 8/13 (61.5%) had partial responses across their combined lesions, which is evidence of locoregional response. Profiling by NanoString of treatment-resistant dogs revealed that B2m loss was predictive of poor response to this therapy. CONCLUSIONS Collectively, these results confirm the ability of locally administered tumor-anchored cytokines to potentiate responses at regional disease sites when combined with radiation. This evidence supports the clinical translation of this approach and highlights the utility of comparative investigation in canine cancers.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kim A. Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Rebecca L. Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
309
|
Sarah F, Margot DR, Valerie B, Alexander D, Lieve B, Sylvie R, Celine J, Michael S. Outcomes of adjuvant immune checkpoint inhibitor therapy in melanoma: a retrospective study. Acta Clin Belg 2024:1-9. [PMID: 39268967 DOI: 10.1080/17843286.2024.2402622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Adjuvant treatment of malignant melanoma has improved the outcomes for patients. However, real-world data on efficacy and safety are limited. We investigated outcomes of melanoma patients treated with adjuvant immune checkpoint inhibitors (ICI) in the Ghent University Hospital. METHODS Patients with melanoma (stage III-IV), who received at least one cycle of ICI as adjuvant treatment between 2018 and 2021 were included in this retrospective cohort study. Primary outcomes were recurrence-free (RFS) and overall survival (OS). Other outcomes of interest were relapse patterns and safety. RESULTS 59 patients were included, with a median follow-up of 36 months. Disease recurrence or death of any cause was observed in 25/59 (42.4%) of the patients. The median RFS was 56.0 months (95%CI 36.1-75.9 months). At 48 months, RFS and OS were 55.9% and 84%, respectively. 9/23 (39%) recurrences were locoregional and 14/23 (60.9%) patients developed distant metastasis as first recurrence, including 2 (3.4%) with brain metastasis. Median time to recurrence was 9 months (range 2-56 months). 35/59 (59.3%) completed one year of adjuvant treatment, 12/59 (20.3%) stopped because of recurrence and 10/59 (16.9% because of toxicity. Immune-related adverse events wereseen in 29/59 (49.4%) patients, 10/59 (16.9%) developed grade 3-4 toxicity. CONCLUSION This study confirms the real-world efficacy and safety of adjuvant ICI for melanoma, achieving RFS and OS comparableto the pivotal clinical trials. About 40% of patients develop arelapse, mainly during the adjuvant treatment. The outcomes ofpatients progressing during adjuvant ICI are poor, emphasizing the need of prospective and real-world studies on optimal management after progression on (neo)adjuvant treatment.
Collapse
Affiliation(s)
- Fieuws Sarah
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - De Ridder Margot
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Baert Valerie
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | | | - Brochez Lieve
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Rottey Sylvie
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Jacobs Celine
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Saerens Michael
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
310
|
Yakkala C, Corria-Osorio J, Kandalaft L, Denys A, Koppolu B, Duran R. Cryoablation Does Not Significantly Contribute to Systemic Effector Immune Responses in a Poorly Immunogenic B16F10 Melanoma Model. Clin Cancer Res 2024; 30:4190-4200. [PMID: 39024020 DOI: 10.1158/1078-0432.ccr-24-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Cryoablation is a minimally invasive procedure implemented to destroy solid tumors. It also results in the release of tumor antigens into the systemic circulation. Preclinical studies using immunogenic tumor models have shown that cryoablation evokes antitumor immune responses. The mechanisms by which cryoablation impacts immune responses in poorly immunogenic tumors have not been sufficiently explored. EXPERIMENTAL DESIGN We used a bilateral B16F10 melanoma model devoid of strong immunogenic antigens. Cryoablation-induced effector immune responses were investigated, also in combination with a peritumoral STING agonist and systemic anti-PD-1. Selective immune cell depletion, T-cell migration arrest, in vivo T-cell transplantation, and cryoablation versus surgical removal techniques were used to determine the contribution of cryoablation and immunotherapies to systemic antitumor effector immune responses. RESULTS Treatment of a tumor with cryoablation + STING agonist + anti-PD-1 resulted in the rejection of unablated, contralateral tumors. Depletion studies demonstrated that tumor rejection is essentially dependent on CD8+ T cells. T-cell arrest in the lymph nodes had no effect on the rejection process. Splenic CD8+ T cells isolated from cryoablation-treated mice with B16F10 melanoma, upon transplantation into melanoma-bearing recipients, did not impact the recipient's tumor growth. Finally, comparison of cryoablation + STING agonist + anti-PD-1 versus surgery + STING agonist + anti-PD-1 in the bilateral tumor model showed no difference in the rejection of contralateral tumors. CONCLUSIONS Cryoablation does not significantly contribute to systemic antitumor effector immune responses in a B16F10 melanoma model. Cryoablation primarily performs tumor debulking, and immunotherapy functions independently of cryoablation in eliciting antitumor effector immune responses.
Collapse
Affiliation(s)
- Chakradhar Yakkala
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jesus Corria-Osorio
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana Kandalaft
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Alban Denys
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bhanu Koppolu
- Immuno Oncology, Boston Scientific, Conshohocken, Pennsylvania, USA
| | - Rafael Duran
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
311
|
Ju Y, Xu D, Liao MM, Sun Y, Bao WD, Yao F, Ma L. Barriers and opportunities in pancreatic cancer immunotherapy. NPJ Precis Oncol 2024; 8:199. [PMID: 39266715 PMCID: PMC11393360 DOI: 10.1038/s41698-024-00681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal 5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy. Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma, microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent advances in understanding the immunosuppressive TME of PDAC, TME differences among various mouse models of pancreatic cancer, and the mechanisms underlying resistance to immunotherapeutic interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and TME components to sensitize PDAC to immune therapies, providing insights into strategies and future perspectives to break through the barriers in improving pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Dongzhi Xu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Miao-Miao Liao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Dai Bao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
312
|
Wang K, Coutifaris P, Brocks D, Wang G, Azar T, Solis S, Nandi A, Anderson S, Han N, Manne S, Kiner E, Sachar C, Lucas M, George S, Yan PK, Kier MW, Laughlin AI, Kothari S, Giles J, Mathew D, Ghinnagow R, Alanio C, Flowers A, Xu W, Tenney DJ, Xu X, Amaravadi RK, Karakousis GC, Schuchter LM, Buggert M, Oldridge D, Minn AJ, Blank C, Weber JS, Mitchell TC, Farwell MD, Herati RS, Huang AC. Combination anti-PD-1 and anti-CTLA-4 therapy generates waves of clonal responses that include progenitor-exhausted CD8 + T cells. Cancer Cell 2024; 42:1582-1597.e10. [PMID: 39214097 PMCID: PMC11387127 DOI: 10.1016/j.ccell.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Combination checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies has shown promising efficacy in melanoma. However, the underlying mechanism in humans remains unclear. Here, we perform paired single-cell RNA and T cell receptor (TCR) sequencing across time in 36 patients with stage IV melanoma treated with anti-PD-1, anti-CTLA-4, or combination therapy. We develop the algorithm Cyclone to track temporal clonal dynamics and underlying cell states. Checkpoint blockade induces waves of clonal T cell responses that peak at distinct time points. Combination therapy results in greater magnitude of clonal responses at 6 and 9 weeks compared to single-agent therapies, including melanoma-specific CD8+ T cells and exhausted CD8+ T cell (TEX) clones. Focused analyses of TEX identify that anti-CTLA-4 induces robust expansion and proliferation of progenitor TEX, which synergizes with anti-PD-1 to reinvigorate TEX during combination therapy. These next generation immune profiling approaches can guide the selection of drugs, schedule, and dosing for novel combination strategies.
Collapse
Affiliation(s)
- Kevin Wang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulina Coutifaris
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Guanning Wang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tarek Azar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sabrina Solis
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Ajeya Nandi
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shaneaka Anderson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Han
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Minke Lucas
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Sangeeth George
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick K Yan
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie W Kier
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy I Laughlin
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shawn Kothari
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reem Ghinnagow
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecile Alanio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Clinical Immunology and Immunomonitoring Laboratory, Institut Curie, Paris, France
| | - Ahron Flowers
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Xiaowei Xu
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcus Buggert
- Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Christian Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands; Department of Hematology and Oncology, University Clinic of Regensburg (UKR), 93053 Regensburg, Germany
| | - Jeffrey S Weber
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Tara C Mitchell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D Farwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramin S Herati
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA.
| | - Alexander C Huang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
313
|
Connell E, Gerard É, Oules B, Brunet-Possenti F, Lamoureux A, Bonnefille H, Mary-Prey S, Carrasquilla A, Mouret S, Kramkimel N, Lesage C, Stoebner PE, Bartoli A, Monestier S, Correard F, Gros A, Jeanson A, Ouafik L, Gaudy-Marqueste C, Tomasini P, Charles J, Amini-Adle M, Malissen N. Molecularly matched targeted therapy: a promising approach for refractory metastatic melanoma. Oncologist 2024; 29:e1180-e1188. [PMID: 38761384 PMCID: PMC11379651 DOI: 10.1093/oncolo/oyae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/26/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Only a fraction of patients with metastatic melanoma derive durable benefit from approved treatments. The clinical impact of personalized medicine strategies for melanoma, apart from BRAF, NRAS, or CKIT targeting, has rarely been reported. MATERIALS AND METHODS By means of the Group of Cutaneous Oncology of the French Society of Dermatology, we retrospectively included all patients with advanced melanoma aged 18 years and older for whom molecular testing identified one or more actionable molecular alterations and who accordingly received molecularly matched therapy. We excluded patients with only BRAF, NRAS, or CKIT alterations and patients who received molecularly matched therapy for less than 15 days. RESULTS We included 26 patients with a median follow-up of 8 months (1-54), a median age of 63 years (24-89), and a sex ratio of 2.7. These patients had been heavily pretreated, and 64% had elevated LDH levels. The disease control rate was 38%, with 4 cases of partial response (overall response rate: 15%) and 6 of stable disease for at least 6 months. The median duration of treatment was 3.1 months (0.9-13.5). Among patients with disease control, the median duration of control was 6.6 months (2.6-13.5) and 3 cases were ongoing at the end of the study. Patients with controlled disease had GNA11, MAP2K1, FYCO1-RAF1, HRAS, ATM, CCND1, MDM2/CDK4, and CDKN2A/NRAS alterations. CONCLUSIONS High-throughput sequencing followed by matched targeted therapy is a promising approach for patients with advanced melanoma refractory to approved treatments.
Collapse
Affiliation(s)
- Emily Connell
- Dermatology and Skin Cancer Department, Aix Marseille University, APHM, CRCM Inserm U1068, CNRS U7258, Marseille, France
- Department of Early Phase Cancer Trial Center (CEPCM) "CLIP2," Aix Marseille University, APHM, Marseille, France
| | - Émilie Gerard
- Dermatology Department, CHU de Bordeaux, Bordeaux, France
| | | | | | - Anouck Lamoureux
- Dermatology Department, Montpellier Cancer Institute, Montpellier, France
| | | | | | | | - Stéphane Mouret
- Dermatology Department, CHU Grenoble Alpes, University Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institut for Advanced Biosciences, Grenoble, France
| | | | - Candice Lesage
- Dermatology Department, CHU de Montpellier, Montpellier, France
| | | | - Axel Bartoli
- Radiology Department, Aix Marseille University, APHM, CERIMED, Marseille, France
| | - Sandrine Monestier
- Dermatology and Skin Cancer Department, Aix Marseille University, APHM, CRCM Inserm U1068, CNRS U7258, Marseille, France
- Department of Early Phase Cancer Trial Center (CEPCM) "CLIP2," Aix Marseille University, APHM, Marseille, France
| | - Florian Correard
- Pharmacy Department, Aix Marseille University, APHM, Marseille, France
| | - Audrey Gros
- Tumor Biology and Tumor Bank Department, University Hospital of Bordeaux, Bordeaux, France
| | - Arnaud Jeanson
- Department of Early Phase Cancer Trial Center (CEPCM) "CLIP2," Aix Marseille University, APHM, Marseille, France
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille University, CNRS, INSERM, CRCM, APHM, Marseille, France
| | - L'Houcine Ouafik
- Oncobiology Department, Aix Marseille University, APHM, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Caroline Gaudy-Marqueste
- Dermatology and Skin Cancer Department, Aix Marseille University, APHM, CRCM Inserm U1068, CNRS U7258, Marseille, France
- Department of Early Phase Cancer Trial Center (CEPCM) "CLIP2," Aix Marseille University, APHM, Marseille, France
| | - Pascale Tomasini
- Department of Early Phase Cancer Trial Center (CEPCM) "CLIP2," Aix Marseille University, APHM, Marseille, France
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille University, CNRS, INSERM, CRCM, APHM, Marseille, France
| | - Julie Charles
- Dermatology Department, CHU Grenoble Alpes, University Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institut for Advanced Biosciences, Grenoble, France
| | - Mona Amini-Adle
- Dermatology Department, Leon Bérard Cancer Center, Lyon, France
| | - Nausicaa Malissen
- Dermatology and Skin Cancer Department, Aix Marseille University, APHM, CRCM Inserm U1068, CNRS U7258, Marseille, France
- Department of Early Phase Cancer Trial Center (CEPCM) "CLIP2," Aix Marseille University, APHM, Marseille, France
| |
Collapse
|
314
|
Wang L, Liu L, Zhao J, Yu X, Su C. Clinical Significance and Molecular Annotation for PD-L1 Negative Advanced Non-Small Cell Lung Cancer with Sensitivity to Responsive to Dual PD-1/CTLA-4 Blockade. Immunotargets Ther 2024; 13:435-445. [PMID: 39257515 PMCID: PMC11385699 DOI: 10.2147/itt.s476040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Background Immunotherapy has become the standard treatment for driving gene-negative advanced non-small cell lung cancer (NSCLC). However, compared to PD-L1-positive patients, the efficacy of Anti-PD-(L)1 monotherapy is suboptimal in PD-L1-negative advanced NSCLC. In this study, we aim to analyze the optimal immunotherapy approach for PD-L1-negative NSCLC patients and develop a new nomogram to enhance the clinical predictability of immunotherapy for NSCLC patients. Methods In this study, we retrieved clinical information and genomic data from cBioPortal for NSCLC patients undergoing immunotherapy. Cox regression analyses were utilized to screen the clinical information and genomic data that related to survival. The prognostic-relate genes function was studied by comprehensive bioinformatics analyses. The Kaplan-Meier plot method was employed for survival analysis. Results A total of 199 PD-L1-negative NSCLC patients were included in this study. Among them, 165 patients received Anti-PD-(L)1 monotherapy, while 34 patients received Anti-PD-(L)1+Anti-CTLA-4 combination therapy. The Anti-PD-(L)1+Anti-CTLA-4 combination therapy demonstrated significantly higher PFS compared to the Anti-PD-(L)1 monotherapy. The mutation status of KRAS, ANO1, COL14A1, LTBP1. ERBB4 and PCSK5 were found to correlate with PFS. Utilizing the clinicopathological parameters and genomic data of the patients, a novel nomogram was developed to predict the prognosis of Anti-PD-(L)1+Anti-CTLA-4 combination therapy. Conclusion Our study revealed that KRAS, ANO1, COL14A1, LTBP1. ERBB4 and PCSK5 mutation could serve as predictive biomarkers for patients with Anti-PD-(L)1+Anti-CTLA-4 combination therapy. Our systematic nomogram demonstrates significant potential in predicting the prognosis for NSCLC patients with responsive to dual PD-1/CTLA-4 blockade.
Collapse
Affiliation(s)
- Li Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Li Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Jing Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| |
Collapse
|
315
|
Russano F, Rastrelli M, Dall'Olmo L, Del Fiore P, Gianesini C, Vecchiato A, Mazza M, Tropea S, Mocellin S. Therapeutic Treatment Options for In-Transit Metastases from Melanoma. Cancers (Basel) 2024; 16:3065. [PMID: 39272923 PMCID: PMC11394241 DOI: 10.3390/cancers16173065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
In-transit metastases (ITM) in melanoma present a significant therapeutic challenge due to their advanced stage and complex clinical nature. From traditional management with surgical resection, ITM treatment has evolved with the advent of systemic therapies such as immune checkpoint inhibitors and targeted therapies, which have markedly improved survival outcomes. This study aims to review and highlight the efficacy of both systemic and locoregional treatment approaches for ITM. Methods include a comprehensive review of clinical studies examining the impact of treatments like immune checkpoint inhibitors, targeted therapies, Isolated Limb Perfusion, and electrochemotherapy. The results indicate that combining systemic therapies with locoregional treatments enhances both local disease control and overall survival rates. The introduction of modern immunotherapies has not diminished the effectiveness of locoregional therapies but rather improved patient outcomes when used in conjunction. The conclusions emphasize that a multidisciplinary approach integrating systemic and locoregional therapies offers a promising strategy for optimizing the management of ITM in melanoma patients. This integrated treatment model not only improves survival rates but also enhances the quality of life for patients, suggesting a shift in standard care practices toward more comprehensive therapeutic regimens.
Collapse
Affiliation(s)
- Francesco Russano
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Marco Rastrelli
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Luigi Dall'Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Carlomaria Gianesini
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Marcodomenico Mazza
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Saveria Tropea
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| |
Collapse
|
316
|
Skadborg SK, Maarup S, Draghi A, Borch A, Hendriksen S, Mundt F, Pedersen V, Mann M, Christensen IJ, Skjøth-Ramussen J, Yde CW, Kristensen BW, Poulsen HS, Hasselbalch B, Svane IM, Lassen U, Hadrup SR. Nivolumab Reaches Brain Lesions in Patients with Recurrent Glioblastoma and Induces T-cell Activity and Upregulation of Checkpoint Pathways. Cancer Immunol Res 2024; 12:1202-1220. [PMID: 38885356 PMCID: PMC11369628 DOI: 10.1158/2326-6066.cir-23-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with poor prognosis. Although immunotherapy is being explored as a potential treatment option for patients with GBM, it is unclear whether systemic immunotherapy can reach and modify the tumor microenvironment in the brain. We evaluated immune characteristics in patients receiving the anti-PD-1 immune checkpoint inhibitor nivolumab 1 week prior to surgery, compared with control patients receiving salvage resection without prior nivolumab treatment. We observed saturating levels of nivolumab bound to intratumorally and tissue-resident T cells in the brain, implicating saturating levels of nivolumab reaching brain tumors. Following nivolumab treatment, significant changes in T-cell activation and proliferation were observed in the tumor-resident T-cell population, and peripheral T cells upregulated chemokine receptors related to brain homing. A strong nivolumab-driven upregulation in compensatory checkpoint inhibition molecules, i.e., TIGIT, LAG-3, TIM-3, and CTLA-4, was observed, potentially counteracting the treatment effect. Finally, tumor-reactive tumor-infiltrating lymphocytes (TIL) were found in a subset of nivolumab-treated patients with prolonged survival, and neoantigen-reactive T cells were identified in both TILs and blood. This indicates a systemic response toward GBM in a subset of patients, which was further boosted by nivolumab, with T-cell responses toward tumor-derived neoantigens. Our study demonstrates that nivolumab does reach the GBM tumor lesion and enhances antitumor T-cell responses both intratumorally and systemically. However, various anti-inflammatory mechanisms mitigate the clinical efficacy of the anti-PD-1 treatment.
Collapse
Affiliation(s)
- Signe K. Skadborg
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Simone Maarup
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Arianna Draghi
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Annie Borch
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Sille Hendriksen
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, CPR, University of Copenhagen, Copenhagen, Denmark.
| | - Vilde Pedersen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, CPR, University of Copenhagen, Copenhagen, Denmark.
- Research Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Ib J. Christensen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Jane Skjøth-Ramussen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Christina W. Yde
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Bjarne W. Kristensen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Hans S. Poulsen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Benedikte Hasselbalch
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Inge M. Svane
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Ulrik Lassen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Sine R. Hadrup
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
317
|
Cao Z, Wichmann CW, Burvenich IJG, Osellame LD, Guo N, Rigopoulos A, O'Keefe GJ, Scott FE, Lorensuhewa N, Lynch KP, Scott AM. Radiolabelling and preclinical characterisation of [ 89Zr]Zr-Df-ATG-101 bispecific to PD-L1/4-1BB. Eur J Nucl Med Mol Imaging 2024; 51:3202-3214. [PMID: 38730087 PMCID: PMC11368977 DOI: 10.1007/s00259-024-06742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- School of Chemistry - Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Laura Danielle Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | | | | | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
318
|
Saj F, Wu YL, Pant S, Goyal L. Dual checkpoint inhibition in gallbladder cancer: Bridging new hope with the need for biomarkers. Cancer 2024; 130:2904-2906. [PMID: 38873826 DOI: 10.1002/cncr.35352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Dual checkpoint blockade with nivolumab plus ipilimumab in patients with advanced, refractory gallbladder cancer showed activity in select patients in cohort 48 of the SWOG 1609 DART trial. Optimizing patient selection for this regimen will require validating predictive biomarkers of response and understanding the role of the regimen after chemoimmunotherapy in the frontline.
Collapse
Affiliation(s)
- Fen Saj
- Department of Medical Oncology, Balco Medical Center, Raipur, Chhattisgarh, India
| | - Y Linda Wu
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lipika Goyal
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
319
|
Dean NJ, d'Arienzo PD, Ibraheim H, Lee KA, Olsson-Brown AC, Pinato DJ, Powell N. The role of the gut microbiome in regulating the response to immune checkpoint inhibitor therapy. Best Pract Res Clin Gastroenterol 2024; 72:101944. [PMID: 39645284 DOI: 10.1016/j.bpg.2024.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 12/09/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionised cancer therapy, yet the proportion of patients who achieve long-term disease control remain suboptimal. Over the past decade, the gut microbiome has been shown to influence immune-mediated tumour suppression as well as responses to ICI therapies. Compositional differences in gut microbiome may account for the differences in outcomes from immune checkpoint blockade. Identifying microbiota species associated with favourable/unfavourable outcomes and modelling their dynamics throughout the course of ICI treatment could help develop predictive biomarkers of immunotherapy response, and manipulating the gut microbiome represent a novel approach to enhancing ICI effectiveness. Clinically, this raises the prospect of using gut microbiome-based therapies to overcome primary resistance to ICIs, mitigate the effects of microbiome-altering drugs such as antibiotics or proton pump inhibitors, and improve overall survival in patients across numerous different cancer types.
Collapse
Affiliation(s)
- Nathan J Dean
- Cancer Services Division, The Royal Marsden Hospital, London, United Kingdom
| | - Paolo D d'Arienzo
- Cancer Services Division, The Royal Marsden Hospital, London, United Kingdom
| | - Hajir Ibraheim
- Cancer Services Division, The Royal Marsden Hospital, London, United Kingdom; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Karla A Lee
- Cancer Services Division, The Royal Marsden Hospital, London, United Kingdom
| | - Anna C Olsson-Brown
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, United Kingdom
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Nicholas Powell
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
320
|
Chieng CY, Nazir H, Sayan A, Ilankovan V. Role of neck dissection in management of patients with clinically apparent parotid metastatic melanoma - systematic review. Br J Oral Maxillofac Surg 2024; 62:604-611. [PMID: 38945797 DOI: 10.1016/j.bjoms.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024]
Abstract
Patients with cutaneous melanoma with metastatic deposits in the parotid gland have poor prognosis due to the high risk of developing distant metastasis. In the era of effective immunotherapy, there is no consensus amongst head and neck surgeons about the extent of neck dissection required for patients presenting with clinically apparent parotid metastasis. This review aims to determine the incidence and pattern of occult neck disease for patients with parotid metastasis reported in the literature to help guide clinicians on the extent of neck dissection required. The systematic review search was conducted using PubMed, EMBASE and Medline, using PRISMA guidelines. The inclusion criteria include cases treated with parotidectomy and neck dissection for patients with parotid melanoma metastasis. A narrative synthesis was carried out due to heterogeneity of studies. A total of 14 studies was included. We found no study reporting on outcomes with surgery and adjuvant immunotherapy in this cohort of patients. The incidence of distant metastasis reported was variable but remains high for patients with parotid metastasis. Patients with parotid and neck involvement have poorer prognosis than patients with parotid only metastatic disease. The effect and extent of neck dissection in patients with clinically apparent parotid nodes remains unclear in the era of effective immunotherapy. There is a need for further well-designed studies evaluating the outcomes for such patients following surgery and adjuvant immunotherapy.
Collapse
Affiliation(s)
- C Y Chieng
- Barts and The London School of Medicine and Dentistry, United Kingdom
| | - H Nazir
- Manchester University NHS Foundation Trust, United Kingdom
| | - A Sayan
- Oral & Maxillofacial Surgery Department, Oxford University Hospital NHS Foundation Trust, United Kingdom
| | - V Ilankovan
- Oral & Maxillofacial Surgery Department, Poole Hospital NHS Foundation Trust, United Kingdom
| |
Collapse
|
321
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
322
|
Niveau C, Sosa Cuevas E, Saas P, Aspord C. Glycans in melanoma: Drivers of tumour progression but sweet targets to exploit for immunotherapy. Immunology 2024; 173:33-52. [PMID: 38742251 DOI: 10.1111/imm.13801] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion. The glycan/lectin axis represents a new immune subversion pathway that is exploited by melanoma to hijack immune cells and escape from immune control. In this review, we describe the glycosylation features of melanoma tumour cells, and further gather findings related to the role of glycosylation in melanoma tumour progression, deciphering in detail its impact on immunity. We also depict glycan-based strategies aiming at restoring a functional anti-tumour response in melanoma patients. Glycans/lectins emerge as key immune checkpoints with promising translational properties. Exploitation of these pathways could reshape potent anti-tumour immunity while impeding immunosuppressive circuits triggered by aberrant tumour glycosylation patterns, holding great promise for cancer therapy.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| |
Collapse
|
323
|
Sun W, Hu S, Wang X. Advances and clinical applications of immune checkpoint inhibitors in hematological malignancies. Cancer Commun (Lond) 2024; 44:1071-1097. [PMID: 39073258 PMCID: PMC11492363 DOI: 10.1002/cac2.12587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Immune checkpoints are differentially expressed on various immune cells to regulate immune responses in tumor microenvironment. Tumor cells can activate the immune checkpoint pathway to establish an immunosuppressive tumor microenvironment and inhibit the anti-tumor immune response, which may lead to tumor progression by evading immune surveillance. Interrupting co-inhibitory signaling pathways with immune checkpoint inhibitors (ICIs) could reinvigorate the anti-tumor immune response and promote immune-mediated eradication of tumor cells. As a milestone in tumor treatment, ICIs have been firstly used in solid tumors and subsequently expanded to hematological malignancies, which are in their infancy. Currently, immune checkpoints have been investigated as promising biomarkers and therapeutic targets in hematological malignancies, and novel immune checkpoints, such as signal regulatory protein α (SIRPα) and tumor necrosis factor-alpha-inducible protein 8-like 2 (TIPE2), are constantly being discovered. Numerous ICIs have received clinical approval for clinical application in the treatment of hematological malignancies, especially when used in combination with other strategies, including oncolytic viruses (OVs), neoantigen vaccines, bispecific antibodies (bsAb), bio-nanomaterials, tumor vaccines, and cytokine-induced killer (CIK) cells. Moreover, the proportion of individuals with hematological malignancies benefiting from ICIs remains lower than expected due to multiple mechanisms of drug resistance and immune-related adverse events (irAEs). Close monitoring and appropriate intervention are needed to mitigate irAEs while using ICIs. This review provided a comprehensive overview of immune checkpoints on different immune cells, the latest advances of ICIs and highlighted the clinical applications of immune checkpoints in hematological malignancies, including biomarkers, targets, combination of ICIs with other therapies, mechanisms of resistance to ICIs, and irAEs, which can provide novel insight into the future exploration of ICIs in tumor treatment.
Collapse
Affiliation(s)
- Wenyue Sun
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
324
|
Lim SY, Lin Y, Lee JH, Pedersen B, Stewart A, Scolyer RA, Long GV, Yang JYH, Rizos H. Single-cell RNA sequencing reveals melanoma cell state-dependent heterogeneity of response to MAPK inhibitors. EBioMedicine 2024; 107:105308. [PMID: 39216232 PMCID: PMC11402938 DOI: 10.1016/j.ebiom.2024.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Melanoma is a heterogeneous cancer influenced by the plasticity of melanoma cells and their dynamic adaptations to microenvironmental cues. Melanoma cells transition between well-defined transcriptional cell states that impact treatment response and resistance. METHODS In this study, we applied single-cell RNA sequencing to interrogate the molecular features of immunotherapy-naive and immunotherapy-resistant melanoma tumours in response to ex vivo BRAF/MEK inhibitor treatment. FINDINGS We confirm the presence of four distinct melanoma cell states - melanocytic, transitory, neural-crest like and undifferentiated, and identify enrichment of neural crest-like and undifferentiated melanoma cells in immunotherapy-resistant tumours. Furthermore, we introduce an integrated computational approach to identify subsets of responding and nonresponding melanoma cells within the transcriptional cell states. INTERPRETATION Nonresponding melanoma cells are identified in all transcriptional cell states and are predisposed to BRAF/MEK inhibitor resistance due to pro-inflammatory IL6 and TNFɑ signalling. Our study provides a framework to study treatment response within distinct melanoma cell states and indicate that tumour-intrinsic pro-inflammatory signalling contributes to BRAF/MEK inhibitor resistance. FUNDING This work was supported by Macquarie University, Melanoma Institute Australia, and the National Health and Medical Research Council of Australia (NHMRC; grant 2012860, 2028055).
Collapse
Affiliation(s)
- Su Yin Lim
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia; Melanoma Institute Australia, Australia.
| | - Yingxin Lin
- School of Mathematics and Statistics, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Jenny H Lee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia; Melanoma Institute Australia, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Bernadette Pedersen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia; Melanoma Institute Australia, Australia
| | - Ashleigh Stewart
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia; Melanoma Institute Australia, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, Australia; Charles Perkins Centre, The University of Sydney, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Australia
| | - Georgina V Long
- Melanoma Institute Australia, Australia; Charles Perkins Centre, The University of Sydney, Australia; Royal North Shore and Mater Hospitals, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Australia
| | - Jean Y H Yang
- School of Mathematics and Statistics, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia; Melanoma Institute Australia, Australia
| |
Collapse
|
325
|
Huang S, Tan C, Zheng J, Huang Z, Li Z, Lv Z, Chen W, Chen M, Yuan X, Chen C, Yan Q. Identification of RNMT as an immunotherapeutic and prognostic biomarker: From pan-cancer analysis to lung squamous cell carcinoma validation. Immunobiology 2024; 229:152836. [PMID: 39018675 DOI: 10.1016/j.imbio.2024.152836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Dysregulation of RNA guanine-7 methyltransferase (RNMT) plays a crucial role in the tumor progression and immune responses. However, the detailed role of RNMT in pan-cancer is still unknown. METHODS Bulk transcriptomic data of pan-cancer were obtained from the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases. Single-cell transcriptomic and proteomics data of lung squamous cell carcinoma (LUSC) were analyzed in the Tumor Immune Single-cell Hub 2 (TISCH2) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases, respectively. The correlation between RNMT expression and cancer prognosis was analyzed by Cox proportional hazards regression and Kaplan-Meier analyses. The correlation of RNMT expression with common immunoregulators, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and DNA methyltransferase (DNMT) was analyzed. Additionally, the correlation between RNMT expression and immune infiltration level was evaluated. A total of 1287 machine learning combinations were used to construct prognostic models for LUSC. qRT-PCR and Western blot were used to validate the bioinformatics findings of RNMT upregulation in LUSC. RESULTS RNMT was widely expressed across different cancers, with significant correlation to prognosis in cancers such as kidney chromophobe (KICH) (p = 0.0033, HR = 7.12), liver hepatocellular carcinoma (LIHC) (p = 0.01, HR = 1.41), and others. Notably, RNMT participates in the regulation of the tumor microenvironment. RNMT expression positively correlated with immune cell expression (Spearman's rank correlation, p < 0.05). Moreover, RNMT expression was strongly associated with immunoregulators, TMB, MSI, MMR, and DNMT in most cancer types. Notably, RNMT expression displayed excellent prognostic and immunological performance in LUSC. The expression of RNMT was mainly enriched in B cells of LUSC tissues. qRT-PCR and Western blot verified the high expression of RNMT in LUSC. CONCLUSION RNMT expression widely correlated with prognosis and immune infiltration in various tumors, especially LUSC. The RNMT detection may provide a new idea for future tumor immune studies and treatment strategies.
Collapse
Affiliation(s)
- Shuqiang Huang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Cuiyu Tan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Jinzhen Zheng
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Zhugu Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhihong Li
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Ziyin Lv
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wanru Chen
- The Third School of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Miaoqi Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Xiaojun Yuan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Cairong Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China; Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China.
| | - Qiuxia Yan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China; Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China.
| |
Collapse
|
326
|
Arghidash F, Javid-Naderi MJ, Gheybi F, Gholamhosseinian H, Kesharwani P, Sahebkar A. Exploring the multifaceted effects of silymarin on melanoma: Focusing on the role of lipid-based nanocarriers. J Drug Deliv Sci Technol 2024; 99:105950. [DOI: 10.1016/j.jddst.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
327
|
Ebrahimi H, Dizman N, Meza L, Malhotra J, Li X, Dorff T, Frankel P, Llamas-Quitiquit M, Hsu J, Zengin ZB, Alcantara M, Castro D, Mercier B, Chawla N, Chehrazi-Raffle A, Barragan-Carrillo R, Jaime-Casas S, Govindarajan A, Gillece J, Trent J, Lee PP, Parks TP, Takahashi M, Hayashi A, Kortylewski M, Caporaso JG, Lee K, Tripathi A, Pal SK. Cabozantinib and nivolumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med 2024; 30:2576-2585. [PMID: 38942995 PMCID: PMC11405272 DOI: 10.1038/s41591-024-03086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
Supplementation with CBM588, a bifidogenic live bacterial product, has been associated with improved clinical outcomes in persons with metastatic renal cell carcinoma (mRCC) receiving nivolumab and ipilimumab. However, its effect on those receiving tyrosine kinase inhibitor-based combinations is unknown. In this open-label, randomized, investigator-initiated, phase 1 study, 30 participants with locally advanced or mRCC with histological confirmation of clear cell, papillary or sarcomatoid component were randomized in a 2:1 fashion to receive cabozantinib (an inhibitor of vascular endothelial growth factor receptor, MET and AXL) and nivolumab (anti-programmed cell death protein 1) with or without CBM588 as first-line treatment. Metagenomic sequencing was performed on stool samples to characterize their gut microbiome at baseline and 13 weeks into treatment. The primary endpoint was a change in the relative abundance of Bifidobacterium spp.; secondary endpoints included objective response rate (ORR), progression-free survival (PFS) and toxicity profile. The primary endpoint of the study was not met and the addition of CBM588 to cabozantinib and nivolumab did not result in a difference in the relative abundance of Bifidobacterium spp. or alpha diversity (as measured by the Shannon index). However, ORR was significantly higher in participants treated with CBM588 compared to those in the control arm (14 of 19, 74% versus 2 of 10, 20%; P = 0.01). PFS at 6 months was 84% (16 of 19) and 60% (6 of 10) in the experimental and control arms, respectively. No significant difference in toxicity profile was seen between the study arms. Our results provide a preliminary signal of improved clinical activity with CBM588 in treatment-naive participants with mRCC receiving cabozantinib and nivolumab. Further investigation is needed to confirm these findings and better characterize the underlying mechanism driving this effect.ClinicalTrials.gov identifier: NCT05122546.
Collapse
Affiliation(s)
- Hedyeh Ebrahimi
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Nazli Dizman
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- MD Anderson Cancer Center, Houston, TX, USA
| | - Luis Meza
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Jasnoor Malhotra
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Xiaochen Li
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Tanya Dorff
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Paul Frankel
- Department of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Joann Hsu
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zeynep B Zengin
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Marice Alcantara
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Daniela Castro
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Benjamin Mercier
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Neal Chawla
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Alex Chehrazi-Raffle
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Salvador Jaime-Casas
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ameish Govindarajan
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - John Gillece
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Jeffrey Trent
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | | | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Keehoon Lee
- Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Abhishek Tripathi
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Sumanta K Pal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
328
|
Jansen P, Galetzka W, Lodde GC, Standl F, Zaremba A, Herbst R, Terheyden P, Utikal J, Pföhler C, Ulrich J, Kreuter A, Mohr P, Gutzmer R, Meier F, Dippel E, Weichenthal M, Placke JM, Landsberg J, Möller I, Sucker A, Paschen A, Hadaschik E, Zimmer L, Livingstone E, Schadendorf D, Ugurel S, Stang A, Griewank KG. Shortened progression free and overall survival to immune-checkpoint inhibitors in BRAF-, RAS- and NF1- ("Triple") wild type melanomas. Eur J Cancer 2024; 208:114208. [PMID: 39018633 DOI: 10.1016/j.ejca.2024.114208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Melanomas lacking mutations in BRAF, NRAS and NF1 are frequently referred to as "triple wild-type" (tWT) melanomas. They constitute 5-10 % of all melanomas and remain poorly characterized regarding clinical characteristics and response to therapy. This study investigates the largest multicenter collection of tWT-melanomas to date. METHODS Targeted next-generation sequencing of the TERT promoter and 29 melanoma-associated genes were performed on 3109 melanoma tissue samples of the prospective multicenter study ADOREG/TRIM of the DeCOG revealing 292 patients suffering from tWT-melanomas. Clinical characteristics and mutational patterns were analyzed. As subgroup analysis, we analyzed 141 tWT-melanoma patients receiving either anti-CTLA4 plus anti-PD1 or anti PD1 monotherapy as first line therapy in AJCC stage IV. RESULTS 184 patients with cutaneous melanomas, 56 patients with mucosal melanomas, 34 patients with acral melanomas and 18 patients with melanomas of unknown origin (MUP) were included. A TERT promoter mutation could be identified in 33.2 % of all melanomas and 70.5 % of all tWT-melanomas harbored less than three mutations per sample. For the 141 patients with stage IV disease, mPFS independent of melanoma type was 6.2 months (95 % CI: 4-9) and mOS was 24.8 months (95 % CI: 14.2-53.4) after first line anti-CTLA4 plus anti-PD1 therapy. After first-line anti-PD1 monotherapy, mPFS was 4 months (95 %CI: 2.9-8.5) and mOS was 29.18 months (95 % CI: 17.5-46.2). CONCLUSIONS While known prognostic factors such as TERT promoter mutations and TMB were equally distributed among patients who received either anti-CTLA4 plus anti-PD1 combination therapy or anti-PD1 monotherapy as first line therapy, we did not find a prolonged mPFS or mOS in either of those. For both therapy concepts, mPFS and mOS were considerably shorter than reported for melanomas with known oncogene mutations.
Collapse
Affiliation(s)
- Philipp Jansen
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany; Department of Dermatology, University Hospital Bonn, Bonn.
| | - Wolfgang Galetzka
- Institute for medical informatics, biometry and epidemiology, University Hospital Essen, Essen, Germany
| | - Georg C Lodde
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Fabian Standl
- Institute for medical informatics, biometry and epidemiology, University Hospital Essen, Essen, Germany
| | - Anne Zaremba
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Rudolf Herbst
- Hauttumorzentrum, Helios Klinikum Erfurt, Erfurt, Germany
| | | | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Claudia Pföhler
- Department of Dermatology, Saarland University Medical School, Homburg, Saar, Germany
| | - Jens Ulrich
- Department of Dermatology and Venereology, Harzklinikum Dorothea Christiane Erxleben, Quedlinburg, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, HELIOS St. Elisabeth Klinik Oberhausen, University Witten/Herdecke, Oberhausen, Germany
| | - Peter Mohr
- Dermatological Center Buxtehude, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Ralf Gutzmer
- Skin Cancer Unit, Hannover Medical School, Hannover, Germany & Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Friedegund Meier
- Department of Dermatology, Dermatooncology, University Hospital Carl Gustav Carus, TU Dresden, Dresden Germany
| | - Edgar Dippel
- Department of Dermatology Ludwigshafen, Klinikum der Stadt Ludwigshafen am Rhein gGmbH, Ludwigshafen, Germany
| | | | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | | | - Inga Möller
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Eva Hadaschik
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Andreas Stang
- Institute for medical informatics, biometry and epidemiology, University Hospital Essen, Essen, Germany
| | - Klaus G Griewank
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| |
Collapse
|
329
|
Long GV, Carlino MS, Au-Yeung G, Spillane AJ, Shannon KF, Gyorki DE, Hsiao E, Kapoor R, Thompson JR, Batula I, Howle J, Ch'ng S, Gonzalez M, Saw RPM, Pennington TE, Lo SN, Scolyer RA, Menzies AM. Neoadjuvant pembrolizumab, dabrafenib and trametinib in BRAF V600-mutant resectable melanoma: the randomized phase 2 NeoTrio trial. Nat Med 2024; 30:2540-2548. [PMID: 38907159 PMCID: PMC11405264 DOI: 10.1038/s41591-024-03077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 06/23/2024]
Abstract
Immune checkpoint inhibitors and BRAF-targeted therapy each improve survival in melanoma. Immune changes early during targeted therapy suggest the mechanisms of each drug class could work synergistically. In the non-comparative, randomized, phase 2 NeoTrio trial, we investigated whether targeted therapy could boost the proportion of patients achieving long-term recurrence-free survival with neoadjuvant immunotherapy in resectable stage III BRAFV600-mutant melanoma. Sixty patients (42% females) were randomized to pembrolizumab alone (n = 20), sequential therapy (dabrafenib plus trametinib followed by pembrolizumab; n = 20) or concurrent (triple) therapy (n = 20), followed by surgery and adjuvant therapy. The primary outcome was pathological response; secondary outcomes included radiographic response, recurrence-free survival, overall survival, surgical outcomes, peripheral blood and tumor analyses and safety. The pathological response rate was 55% (11/20; including six pathological complete responses (pCRs)) with pembrolizumab, 50% (10/20; three pCRs) with sequential therapy and 80% (16/20; ten pCRs) with concurrent therapy, which met the primary outcome in each arm. Treatment-related adverse events affected 75-100% of patients during neoadjuvant treatment, with seven early discontinuations (all in the concurrent arm). At 2 years, event-free survival was 60% with pembrolizumab, 80% with sequential therapy and 71% with concurrent therapy. Recurrences after major pathological response were more common in the targeted therapy arms, suggesting a reduction in response 'quality' when targeted therapy is added to neoadjuvant immunotherapy. Risking the curative potential of immunotherapy in melanoma cannot be justified. Pending longer follow-up, we suggest that immunotherapy and targeted therapy should not be combined in the neoadjuvant setting for melanoma. ClinicalTrials.gov registration: NCT02858921 .
Collapse
Affiliation(s)
- Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
- Royal North Shore Hospital, Sydney, New South Wales, Australia.
- Mater Hospital, Sydney, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
- Blacktown Hospital, Blacktown, New South Wales, Australia
| | - George Au-Yeung
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia
- Mater Hospital, Sydney, New South Wales, Australia
| | - Kerwin F Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Mater Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Concord Repatriation Hospital, Concord, New South Wales, Australia
| | - David E Gyorki
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Edward Hsiao
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Rony Kapoor
- Mater Hospital, Sydney, New South Wales, Australia
- I-MED Radiology Network, Mater Hospital, Sydney, New South Wales, Australia
| | - Jake R Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Iris Batula
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Julie Howle
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Sydney Ch'ng
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Mater Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Maria Gonzalez
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Mater Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Thomas E Pennington
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Mater Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Serigne N Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- NSW Health Pathology, Sydney, New South Wales, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia
- Mater Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
330
|
Dimitriou F, Cheng PF, Saltari A, Schaper-Gerhardt K, Staeger R, Haunerdinger V, Sella F, Tastanova A, Urban C, Dettwiler S, Mihic-Probst D, Matter CM, Michielin O, Gutzmer R, Long GV, Becher B, Levesque MP, Dummer R. A targetable type III immune response with increase of IL-17A expressing CD4 + T cells is associated with immunotherapy-induced toxicity in melanoma. NATURE CANCER 2024; 5:1390-1408. [PMID: 39210005 PMCID: PMC11424476 DOI: 10.1038/s43018-024-00810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Immune checkpoint inhibitors are standard-of-care for the treatment of advanced melanoma, but their use is limited by immune-related adverse events. Proteomic analyses and multiplex cytokine and chemokine assays from serum at baseline and at the adverse event onset indicated aberrant T cell activity with differential expression of type I and III immune signatures. This was in line with the finding of an increase in the proportion of CD4+ T cells with IL-17A expression at the adverse event onset in the peripheral blood using flow cytometry. Multiplex immunohistochemistry and spatial transcriptomics on immunotherapy-induced skin rash and colitis showed an increase in the proportion of CD4+ T cells with IL-17A expression. Anti-IL-17A was administered in two patients with mild myocarditis, colitis and skin rash with resolution of the adverse events. This study highlights the potential role of type III CD4+ T cells in adverse event development and provides proof-of-principle evidence for a clinical trial using anti-IL-17A for treating adverse events.
Collapse
Affiliation(s)
- Florentia Dimitriou
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - Phil F Cheng
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Annalisa Saltari
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Katrin Schaper-Gerhardt
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum Campus Minden, Minden, Germany
- Department of Dermatology, Medical School Hannover, Hannover, Germany
| | - Ramon Staeger
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Veronika Haunerdinger
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christian Urban
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Susanne Dettwiler
- Institute for Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Daniela Mihic-Probst
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Christian M Matter
- Department of Cardiology, University Heart Center and Center for Experimental Cardiology (CTEC), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Olivier Michielin
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum Campus Minden, Minden, Germany
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich (UZH), Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
331
|
Pásek M, Marques E, Švec J, Arenberger P, Arenbergerová M. Observational study with lenvatinib and pembrolizumab in heavily pretreated patients with metastatic melanoma. Int J Dermatol 2024; 63:e219-e220. [PMID: 38847436 DOI: 10.1111/ijd.17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024]
Affiliation(s)
- Marek Pásek
- Department of Dermatology and Venereology, Third Faculty of Medicine, Charles University, and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Emanuel Marques
- Department of Dermatology and Venereology, Third Faculty of Medicine, Charles University, and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Jiří Švec
- Department of Oncology, Third Faculty of Medicine, Charles University, and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Petr Arenberger
- Department of Dermatology and Venereology, Third Faculty of Medicine, Charles University, and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Monika Arenbergerová
- Department of Dermatology and Venereology, Third Faculty of Medicine, Charles University, and Královské Vinohrady University Hospital, Prague, Czech Republic
| |
Collapse
|
332
|
Zhang XC, Zhou YW, Wei GX, Luo YQ, Qiu M. Locoregional therapies combined with immune checkpoint inhibitors for liver metastases. Cancer Cell Int 2024; 24:302. [PMID: 39217341 PMCID: PMC11365172 DOI: 10.1186/s12935-024-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have achieved remarkable success in clinical research and practice. Notably, liver metastasis is not sensitive to ICIs. Liver locoregional therapies can cause irreversible damage to tumor cells and release tumor antigens, thereby providing a rationale for immunotherapy treatments in liver metastasis. The combination therapy of ICIs with locoregional therapies is a promising option for patients with liver metastasis. Preclinical studies have demonstrated that combining ICIs with locoregional therapies produces a significantly synergistic anti-tumor effect. However, the current evidence for the efficacy of ICIs combined with locoregional therapies remains insufficient. Therefore, we review the literature on the mechanisms of locoregional therapies in treating liver metastasis and the clinical research progress of their combination with ICIs.
Collapse
Affiliation(s)
- Xing-Chen Zhang
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
| | - Gui-Xia Wei
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Qiao Luo
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
333
|
Kao CJ, Charmsaz S, Alden SL, Brancati M, Li HL, Balaji A, Munjal K, Howe K, Mitchell S, Leatherman J, Griffin E, Nakazawa M, Tsai HL, Danilova L, Thoburn C, Gizzi J, Gross NE, Hernandez A, Coyne EM, Shin SM, Babu JS, Apostol GW, Durham J, Christmas BJ, Konig MF, Lipson EJ, Naidoo J, Cappelli LC, Pabani A, Ged Y, Baretti M, Brahmer J, Hoffman-Censits J, Seiwert TY, Garonce-Hediger R, Guha A, Bansal S, Tang L, Jaffee EM, Chandler GS, Mohindra R, Ho WJ, Yarchoan M. Immune-related events in individuals with solid tumors on immunotherapy associate with Th17 and Th2 signatures. J Clin Invest 2024; 134:e176567. [PMID: 39403935 PMCID: PMC11473156 DOI: 10.1172/jci176567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUNDImmune-related adverse events (irAEs) and their associated morbidity/mortality are a key concern for patients receiving immune checkpoint inhibitors (ICIs). Prospective evaluation of the drivers of irAEs in a diverse pan-tumor cohort is needed to identify patients at greatest risk and to develop rational treatment and interception strategies.METHODSIn an observational study, we prospectively collected blood samples and performed regular clinical evaluations for irAEs in patients receiving ICI therapy as standard of care for solid tumors. We performed in-parallel analysis of cytokines by Luminex immunoassay and circulating immune cells by cytometry by time-of-flight (CyTOF) at baseline and on treatment to investigate mechanisms of irAEs.RESULTSWe enrolled 111 patients, of whom 40.5% developed a symptomatic irAE (grade ≥ 2). Development of a grade ≥ 2 irAE was positively associated with the use of combination ICI and a history of an autoimmune disorder. Early changes in T helper 17 (Th17) (IL-6, IL-17f), type 2 (IL-5, IL-13, IL-25), and type 1 (TNF-α) cytokine signatures and congruent on-treatment expansions of Th17 and Th2 effector memory (Th2EM) T cell populations in peripheral blood were positively associated with the development of grade ≥2 irAEs. IL-6 levels were also associated with inferior cancer-specific survival and overall survival.CONCLUSIONSIn a diverse, prospective pan-tumor cohort, Th17 and Th2 skewing during early ICI treatment was associated with the development of clinically relevant irAEs but not antitumor responses, providing possible targets for monitoring and therapeutic interventions.FUNDINGJohns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, the NCI SPORE in Gastrointestinal Cancers (P50 CA062924), NCI grant (R50CA243627 to LD), the NIH Center Core Grant (P30 CA006973), Swim Across America (to MY), NIAMS (K23AR075872 to LC), and imCORE-Genentech grant 137515 (to Johns Hopkins Medicine on behalf of MY).
Collapse
Affiliation(s)
- Chester J. Kao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | | | - Madelena Brancati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Howard L. Li
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aanika Balaji
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kabeer Munjal
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Kathryn Howe
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Sarah Mitchell
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - James Leatherman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Ervin Griffin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Mari Nakazawa
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Hua-Ling Tsai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ludmila Danilova
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chris Thoburn
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Gizzi
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole E. Gross
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Erin M. Coyne
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Sarah M. Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Jayalaxmi Suresh Babu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - George W. Apostol
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Jennifer Durham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Brian J. Christmas
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Maximilian F. Konig
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan J. Lipson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jarushka Naidoo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Beaumont Hospital, Dublin, Ireland
- RCSI University of Health Sciences, Dublin, Ireland
| | - Laura C. Cappelli
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aliyah Pabani
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yasser Ged
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marina Baretti
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jean Hoffman-Censits
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tanguy Y. Seiwert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Aditi Guha
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Sanjay Bansal
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Laura Tang
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Elizabeth M. Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - G. Scott Chandler
- F. Hoffmann-La Roche Ltd., a member of the imCORE network, Basel, Switzerland
| | - Rajat Mohindra
- F. Hoffmann-La Roche Ltd., a member of the imCORE network, Basel, Switzerland
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
| | - Mark Yarchoan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
334
|
Mallardo D, Fordellone M, White A, Vowinckel J, Bailey M, Sparano F, Sorrentino A, Mallardo M, Facchini BA, De Filippi R, Ferrara G, Vanella V, Beeler K, Chiodini P, Cesano A, Warren S, Ascierto PA. A Combined Proteomic and Transcriptomic Signature Is Predictive of Response to Anti-PD-1 Treatment: A Retrospective Study in Metastatic Melanoma Patients. Int J Mol Sci 2024; 25:9345. [PMID: 39273294 PMCID: PMC11395026 DOI: 10.3390/ijms25179345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Resistance biomarkers are needed to identify patients with advanced melanoma obtaining a response to ICI treatment and developing resistance later. We searched a combination of molecular signatures of response to ICIs in patients with metastatic melanoma. In a retrospective study on patients with metastatic melanoma treated with an anti-PD-1 agent carried out at Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Naples, Italy. We integrated a whole proteome profiling of metastatic tissue with targeted transcriptomics. To assess the prognosis of patients according to groups of low and high risk, we used PFS and OS as outcomes. To identify the proteins and mRNAs gene signatures associated with the patient's response groups, the discriminant analysis for sparse data performed via partial least squares procedure was performed. Tissue samples from 22 patients were analyzed. A combined protein and gene signature associated with poorer response to ICI immunotherapy in terms of PFS and OS was identified. The PFS and OS Kaplan-Meier curves were significantly better for patients with high expression of the protein signature compared to patients with low expression of the protein signature and who were high-risk (Protein: HR = 0.023, 95% CI: 0.003-0.213; p < 0.0001. Gene: HR = 0.053, 95% CI: 0.011-0.260; p < 0.0001). The Kaplan-Meier curves showed that patients with low-risk gene signatures had better PFS (HR = 0 0.221, 95% CI: 0.071-0.68; p = 0.007) and OS (HR = 0.186, 95% CI: 0.05-0.695; p = 0.005). The proteomic and transcriptomic combined analysis was significantly associated with the outcomes of the anti-PD-1 treatment with a better predictive value compared to a single signature. All the patients with low expression of protein and gene signatures had progression within 6 months of treatment (median PFS = 3 months, 95% CI: 2-3), with a significant difference vs. the low-risk group (median PFS = not reached; p < 0.0001), and significantly poorer survival (OS = 9 months, 95% CI: 5-9) compared to patients with high expression of protein and gene signatures (median OS = not reached; p < 0.0001). We propose a combined proteomic and transcriptomic signature, including genes involved in pro-tumorigenic pathways, thereby identifying patients with reduced probability of response to immunotherapy with ICIs for metastatic melanoma.
Collapse
Affiliation(s)
- Domenico Mallardo
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (D.M.); (F.S.); (A.S.); (M.M.); (B.A.F.); (V.V.)
| | - Mario Fordellone
- Mental and Physical Health and Preventive Medicine, Medical Statistics Unit, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (M.F.); (P.C.)
| | - Andrew White
- NanoString Technologies, Seattle, WA 98109, USA; (A.W.); (M.B.); (A.C.); (S.W.)
| | | | - Michael Bailey
- NanoString Technologies, Seattle, WA 98109, USA; (A.W.); (M.B.); (A.C.); (S.W.)
| | - Francesca Sparano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (D.M.); (F.S.); (A.S.); (M.M.); (B.A.F.); (V.V.)
| | - Antonio Sorrentino
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (D.M.); (F.S.); (A.S.); (M.M.); (B.A.F.); (V.V.)
| | - Mario Mallardo
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (D.M.); (F.S.); (A.S.); (M.M.); (B.A.F.); (V.V.)
| | - Bianca Arianna Facchini
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (D.M.); (F.S.); (A.S.); (M.M.); (B.A.F.); (V.V.)
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, 80138 Naples, Italy;
| | - Gerardo Ferrara
- Department of Pathology and Cytopathology, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| | - Vito Vanella
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (D.M.); (F.S.); (A.S.); (M.M.); (B.A.F.); (V.V.)
| | | | - Paolo Chiodini
- Mental and Physical Health and Preventive Medicine, Medical Statistics Unit, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (M.F.); (P.C.)
| | - Alessandra Cesano
- NanoString Technologies, Seattle, WA 98109, USA; (A.W.); (M.B.); (A.C.); (S.W.)
| | - Sarah Warren
- NanoString Technologies, Seattle, WA 98109, USA; (A.W.); (M.B.); (A.C.); (S.W.)
| | - Paolo A. Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (D.M.); (F.S.); (A.S.); (M.M.); (B.A.F.); (V.V.)
| |
Collapse
|
335
|
Keam S, Turner N, Kugeratski FG, Rico R, Colunga-Minutti J, Poojary R, Alekseev S, Patel AB, Li YJ, Sheshadri A, Loghin ME, Woodman K, Aaroe AE, Hamidi S, Iyer PC, Palaskas NL, Wang Y, Nurieva R. Toxicity in the era of immune checkpoint inhibitor therapy. Front Immunol 2024; 15:1447021. [PMID: 39247203 PMCID: PMC11377343 DOI: 10.3389/fimmu.2024.1447021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) reinvigorate anti-tumor immune responses by disrupting co-inhibitory immune checkpoint molecules such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4). Although ICIs have had unprecedented success and have become the standard of care for many cancers, they are often accompanied by off-target inflammation that can occur in any organ system. These immune related adverse events (irAEs) often require steroid use and/or cessation of ICI therapy, which can both lead to cancer progression. Although irAEs are common, the detailed molecular and immune mechanisms underlying their development are still elusive. To further our understanding of irAEs and develop effective treatment options, there is pressing need for preclinical models recapitulating the clinical settings. In this review, we describe current preclinical models and immune implications of ICI-induced skin toxicities, colitis, neurological and endocrine toxicities, pneumonitis, arthritis, and myocarditis along with their management.
Collapse
Affiliation(s)
- Synat Keam
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naimah Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fernanda G Kugeratski
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rene Rico
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jocelynn Colunga-Minutti
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | | | - Sayan Alekseev
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, United States
- The Cancer Prevention and Research Institute of Texas (CPRIT)-CURE Summer Undergraduate Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anisha B Patel
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuanteng Jeff Li
- Department of General Internal Medicine, Section of Rheumatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Monica E Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karin Woodman
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley E Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priyanka Chandrasekhar Iyer
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
336
|
Wiens L, Grözinger G, Dittmann H, Thiel K, Leiter U, Amaral T, Nanz L, Flatz L, Forschner A. Melanoma-specific survival of patients with uveal melanoma and liver metastases diagnosed between 2005 and 2021. Ther Adv Med Oncol 2024; 16:17588359241273020. [PMID: 39184023 PMCID: PMC11342429 DOI: 10.1177/17588359241273020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Background Uveal melanoma is the most common malignant tumor of the eye in adults. About half of the patients develop distant metastases, most commonly liver metastases (>90%). These are associated with poorer overall survival compared to patients with extrahepatic metastases. Patients and methods In this retrospective study, patients diagnosed with metastatic uveal melanoma between January 2005 and December 2021 and treated at the Center for Dermato-oncology at the University of Tübingen, were included. The total cohort was divided into two groups. Group 1, in which the first diagnosis of metastasis was between 2005 and 2015 and group 2 with first metastasis between 2016 and 2021. Melanoma-specific survival (MSS) and progression-free survival (PFS) were calculated with the Kaplan-Meier method, test for differences was performed by the log-rank test. Results A total of 167 patients were included in the study. Since more than 90% of patients had developed liver metastases as their first site of metastasis, we focused our analysis on patients with liver metastases. Median MSS was 28 months (95% confidence interval (CI) (22.8-33.2 months)) in patients receiving first-line liver-directed therapy (n = 89) compared to 10 months (95% CI (8.4-11.6 months)) for patients with first-line systemic therapy (n = 45). The best MSS was found in patients of group 2 and liver-directed therapy as first-line treatment. Since survival with first-line liver-directed therapy was significantly better in group 2, subsequent systemic therapies must also be considered, especially immune checkpoint inhibitors. Conclusion This analysis revealed that MSS has improved significantly in recent years. In our analysis, first-line liver-directed therapy was associated with improved survival compared to first-line systemic therapy. Further studies are urgently needed, for example, to investigate the combination of immune checkpoint inhibition or tebentafusp with liver-specific procedures from the outset.
Collapse
Affiliation(s)
- Lisa Wiens
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Liebermeisterstr. 25, Tübingen 72076, Germany
| | - Gerd Grözinger
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Helmut Dittmann
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Karolin Thiel
- Department of General, Visceral and Thorax Surgery, Oberschwabenklinik, Ravensburg, Germany
| | - Ulrike Leiter
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Liebermeisterstr, Germany
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Liebermeisterstr, Germany
| | - Lena Nanz
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Liebermeisterstr, Germany
| | - Lukas Flatz
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Liebermeisterstr, Germany
| | - Andrea Forschner
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Liebermeisterstr, Germany
| |
Collapse
|
337
|
Wu W, Wu MY, Dai T, Ke LN, Shi Y, Hu J, Wang Q. Terphenyllin induces CASP3-dependent apoptosis and pyroptosis in A375 cells through upregulation of p53. Cell Commun Signal 2024; 22:409. [PMID: 39169379 PMCID: PMC11337594 DOI: 10.1186/s12964-024-01784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Melanoma, one of the most lethal forms of skin cancer, has the potential to develop in any area where melanocytes are present. Currently, postoperative recurrence due to the emergence of systemic drug resistance represents a significant challenge in the treatment of melanoma. In this study, terphenyllin (TER), a distinctive inhibitory impact on melanoma cells was identified from the natural p-terphenyl metabolite. This study aimed to elucidate the intrinsic mechanism of this inhibitory effect, which may facilitate the discovery of novel chemotherapeutic agents. METHODS A transcriptome sequencing and metabolomic analysis of TER-treated A375 cells was conducted to identify potential pathways of action. The key proteins were knocked out and backfilled using CRISPR-Cas9 technology and molecular cloning. Subsequently, the results of cytosolic viability, LDH release, immunofluorescence and flow cytometry were employed to demonstrate the cell death status of the drug-treated cells. RESULTS The p53 signalling pathway was markedly upregulated following TER treatment, leading to the activation of CASP3 via the intrinsic apoptotic pathway. The activated CASP3 initiated apoptosis, while simultaneously continuing to cleave the GSDME, thereby triggering pyroptosis. The knockout of p53, a key protein situated upstream of this pathway, resulted in a significant rescue of TER-induced cell death, as well as an alleviation of the decrease in cell viability. However, the knockout of key proteins situated downstream of the pathway (CASP3 and GSDME) did not result in a rescue of TER-induced cell death, but rather a transformation of the cells from apoptosis and pyroptosis. CONCLUSIONS The induction of apoptosis and pyroptosis in A375 cells by TER is mediated via the p53-BAX/FAS-CASP3-GSDME signalling pathway. This lays the foundation for TER as a potential anti-melanoma drug in the future. It should be noted that CASP3 and GSDME in this pathway solely regulate the mode of cell death, rather than determine whether cell death occurs. This distinction may prove valuable in future studies of apoptosis and pyroptosis.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Meng-Yuan Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ting Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Li-Na Ke
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yan Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jin Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
338
|
Levati L, Tabolacci C, Facchiano A, Facchiano F, Alvino E, Antonini Cappellini GC, Scala E, Bonmassar L, Caporali S, Lacal PM, Bresin A, De Galitiis F, Russo G, D'Atri S. Circulating interleukin-8 and osteopontin are promising biomarkers of clinical outcomes in advanced melanoma patients treated with targeted therapy. J Exp Clin Cancer Res 2024; 43:226. [PMID: 39143551 PMCID: PMC11325673 DOI: 10.1186/s13046-024-03151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circulating cytokines can represent non-invasive biomarkers to improve prediction of clinical outcomes of cancer patients. Here, plasma levels of IL-8, CCL4, osteopontin, LIF and BDNF were determined at baseline (T0), after 2 months of therapy (T2) and, when feasible, at progression (TP), in 70 melanoma patients treated with BRAF and MEK inhibitors. The association of baseline cytokine levels with clinical response, progression-free survival (PFS) and overall survival (OS) was evaluated. METHODS Cytokine concentrations were measured using the xMAP technology. Their ability to discriminate between responding (Rs) and non-responding (NRs) patients was assessed by Receiver Operating Characteristics analysis. PFS and OS were estimated with the Kaplan-Meier method. The Cox proportional hazard model was used in the univariate and multivariate analyses to estimate crude and adjusted hazard ratios with 95% confidence intervals. RESULTS CCL4 and LIF were undetectable in the majority of samples. The median osteopontin concentration at T0 and T2 was significantly higher in NRs than in Rs. The median T0 and T2 values of IL-8 were also higher in NRs than in Rs, although the statistical significance was not reached. No differences were detected for BDNF. In 39 Rs with matched T0, T2, and TP samples, osteopontin and IL-8 significantly decreased from T0 to T2 and rose again at TP, while BDNF levels remained unchanged. In NRs, none of the cytokines showed a significant decrease at T2. Only osteopontin demonstrated a good ability to discriminate between Rs and NRs. A high IL-8 T0 level was associated with significantly shorter PFS and OS and higher risk of progression and mortality, and remained an independent negative prognostic factor for OS in multivariate analysis. An elevated osteopontin T0 concentration was also significantly associated with worse OS and increased risk of death. Patients with high IL-8 and high osteopontin showed the lowest PFS and OS, and in multivariate analysis this cytokine combination remained independently associated with a three- to six-fold increased risk of mortality. CONCLUSION Circulating IL-8 and osteopontin appear useful biomarkers to refine prognosis evaluation of patients undergoing targeted therapy, and deserve attention as potential targets to improve its clinical efficacy.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
- Present Address: Research Coordination and Support Service, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: UOC Oncologia, Interpresidio ASL RM2, Via Dei Monti Tiburtini 387, 00157, Rome, Italy
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: Regional Transplant Center Lazio (CRTL), San Camillo Hospital, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Antonella Bresin
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
339
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
340
|
Wesener L, Hagelstein V, Terheyden P, Langan EA. A Retrospective Analysis of the Prognostic Factors and Adverse Events in the Treatment of Mucosal Melanoma in a Single Centre. J Clin Med 2024; 13:4741. [PMID: 39200883 PMCID: PMC11355675 DOI: 10.3390/jcm13164741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Despite the dramatic advances in the management of metastatic cutaneous melanoma, there remains no consensus-based, evidence-based strategy for the management of mucosal melanoma. The rare nature of the disease, its late clinical presentation, and distinct tumour biology all complicate efforts to optimise patient outcomes. Methods: To this end, we carried out a monocentric, retrospective analysis of all patients diagnosed with mucosal melanoma and treated between 2013 and 2021. Both tumour- and patient-specific characteristics were recorded, in addition to immune-related adverse events, in order to provide real-world data on disease progression, treatment efficacy, and the identification of prognostic markers. Results: A total of 20 patients were identified (14 females and 6 males), with a mean age at diagnosis of 65.9 years. The median follow-up was 3.9 years (95% CI 1.4-6.4 years) from the initiation of systemic therapy. The median OS in the entire cohort was 1.9 years (95% CI 0.5-3.3 years). Performance status, sex, body mass index, and the presence of brain metastases were not associated with poorer outcomes. However, serum lactate dehydrogenase levels (LDH) (p = 0.04) and an NRAS mutation were markers of a poor prognosis (p = 0.004). Conclusuion: There is a pressing need for real-world, prospective, and clinical trial data to inform the optimal management of mucosal melanoma, and data supporting the use of adjuvant and neo-adjuvant immunotherapy are currently lacking. However, an elevated LDH is a reliable, independent negative prognostic marker. Inter-disciplinary management remains essential in order to develop optimal treatment strategies.
Collapse
Affiliation(s)
- Lambert Wesener
- Clinic of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.W.); (V.H.); (P.T.)
| | - Victoria Hagelstein
- Clinic of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.W.); (V.H.); (P.T.)
| | - Patrick Terheyden
- Clinic of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.W.); (V.H.); (P.T.)
| | - Ewan A. Langan
- Clinic of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.W.); (V.H.); (P.T.)
- Department of Dermatological Sciences, University of Manchester, Oxford Rd., Manchester M13 9PL, UK
| |
Collapse
|
341
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
342
|
Andrews LP, Butler SC, Cui J, Cillo AR, Cardello C, Liu C, Brunazzi EA, Baessler A, Xie B, Kunning SR, Ngiow SF, Huang YJ, Manne S, Sharpe AH, Delgoffe GM, Wherry EJ, Kirkwood JM, Bruno TC, Workman CJ, Vignali DAA. LAG-3 and PD-1 synergize on CD8 + T cells to drive T cell exhaustion and hinder autocrine IFN-γ-dependent anti-tumor immunity. Cell 2024; 187:4355-4372.e22. [PMID: 39121848 PMCID: PMC11323044 DOI: 10.1016/j.cell.2024.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/01/2023] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Overcoming immune-mediated resistance to PD-1 blockade remains a major clinical challenge. Enhanced efficacy has been demonstrated in melanoma patients with combined nivolumab (anti-PD-1) and relatlimab (anti-LAG-3) treatment, the first in its class to be FDA approved. However, how these two inhibitory receptors synergize to hinder anti-tumor immunity remains unknown. Here, we show that CD8+ T cells deficient in both PD-1 and LAG-3, in contrast to CD8+ T cells lacking either receptor, mediate enhanced tumor clearance and long-term survival in mouse models of melanoma. PD-1- and LAG-3-deficient CD8+ T cells were transcriptionally distinct, with broad TCR clonality and enrichment of effector-like and interferon-responsive genes, resulting in enhanced IFN-γ release indicative of functionality. LAG-3 and PD-1 combined to drive T cell exhaustion, playing a dominant role in modulating TOX expression. Mechanistically, autocrine, cell-intrinsic IFN-γ signaling was required for PD-1- and LAG-3-deficient CD8+ T cells to enhance anti-tumor immunity, providing insight into how combinatorial targeting of LAG-3 and PD-1 enhances efficacy.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Samuel C Butler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chang Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Andrew Baessler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Sheryl R Kunning
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Shin Foong Ngiow
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinghui Jane Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - E John Wherry
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John M Kirkwood
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tulia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
343
|
Ngiow SF, Manne S, Huang YJ, Azar T, Chen Z, Mathew D, Chen Q, Khan O, Wu JE, Alcalde V, Flowers AJ, McClain S, Baxter AE, Kurachi M, Shi J, Huang AC, Giles JR, Sharpe AH, Vignali DAA, Wherry EJ. LAG-3 sustains TOX expression and regulates the CD94/NKG2-Qa-1b axis to govern exhausted CD8 T cell NK receptor expression and cytotoxicity. Cell 2024; 187:4336-4354.e19. [PMID: 39121847 PMCID: PMC11337978 DOI: 10.1016/j.cell.2024.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/20/2023] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Exhausted CD8 T (Tex) cells in chronic viral infection and cancer have sustained co-expression of inhibitory receptors (IRs). Tex cells can be reinvigorated by blocking IRs, such as PD-1, but synergistic reinvigoration and enhanced disease control can be achieved by co-targeting multiple IRs including PD-1 and LAG-3. To dissect the molecular changes intrinsic when these IR pathways are disrupted, we investigated the impact of loss of PD-1 and/or LAG-3 on Tex cells during chronic infection. These analyses revealed distinct roles of PD-1 and LAG-3 in regulating Tex cell proliferation and effector functions, respectively. Moreover, these studies identified an essential role for LAG-3 in sustaining TOX and Tex cell durability as well as a LAG-3-dependent circuit that generated a CD94/NKG2+ subset of Tex cells with enhanced cytotoxicity mediated by recognition of the stress ligand Qa-1b, with similar observations in humans. These analyses disentangle the non-redundant mechanisms of PD-1 and LAG-3 and their synergy in regulating Tex cells.
Collapse
Affiliation(s)
- Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinghui Jane Huang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tarek Azar
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingzhou Chen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victor Alcalde
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahron J Flowers
- Tara Miller Melanoma Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean McClain
- Tara Miller Melanoma Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Makoto Kurachi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Gene Lay Institute of Immunology and Inflammation at Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
344
|
Cillo AR, Cardello C, Shan F, Karapetyan L, Kunning S, Sander C, Rush E, Karunamurthy A, Massa RC, Rohatgi A, Workman CJ, Kirkwood JM, Bruno TC, Vignali DAA. Blockade of LAG-3 and PD-1 leads to co-expression of cytotoxic and exhaustion gene modules in CD8 + T cells to promote antitumor immunity. Cell 2024; 187:4373-4388.e15. [PMID: 39121849 PMCID: PMC11346583 DOI: 10.1016/j.cell.2024.06.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024]
Abstract
Relatlimab (rela; anti-LAG-3) plus nivolumab (nivo; anti-PD-1) is safe and effective for treatment of advanced melanoma. We designed a trial (NCT03743766) where advanced melanoma patients received rela, nivo, or rela+nivo to interrogate the immunologic mechanisms of rela+nivo. Analysis of biospecimens from this ongoing trial demonstrated that rela+nivo led to enhanced capacity for CD8+ T cell receptor signaling and altered CD8+ T cell differentiation, leading to heightened cytotoxicity despite the retention of an exhaustion profile. Co-expression of cytotoxic and exhaustion signatures was driven by PRDM1, BATF, ETV7, and TOX. Effector function was upregulated in clonally expanded CD8+ T cells that emerged after rela+nivo. A rela+nivo intratumoral CD8+ T cell signature was associated with a favorable prognosis. This intratumoral rela+nivo signature was validated in peripheral blood as an elevated frequency of CD38+TIM3+CD8+ T cells. Overall, we demonstrated that cytotoxicity can be enhanced despite the retention of exhaustion signatures, which will inform future therapeutic strategies.
Collapse
Affiliation(s)
- Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Integrative Systems Biology (ISB) Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lilit Karapetyan
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheryl Kunning
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cindy Sander
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth Rush
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Ryan C Massa
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anjali Rohatgi
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M Kirkwood
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
345
|
Frechette KM, Breen WG, Brown PD, Sener UT, Webb LM, Routman DM, Laack NN, Mahajan A, Lehrer EJ. Radiotherapy and Systemic Treatment for Leptomeningeal Disease. Biomedicines 2024; 12:1792. [PMID: 39200256 PMCID: PMC11351760 DOI: 10.3390/biomedicines12081792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Leptomeningeal disease (LMD) is a devastating sequelae of metastatic spread that affects approximately 5% of cancer patients. The incidence of LMD is increasing due to advancements in systemic therapy and enhanced detection methods. The purpose of this review is to provide a detailed overview of the evidence in the detection, prognostication, and treatment of LMD. A comprehensive literature search of PUBMED was conducted to identify articles reporting on LMD including existing data and ongoing clinical trials. We found a wide array of treatment options available for LMD including chemotherapy, targeted agents, and immunotherapy as well as several choices for radiotherapy including whole brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and craniospinal irradiation (CSI). Despite treatment, the prognosis for patients with LMD is dismal, typically 2-4 months on average. Novel therapies and combination approaches are actively under investigation with the aim of improving outcomes and quality of life for patients with LMD. Recent prospective data on the use of proton CSI for patients with LMD have demonstrated its potential survival benefit with follow-up investigations underway. There is a need for validated metrics to predict prognosis and improve patient selection for patients with LMD in order to optimize treatment approaches.
Collapse
Affiliation(s)
- Kelsey M. Frechette
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Ugur T. Sener
- Department of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA; (U.T.S.); (L.M.W.)
| | - Lauren M. Webb
- Department of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA; (U.T.S.); (L.M.W.)
| | - David M. Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Nadia N. Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Eric J. Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| |
Collapse
|
346
|
Mann JE, Hasson N, Su DG, Adeniran AJ, Smalley KSM, Djureinovic D, Jilaveanu LB, Schoenfeld DA, Kluger HM. GP100 expression is variable in intensity in melanoma. Cancer Immunol Immunother 2024; 73:191. [PMID: 39105816 PMCID: PMC11303354 DOI: 10.1007/s00262-024-03776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Drugs or cellular products that bind to gp100 are being investigated for treatment of cutaneous melanoma. The relative specificity of gp100 expression in melanocytes makes it an attractive target to harness for therapeutic intent. For example, Tebentafusp, a bispecific gp100 peptide-HLA-directed CD3 T cell engager, has generated significant enthusiasm in recent years due to its success in improving outcomes for uveal melanoma and is being studied in cutaneous melanoma. However, the extent and intensity of gp100 expression in advanced cutaneous melanoma has not been well studied. Here, we interrogated a large cohort of primary and metastatic melanomas for gp100 expression by immunohistochemistry. Expression in metastatic samples was globally higher and almost uniformly positive, however the degree of intensity was variable. Using a quantitative immunofluorescence method, we confirmed the variability in expression. As gp100-binding drugs are assessed in clinical trials, the association between activity of the drugs and the level of gp100 expression should be studied in order to potentially improve patient selection.
Collapse
Affiliation(s)
- Jacqueline E Mann
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Nitzan Hasson
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Su
- Division of Surgical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Keiran S M Smalley
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dijana Djureinovic
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucia B Jilaveanu
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - David A Schoenfeld
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Harriet M Kluger
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
347
|
Trocchia M, Ventrici A, Modestino L, Cristinziano L, Ferrara AL, Palestra F, Loffredo S, Capone M, Madonna G, Romanelli M, Ascierto PA, Galdiero MR. Innate Immune Cells in Melanoma: Implications for Immunotherapy. Int J Mol Sci 2024; 25:8523. [PMID: 39126091 PMCID: PMC11313504 DOI: 10.3390/ijms25158523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The innate immune system, composed of neutrophils, basophils, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, dendritic cells (DCs), mast cells (MCs), and innate lymphoid cells (ILCs), is the first line of defense. Growing evidence demonstrates the crucial role of innate immunity in tumor initiation and progression. Several studies support the idea that innate immunity, through the release of pro- and/or anti-inflammatory cytokines and tumor growth factors, plays a significant role in the pathogenesis, progression, and prognosis of cutaneous malignant melanoma (MM). Cutaneous melanoma is the most common skin cancer, with an incidence that rapidly increased in recent decades. Melanoma is a highly immunogenic tumor, due to its high mutational burden. The metastatic form retains a high mortality. The advent of immunotherapy revolutionized the therapeutic approach to this tumor and significantly ameliorated the patients' clinical outcome. In this review, we will recapitulate the multiple roles of innate immune cells in melanoma and the related implications for immunotherapy.
Collapse
Affiliation(s)
- Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
| | - Leonardo Cristinziano
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| |
Collapse
|
348
|
Abedellatif SE, Hosni R, Waha A, Gielen GH, Banat M, Hamed M, Güresir E, Fröhlich A, Sirokay J, Wulf AL, Kristiansen G, Pietsch T, Vatter H, Hölzel M, Schneider M, Toma MI. Melanoma Brain Metastases Patient-Derived Organoids: An In Vitro Platform for Drug Screening. Pharmaceutics 2024; 16:1042. [PMID: 39204387 PMCID: PMC11360789 DOI: 10.3390/pharmaceutics16081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND AIMS Brain metastases are prevalent in the late stages of malignant melanoma. Multimodal therapy remains challenging. Patient-derived organoids (PDOs) represent a valuable pre-clinical model, faithfully recapitulating key aspects of the original tumor, including the heterogeneity and the mutational status. This study aimed to establish PDOs from melanoma brain metastases (MBM-PDOs) and to test the feasibility of using them as a model for in vitro targeted-therapy drug testing. METHODS Surgical resection samples from eight patients with melanoma brain metastases were used to establish MBM-PDOs. The samples were enzymatically dissociated followed by seeding into low-attachment plates to generate floating organoids. The MBM-PDOs were characterized genetically, histologically, and immunohistologically and compared with the parental tissue. The MBM-PDO cultures were exposed to dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor) followed by a cell viability assessment. RESULTS Seven out of eight cases were successfully cultivated, maintaining the histological, immunohistological phenotype, and the mutational status of the parental tumors. Five out of seven cases harbored BRAF V600E mutations and were responsive to BRAF and MEK inhibitors in vitro. Two out of seven cases were BRAF wild type: one case harboring an NRAS mutation and the other harboring a KIT mutation, and both were resistant to BRAF and MEK inhibitor therapy. CONCLUSIONS We successfully established PDOs from melanoma brain metastases surgical specimens, which exhibited a consistent histological and mutational profile with the parental tissue. Using FDA-approved BRAF and MEK inhibitors, our data demonstrate the feasibility of employing MBM-PDOs for targeted-therapy in vitro testing.
Collapse
Affiliation(s)
- Saif-Eldin Abedellatif
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (R.H.); (A.-L.W.); (G.K.)
| | - Racha Hosni
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (R.H.); (A.-L.W.); (G.K.)
| | - Andreas Waha
- Institute for Neuropathology, University Hospital Bonn, 53127 Bonn, Germany; (A.W.); (G.H.G.); (T.P.)
| | - Gerrit H. Gielen
- Institute for Neuropathology, University Hospital Bonn, 53127 Bonn, Germany; (A.W.); (G.H.G.); (T.P.)
| | - Mohammed Banat
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.B.); (M.H.); (E.G.); (H.V.); (M.S.)
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.B.); (M.H.); (E.G.); (H.V.); (M.S.)
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.B.); (M.H.); (E.G.); (H.V.); (M.S.)
| | - Anne Fröhlich
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany; (A.F.); (J.S.)
| | - Judith Sirokay
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany; (A.F.); (J.S.)
| | - Anna-Lena Wulf
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (R.H.); (A.-L.W.); (G.K.)
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (R.H.); (A.-L.W.); (G.K.)
| | - Torsten Pietsch
- Institute for Neuropathology, University Hospital Bonn, 53127 Bonn, Germany; (A.W.); (G.H.G.); (T.P.)
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.B.); (M.H.); (E.G.); (H.V.); (M.S.)
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.B.); (M.H.); (E.G.); (H.V.); (M.S.)
| | - Marieta Ioana Toma
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (R.H.); (A.-L.W.); (G.K.)
| |
Collapse
|
349
|
Davar D, Cavalcante L, Lakhani N, Moser J, Millward M, McKean M, Voskoboynik M, Sanborn RE, Grewal JS, Narayan A, Patnaik A, Gainor JF, Sznol M, Enstrom A, Blanchfield L, LeBlanc H, Thomas H, Chisamore MJ, Peng SL, Naumovski A. Phase I studies of davoceticept (ALPN-202), a PD-L1-dependent CD28 co-stimulator and dual PD-L1/CTLA-4 inhibitor, as monotherapy and in combination with pembrolizumab in advanced solid tumors (NEON-1 and NEON-2). J Immunother Cancer 2024; 12:e009474. [PMID: 39097413 PMCID: PMC11344531 DOI: 10.1136/jitc-2024-009474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Davoceticept (ALPN-202) is an Fc fusion of a CD80 variant immunoglobulin domain designed to mediate programmed death-ligand 1 (PD-L1)-dependent CD28 co-stimulation while inhibiting the PD-L1 and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) checkpoints. The safety and efficacy of davoceticept monotherapy and davoceticept and pembrolizumab combination therapy in adult patients with advanced solid tumors were explored in NEON-1 and NEON-2, respectively. METHODS In NEON-1 (n=58), davoceticept 0.001-10 mg/kg was administered intravenous either once weekly (Q1W) or once every 3 weeks (Q3W). In NEON-2 (n=29), davoceticept was administered intravenously at 2 dose levels (0.1 or 0.3 mg/kg) Q1W or Q3W with pembrolizumab (400 mg once every 6 weeks). In both studies, primary endpoints included incidence of dose-limiting toxicities (DLT); type, incidence, and severity of adverse events (AEs) and laboratory abnormalities; and seriousness of AEs. Secondary endpoints included antitumor efficacy assessed using RECIST v1.1, pharmacokinetics, anti-drug antibodies, and pharmacodynamic biomarkers. RESULTS The incidence of treatment-related AEs (TRAEs) and immune-related adverse events (irAEs) was 67% (39/58) and 36% (21/58) with davoceticept monotherapy, and 62% (18/29) and 31% (9/29) with davoceticept and pembrolizumab combination, respectively. The incidence of ≥grade (Gr)3 TRAEs and ≥Gr3 irAEs was 12% (7/58) and 5% (3/58) with davoceticept monotherapy, and 24% (7/29) and 10% (3/29) with davoceticept and pembrolizumab combination, respectively. One DLT of Gr3 immune-related gastritis occurred during davoceticept monotherapy 3 mg/kg Q3W. During davoceticept combination with pembrolizumab, two Gr5 cardiac DLTs occurred; one instance each of cardiogenic shock (0.3 mg/kg Q3W, choroidal melanoma metastatic to the liver) and immune-mediated myocarditis (0.1 mg/kg Q3W, microsatellite stable metastatic colorectal adenocarcinoma), prompting early termination of both studies. Across both studies, five patients with renal cell carcinoma (RCC) exhibited evidence of clinical benefit (two partial response, three stable disease). CONCLUSIONS Davoceticept was generally well tolerated as monotherapy at intravenous doses up to 10 mg/kg. Evidence of clinical activity was observed with davoceticept monotherapy and davoceticept in combination with pembrolizumab, notably in RCC. However, two fatal cardiac events occurred with the combination of low-dose davoceticept and pembrolizumab. Future clinical investigation with davoceticept should not consider combination with programmed death-1-inhibitor anticancer mechanisms, until its safety profile is more fully elucidated. TRIAL REGISTRATION NUMBER NEON-1 (NCT04186637) and NEON-2 (NCT04920383).
Collapse
Affiliation(s)
- Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Justin Moser
- HonorHealth Research and Innovation Institute, Scottsdale, Arizona, USA
| | - Michael Millward
- Linear Clinical Research, Nedlands, Western Australia, Australia
- The University of Western Australia, Nedlands, Western Australia, Australia
| | | | - Mark Voskoboynik
- Nucleus Network Ltd, Melbourne, Victoria, Australia
- The Alfred, Melbourne, Victoria, Australia
| | - Rachel E Sanborn
- Earle A Chiles Research Institute, Portland, Oregon, USA
- Providence Cancer Center, Portland, Oregon, USA
| | | | - Ajita Narayan
- Franciscan Physician Network with Franciscan Alliance, Lafayette, Indiana, USA
| | | | | | - Mario Sznol
- Yale University Yale Cancer Center, New Haven, Connecticut, USA
| | | | | | - Heidi LeBlanc
- Alpine Immune Sciences Inc, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
350
|
Habib S, Osborn G, Willsmore Z, Chew MW, Jakubow S, Fitzpatrick A, Wu Y, Sinha K, Lloyd-Hughes H, Geh JLC, MacKenzie-Ross AD, Whittaker S, Sanz-Moreno V, Lacy KE, Karagiannis SN, Adams R. Tumor associated macrophages as key contributors and targets in current and future therapies for melanoma. Expert Rev Clin Immunol 2024; 20:895-911. [PMID: 38533720 PMCID: PMC11286214 DOI: 10.1080/1744666x.2024.2326626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Despite the success of immunotherapies for melanoma in recent years, there remains a significant proportion of patients who do not yet derive benefit from available treatments. Immunotherapies currently licensed for clinical use target the adaptive immune system, focussing on Tcell interactions and functions. However, the most prevalent immune cells within the tumor microenvironment (TME) of melanoma are macrophages, a diverse immune cell subset displaying high plasticity, to which no current therapies are yet directly targeted. Macrophages have been shown not only to activate the adaptive immune response, and enhance cancer cell killing, but, when influenced by factors within the TME of melanoma, these cells also promote melanoma tumorigenesis and metastasis. AREAS COVERED We present a review of the most up-to-date literatureavailable on PubMed, focussing on studies from within the last 10 years. We also include data from ongoing and recent clinical trials targeting macrophages in melanoma listed on clinicaltrials.gov. EXPERT OPINION Understanding the multifaceted role of macrophages in melanoma, including their interactions with immune and cancer cells, the influence of current therapies on macrophage phenotype and functions and how macrophages could be targeted with novel treatment approaches, are all critical for improving outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Shabana Habib
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Zena Willsmore
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Min Waye Chew
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Sophie Jakubow
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Amanda Fitzpatrick
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Oncology Department, Guy’s and St Thomas’ Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Yin Wu
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Oncology Department, Guy’s and St Thomas’ Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Khushboo Sinha
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London, England
| | - Hawys Lloyd-Hughes
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London, England
| | - Jenny L. C. Geh
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London, England
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London, England
| | | | - Sean Whittaker
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| |
Collapse
|