301
|
Noguchi H. Regulation of c-Jun NH 2-Terminal Kinase for Islet Transplantation. J Clin Med 2019; 8:jcm8111763. [PMID: 31652814 PMCID: PMC6912371 DOI: 10.3390/jcm8111763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Islet transplantation has been demonstrated to provide superior glycemic control with reduced glucose lability and hypoglycemic events compared with standard insulin therapy. However, the insulin independence rate after islet transplantation from one donor pancreas has remained low. The low frequency of islet grafting is dependent on poor islet recovery from donors and early islet loss during the first hours following grafting. The reduction in islet mass during pancreas preservation, islet isolation, and islet transplantation leads to β-cell death by apoptosis and the prerecruitment of intracellular death signaling pathways, such as c-Jun NH2-terminal kinase (JNK), which is one of the stress groups of mitogen-activated protein kinases (MAPKs). In this review, we show some of the most recent contributions to the advancement of knowledge of the JNK pathway and several possibilities for the treatment of diabetes using JNK inhibitors.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| |
Collapse
|
302
|
Wang R, Cao L, Shen ZX, Cao YX, Yu J. PM 2.5 upregulates rat mesenteric arteries 5-HT 2A receptor via inflammatory-mediated mitogen-activated protein kinases signaling pathway. ENVIRONMENTAL TOXICOLOGY 2019; 34:1094-1104. [PMID: 31199065 DOI: 10.1002/tox.22810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Fine particulate matter (PM2.5 ) is an important environmental risk factor for cardiovascular diseases. However, little is known about the effects of PM2.5 on arteries. The present study investigated whether PM2.5 alters 5-hydroxytryptamine (5-HT) receptor expression and inflammatory mediators on rat mesenteric arteries, and examined the underlying mechanisms. Isolated rat mesenteric arteries segments were cultured with PM2.5 in the presence or absence of ERK1/2, JNK, and p38 pathway inhibitors. Contractile reactivity was monitored by a sensitive myograph. The expression of 5-HT2A/1B receptors and inflammatory mediators were studied by a real-time polymerase chain reaction and/or by immunohistochemistry. The phosphorylation of mitogen-activated protein kinases (MAPK) pathway was detected by Western blot. Compared with the fresh or culture alone groups, 1.0 μg/mL PM2.5 cultured for 16 hours significantly enhanced contractile response induced by 5-HT and increased 5-HT2A receptor mRNA and protein expressions, indicating PM2.5 upregulates 5-HT2A receptor. SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor) significantly decreased PM2.5 -induced elevated contraction and mRNA and protein expression of 5-HT2A receptor. Cultured with PM2.5 significantly increased the mRNA expression of inflammatory mediators (NOS2, IL-1β, and TNF-α), while SB203580 decreased mRNA expression level of NOS2, IL-1β, and TNF-α. SP600125 (JNK inhibitor) decreased mRNA expression level of TNF-α and IL-1β. After PM2.5 exposure, the phosphorylation of p38 and ERK1/2 protein were increased. SB203580 and U0126 inhibited the PM2.5 caused increased phosphorylation protein of p38 and ERK1/2. In conclusion, PM2.5 induces inflammatory-mediated MAPK pathway in artery which subsequently results in enhanced vascular contraction responding to 5-HT via the upregulated 5-HT2A receptors.
Collapse
Affiliation(s)
- Rong Wang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, Shaanxi, China
- Department of Pharmacology, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lei Cao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhen-Xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yong-Xiao Cao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jun Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, Shaanxi, China
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
- Central Laboratory, Xi'an International Medical Center, Xi'an, Shaanxi, China
| |
Collapse
|
303
|
Zhao H, Wang P, Ma C, Wang C. Smoking Attenuates Efficacy of Penehyclidine Hydrochloride in Acute Respiratory Distress Syndrome Induced by Lipopolysaccharide in Rats. Med Sci Monit 2019; 25:7295-7305. [PMID: 31562811 PMCID: PMC6784682 DOI: 10.12659/msm.917037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Penehyclidine hydrochloride is a novel drug for acute respiratory distress syndrome. The aim of the study was to reveal the impact of smoking on the efficacy of the drug in rats with acute respiratory distress syndrome. Material/Methods A 132 Sprague-Dawley rats were used in this study; 72 rats were used in the smoking models. Penehyclidine hydrochloride (3 mg/kg) was injected to induce acute respiratory distress syndrome. Rats were divided into the smoking group and the non-smoking group; these 2 groups were subdivided according to different treatments. The arterial blood gas analysis (PaO2/FiO2) and extent of pneumonedema (wet-to-dry weight ratio) was analyzed to evaluate disease severity. Expressions of mitogen-activated protein kinases (p-p38MAPK, p38MAPK, p-ERK, ERK, p-JNK, and JNK) in lung tissue were measured using western blot assay. Results Penehyclidine hydrochloride improved the pneumonedema (wet-to-dry weight ratio) and hyoxemia (PaO2/FiO2) of the disease in non-smoking group (P<0.001, P<0.001 respectively), but not in smoking group (P=0.244, P=0.424 respectively). The drug inhibited the expressions of phospho-p38MAPK and phospho-ERK in non-smoking group (P<0.001, P<0.001 respectively), but not in smoking group (P=0.350, P=0.507 respectively). In the smoking group, blocking the phospho-p38MAPK or phospho-ERK signal pathway by their inhibitors showed a better therapeutic effect on the pneumonedema and hyoxemia compared with the use of penehyclidine hydrochloride (phospho-p38MAPK: P=0.004, P=0.010 respectively; phospho-ERK: P=0.022, P=0.004 respectively). Conclusions The study confirmed the protective effect of penehyclidine hydrochloride in acute respiratory distress syndrome, mainly in the non-smoking group, which might be explained by the fact that phospho-p38MAPK and phospho-ERK signal pathways were difficult to inhibit by the drug in the smoking group.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Critical Care Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Peng Wang
- Department of Critical Care Medicine, The Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Chengen Ma
- Department of Critical Care Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Chunting Wang
- Department of Critical Care Medicine, The Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
304
|
Shi C, Hao B, Yang Y, Muhammad I, Zhang Y, Chang Y, Li Y, Li C, Li R, Liu F. JNK Signaling Pathway Mediates Acetaminophen-Induced Hepatotoxicity Accompanied by Changes of Glutathione S-Transferase A1 Content and Expression. Front Pharmacol 2019; 10:1092. [PMID: 31620005 PMCID: PMC6763582 DOI: 10.3389/fphar.2019.01092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 01/05/2023] Open
Abstract
Acetaminophen (APAP) is an analgesic-antipyretic drug and widely used in clinics. Its overdose may cause serious liver damage. Here, we examined the mechanistic role of c-Jun N-terminal kinase (JNK) signaling pathway in liver injury induced by different doses of APAP. Male mice were treated with APAP (150 and 175 mg·kg-1), and meanwhile JNK inhibitor SP600125 was used to interfere APAP-induced liver damage. The results showed that JNK signaling pathway was activated by APAP in a dose-dependent manner. C-Jun N-terminal kinase inhibitor decreased JNK and c-Jun activation significantly (P < 0.01) at 175 mg·kg-1 APAP dose, and phosphorylation levels of upstream proteins of JNK were also decreased markedly (P < 0.05). In addition, serum aminotransferases activities and hepatic oxidative stress increased in a dose-dependent manner with APAP treatment, but the levels of aminotransferases and oxidative stress decreased in mice treated with JNK inhibitor, which implied that JNK inhibition ameliorated APAP-induced liver damage. It was observed that apoptosis was increased in APAP-induced liver injury, and SP600125 can attenuate apoptosis through the inhibition of JNK phosphorylation. Meanwhile, glutathione S-transferases A1 (GSTA1) content in serum was enhanced, while GSTA1 content and expression in liver reduced significantly with administration of APAP (150 and 175 mg·kg-1). After inhibiting JNK, GSTA1 content in serum decreased significantly (P < 0.01); meanwhile, GSTA1 content and expression in liver enhanced. These findings suggested that JNK signaling pathway mediated APAP-induced hepatic injury, which was accompanied by varying GSTA1 content and expression in liver and serum.
Collapse
Affiliation(s)
- Chenxi Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Beili Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ishfaq Muhammad
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yicong Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ying Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Changwen Li
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Fangping Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
305
|
Lai X, Eberhardt M, Schmitz U, Vera J. Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res 2019; 47:7753-7766. [PMID: 31340025 PMCID: PMC6735922 DOI: 10.1093/nar/gkz638] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that regulate gene expression by suppressing mRNA translation and reducing mRNA stability. A miRNA can potentially bind many mRNAs, thereby affecting the expression of oncogenes and tumor suppressor genes as well as the activity of whole pathways. The promise of miRNA therapeutics in cancer is to harness this evolutionarily conserved mechanism for the coordinated regulation of gene expression, and thus restoring a normal cell phenotype. However, the promiscuous binding of miRNAs can provoke unwanted off-target effects, which are usually caused by high-dose single-miRNA treatments. Thus, it is desirable to develop miRNA therapeutics with increased specificity and efficacy. To achieve that, we propose the concept of miRNA cooperativity in order to exert synergistic repression on target genes, thus lowering the required total amount of miRNAs. We first review miRNA therapies in clinical application. Next, we summarize the knowledge on the molecular mechanism and biological function of miRNA cooperativity and discuss its application in cancer therapies. We then propose and discuss a systems biology approach to investigate miRNA cooperativity for the clinical setting. Altogether, we point out the potential of miRNA cooperativity to reduce off-target effects and to complement conventional, targeted, or immune-based therapies for cancer.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ulf Schmitz
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, 2006 Camperdown, Australia
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, 2006 Camperdown, Australia
- Sydney Medical School, The University of Sydney, 2006 Camperdown, Australia
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
306
|
Vitamin D increases glucocorticoid efficacy via inhibition of mTORC1 in experimental models of multiple sclerosis. Acta Neuropathol 2019; 138:443-456. [PMID: 31030237 PMCID: PMC6689294 DOI: 10.1007/s00401-019-02018-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/31/2019] [Accepted: 04/20/2019] [Indexed: 12/12/2022]
Abstract
The limited efficacy of glucocorticoids (GCs) during therapy of acute relapses in multiple sclerosis (MS) leads to long-term disability. We investigated the potential of vitamin D (VD) to enhance GC efficacy and the mechanisms underlying this VD/GC interaction. In vitro, GC receptor (GR) expression levels were quantified by ELISA and induction of T cell apoptosis served as a functional readout to assess synergistic 1,25(OH)2D3 (1,25D)/GC effects. Experimental autoimmune encephalomyelitis (MOG35-55 EAE) was induced in mice with T cell-specific GR or mTORc1 deficiency. 25(OH)D (25D) levels were determined in two independent cohorts of MS patients with stable disease or relapses either responsive or resistant to GC treatment (initial cohort: n = 110; validation cohort: n = 85). Gene expression of human CD8+ T cells was analyzed by microarray (n = 112) and correlated with 25D serum levels. In vitro, 1,25D upregulated GR protein levels, leading to increased GC-induced T cell apoptosis. 1,25D/GC combination therapy ameliorated clinical EAE course more efficiently than respective monotherapies, which was dependent on GR expression in T cells. In MS patients from two independent cohorts, 25D deficiency was associated with GC-resistant relapses. Mechanistic studies revealed that synergistic 1,25D/GC effects on apoptosis induction were mediated by the mTOR but not JNK pathway. In line, 1,25D inhibited mTORc1 activity in murine T cells, and low 25D levels in humans were associated with a reduced expression of mTORc1 inhibiting tuberous sclerosis complex 1 in CD8+ T cells. GR upregulation by 1,25D and 1,25D/GC synergism in vitro and therapeutic efficacy in vivo were abolished in animals with a T cell-specific mTORc1 deficiency. Specific inhibition of mTORc1 by everolimus increased the efficacy of GC in EAE. 1,25D augments GC-mediated effects in vitro and in vivo in a T cell-specific, GR-dependent manner via mTORc1 inhibition. These data may have implications for improvement of anti-inflammatory GC therapy.
Collapse
|
307
|
Tuffaha GO, Hatmal MM, Taha MO. Discovery of new JNK3 inhibitory chemotypes via QSAR-Guided selection of docking-based pharmacophores and comparison with other structure-based pharmacophore modeling methods. J Mol Graph Model 2019; 91:30-51. [PMID: 31158642 DOI: 10.1016/j.jmgm.2019.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
Abstract
The kinase c-Jun N-terminal Kinase 3 (JNK3) plays an important role in neurodegenerative diseases. JNK3 inhibitors have shown promising results in treating Alzheimer's and Parkinson's diseases. This prompted us to model this interesting target via three established structure-based computational workflows; namely, docking-based Comparative Intermolecular Contacts Analysis (db-CICA), pharmacophore modeling via molecular-dynamics based Ligand-Receptor Contact Analysis (md-LRCA), and QSAR-guided selection of crystallographic pharmacophores. Moreover, we compared the performances of resulting pharmacophores against binding models generated via a newly introduced technique, namely, QSAR-guided selection of docking-based pharmacophores. The resulting pharmacophores were validated by receiver operating characteristic (ROC) curve analysis and used as virtual search queries to screen the National Cancer Institute (NCI) database for promising anti-JNK3 hits of novel chemotypes. Eleven nanomolar and low micromolar hits were identified, three of which were captured by QSAR-guided docking-based pharmacophores.
Collapse
Affiliation(s)
- Ghada Omar Tuffaha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
308
|
Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer's disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci 2019; 30:9-30. [PMID: 29804103 DOI: 10.1515/revneuro-2018-0008] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
A myriad of environmental and genetic factors, as well as the physiologic process of aging, contribute to Alzheimer's disease (AD) pathology. Neuroinflammation is and has been a focus of interest, as a common gateway for initiation of many of the underlying pathologies of AD. Amyloid beta (Aβ) toxicity, increasing RAGE expression, tau hyperphosphorylation, induction of apoptosis, and deregulated autophagy are among other mechanisms, partly entangled and being explained by activation of mitogen-activated protein kinase (MAPK) and MAPK signaling. p38 MAPK is the most essential regulator of Aβ induced toxicity from this family. p38 induces NF-κB activation, glutamate excitotoxicity, and disruption of synaptic plasticity, which are other implications of all justifying the p38 MAPK as a potential target to break the vicious Aβ toxicity cycle. Until recently, many in vivo and in vitro studies have investigated the effects of p38 MAPK inhibitors in AD. The pyridinyl imidazole compounds SB202190 and SB203580 have shown promising anti-apoptotic results in vivo. MW108 inhibits activation of p38 and is able to postpone cognitive decline in animal models. The PD169316, with anti-inflammatory, anti-oxidative, and anti-apoptotic features, has improved spatial memory in vivo. Natural compounds from Camellia sinensis (green tea), polyphenols from olive oil, pinocembrin from propolis, and the puerarine extract isoflavones, have shown strong anti-apoptotic features, mediated by p38 MAPK inhibition. Use of these drug targets is limited due to central nervous system side effects or cross-reactivity with other kinases, predicting the low efficacy of these drugs in clinical trials.
Collapse
Affiliation(s)
- Ghazaleh Kheiri
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Mahsa Dolatshahi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Nima Rezaei
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| |
Collapse
|
309
|
JNK1 Induces Notch1 Expression to Regulate Genes Governing Photoreceptor Production. Cells 2019; 8:cells8090970. [PMID: 31450635 PMCID: PMC6769813 DOI: 10.3390/cells8090970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
c-Jun N-terminal kinases (JNKs) regulate cell proliferation and differentiation via phosphorylating such transcription factors as c-Jun. The function of JNKs in retinogenesis remains to be elucidated. Here, we report that knocking out Jnk1, but not Jnk2, increased the number of photoreceptors, thus enhancing the electroretinogram (ERG) responses. Intriguingly, Notch1, a well-established negative regulator of photoreceptor genesis, was significantly attenuated in Jnk1 knockout (KO) mice compared to wild-type mice. Mechanistically, light specifically activated JNK1 to phosphorylate c-Jun, which in turn induced Notch1 transcription. The identified JNK1–c-Jun–Notch1 axis strongly inhibited photoreceptor-related transcriptional factor expression and ultimately impaired photoreceptor opsin expression. Our study uncovered an essential function of JNK1 in retinogenesis, revealing JNK1 as a potential candidate for targeting ophthalmic diseases.
Collapse
|
310
|
Jiang X, Kannan A, Gangwani L. ZPR1-Dependent Neurodegeneration Is Mediated by the JNK Signaling Pathway. J Exp Neurosci 2019; 13:1179069519867915. [PMID: 31488953 PMCID: PMC6709431 DOI: 10.1177/1179069519867915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 01/16/2023] Open
Abstract
The zinc finger protein ZPR1 deficiency causes neurodegeneration and results in a
mild spinal muscular atrophy (SMA)-like disease in mice with reduced
Zpr1 gene dosage. Mutation of the survival motor
neuron 1 (SMN1) gene causes SMA. Spinal muscular
atrophy is characterized by the degeneration of the spinal cord motor neurons
caused by chronic low levels of SMN protein. ZPR1 interacts with SMN and is
required for nuclear accumulation of SMN. Patients with SMA express reduced
levels of ZPR1. Reduced Zpr1 gene dosage increases
neurodegeneration and severity of SMA disease in mice. Mechanisms underlying
ZPR1-dependent neurodegeneration are largely unknown. We report that
neurodegeneration caused by ZPR1 deficiency is mediated by the c-Jun
NH2-terminal kinase (JNK) group of mitogen-activated protein
kinases (MAPK). ZPR1-dependent neuron degeneration is mediated by central
nervous system (CNS)-specific isoform JNK3. ZPR1 deficiency activates the MAPK
signaling cascade, MLK3 → MKK7 → JNK3, which phosphorylates c-Jun and activates
caspase-mediated neuron degeneration. Neurons from Jnk3-null
mice show resistance to ZPR1-dependent neurodegeneration. Pharmacologic
inhibition of JNK reduces degeneration of ZPR1-deficient neurons. These data
show that ZPR1-dependent neurodegeneration is mediated by the JNK signaling
pathway and suggest that ZPR1 downregulation in SMA may contribute to
JNK-mediated neurodegeneration associated with SMA pathogenesis.
Collapse
Affiliation(s)
- Xiaoting Jiang
- Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Immunobiology, Houston Methodist Research Institute, Houston, TX, USA
| | - Annapoorna Kannan
- Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
311
|
Lertsooksawat W, Wongnoppavich A, Chairatvit K. Up-regulation of interferon-stimulated gene 15 and its conjugation machinery, UbE1L and UbcH8 expression by tumor necrosis factor-α through p38 MAPK and JNK signaling pathways in human lung carcinoma. Mol Cell Biochem 2019; 462:51-59. [PMID: 31428903 DOI: 10.1007/s11010-019-03609-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/10/2019] [Indexed: 11/30/2022]
Abstract
Interferon-stimulated gene 15 (ISG15) is a member of the family of ubiquitin-like proteins. Similar to ubiquitin, conjugation of ISG15 to cellular proteins requires cascade reactions catalyzed by at least 2 enzymes, UbE1L and UbcH8. Expression of ISG15 and its conjugates is up-regulated in many cancer cells, yet the underlying mechanism of up-regulation is still unclear. In this study, we showed that TNF-α, similar to the response by IFN-β, could directly induce expression of ISG15 and its conjugation machinery, UbE1L and UbcH8, in human lung carcinoma, A549. The early response of their expression was effectively blocked by specific inhibitors of p38 MAPK (SB202190) and JNK (SP600125), but not by B18R, a soluble type-I IFN receptor. In addition, luciferase reporter assay together with serial deletions and site-directed mutagenesis identified a putative C/EBPβ binding element in the ISG15 promoter, which is necessary to the response by TNF-α. Taken together, expression of ISG15 and ISG15 conjugation machinery in cancer cells is directly up-regulated by TNF-α via p38 MAPK and JNK pathways through the activation of C/EBPβ binding element in the ISG15 promoter. This study provides a new insight toward understanding the molecular mechanism of ISG15 system and inflammatory response in cancer progression.
Collapse
Affiliation(s)
- Wannee Lertsooksawat
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.,Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Kongthawat Chairatvit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
312
|
Rak AY, Trofimov AV, Ischenko AM. Anti-mullerian hormone receptor type II as a Potential Target for Antineoplastic Therapy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819030053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
313
|
Influence of signaling kinases on functional dynamics of nuclear receptor CAR. Mol Cell Biochem 2019; 461:127-139. [PMID: 31352609 DOI: 10.1007/s11010-019-03596-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Constitutive androstane receptor (CAR) is a xenobiotic nuclear receptor known to regulate genes involved in key physiological processes like drug metabolism, maintenance of energy homeostasis, and cell proliferation. Owing to the diverse regulatory roles played by the receptor, it is critical to understand the precise cellular signals that dictate functional dynamics of CAR. With the objective of exploring the hitherto unknown regulatory pathways modulating CAR, we subjected the CAR protein sequence to a kinase prediction tool and identified several kinases recognizing CAR as a substrate. Using fluorescence live cell imaging and specific inhibitors it was observed that CAR functions under the regulation of mitogen-activated protein kinase (MAPK) and glycogen synthase kinase 3 (GSK3) signaling cascade. Additionally, insulin-like growth factor 1 (IGF1)-mediated inhibition of GSK3 also induced nuclear translocation of CAR linking CAR to the Akt signaling pathway. Identification of T38 residue of CAR as the GSK3 target site further substantiated our observations. Taking cues from these findings, we propose a hypothetical model elucidating the GSK3-mediated regulation of CAR dynamics through the involvement of Akt pathway. Further research into this area is expected to provide novel therapeutic targets in disease conditions like type 2 diabetes and hepatocellular carcinoma.
Collapse
|
314
|
Stanilova SA, Grigorov BG, Platikanova MS, Dobreva ZG. Effect of a Small Selective Inhibitor of C-Jun N-Terminal Kinase on the Inducible mRNA Expression of Interleukin-6 and Interleukin-18. Open Access Maced J Med Sci 2019; 7:2062-2067. [PMID: 31456826 PMCID: PMC6698100 DOI: 10.3889/oamjms.2019.567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND: The expression of many inducible genes, involved in cell growth and differentiation as cytokine genes are regulated by receptor-activated intracellular signalling pathways, including the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase pathway. AIM: We examined the involvement of the JNK signalling pathway in the regulation of the inducible interleukin-6 (IL-6) and interleukin-18 (IL-18) gene expression at the transcriptional level. METHODS: Peripheral blood mononuclear cells (PBMC) from healthy donors were stimulated with lipopolysaccharide (LPS) and C3 binding glycoprotein (C3bgp) with or without SP600125 and cultured for 6 h. After mRNA isolation, a qRT-PCR was performed. RESULTS: Regarding IL-6 and IL-18 mRNA expression, donors were divided into two groups of high and low responders. SP600125 inhibited significantly IL-6 mRNA transcription in the high responder group and did not influence the transcription level in the low responder group. Concerning IL-18 mRNA, we detect the significant effect of SP600125 on the inducible mRNA in high responder group upon C3bgp stimulation. CONCLUSION: JNK transduction pathway is involved in the production of IL-6 mRNA, after LPS and C3bgp stimulation. We suggest that the inhibition of JNK may be beneficial only for higher responding patients during the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Spaska A Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Boncho G Grigorov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Magdalena S Platikanova
- Department of Hygiene, Infectious Diseases and Epidemiology, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Zlatka G Dobreva
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
315
|
Dou X, Huang H, Li Y, Jiang L, Wang Y, Jin H, Jiao N, Zhang L, Zhang L, Liu Z. Multistage Screening Reveals 3-Substituted Indolin-2-one Derivatives as Novel and Isoform-Selective c-Jun N-terminal Kinase 3 (JNK3) Inhibitors: Implications to Drug Discovery for Potential Treatment of Neurodegenerative Diseases. J Med Chem 2019; 62:6645-6664. [DOI: 10.1021/acs.jmedchem.9b00537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huixia Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yibo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lan Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanxing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
316
|
Rak AY, Trofimov AV, Ischenko AM. [Mullerian inhibiting substance type II receptor as a potential target for antineoplastic therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:202-213. [PMID: 31258143 DOI: 10.18097/pbmc20196503202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers properties of the type II anti-Mullerian hormone receptor (mullerian inhibiting substance receptor type II, MISRII), a transmembrane sensor with its own serine/threonine protein kinase activity, triggering apoptosis of the Mullerian ducts in mammalian embryogenesis and providing formation of the male type reproductive system. According to recent data, MISRII overexpression in the postnatal period is found in cells of a number of ovarian, mammary gland, and prostate tumors, and anti-Mullerian hormone (AMH) has a pro-apoptotic effect on MISRII-positive tumor cells. This fact makes MISRII a potential target for targeted anti-cancer therapy. Treatment based on targeting MISRII seems to be a much more effective alternative to the traditional one and will significantly reduce the drug dose. However, the mechanism of MISRII-AMH interaction is still poorly understood, so the development of new anticancer drugs is complicated. The review analyzes MISRII molecular structure and expression levels in various tissues and cell lines, as well as current understanding of the AMH binding mechanisms and data on the possibility of using MISRII as a target for the action of AMH-based antineoplastic drugs.
Collapse
Affiliation(s)
- A Ya Rak
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Saint-Petersburg State University, Saint-Petersburg, Russia
| | - A V Trofimov
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia
| | - A M Ischenko
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia
| |
Collapse
|
317
|
Wang F, Tarkkonen K, Nieminen‐Pihala V, Nagano K, Majidi RA, Puolakkainen T, Rummukainen P, Lehto J, Roivainen A, Zhang F, Mäkitie O, Baron R, Kiviranta R. Mesenchymal Cell-Derived Juxtacrine Wnt1 Signaling Regulates Osteoblast Activity and Osteoclast Differentiation. J Bone Miner Res 2019; 34:1129-1142. [PMID: 30690791 PMCID: PMC6850336 DOI: 10.1002/jbmr.3680] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
Human genetic evidence demonstrates that WNT1 mutations cause osteogenesis imperfecta (OI) and early-onset osteoporosis, implicating WNT1 as a major regulator of bone metabolism. However, its main cellular source and mechanisms of action in bone remain elusive. We generated global and limb bud mesenchymal cell-targeted deletion of Wnt1 in mice. Heterozygous deletion of Wnt1 resulted in mild trabecular osteopenia due to decreased osteoblast function. Targeted deletion of Wnt1 in mesenchymal progenitors led to spontaneous fractures due to impaired osteoblast function and increased bone resorption, mimicking the severe OI phenotype in humans with homozygous WNT1 mutations. Importantly, we showed for the first time that Wnt1 signals strictly in a juxtacrine manner to induce osteoblast differentiation and to suppress osteoclastogenesis, in part via canonical Wnt signaling. In conclusion, mesenchymal cell-derived Wnt1, acting in short range, is an essential regulator of bone homeostasis and an intriguing target for therapeutic interventions for bone diseases. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fan Wang
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | | | | | - Kenichi Nagano
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineHarvard UniversityBostonMAUSA
| | | | | | | | - Jemina Lehto
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Anne Roivainen
- Turku PET CentreUniversity of TurkuTurkuFinland
- Turku Center for Disease Modeling (TCDM)University of TurkuTurkuFinland
| | - Fu‐Ping Zhang
- Turku Center for Disease Modeling (TCDM)University of TurkuTurkuFinland
| | - Outi Mäkitie
- Folkhälsan Institute of GeneticsHelsinkiFinland
- Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineHarvard UniversityBostonMAUSA
| | - Riku Kiviranta
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Department of Endocrinology, Division of MedicineUniversity of Turku and Turku University HospitalTurkuFinland
| |
Collapse
|
318
|
Thr55 phosphorylation of p21 by MPK38/MELK ameliorates defects in glucose, lipid, and energy metabolism in diet-induced obese mice. Cell Death Dis 2019; 10:380. [PMID: 31097688 PMCID: PMC6522503 DOI: 10.1038/s41419-019-1616-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 01/15/2023]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK), an AMP-activated protein kinase (AMPK)-related kinase, has previously been shown to interact with p53 and to stimulate downstream signaling. p21, a downstream target of p53, is also known to be involved in adipocyte and obesity metabolism. However, little is known about the mechanism by which p21 mediates obesity-associated metabolic adaptation. Here, we identify MPK38 as an interacting partner of p21. p21 and MPK38 interacted through the cyclin-dependent kinase (CDK) binding region of p21 and the C-terminal domain of MPK38. MPK38 potentiated p21-mediated apoptosis and cell cycle arrest in a kinase-dependent manner by inhibiting assembly of CDK2-cyclin E and CDK4-cyclin D complexes via induction of CDK2-p21 and CDK4-p21 complex formation and reductions in complex formation between p21 and its negative regulator mouse double minute 2 (MDM2), leading to p21 stabilization. MPK38 phosphorylated p21 at Thr55, stimulating its nuclear translocation, which resulted in greater association of p21 with peroxisome proliferator-activated receptor γ (PPARγ), preventing the PPARγ transactivation required for adipogenesis. Furthermore, restoration of p21 expression by adenoviral delivery in diet-induced obese mice ameliorated obesity-induced metabolic abnormalities in a MPK38 phosphorylation-dependent manner. These results suggest that MPK38 functions as a positive regulator of p21, regulating apoptosis, cell cycle arrest, and metabolism during obesity.
Collapse
|
319
|
JNK 1/2 represses Lkb 1-deficiency-induced lung squamous cell carcinoma progression. Nat Commun 2019; 10:2148. [PMID: 31089135 PMCID: PMC6517592 DOI: 10.1038/s41467-019-09843-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanisms of lung squamous cell carcinoma (LSCC) development are poorly understood. Here, we report that JNK1/2 activities attenuate Lkb1-deficiency-driven LSCC initiation and progression through repressing ΔNp63 signaling. In vivo Lkb1 ablation alone is sufficient to induce LSCC development by reducing MKK7 levels and JNK1/2 activities, independent of the AMPKα and mTOR pathways. JNK1/2 activities is positively regulated by MKK7 during LSCC development. Pharmaceutically elevated JNK1/2 activities abates Lkb1 dependent LSCC formation while compound mutations of Jnk1/2 and Lkb1 further accelerate LSCC progression. JNK1/2 is inactivated in a substantial proportion of human LSCC and JNK1/2 activities positively correlates with survival rates of lung, cervical and head and neck squamous cell carcinoma patients. These findings not only determine a suppressive role of the stress response regulators JNK1/2 on LSCC development by acting downstream of the key LSCC suppresser Lkb1, but also demonstrate activating JNK1/2 activities as a therapeutic approach against LSCC. LKB1 is frequently mutated in lung squamous cell carcinomas. Here, the authors show that sole LKB1 depletion is sufficient to drive the development of this cancer, where downstream defective MKK7-JNK1/2 signalling activates the ∆Np63/p63 pathway to induce subsequent epithelial cells transformation and tumour progression.
Collapse
|
320
|
Darini C, Ghaddar N, Chabot C, Assaker G, Sabri S, Wang S, Krishnamoorthy J, Buchanan M, Aguilar-Mahecha A, Abdulkarim B, Deschenes J, Torres J, Ursini-Siegel J, Basik M, Koromilas AE. An integrated stress response via PKR suppresses HER2+ cancers and improves trastuzumab therapy. Nat Commun 2019; 10:2139. [PMID: 31086176 PMCID: PMC6513990 DOI: 10.1038/s41467-019-10138-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Trastuzumab is integral to HER2+ cancer treatment, but its therapeutic index is narrowed by the development of resistance. Phosphorylation of the translation initiation factor eIF2α (eIF2α-P) is the nodal point of the integrated stress response, which promotes survival or death in a context-dependent manner. Here, we show an anti-tumor function of the protein kinase PKR and its substrate eIF2α in a mouse HER2+ breast cancer model. The anti-tumor function depends on the transcription factor ATF4, which upregulates the CDK inhibitor P21CIP1 and activates JNK1/2. The PKR/eIF2α-P arm is induced by Trastuzumab in sensitive but not resistant HER2+ breast tumors. Also, eIF2α-P stimulation by the phosphatase inhibitor SAL003 substantially increases Trastuzumab potency in resistant HER2+ breast and gastric tumors. Increased eIF2α-P prognosticates a better response of HER2+ metastatic breast cancer patients to Trastuzumab therapy. Hence, the PKR/eIF2α-P arm antagonizes HER2 tumorigenesis whereas its pharmacological stimulation improves the efficacy of Trastuzumab therapy. The HER2 monoclonal antibody, Trastuzumab, is the current standard treatment for HER2+ cancers but resistance to therapy occurs. Here, the authors show that activation of the PKR/eIF2α-P pathway exhibits anti-tumor effects in HER2+ cancer and is required for the response to Trastuzumab.
Collapse
Affiliation(s)
- Cedric Darini
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Nour Ghaddar
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Catherine Chabot
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Gloria Assaker
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada.,Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Siham Sabri
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada.,Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Shuo Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Jothilatha Krishnamoorthy
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Marguerite Buchanan
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Bassam Abdulkarim
- Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Jean Deschenes
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jose Torres
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Mark Basik
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Antonis E Koromilas
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada. .,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada.
| |
Collapse
|
321
|
Feng C, Thyagarajan P, Shorey M, Seebold DY, Weiner AT, Albertson RM, Rao KS, Sagasti A, Goetschius DJ, Rolls MM. Patronin-mediated minus end growth is required for dendritic microtubule polarity. J Cell Biol 2019; 218:2309-2328. [PMID: 31076454 PMCID: PMC6605808 DOI: 10.1083/jcb.201810155] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Feng et al. describe persistent neuronal microtubule minus end growth that depends on the CAMSAP protein Patronin and is needed for dendritic minus-end-out polarity. Microtubule minus ends are thought to be stable in cells. Surprisingly, in Drosophila and zebrafish neurons, we observed persistent minus end growth, with runs lasting over 10 min. In Drosophila, extended minus end growth depended on Patronin, and Patronin reduction disrupted dendritic minus-end-out polarity. In fly dendrites, microtubule nucleation sites localize at dendrite branch points. Therefore, we hypothesized minus end growth might be particularly important beyond branch points. Distal dendrites have mixed polarity, and reduction of Patronin lowered the number of minus-end-out microtubules. More strikingly, extra Patronin made terminal dendrites almost completely minus-end-out, indicating low Patronin normally limits minus-end-out microtubules. To determine whether minus end growth populated new dendrites with microtubules, we analyzed dendrite development and regeneration. Minus ends extended into growing dendrites in the presence of Patronin. In sum, our data suggest that Patronin facilitates sustained microtubule minus end growth, which is critical for populating dendrites with minus-end-out microtubules.
Collapse
Affiliation(s)
- Chengye Feng
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Pankajam Thyagarajan
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Dylan Y Seebold
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alexis T Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Richard M Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Kavitha S Rao
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alvaro Sagasti
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Daniel J Goetschius
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
322
|
Blum AE, Venkitachalam S, Ravillah D, Chelluboyina AK, Kieber-Emmons AM, Ravi L, Kresak A, Chandar AK, Markowitz SD, Canto MI, Wang JS, Shaheen NJ, Guo Y, Shyr Y, Willis JE, Chak A, Varadan V, Guda K. Systems Biology Analyses Show Hyperactivation of Transforming Growth Factor-β and JNK Signaling Pathways in Esophageal Cancer. Gastroenterology 2019; 156:1761-1774. [PMID: 30768984 PMCID: PMC6701681 DOI: 10.1053/j.gastro.2019.01.263] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/27/2018] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Esophageal adenocarcinoma (EAC) is resistant to standard chemoradiation treatments, and few targeted therapies are available. We used large-scale tissue profiling and pharmacogenetic analyses to identify deregulated signaling pathways in EAC tissues that might be targeted to slow tumor growth or progression. METHODS We collected 397 biopsy specimens from patients with EAC and nonmalignant Barrett's esophagus (BE), with or without dysplasia. We performed RNA-sequencing analyses and used systems biology approaches to identify pathways that are differentially activated in EAC vs nonmalignant dysplastic tissues; pathway activities were confirmed with immunohistochemistry and quantitative real-time polymerase chain reaction analyses of signaling components in patient tissue samples. Human EAC (FLO-1 and EsoAd1), dysplastic BE (CP-B, CP-C, CP-D), and nondysplastic BE (CP-A) cells were incubated with pharmacologic inhibitors or transfected with small interfering RNAs. We measured effects on proliferation, colony formation, migration, and/or growth of xenograft tumors in nude mice. RESULTS Comparisons of EAC vs nondysplastic BE tissues showed hyperactivation of transforming growth factor-β (TGFB) and/or Jun N-terminal kinase (JNK) signaling pathways in more than 80% of EAC samples. Immunohistochemical analyses showed increased nuclear localization of phosphorylated JUN and SMAD proteins in EAC tumor tissues compared with nonmalignant tissues. Genes regulated by the TGFB and JNK pathway were overexpressed specifically in EAC and dysplastic BE. Pharmacologic inhibition or knockdown of TGFB or JNK signaling components in EAC cells (FLO-1 or EsoAd1) significantly reduced cell proliferation, colony formation, cell migration, and/or growth of xenograft tumors in mice in a SMAD4-independent manner. Inhibition of the TGFB pathway in BE cell lines reduced the proliferation of dysplastic, but not nondysplastic, cells. CONCLUSIONS In a transcriptome analysis of EAC and nondysplastic BE tissues, we found the TGFB and JNK signaling pathways to be hyperactivated in EACs and the genes regulated by these pathways to be overexpressed in EAC and dysplastic BE. Inhibiting these pathways in EAC cells reduces their proliferation, migration, and formation of xenograft tumors. Strategies to block the TGFB and JNK signaling pathways might be developed for treatment of EAC.
Collapse
Affiliation(s)
- Andrew E. Blum
- Division of Gastroenterology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A,University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Srividya Venkitachalam
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Durgadevi Ravillah
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Aruna K. Chelluboyina
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Ann Marie Kieber-Emmons
- Division of Gastroenterology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A,University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Lakshmeswari Ravi
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Adam Kresak
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Apoorva K. Chandar
- Division of Gastroenterology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A,University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Sanford D. Markowitz
- University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A,Division of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Marcia I. Canto
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD-21205 U.S.A
| | - Jean S. Wang
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, M0-63110 U.S.A
| | - Nicholas J. Shaheen
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC-27599 U.S.A
| | - Yan Guo
- Center for Quantitative Sciences, Vanderbilt Ingram Cancer Center, Nashville, TN-37232 U.S.A
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt Ingram Cancer Center, Nashville, TN-37232 U.S.A
| | - Joseph E. Willis
- University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Amitabh Chak
- Division of Gastroenterology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A,University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Vinay Varadan
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
323
|
Amaegberi NV, Semenkova GN, Kvacheva ZB, Lisovskaya AG, Pinchuk SV, Shadyro OI. 2‐Hexadecenal
inhibits growth of
C6
glioma cells. Cell Biochem Funct 2019; 37:281-289. [DOI: 10.1002/cbf.3400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Nadezda V. Amaegberi
- Faculty of Chemistry, Department of Radiation Chemistry and Chemical‐Pharmaceutical TechnologiesBelarusian State University Minsk Belarus
| | - Galina N. Semenkova
- Faculty of Chemistry, Department of Radiation Chemistry and Chemical‐Pharmaceutical TechnologiesBelarusian State University Minsk Belarus
| | - Zinaida B. Kvacheva
- Institute of Biophysics and Cell Engineering of NAS of Belarus Minsk Belarus
| | - Alexandra G. Lisovskaya
- Faculty of Chemistry, Department of Radiation Chemistry and Chemical‐Pharmaceutical TechnologiesBelarusian State University Minsk Belarus
| | - Serge V. Pinchuk
- Institute of Biophysics and Cell Engineering of NAS of Belarus Minsk Belarus
| | - Oleg I. Shadyro
- Faculty of Chemistry, Department of Radiation Chemistry and Chemical‐Pharmaceutical TechnologiesBelarusian State University Minsk Belarus
| |
Collapse
|
324
|
Hein TW, Xu X, Ren Y, Xu W, Tsai SH, Thengchaisri N, Kuo L. Requisite roles of LOX-1, JNK, and arginase in diabetes-induced endothelial vasodilator dysfunction of porcine coronary arterioles. J Mol Cell Cardiol 2019; 131:82-90. [PMID: 31015037 DOI: 10.1016/j.yjmcc.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
Diabetes is associated with cardiac inflammation and impaired endothelium-dependent coronary vasodilation, but molecular mechanisms involved in this dysfunction remain unclear. We examined contributions of inflammatory molecules lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), stress-activated kinases (c-Jun N-terminal kinase [JNK] and p38), arginase, and reactive oxygen species to coronary arteriolar dysfunction in a porcine model of type 1 diabetes. Coronary arterioles were isolated from streptozocin-induced diabetic pigs and control pigs for vasoreactivity and molecular/biochemical studies. Endothelium-dependent nitric oxide (NO)-mediated vasodilation to serotonin was diminished after 2 weeks of diabetes, without altering endothelium-independent vasodilation to sodium nitroprusside. Superoxide scavenger TEMPOL, NO precursor L-arginine, arginase inhibitor nor-NOHA, anti-LOX-1 antibody or JNK inhibitors SP600125 and BI-78D3 improved dilation of diabetic vessels to serotonin. However, hydrogen peroxide scavenger catalase, anti-IgG antibody or p38 kinase inhibitor SB203580 had no effect. Combined inhibition of arginase and superoxide levels did not further improve vasodilation. Arginase-I mRNA expression, LOX-1 and JNK protein expression, and superoxide levels were elevated in diabetic arterioles. In conclusion, sequential activation of LOX-1, JNK, and L-arginine consuming enzyme arginase-I in diabetes elicits superoxide-dependent oxidative stress and impairs endothelial NO-mediated dilation in coronary arterioles. Therapeutic targeting of these adverse vascular molecules may improve coronary arteriolar function during diabetes.
Collapse
Affiliation(s)
- Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States.
| | - Xin Xu
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| | - Yi Ren
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| | - Wenjuan Xu
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| | - Shu-Huai Tsai
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| | - Naris Thengchaisri
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| |
Collapse
|
325
|
Escudero CA, Cabeza C, Moya-Alvarado G, Maloney MT, Flores CM, Wu C, Court FA, Mobley WC, Bronfman FC. c-Jun N-terminal kinase (JNK)-dependent internalization and Rab5-dependent endocytic sorting mediate long-distance retrograde neuronal death induced by axonal BDNF-p75 signaling. Sci Rep 2019; 9:6070. [PMID: 30988348 PMCID: PMC6465280 DOI: 10.1038/s41598-019-42420-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/25/2019] [Indexed: 02/01/2023] Open
Abstract
During the development of the sympathetic nervous system, signals from tropomyosin-related kinase receptors (Trks) and p75 neurotrophin receptors (p75) compete to regulate survival and connectivity. During this process, nerve growth factor (NGF)- TrkA signaling in axons communicates NGF-mediated trophic responses in signaling endosomes. Whether axonal p75 signaling contributes to neuronal death and how signaling endosomes contribute to p75 signaling has not been established. Using compartmentalized sympathetic neuronal cultures (CSCGs) as a model, we observed that the addition of BDNF to axons increased the transport of p75 and induced death of sympathetic neurons in a dynein-dependent manner. In cell bodies, internalization of p75 required the activity of JNK, a downstream kinase mediating p75 death signaling in neurons. Additionally, the activity of Rab5, the key GTPase regulating early endosomes, was required for p75 death signaling. In axons, JNK and Rab5 were required for retrograde transport and death signaling mediated by axonal BDNF-p75 in CSCGs. JNK was also required for the proper axonal transport of p75-positive endosomes. Thus, our findings provide evidence that the activation of JNK by p75 in cell bodies and axons is required for internalization to a Rab5-positive signaling endosome and the further propagation of p75-dependent neuronal death signals.
Collapse
Affiliation(s)
- C A Escudero
- Center for Aging and Regeneration (CARE UC) and Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Cabeza
- Center for Aging and Regeneration (CARE UC) and Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Cellular and Integrative Physiology, Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - G Moya-Alvarado
- Center for Aging and Regeneration (CARE UC) and Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M T Maloney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - C M Flores
- Center for Aging and Regeneration (CARE UC) and Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, California, 92093, USA
| | - F A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile and FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - W C Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, California, 92093, USA
| | - F C Bronfman
- Center for Aging and Regeneration (CARE UC) and Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
326
|
Gao T, Zhao P, Yu X, Cao S, Zhang B, Dai M. Use of Saikosaponin D and JNK inhibitor SP600125, alone or in combination, inhibits malignant properties of human osteosarcoma U2 cells. Am J Transl Res 2019; 11:2070-2080. [PMID: 31105818 PMCID: PMC6511790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Saikosaponin D (Ssd) is a major active ingredient derived from the traditional Chinese medicinal herb Bupleurum falcatum, and SP600125 is a specific inhibitor of JNK that competes with adenosine triphosphate. In this study, we co-analyzed cell proliferation, apoptosis, migration, and invasion in U-2OS osteosarcoma cells treated with Ssd and SP600125 alone or in combination. Cell death and signaling were analyzed using western blotting and flow cytometry. We observed dramatic inhibition of cellular proliferation, invasion, and migration in cells treated with Ssd alone or in combination with SP600125. Ssd, alone or in combination with SP600125, enhanced Cytochrome C release, increased the Bax/Bcl-2 ratio, and activated caspase-3, -8 and -9, indicating that cellular apoptosis was induced via both the mitochondrial and death receptor pathways. The effect of SP600125 alone on U2 cells was not significant. Additional evaluation of Mcl-1, Akt, p-Akt, ERK, and p-ERK supported an anti-tumor effect of Ssd, which was enhanced in combination with SP600125. This study provides a theoretical basis for the treatment of osteosarcoma with Ssd alone or in combination with SP600125.
Collapse
Affiliation(s)
- Tian Gao
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, P. R. China
| | - Ping Zhao
- Medical School of Nanchang UniversityNanchang 330006, P. R. China
| | - Xiaolong Yu
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, P. R. China
| | - Suixia Cao
- Medical School of Nanchang UniversityNanchang 330006, P. R. China
| | - Bin Zhang
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, P. R. China
| | - Min Dai
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, P. R. China
| |
Collapse
|
327
|
Novel AU-rich proximal UTR sequences (APS) enhance CXCL8 synthesis upon the induction of rpS6 phosphorylation. PLoS Genet 2019; 15:e1008077. [PMID: 30969964 PMCID: PMC6476525 DOI: 10.1371/journal.pgen.1008077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 04/22/2019] [Accepted: 03/09/2019] [Indexed: 11/19/2022] Open
Abstract
The role of ribosomal protein S6 (rpS6) phosphorylation in mRNA translation remains poorly understood. Here, we reveal a potential role in modulating the translation rate of chemokine (C-X-C motif) ligand 8 (CXCL8 or Interleukin 8, IL8). We observed that more CXCL8 protein was being secreted from less CXCL8 mRNA in primary macrophages and macrophage-like HL-60 cells relative to other cell types. This correlated with an increase in CXCL8 polyribosome association, suggesting an increase in the rate of CXCL8 translation in macrophages. The cell type-specific expression levels were replicated by a CXCL8- UTR-reporter (Nanoluc reporter flanked by the 5' and 3' UTR of CXCL8). Mutations of the CXCL8-UTR-reporter revealed that cell type-specific expression required: 1) a 3' UTR of at least three hundred bases; and 2) an AU base content that exceeds fifty percent in the first hundred bases of the 3' UTR immediately after the stop codon, which we dub AU-rich proximal UTR sequences (APS). The 5' UTR of CXCL8 enhanced expression at the protein level and conferred cell type-specific expression when paired with a 3' UTR. A search for other APS-positive mRNAs uncovered TNF alpha induced protein 6 (TNFAIP6), another mRNA that was translationally upregulated in macrophages. The elevated translation of APS-positive mRNAs in macrophages coincided with elevated rpS6 S235/236 phosphorylation. Both were attenuated by the ERK1/2 signaling inhibitors, U0126 and AZD6244. In A549 cells, rpS6 S235/236 phosphorylation was induced by TAK1, Akt or PKA signaling. This enhanced the translation of the CXCL8-UTR-reporters. Thus, we propose that the induction of rpS6 S235/236 phosphorylation enhances the translation of mRNAs that contain APS motifs, such as CXCL8 and TNFAIP6. This may contribute to the role of macrophages as the primary producer of CXCL8, a cytokine that is essential for immune cell recruitment and activation.
Collapse
|
328
|
Kim W, Tokuda H, Kawabata T, Fujita K, Sakai G, Nakashima D, Tachi J, Kuroyanagi G, Matsushima-Nishiwaki R, Tanabe K, Otsuka T, Iida H, Kozawa O. Enhancement by HSP90 inhibitor of PGD2-stimulated HSP27 induction in osteoblasts: Suppression of SAPK/JNK and p38 MAP kinase. Prostaglandins Other Lipid Mediat 2019; 143:106327. [PMID: 30946899 DOI: 10.1016/j.prostaglandins.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 02/01/2019] [Accepted: 03/14/2019] [Indexed: 11/26/2022]
Abstract
Heat shock protein (HSP) 90 that is ubiquitously expressed in various tissues is a major molecular chaperone. We have previously demonstrated that prostaglandin D2 (PGD2), a bone remodeling factor, elicits the expression of HSP27, a small HSP, through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of HSP90 in the PGD2-stimulated HSP27 induction and the underlying mechanism in MC3T3-E1 cells. Onalespib, an inhibitor of HSP90, significantly enhanced the PGD2-stimulated HSP27 induction. In addition, geldanamycin, another HSP90 inhibitor, potentiated the HSP27 induction. Both onalespib and geldanamycin markedly amplified the PGD2-induced phosphorylation of SAPK/JNK and p38 MAP kinase. SP600125, an inhibitor of SAPK/JNK, and SB203580, an inhibitor of p38 MAP kinase, suppressed the amplification by onalespib of the PGD2-stimulated HSP27 induction. These results strongly suggest that HSP90 plays a negative role in the HSP27 induction stimulated by PGD2 in osteoblasts, and that the inhibitory effect of HSP90 is mediated through the regulation of SAPK/JNK and p38 MAP kinase.
Collapse
Affiliation(s)
- Woo Kim
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Daiki Nakashima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Junko Tachi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Gen Kuroyanagi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|
329
|
Jeong MH, Park YJ, Kim HR, Chung KH. Polyhexamethylene guanidine phosphate-induced upregulation of MUC5AC via activation of the TLR-p38 MAPK and JNK axis. Chem Biol Interact 2019; 305:119-126. [PMID: 30935901 DOI: 10.1016/j.cbi.2019.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
Epidemiological and toxicological studies indicate that polyhexamethylene guanidine phosphate (PHMG-p) is a guanidine-based cationic disinfectant strongly associated with interstitial lung diseases. As individuals exposed to aerosolized PHMG-p complain of respiratory problems (asthma and rhinitis), whether PHMG-p can cause respiratory diseases other than interstitial fibrosis should be investigated. MUC5AC, the predominant mucin gene expressed in airways, is associated with obstructive respiratory disease pathogenesis. Therefore, in this study, we elucidated the relationship between PHMG-p and MUC5AC overexpression. First, in immunofluorescence studies, the bronchial epithelia of mice intratracheally administrated PHMG-p appeared to be sloughing and tethered by MUC5AC. Second, Calu-3 cells exposed to PHMG-p showed concentration-dependent increases in MUC5AC mRNA and protein expression. c-Jun N-terminal kinase (JNK), p38, and c-jun were phosphorylated in cells exposed to PHMG-p. SP600125 and SB203580, JNK and p38 inhibitors, respectively, reduced the upregulation of MUC5AC by PHMG-p in Calu-3 cells. When toll-like receptor (TLR)2, 4, and 6 were silenced, PHMG-p-induced JNK and p38 phosphorylation decreased. Furthermore, TLR2-, 4-, and 6-silenced cells showed reduced levels of MUC5AC mRNA and protein induced by PHMG-p, with TLR6 knockdown showing the greatest effect. In conclusion, PHMG-p induced MUC5AC overexpression via activation of the TLR-p38 MAPK and JNK axis.
Collapse
Affiliation(s)
- Mi Ho Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea.
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
330
|
Badarni M, Prasad M, Balaban N, Zorea J, Yegodayev KM, Joshua BZ, Dinur AB, Grénman R, Rotblat B, Cohen L, Elkabets M. Repression of AXL expression by AP-1/JNK blockage overcomes resistance to PI3Ka therapy. JCI Insight 2019; 5:125341. [PMID: 30860495 DOI: 10.1172/jci.insight.125341] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AXL overexpression is a common resistance mechanism to anti-cancer therapies, including the resistance to BYL719 (Alpelisib) - the p110α isoform specific inhibitor of phosphoinositide 3-kinase (PI3K) - in esophagus and head and neck squamous cell carcinoma (ESCC, HNSCC respectively). However, the mechanisms underlying AXL overexpression in resistance to BYL719 remain elusive. Here we demonstrated that the AP-1 transcription factors, c-JUN and c-FOS, regulate AXL overexpression in HNSCC and ESCC. The expression of AXL was correlated with that of c-JUN both in HNSCC patients and in HNSCC and ESCC cell lines. Silencing of c-JUN and c-FOS expression in tumor cells downregulated AXL expression and enhanced the sensitivity of human papilloma virus positive (HPVPos) and negative (HPVNeg) tumor cells to BYL719 in vitro. Blocking of the c-JUN N-terminal kinase (JNK) using SP600125 in combination with BYL719 showed a synergistic anti-proliferative effect in vitro, which was accompanied by AXL downregulation and potent inhibition of the mTOR pathway. In vivo, the BYL719-SP600125 drug combination led to the arrest of tumor growth in cell line-derived and patient-derived xenograft models, and in syngeneic head and neck murine cancer models. Collectively, our data suggests that JNK inhibition in combination with anti-PI3K therapy is a new therapeutic strategy that should be tested in HPVPos and HPVNeg HNSCC and ESCC patients.
Collapse
Affiliation(s)
- Mai Badarni
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noa Balaban
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia M Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ben-Zion Joshua
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otolaryngology - Head & Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Anat Bahat Dinur
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otolaryngology - Head & Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head & Neck Surgery, Turku University and Turku University Hospital, Turku, Finland
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, and.,The National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
331
|
Kim BR, Jeong YA, Jo MJ, Park SH, Na YJ, Kim JL, Jeong S, Yun HK, Kang S, Lee DH, Oh SC. Genipin Enhances the Therapeutic Effects of Oxaliplatin by Upregulating BIM in Colorectal Cancer. Mol Cancer Ther 2019; 18:751-761. [PMID: 30787174 DOI: 10.1158/1535-7163.mct-18-0196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/12/2018] [Accepted: 02/04/2019] [Indexed: 11/16/2022]
Abstract
Despite an increase in the survival rate of patients with cancer owing to the use of current chemotherapeutic agents, adverse effects of cancer therapies remain a concern. Combination therapies have been developed to increase efficacy, reduce adverse effects, and overcome drug resistance. Genipin is a natural product derived from Gardenia jasminoides, which has been associated with anti-inflammatory, anti-angiogenic, and anti-proliferative effects; hypertension; and anti-ischemic brain injuries. However, the enhancement of oxaliplatin sensitivity by genipin remains unexplored. Our study showed that a combination of genipin and oxaliplatin exerts synergistic antitumor effects in vitro and in vivo in colorectal cancer cell lines through the reactive oxygen species (ROS)/endoplasmic reticulum (ER) stress/BIM pathway. Importantly, the combination did not affect normal colon cells. BIM knockdown markedly inhibited apoptosis induced by the combination. In addition, genipin induced ROS by inhibiting superoxide dismutase 3 activity. These findings suggest that genipin may be a novel agent for increasing the sensitivity of oxaliplatin against colorectal cancer. The combination of oxaliplatin and genipin hold significant therapeutic potential with minimal adverse effects.
Collapse
Affiliation(s)
- Bo Ram Kim
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon A Jeong
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min Jee Jo
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong Hye Park
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoo Jin Na
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Lim Kim
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Jeong
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Kyeong Yun
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sanghee Kang
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dae-Hee Lee
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Sang Cheul Oh
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
332
|
Qian L, Pan S, Lee JS, Ge J, Li L, Yao SQ. Live-cell imaging and profiling of c-Jun N-terminal kinases using covalent inhibitor-derived probes. Chem Commun (Camb) 2019; 55:1092-1095. [PMID: 30620026 DOI: 10.1039/c8cc09558b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
c-Jun N-terminal kinases (JNKs) are involved in critical cellular functions. Herein, small-molecule JNK-targeting probes are reported based on a covalent inhibitor. Together with newly developed two-photon fluorescence Turn-ON reporters and chemoproteomic studies, we showed that some probes may be suitable for live-cell imaging and profiling of JNKs.
Collapse
Affiliation(s)
- Linghui Qian
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore. and Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Sijun Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Bio-Med Program of KIST-School UST, Korea Institute of Science & Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, South Korea
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
333
|
Dorris ER, Tazzyman SJ, Moylett J, Ramamoorthi N, Hackney J, Townsend M, Muthana M, Lewis MJ, Pitzalis C, Wilson AG. The Autoimmune Susceptibility Gene C5orf30 Regulates Macrophage-Mediated Resolution of Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 202:1069-1078. [PMID: 30659109 DOI: 10.4049/jimmunol.1801155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Genetic variants in C5orf30 have been associated with development of the autoimmune conditions primary biliary cirrhosis and rheumatoid arthritis. In rheumatoid arthritis, C5orf30 expression is cell-specific, with highest expression found in macrophages and synovial fibroblasts. C5orf30 is highly expressed in inflamed joints and is a negative regulator of tissue damage in a mouse model of inflammatory arthritis. Transcriptomic analysis from ultrasound-guided synovial biopsy of inflamed joints in a well characterized clinical cohort of newly diagnosed, disease-modifying antirheumatic drugs-naive rheumatoid arthritis patients was used to determine the clinical association of C5orf30 expression with disease activity. A combined molecular and computational biology approach was used to elucidate C5orf30 function in macrophages both in vitro and in vivo. Synovial expression of C5orf30 is inversely correlated with both clinical measures of rheumatoid arthritis disease activity and with synovial TNF mRNA expression. C5orf30 plays a role in regulating macrophage phenotype and is differentially turned over in inflammatory and anti-inflammatory macrophages. Inhibition of C5orf30 reduces wound healing/repair-associated functions of macrophages, reduces signaling required for resolution of inflammation, and decreases secretion of anti-inflammatory mediators. In an animal model of wound healing (zebrafish), C5orf30 inhibition increases the recruitment of macrophages to the wound site. Finally, we demonstrate that C5orf30 skews macrophage immunometabolism, demonstrating a mechanism for C5orf30-mediated immune regulation.
Collapse
Affiliation(s)
- Emma R Dorris
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland;
| | | | - John Moylett
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland
| | - Nandhini Ramamoorthi
- Biomarker Discovery OMNI, Genentech Research and Early Development, San Francisco, CA 94080; and
| | - Jason Hackney
- Biomarker Discovery OMNI, Genentech Research and Early Development, San Francisco, CA 94080; and
| | - Michael Townsend
- Biomarker Discovery OMNI, Genentech Research and Early Development, San Francisco, CA 94080; and
| | | | - Myles J Lewis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry and Barts Health National Health Service Trust, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry and Barts Health National Health Service Trust, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Anthony G Wilson
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland
| |
Collapse
|
334
|
Blanco-Pérez F, Goretzki A, Wolfheimer S, Schülke S. The vaccine adjuvant MPLA activates glycolytic metabolism in mouse mDC by a JNK-dependent activation of mTOR-signaling. Mol Immunol 2019; 106:159-169. [PMID: 30623816 DOI: 10.1016/j.molimm.2018.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 12/29/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The detoxified TLR4-ligand MPLA is a successfully used adjuvant in clinically approved vaccines. However, its capacity to activate glycolytic metabolism in mDC and the influence of MPLA-induced metabolic changes on cytokine secretion are unknown. AIM To analyze the capacity of MPLA to activate mDC metabolism and the mechanisms contributing to MPLA-induced metabolism activation and cytokine secretion. METHODS C57BL/6 bone-marrow-derived myeloid dendritic cells (mDCs) were stimulated with LPS or MPLA and analyzed for intracellular signaling, cytokine secretion, and metabolic state. mDC were pre-treated with rapamycin (mTOR-inhibitor), U0126, SP600125, SB202190 (MAPK kinase inhibitors), as well as dexamethasone (MAPK- and NFκB-inhibitor) and analyzed for MPLA-induced cytokine secretion and cell metabolic state. RESULTS Stimulation of mDCs with either LPS or MPLA resulted in a pronounced, mTOR-dependent activation of glucose metabolism characterized by induction of the Warburg Effect, increased glucose consumption from the culture medium, as well as release of LDH. Compared to LPS, MPLA induced significantly lower cytokine secretion. The activation of mDC metabolism was comparable between LPS- and MPLA-stimulated mDCs. The MPLA-induced cytokine secretion could be partially inhibited using mTOR-, MAP kinase-, and NFκB-inhibitors, whereas the activation of glucose metabolism was shown to depend on both mTOR- and JNK-signaling. SUMMARY The MPLA-induced activation of glycolytic metabolism in mouse mDC was shown to depend on a JNK-mediated activation of mTOR-signaling, while both MAPK- and NFB-signaling contributed to pro-inflammatory cytokine secretion. Understanding the mechanisms by which MPLA activates dendritic cells will both improve our understanding of its adjuvant properties and contribute to the future development and safe application of this promising adjuvant.
Collapse
Affiliation(s)
- Frank Blanco-Pérez
- Paul-Ehrlich-Institut, Vice President´s Research Group 1: Molecular Allergology, Langen, Germany
| | - Alexandra Goretzki
- Paul-Ehrlich-Institut, Vice President´s Research Group 1: Molecular Allergology, Langen, Germany
| | - Sonja Wolfheimer
- Paul-Ehrlich-Institut, Vice President´s Research Group 1: Molecular Allergology, Langen, Germany
| | - Stefan Schülke
- Paul-Ehrlich-Institut, Vice President´s Research Group 1: Molecular Allergology, Langen, Germany.
| |
Collapse
|
335
|
Temperoammonic Stimulation Depotentiates Schaffer Collateral LTP via p38 MAPK Downstream of Adenosine A1 Receptors. J Neurosci 2019; 39:1783-1792. [PMID: 30622168 DOI: 10.1523/jneurosci.1362-18.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 01/12/2023] Open
Abstract
We previously found that low-frequency stimulation of direct temperoammonic (TA) inputs to hippocampal area CA1 depotentiates previously established long-term potentiation in the Schaffer collateral (SC) pathway through complex signaling involving dopamine, endocannabinoids, neuregulin-1, GABA, and adenosine, with adenosine being the most distal modulator identified to date. In the present studies, we examined mechanisms contributing to the effects of adenosine in hippocampal slices from male albino rats. We found that extracellular conversion of ATP to adenosine via an ectonucleotidase contributes significantly to TA-mediated SC depotentiation and the depotentiation resulting from block of adenosine transport. Adenosine-mediated SC depotentiation does not involve activation of c-Jun N-terminal protein kinase, serine phosphatases, or nitric oxide synthase, unlike homosynaptic SC depotentiation. Rather, adenosine-induced depotentiation is inhibited by specific antagonists of p38 MAPK, but not by a structural analog that does not inhibit p38. Additionally, using antagonists with relative selectivity for p38 subtypes, it appears that TA-induced SC depotentiation most likely involves p38 MAPK β. These findings have implications for understanding the role of adenosine and other extrahippocampal and intrahippocampal modulators in regulating SC synaptic function and the contributions of these modulators to the cognitive dysfunction associated with neuropsychiatric illnesses.SIGNIFICANCE STATEMENT Low-frequency stimulation of temperoammonic (TA) inputs to stratum lacunosum moleculare of hippocampal area CA1 heterosynaptically depotentiates long-term potentiation of Schaffer collateral (SC) synapses. TA-induced SC depotentiation involves complex signaling including dopamine, endocannabinoids, GABA, and adenosine, with adenosine serving as the most downstream messenger in the cascade identified to date. The present results indicate that TA-induced depotentiation requires intact inputs from entorhinal cortex and that adenosine ultimately drives depotentiation via activation of p38 MAPK. These studies have implications for understanding the cognitive dysfunction of psychiatric illnesses and certain abused drugs.
Collapse
|
336
|
Mo Y, Fan Y, Fu W, Xu W, Chen S, Wen Y, Liu S, Peng L, Xiao Y. Acute immune stress improves cell resistance to chemical poison damage in SP600125-induced polyploidy of fish cells in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 84:656-663. [PMID: 30393156 DOI: 10.1016/j.fsi.2018.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Previous research has indicated that the small compound, SP600125, could induce polyploidy of fish cells, and has established a stable tetraploid cell line from diploid fish cells. In order to explore how fish cells maintain homeostasis under SP600125-stress in vitro, this study investigates impacts of SP600125-stress on intracellular pathways, as well as on regulation of the cellular homeostasis feedback in fish cells. Transcriptomes are obtained from the SP600125-treated cells. Compared with unigenes expressed in control group (crucial carp fin cells), a total of 2670 and 1846 unigenes are significantly upregulated and downregulated in these cells, respectively. Differentially expressed genes are found, which are involved in innate defense, inflammatory pathways and cell adhesion molecules-related pathways. The SP600125-stress enhances cell-mediated immunity, characterized by significantly increasing expression of multiple immune genes. These enhanced immune genes include the pro-inflammatory cytokines (IL-1β, TNF-ɑ, IL-6R), the adaptor signal transducers (STAT, IκBɑ), and the integrins (ɑ2β1, ɑMβ2). Furthermore, mitochondria are contributed to the cellular homeostasis regulation upon the SP600125-stress. The results show that acute inflammation is an adaptive and controlled response to the SP600125-stress, which is beneficial for alleviating toxicity by SP600125. They provide a potential way of breeding fish polyploidy induced by SP600125 in the future research.
Collapse
Affiliation(s)
- Yanxiu Mo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Basic Medical Science, Xiangnan University, Chenzhou, Hunan, 423000, PR China
| | - Yunpeng Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Shujuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Yuanhui Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China.
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China.
| |
Collapse
|
337
|
Deng Z, Yuan C, Yang J, Peng Y, Wang W, Wang Y, Gao W. Behavioral defects induced by chronic social defeat stress are protected by Momordica charantia polysaccharides via attenuation of JNK3/PI3K/AKT neuroinflammatory pathway. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:6. [PMID: 30788353 DOI: 10.21037/atm.2018.12.08] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The aim of this study was to evaluate the protective effects of Momordica charantia polysaccharides (MCP) on depressive-like behaviors. Methods The chronic social defeat stress (CSDS) mice model was used to evaluate the effects of MCP and their underlying mechanisms. Social interaction test (SIT), sucrose preference test (SPT), and tail suspension test (TST) were performed for behavioral assessments. Expression levels of inflammation mediators and phosphatidylinositol 3-kinase (PI3K) activity were determined using commercial ELISA kits. The expression of key proteins in the c-Jun N-terminal protein kinase (JNK3)/PI3K/protein kinase B (AKT) pathway were measured using western blot and RT-PCR. Results The results showed that chronic administration of MCP (100, 200, 400 mg/kg/day) significantly prevented depressive-like behaviors in CSDS mice as assessed by SIT, TST and SPT. Elevated levels of proinflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β)], and expression of JNK3, c-Jun, P-110β proteins were observed in the hippocampus of CSDS mice. Moreover, the activity of PI3K and phosphorylation level of AKT were reduced in the hippocampus of CSDS mice. Interestingly, the administration of MCP reversed these changes. Furthermore, the protective effects of MCP on CSDS mice were partly inhibited by the PI3K inhibitor, LY294002. Conclusions In conclusion, the protective effects of MCP against depressive-like behaviors in CSDS mice might be due to a reduction in neuroinflammation and the down-regulation of the JNK3/PI3K/AKT pathway in the hippocampus.
Collapse
Affiliation(s)
- Zhifang Deng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443000, China
| | - Cheng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Jian Yang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443000, China
| | - Yan Peng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443000, China
| | - Wei Wang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443000, China
| | - Yan Wang
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443000, China
| | - Wenqi Gao
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443000, China
| |
Collapse
|
338
|
Shen YH, Wang LY, Zhang BB, Hu QM, Wang P, He BQ, Bao GH, Liang JY, Wu FH. Ethyl Rosmarinate Protects High Glucose-Induced Injury in Human Endothelial Cells. Molecules 2018; 23:E3372. [PMID: 30572638 PMCID: PMC6321336 DOI: 10.3390/molecules23123372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Ethyl rosmarinate (RAE) is one of the active constituents from Clinopodium chinense (Benth.) O. Kuntze, which is used for diabetic treatment in Chinese folk medicine. In this study, we investigated the protective effect of RAE on high glucose-induced injury in endothelial cells and explored its underlying mechanisms. Our results showed that both RAE and rosmarinic acid (RA) increased cell viability, decreased the production of reactive oxygen species (ROS), and attenuated high glucose-induced endothelial cells apoptosis in a dose-dependent manner, as evidenced by Hochest staining, Annexin V⁻FITC/PI double staining, and caspase-3 activity. RAE and RA both elevated Bcl-2 expression and reduced Bax expression, according to Western blot. We also found that LY294002 (phosphatidylinositol 3-kinase, or PI3K inhibitor) weakened the protective effect of RAE. In addition, PDTC (nuclear factor-κB, or NF-κB inhibitor) and SP600125 (c-Jun N-terminal kinase, or JNK inhibitor) could inhibit the apoptosis in endothelial cells caused by high glucose. Further, we demonstrated that RAE activated Akt, and the molecular docking analysis predicted that RAE showed more affinity with Akt than RA. Moreover, we found that RAE inhibited the activation of NF-κB and JNK. These results suggested that RAE protected endothelial cells from high glucose-induced apoptosis by alleviating reactive oxygen species (ROS) generation, and regulating the PI3K/Akt/Bcl-2 pathway, the NF-κB pathway, and the JNK pathway. In general, RAE showed greater potency than RA equivalent.
Collapse
Affiliation(s)
- Yan-Hui Shen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Li-Ying Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Bao-Bao Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Qi-Ming Hu
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Pu Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Bai-Qiu He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Jing-Yu Liang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Fei-Hua Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
339
|
Qiu L, Wang M, Hu S, Ru X, Ren Y, Zhang Z, Yu S, Zhang Y. Oncogenic Activation of Nrf2, Though as a Master Antioxidant Transcription Factor, Liberated by Specific Knockout of the Full-Length Nrf1α that Acts as a Dominant Tumor Repressor. Cancers (Basel) 2018; 10:cancers10120520. [PMID: 30562963 PMCID: PMC6315801 DOI: 10.3390/cancers10120520] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Liver-specific knockout of Nrf1 in the mouse leads to spontaneous development of non- alcoholic steatohepatitis with dyslipidemia, and then its deterioration results in hepatoma, but the underlying mechanism remains elusive to date. A similar pathological model is reconstructed here by using human Nrf1α-specific knockout cell lines. Our evidence has demonstrated that a marked increase of the inflammation marker COX2 definitely occurs in Nrf1α−/− cells. Loss of Nrf1α leads to hyperactivation of Nrf2, which results from substantial decreases in Keap1, PTEN and most of 26S proteasomal subunits in Nrf1α−/− cells. Further investigation of xenograft model mice showed that malignant growth of Nrf1α−/−-derived tumors is almost abolished by silencing of Nrf2, while Nrf1α+/+-tumor is markedly repressed by an inactive mutant (i.e., Nrf2−/−ΔTA), but largely unaffected by a priori constitutive activator (i.e., caNrf2ΔN). Mechanistic studies, combined with transcriptomic sequencing, unraveled a panoramic view of opposing and unifying inter-regulatory cross-talks between Nrf1α and Nrf2 at different layers of the endogenous regulatory networks from multiple signaling towards differential expression profiling of target genes. Collectively, Nrf1α manifests a dominant tumor-suppressive effect by confining Nrf2 oncogenicity. Though as a tumor promoter, Nrf2 can also, in turn, directly activate the transcriptional expression of Nrf1 to form a negative feedback loop. In view of such mutual inter-regulation by between Nrf1α and Nrf2, it should thus be taken severe cautions to interpret the experimental results from loss of Nrf1α, Nrf2 or both.
Collapse
Affiliation(s)
- Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Xufang Ru
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Yonggang Ren
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Zhengwen Zhang
- Institute of Neuroscience and Psychology, School of Life Sciences, University of Glasgow, 42 Western Common Road, Glasgow G22 5PQ, Scotland, United Kingdom.
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, No. 38 Xueyuan Rd., Haidian District, Beijing 100191, China.
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
340
|
Matsushima-Nishiwaki R, Yamada N, Fukuchi K, Kozawa O. Sphingosine 1-phosphate (S1P) reduces hepatocyte growth factor-induced migration of hepatocellular carcinoma cells via S1P receptor 2. PLoS One 2018; 13:e0209050. [PMID: 30543684 PMCID: PMC6292590 DOI: 10.1371/journal.pone.0209050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
A bioactive lipid, sphingosine 1-phosphate (S1P), acts extracellularly as a potent mediator, and is implicated in the progression of various cancers including hepatocellular carcinoma (HCC). S1P exerts its functions by binding to five types of specific receptors, S1P receptor 1 (S1PR1), S1PR2, S1PR3, S1PR4 and S1PR5 on the plasma membrane. However, the exact roles of S1P and each S1PR in HCC cells remain to be clarified. In the present study, we investigated the effect of S1P on the hepatocyte growth factor (HGF)-induced migration of human HCC-derived HuH7 cells, and the involvement of each S1PR. S1P dose-dependently reduced the HGF-induced migration of HuH7 cells. We found that all S1PRs exist in the HuH7 cells. Among each selective agonist for five S1PRs, CYM5520, a selective S1PR2 agonist, significantly suppressed the HGF-induced HuH7 cell migration whereas selective agonists for S1PR1, S1PR3, S1PR4 or S1PR5 failed to affect the migration. The reduction of the HGF-induced migration by S1P was markedly reversed by treatment of JTE013, a selective antagonist for S1PR2, and S1PR2- siRNA. These results strongly suggest that S1P reduces the HGF-induced HCC cell migration via S1PR2. Our findings may provide a novel potential of S1PR2 to therapeutic strategy for metastasis of HCC.
Collapse
Affiliation(s)
| | - Noriko Yamada
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kouki Fukuchi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
341
|
Deng M, Chen SR, Chen H, Luo Y, Dong Y, Pan HL. Mitogen-activated protein kinase signaling mediates opioid-induced presynaptic NMDA receptor activation and analgesic tolerance. J Neurochem 2018; 148:275-290. [PMID: 30444263 DOI: 10.1111/jnc.14628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022]
Abstract
Opioid-induced hyperalgesia and analgesic tolerance can lead to dose escalation and inadequate pain treatment with μ-opioid receptor agonists. Opioids cause tonic activation of glutamate NMDA receptors (NMDARs) at primary afferent terminals, increasing nociceptive input. However, the signaling mechanisms responsible for opioid-induced activation of pre-synaptic NMDARs in the spinal dorsal horn remain unclear. In this study, we determined the role of MAPK signaling in opioid-induced pre-synaptic NMDAR activation caused by chronic morphine administration. Whole-cell recordings of excitatory post-synaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine administration markedly increased the frequency of miniature EPSCs, increased the amplitude of monosynaptic EPSCs evoked from the dorsal root, and reduced the paired-pulse ratio of evoked EPSCs. These changes were fully reversed by an NMDAR antagonist and normalized by inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2), p38, or c-Jun N-terminal kinase (JNK). Furthermore, intrathecal injection of a selective ERK1/2, p38, or JNK inhibitor blocked pain hypersensitivity induced by chronic morphine treatment. These inhibitors also similarly attenuated a reduction in morphine's analgesic effect in rats. In addition, co-immunoprecipitation assays revealed that NMDARs formed a protein complex with ERK1/2, p38, and JNK in the spinal cord and that chronic morphine treatment increased physical interactions of NMDARs with these three MAPKs. Our findings suggest that opioid-induced hyperalgesia and analgesic tolerance are mediated by tonic activation of pre-synaptic NMDARs via three functionally interrelated MAPKs at the spinal cord level. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Meichun Deng
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Luo
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingchun Dong
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
342
|
Lang W, Zhu J, Chen F, Cai J, Zhong J. EVI-1 modulates arsenic trioxide induced apoptosis through JNK signalling pathway in leukemia cells. Exp Cell Res 2018; 374:140-151. [PMID: 30472098 DOI: 10.1016/j.yexcr.2018.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022]
Abstract
High expression of the oncogene ecotropic viral integration site-1 (EVI-1) is an independent negative prognostic indicator of survival in leukemia patients. This study aimed to examine the effects of arsenic trioxide (ATO) on EVI-1 in acute myeloid leukemia (AML). Mononuclear cells were isolated from the bone marrow and peripheral blood of AML patients and healthy donors. EVI-1 expression in hematopoietic cells was evaluated by RT-qPCR and Western blot analysis. EVI-1 was highly expressed in both primary AML and leukemia cell lines (THP-1 and K562). ATO down-regulated EVI-1 mRNA in zebrafish in vivo as well as in primary leukemia cells and THP-1 and K562 cells in vitro. Additionally, ATO treatment induced apoptosis, down-regulated both EVI-1 mRNA and oncoprotein expression, increased the expression of pro-apoptosis proteins, and decreased the expression of anti-apoptotic proteins in leukemia cells in vitro. EVI-1 expression in leukemia cells (THP-1 and K562) transduced with EVI-1 siRNA was significantly reduced. Silencing EVI-1 had a significant effect on the activation of the JNK pathway and the induction of leukemia cell apoptosis. ATO may downregulate EVI-1 mRNA and oncoprotein levels and block the inhibitory effects of EVI-1 on the JNK pathway, which activates the JNK apoptotic pathway, thereby leading to the apoptosis of EVI-1 in AML patients.
Collapse
Affiliation(s)
- Wenjing Lang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Jianyi Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China.
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| |
Collapse
|
343
|
Duit R, Hawkins TJ, Määttä A. Depilatory chemical thioglycolate affects hair cuticle and cortex, degrades epidermal cornified envelopes and induces proliferation and differentiation responses in keratinocytes. Exp Dermatol 2018; 28:76-79. [PMID: 30417461 DOI: 10.1111/exd.13838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Abstract
Thioglycolate is a potent depilatory agent. In addition, it has been proposed to be useful as a penetration enhancer for transepidermal drug delivery. However, the effects on hair structure and stress responses it elicits in epidermal keratinocytes have not been fully characterised. We have used label-free confocal and fluorescence lifetime imaging supported by electron microscopy to demonstrate how thioglycolate damages hair cuticle cells by generating breakages along the endocuticle and leading to swelling of cortex cells. Maleimide staining of free SH-groups and a decrease in the average fluorescence lifetime of endogenous fluorophores demonstrate a specific change in protein structure in both hair cuticle and cortex. We found that the thioglycolate damages cornified envelopes isolated from the stratum corneum of the epidermis. However, thioglycolate-treated epidermal equivalent cultures recover within 48 hours, which highlights the reversibility of the damage. HaCaT keratinocytes respond to thioglycolate by increased proliferation, onset of differentiation and expression of the chaperone protein Hsp 70, but not Hsp 27. Up-regulation of involucrin can be blocked by an application of c-Jun N-terminal kinase (JNK) inhibitor, but the up-regulation of Hsp 70 takes place regardless of the presence of the JNK inhibitor.
Collapse
Affiliation(s)
- Rebecca Duit
- Department of Biosciences, Durham University, Durham, UK
| | - Tim J Hawkins
- Department of Biosciences, Durham University, Durham, UK
| | - Arto Määttä
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
344
|
Wood RA, Barbour MJ, Gould GW, Cunningham MR, Plevin RJ. Conflicting evidence for the role of JNK as a target in breast cancer cell proliferation: Comparisons between pharmacological inhibition and selective shRNA knockdown approaches. Pharmacol Res Perspect 2018; 6. [PMID: 29417765 PMCID: PMC5817830 DOI: 10.1002/prp2.376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/01/2017] [Indexed: 11/11/2022] Open
Abstract
As a target, the JNK pathway has been implicated in roles including cell death, proliferation, and inflammation in variety of contexts which span cardiovascular disease, neurodegenerative pathologies, and cancer. JNK1 and JNK2 have recently been demonstrated to function independently, highlighting a new parameter in the study of the JNK pathway. In order for JNK1 and JNK2-specific roles to be defined, better tools need to be employed. Previous studies have relied upon the broad spectrum JNK inhibitor, SP600125, to characterize the role of JNK signaling in a number of cell lines, including the breast cancer cell line MCF-7. In line with previous literature, our study has demonstrated that SP600125 treatment inhibited c-Jun and JNK phosphorylation and MCF-7 proliferation. However, in addition to targeting JNK1, JNK2, and JNK3, SP600125 has been previously demonstrated to suppress the activity of a number of other serine/threonine kinases, making SP600125 an inadequate tool for JNK isoform-specific roles to be determined. In this study, lentiviral shRNA was employed to selectively knockdown JNK1, JNK2, and JNK1/2 in MCF-7 cells. Using this approach, JNK phosphorylation was fully inhibited following stable knockdown of respective JNK isoforms. Interestingly, despite suppression of JNK phosphorylation, MCF-7 cell proliferation, cell cycle progression, or cell death remained unaffected. These findings raise the question of whether JNK phosphorylation really is pivotal in MCF-7 cell growth and death or if suppression of these events is a result of one of the many off-targets cited for SP600125.
Collapse
Affiliation(s)
- Rachel A Wood
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Mark J Barbour
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Gwyn W Gould
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Margaret R Cunningham
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Robin J Plevin
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| |
Collapse
|
345
|
Chloroquine Protects Human Corneal Epithelial Cells from Desiccation Stress Induced Inflammation without Altering the Autophagy Flux. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7627329. [PMID: 30519584 PMCID: PMC6241345 DOI: 10.1155/2018/7627329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/21/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
Dry eye disease (DED) is a multifactorial ocular surface disorder affecting millions of individuals worldwide. Inflammation has been associated with dry eye and anti-inflammatory drugs are now being targeted as the alternate therapeutic approach for dry eye condition. In this study, we have explored the anti-inflammatory and autophagy modulating effect of chloroquine (CQ) in human corneal epithelial and human corneal fibroblasts cells exposed to desiccation stress, (an in-vitro model for DED). Gene and protein expression profiling of inflammatory and autophagy related molecular factors were analyzed in HCE-T and primary HCF cells exposed to desiccation stress with and without CQ treatment. HCE-T and HCF cells exposed to desiccation stress exhibited increased levels of activated p65, TNF-α, MCP-1, MMP-9, and IL-6. Further, treatment with CQ decreased the levels of active p65, TNF-α, MCP-1, and MMP-9 in cells underdesiccation stress. Increased levels of LC3B and LAMP1 markers in HCE-T cells exposed to desiccation stress suggest activation of autophagy and the addition of CQ did not alter these levels. Changes in the phosphorylation levels of MAPKinase and mTOR pathway proteins were found in HCE-T cells under desiccation stress with or without CQ treatment. Taken together, the data suggests that HCE-T cells under desiccation stress showed NFκB mediated inflammation, which was rescued through the anti-inflammatory effect of CQ without altering the autophagy flux. Therefore, CQ may be used as an alternate therapeutic management for dry eye condition.
Collapse
|
346
|
Ghosh Dastidar S, Jagatheesan G, Haberzettl P, Shah J, Hill BG, Bhatnagar A, Conklin DJ. Glutathione S-transferase P deficiency induces glucose intolerance via JNK-dependent enhancement of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 2018; 315:E1005-E1018. [PMID: 30153066 PMCID: PMC6293160 DOI: 10.1152/ajpendo.00345.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatic glutathione S-transferases (GSTs) are dysregulated in human obesity, nonalcoholic fatty liver disease, and diabetes. The multifunctional GST pi-isoform (GSTP) catalyzes the conjugation of glutathione with acrolein and inhibits c-Jun NH2-terminal kinase (JNK) activation. Herein, we tested whether GSTP deficiency disturbs glucose homeostasis in mice. Hepatic GST proteins were downregulated by short-term high-fat diet in wild-type (WT) mice concomitant with increased glucose intolerance, JNK activation, and cytokine mRNAs in the liver. Genetic deletion of GSTP did not affect body composition, fasting blood glucose levels, or insulin levels in mice maintained on a normal chow diet; however, compared with WT mice, the GSTP-null mice were glucose intolerant. In GSTP-null mice, pyruvate intolerance, reflecting increased hepatic gluconeogenesis, was accompanied by elevated levels of activated JNK, cytokine mRNAs, and glucose-6-phosphatase proteins in the liver. Treatment of GSTP-null mice with the JNK inhibitor 1,9-pyrazoloanthrone (SP600125) significantly attenuated pyruvate-induced hepatic gluconeogenesis and significantly altered correlations between hepatic cytokine mRNAs and metabolic outcomes in GSTP-null mice. Collectively, these findings suggest that hepatic GSTP plays a pivotal role in glucose handling by regulating JNK-dependent control of hepatic gluconeogenesis. Thus, hepatic GSTP-JNK dysregulation may be a target of new therapeutic interventions during early stages of glucose intolerance to prevent the worsening metabolic derangements associated with human obesity and its relentless progression to diabetes.
Collapse
Affiliation(s)
- Shubha Ghosh Dastidar
- Diabetes and Obesity Center, School of Medicine, University of Louisville , Louisville, Kentucky
| | - Ganapathy Jagatheesan
- Diabetes and Obesity Center, School of Medicine, University of Louisville , Louisville, Kentucky
| | - Petra Haberzettl
- Diabetes and Obesity Center, School of Medicine, University of Louisville , Louisville, Kentucky
| | - Jasmit Shah
- Diabetes and Obesity Center, School of Medicine, University of Louisville , Louisville, Kentucky
- Department of Internal Medicine, Aga Khan University , Nairobi , Kenya
| | - Bradford G Hill
- Diabetes and Obesity Center, School of Medicine, University of Louisville , Louisville, Kentucky
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, School of Medicine, University of Louisville , Louisville, Kentucky
| | - Daniel J Conklin
- Diabetes and Obesity Center, School of Medicine, University of Louisville , Louisville, Kentucky
| |
Collapse
|
347
|
JNK facilitates IL-1β-induced hepcidin transcription via JunB activation. Cytokine 2018; 111:295-302. [DOI: 10.1016/j.cyto.2018.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/16/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
|
348
|
Tang C, Yeung LSN, Koulajian K, Zhang L, Tai K, Volchuk A, Giacca A. Glucose-Induced β-Cell Dysfunction In Vivo: Evidence for a Causal Role of C-jun N-terminal Kinase Pathway. Endocrinology 2018; 159:3643-3654. [PMID: 30215691 PMCID: PMC6195676 DOI: 10.1210/en.2018-00566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 11/19/2022]
Abstract
Prolonged elevation of glucose can adversely affect β-cell function. Oxidative stress, which has been implicated in glucose-induced β-cell dysfunction, can activate c-jun N-terminal kinase (JNK). However, whether JNK is causal in glucose-induced β-cell dysfunction in vivo is unclear. Therefore, we aimed at investigating the causal role of JNK activation in in vivo models of glucose-induced β-cell dysfunction. Glucose-induced β-cell dysfunction was investigated in the presence or absence of JNK inhibition. JNK inhibition was achieved using either (i) the JNK-specific inhibitor SP600125 or (ii) JNK-1-null mice. (i) Rats or mice were infused intravenously with saline or glucose with or without SP600125. (ii) JNK-1 null mice and their littermate wild-type controls were infused intravenously with saline or glucose. Following the glucose infusion periods in rats and mice, β-cell function was assessed in isolated islets or in vivo using hyperglycemic clamps. Forty-eight-hour hyperglycemia at ~20 mM in rats or 96-hour hyperglycemia at ~13 mM in mice impaired β-cell function in isolated islets and in vivo. Inhibition of JNK using either SP600125 or JNK-1-null mice prevented glucose-induced β-cell dysfunction in isolated islets and in vivo. Islets of JNK-1-null mice exposed to hyperglycemia in vivo showed an increase in Pdx-1 and insulin 2 mRNA, whereas islets of wild-type mice did not. Together, these data show that JNK pathway is involved in glucose-induced β-cell dysfunction in vivo and is thus a potential therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Christine Tang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lucy Shu Nga Yeung
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Khajag Koulajian
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Liling Zhang
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kevin Tai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Volchuk
- Keenan Research Centre for Biomedical Science, St. Michael Hospital, Toronto, Ontario, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Adria Giacca, MD, Medical Sciences Building, 3336-1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada. E-mail:
| |
Collapse
|
349
|
Protective mechanisms of resveratrol derivatives against TNF-α-induced inflammatory responses in rat mesangial cells. Cytokine 2018; 113:380-392. [PMID: 30389230 DOI: 10.1016/j.cyto.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/18/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Resveratrol has been reported to alleviate inflammatory responses and oxidative stress in mesangial cells and in several types of renal injury in animal models. Previously, the active resveratrol derivatives from the roots of Vitis thunbergii Sieb. & Zucc. (Vitaceae) were shown to have significant anti-platelet and anti-oxidative activities. However, the anti-inflammatory mechanisms of these resveratrol derivatives in rat mesangial cells (RMCs) have not been clarified fully. METHODS The protective mechanisms of resveratrol derivatives involved in tumor necrosis factor-α (TNF-α)-induced inflammatory responses were assessed by Western blot analysis, real-time PCR, and RT-PCR. The involvement of various signaling molecules in these responses was investigated using selective pharmacological inhibitors. RESULTS Nontoxic concentrations of the resveratrol derivatives significantly attenuated cytosolic phospholipase A2 (cPLA2) and cyclooxygenase 2 (COX-2) expression in RMCs challenged by TNF-α. These resveratrol derivatives inhibited TNF-α-activated ERK1/2 and JNK1/2 without affecting p38 phosphorylation. Next, we demonstrated that TNF-α induced NF-κB activation, translocation, and promoter activity, which was inhibited by pretreatment with resveratrol derivatives in RMCs. CONCLUSION The protective mechanisms of resveratrol derivatives against TNF-α-stimulated inflammatory responses via cPLA2/COX-2/PGE2 inhibition was caused by the attenuation of the JNK1/2, ERK1/2, and NF-κB signaling pathways in RMCs.
Collapse
|
350
|
Gong Z, Kuang Z, Li H, Li C, Ali MK, Huang F, Li P, Li Q, Huang X, Ren S, Li J, Xie J. Regulation of host cell pyroptosis and cytokines production by Mycobacterium tuberculosis effector PPE60 requires LUBAC mediated NF-κB signaling. Cell Immunol 2018; 335:41-50. [PMID: 30415762 DOI: 10.1016/j.cellimm.2018.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis infection, remains a global public health threat. The success of M. tuberculosis largely contributes to its manipulation of host cell fate. The role of M. tuberculosis PE/PPE family effectors in the host destiny was intensively explored. In this study, the role of PPE60 (Rv3478) was characterized by using Rv3478 recombinant M. smegmatis. PPE60 can promote host cell pyroptosis via caspases/NLRP3/gasdermin. The production of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-12p40 and TNF-α was altered by PPE60. We found that LUBAC was involved in PPE60-elicited NF-κB signaling by using Linear Ubiquitin Chain Assembly Complex (LUBAC)-specific inhibitor gliotoxin. The PPE60 recombinant M. smegmatis survival rate within macrophages is increased, as well as elevated resistance to stresses such as low pH, surface stresses and antibiotics exposure. For a first time it is firstly reported that M. tuberculosis effector PPE60 can modulate the host cell fate via LUBAC-mediated NF-κB signaling.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhongmei Kuang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China; Institute of Chengdu Medical College, School of Laboratory Medicine, No 783 Xindu Avenue, Chengdu, Sichuan 610083, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Fujing Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Qiming Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Sai Ren
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiang Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|