301
|
Baker EH, Basso G, Barker PB, Smith MA, Bonekamp D, Horská A. Regional apparent metabolite concentrations in young adult brain measured by (1)H MR spectroscopy at 3 Tesla. J Magn Reson Imaging 2008; 27:489-99. [PMID: 18307197 PMCID: PMC2952837 DOI: 10.1002/jmri.21285] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To quantify and examine the distribution of brain metabolites in normal young adults using single voxel MR spectroscopy at 3 Tesla (T). MATERIALS AND METHODS Short-echo time single-voxel PRESS technique was used to measure the apparent concentration of five metabolites at nine locations in the brains of young adults. Concentrations were estimated by means of an automated fitting method (LCModel) with reference to an unsuppressed water signal and were corrected for T(1) relaxation, T(2) relaxation, and cerebrospinal fluid partial volume. Analysis of variance with Tukey post hoc test was used to evaluate regional variations. RESULTS Statistically significant differences in regional concentrations were detected for each of the metabolites. The number of significant differences was greatest for total choline, whereas myo-inositol and the sum of glutamine and glutamate had the fewest. Magnitude of variation was greatest for total choline and least for the sum of N-acetyl aspartate and N-acetylaspartylglutamate. CONCLUSION In agreement with previous studies at other field strengths, we found heterogeneous distribution of the major spectroscopically measurable brain metabolites. Although the most distinct differences are between tissue types, there is appreciable variation within a tissue type at different locations. The spectra and metabolite concentrations presented should provide a useful reference for both clinical and research MR spectroscopy studies performed at 3T.
Collapse
Affiliation(s)
- Eva H. Baker
- Diagnostic Radiology Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gianpaolo Basso
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Centro Interdipartimentale Mente/Cervello, Università degli Studi di Trento, Trento, Italy
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Mari A. Smith
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - David Bonekamp
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alena Horská
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
302
|
Clements RJ, McDonough J, Freeman EJ. Distribution of parvalbumin and calretinin immunoreactive interneurons in motor cortex from multiple sclerosis post-mortem tissue. Exp Brain Res 2008; 187:459-65. [PMID: 18297277 DOI: 10.1007/s00221-008-1317-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
Abstract
Parvalbumin (PV) and calretinin (CR) are calcium binding proteins (CBP's) expressed in discrete GABAergic interneuron populations in the human cortex. CBP's are known to buffer calcium concentrations and protect neurons from increases in intracellular calcium. Perturbations in intracellular calcium can activate proteolytic enzymes including calpain, leading to deleterious effects to axons. Ca++-mediated mechanisms have been found to be associated with axonal pathology in MS and the restructuring of calcium channels has been shown to occur in experimental autoimmune encephalomyelitis (EAE) as well as multiple sclerosis tissue. Previous data indicates a reduction in the expression of the parvalbumin gene as well as reduced extension of neurites on parvalbumin expressing interneurons within multiple sclerosis normal appearing grey matter (NAGM). Modifications in interneuron parvalbumin or calretinin levels could change calcium buffering capacity, as well as the way these cells respond to neuronal insults. The present study was designed to compare CBP immunoreactive neurons in normal and multiple sclerosis post-mortem NAGM. To this end, we utilized immunofluorescent staining and high resolution confocal microscopy to map regions of the human motor cortex, and characterize layer specific CBP distribution in the normal and multiple sclerosis motor cortex. Our results indicate a significant reduction in the number of PV interneurons within layer 2 of the multiple sclerosis primary motor cortex with no concurrent change in number of calretinin positive neurons.
Collapse
Affiliation(s)
- Robert J Clements
- Department of Biological/Biomedical Sciences, A330 Cunningham Hall, Kent State University, Kent, OH 44224, USA.
| | | | | |
Collapse
|
303
|
Zahr NM, Mayer D, Pfefferbaum A, Sullivan EV. Low striatal glutamate levels underlie cognitive decline in the elderly: evidence from in vivo molecular spectroscopy. Cereb Cortex 2008; 18:2241-50. [PMID: 18234683 DOI: 10.1093/cercor/bhm250] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glutamate (Glu), the principal excitatory neurotransmitter of prefrontal cortical efferents, potentially mediates higher order cognitive processes, and its altered availability may underlie mechanisms of age-related decline in frontally based functions. Although animal studies support a role for Glu in age-related cognitive deterioration, human studies, which require magnetic resonance spectroscopy for in vivo measurement of this neurotransmitter, have been impeded because of the similarity of Glu's spectroscopic signature to those of neighboring spectral brain metabolites. Here, we used a spectroscopic protocol, optimized for Glu detection, to examine the effect of age in 3 brain regions targeted by cortical efferents--the striatum, cerebellum, and pons--and to test whether performance on frontally based cognitive tests would be predicted by regional Glu levels. Healthy elderly men and women had lower Glu in the striatum but not pons or cerebellum than young adults. In the combined age groups, levels of striatal Glu (but no other proton metabolite also measured) correlated selectively with performance on cognitive tests showing age-related decline. The selective relations between performance and striatal Glu provide initial and novel, human in vivo support for age-related modification of Glu levels as contributing to cognitive decline in normal aging.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305-5723, USA
| | | | | | | |
Collapse
|
304
|
Tsai SY, Otazo R, Posse S, Lin YR, Chung HW, Wald LL, Wiggins GC, Lin FH. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil. Magn Reson Med 2008; 59:989-98. [PMID: 18429025 DOI: 10.1002/mrm.21545] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shang-Yueh Tsai
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
305
|
Rousseaux CG. A Review of Glutamate Receptors II: Pathophysiology and Pathology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
306
|
High field MR imaging and 1H-MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis: correlation between metabolic alterations and diagnostic MR imaging criteria. J Neurol 2007; 255:56-63. [PMID: 18080854 DOI: 10.1007/s00415-007-0666-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/07/2007] [Accepted: 05/30/2007] [Indexed: 01/21/2023]
Abstract
PURPOSE To prospectively investigate metabolic changes in the normal-appearing white matter (NAWM) of patients presenting with clinically isolated syndromes (CIS) suggestive of multiple sclerosis (MS) and to correlate these changes to conventional MR imaging findings in terms of MR imaging criteria. MATERIALS AND METHODS Multisequence MR imaging of the brain and (1)H-MR spectroscopy of the parietal NAWM were performed in 31 patients presenting with CIS and in 20 controls using a 3. 0 T MR system. MR imaging criteria and International Panel criteria were assessed based on imaging, clinical and paraclinical results. Metabolite ratios and absolute concentrations of N-acetyl-aspartate (tNAA), myoinositol (Ins), choline (Cho), and total creatine (tCr) were determined. The metabolite concentrations were correlated with the fulfilled MR imaging criteria. RESULTS In comparison to the control group, the CIS group showed significantly decreased mean tNAA concentrations (-8. 1%, p = 0. 012). Significant changes could not be detected regarding Ins, tCr and Cho. No significant correlations between absolute metabolite concentrations and MR imaging criteria were observed. Patients with and without a lesion dissemination in space showed no significant differences of their metabolite concentrations. CONCLUSION As assessed by (1)H-MRS a significant axonal damage already occurs during the first demyelinating episode in patients with CIS. Conventional MR imaging in terms of diagnostic imaging criteria does not significantly reflect NAWM disease activity in terms of metabolic alterations detected by (1)H-MR spectroscopy.
Collapse
|
307
|
Chang L, Friedman J, Ernst T, Zhong K, Tsopelas ND, Davis K. Brain metabolite abnormalities in the white matter of elderly schizophrenic subjects: implication for glial dysfunction. Biol Psychiatry 2007; 62:1396-404. [PMID: 17693392 PMCID: PMC2222890 DOI: 10.1016/j.biopsych.2007.05.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 01/08/2023]
Abstract
BACKGROUND Abnormalities in the white matter of the brain may occur in individuals with schizophrenia as well as with normal aging. Therefore, elderly schizophrenic patients may suffer further cognitive decline as they age. This study determined whether elderly schizophrenia participants, especially those with declined cognitive function (Clinical Dementia Rating score > 1), show white matter metabolite abnormalities on proton magnetic resonance spectroscopy and whether there are group differences in age-dependent changes in these brain metabolites. METHOD Twenty-three elderly schizophrenia and twenty-two comparison participants fulfilling study criteria were enrolled. Localized, short echo-time (1)H MRS at 4 Tesla was used to assess neurometabolite concentrations in several white matter regions. RESULTS Compared with healthy subjects, schizophrenia participants had lower N-acetyl compounds (-12.6%, p = .0008), lower myo-inositol (-16.4%, p = .026), and higher glutamate + glutamine (+28.7%, p = .0016) concentrations across brain regions. Schizophrenia participants with Clinical Dementia Rating >/= 1 showed the lowest NA in the frontal and temporal regions compared with control subjects. Interactions between age and schizophrenia status on total creatine and choline-containing compounds were observed; only schizophrenia participants showed age-related decreases of these metabolites in the right frontal region. CONCLUSIONS Decreased NA in these white matter brain regions likely reflects reduced neuronal content associated with decreased synapses and neuronal cell volumes. The elevated glutamate + glutamine, if reflecting elevated glutamate, could result from excess neuronal glutamate release or glial dysfunction in glutamate reuptake. The decreased myo-inositol in participants with schizophrenia suggests decreased glial content or dysfunctional glia, which might result from glutamate-mediated toxicity.
Collapse
Affiliation(s)
- Linda Chang
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii 96813, USA.
| | | | | | | | | | | |
Collapse
|
308
|
Wattjes MP, Harzheim M, Lutterbey GG, Bogdanow M, Schmidt S, Schild HH, Träber F. Prognostic value of high-field proton magnetic resonance spectroscopy in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis. Neuroradiology 2007; 50:123-9. [PMID: 17982745 DOI: 10.1007/s00234-007-0325-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 09/28/2007] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The aim of this study was to determine the prognostic value of metabolic alterations in the normal-appearing white matter (NAWM) of patients presenting with clinically isolated syndromes (CIS) suggestive of multiple sclerosis (MS) with special regard to the prediction of conversion to definite MS. METHODS Using a 3T whole-body MR system, a multisequence conventional MRI protocol and single-voxel proton MR spectroscopy (PRESS, repetition time 2000 ms, echo times 38 ms and 140 ms) of the parietal NAWM were performed in 25 patients presenting with CIS at baseline and in 20 controls. Absolute concentrations of N-acetyl-aspartate (tNAA), myo-inositol (Ins), choline (Cho) and creatine (tCr) as well as metabolite ratios were determined. Follow-up including neurological assessment and conventional MRI was performed 3-4 and 6-7 months after the initial event. RESULTS Nine patients converted to definite MS during the follow-up period. Compared to controls, those patients who converted to MS also showed significantly lower tNAA concentrations in the NAWM (-13.4%, P = 0.002) whereas nonconverters (-6.5%, P = 0.052) did not. The Ins concentration was 20.2% higher in the converter group and 1.9% higher in the nonconverter group, but these differences did not reach significance. No significant differences could be observed for tCr and Cho in either patient group. CONCLUSION Axonal damage at baseline in patients presenting with CIS was more prominent in those who subsequently converted to definite MS in the short term follow-up, indicating that tNAA might be a sufficient prognostic marker for patients with a higher risk of conversion to early definite MS.
Collapse
Affiliation(s)
- Mike P Wattjes
- Department of Radiology/Neuroradiology, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
309
|
Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P. Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 2007; 66:732-9. [PMID: 17882017 DOI: 10.1097/nen.0b013e31812571b0] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cortical involvement in multiple sclerosis (MS) is emerging as an important determinant of disease progression. The mechanisms responsible for MS cortical pathology are not fully characterized. The objective of this study was to assess the role of excitotoxicity in MS cortex, evaluating excitatory amino acid transporter (EAAT) expression and its relationship with demyelination, inflammation, gliosis, and neuronal and synaptic pathology. EAATs are essential in maintaining low extracellular glutamate concentrations and preventing excitotoxicity. Ten MS brains (3 relapsing-remitting MS cases and 7 secondary progressive MS cases) were evaluated by immunohistochemistry for myelin basic protein, CD68, HLA-DR, EAAT1, EAAT2, glial fibrillary acidic protein, phosphorylated c-Jun N-terminal kinase (pJNK), synaptophysin, and neurofilaments. Cortical lesions were frequently observed in MS brains in variable numbers and extensions. In cortical lesions, activated microglia infiltration correlated with focal loss of EAAT1, EAAT2, and synaptophysin immunostaining, and with neuronal immunostaining for pJNK, a protein involved in response to excitotoxic injury. No reduction of EAATs or synaptophysin immunostaining was observed in demyelinated cortex in the absence of activated microglia. Alterations of the mechanisms of glutamate reuptake are found in cortical MS lesions in the presence of activated microglia and are associated with signs of neuronal and synaptic damage suggestive of excitotoxicity. Excitotoxicity may be involved in the pathogenesis of demyelination and of neuronal and synaptic damage in MS cortex.
Collapse
|
310
|
Wattjes MP, Harzheim M, Lutterbey GG, Klotz L, Schild HH, Träber F. Axonal damage but no increased glial cell activity in the normal-appearing white matter of patients with clinically isolated syndromes suggestive of multiple sclerosis using high-field magnetic resonance spectroscopy. AJNR Am J Neuroradiol 2007; 28:1517-22. [PMID: 17846203 PMCID: PMC8134381 DOI: 10.3174/ajnr.a0594] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Proton MR spectroscopy ((1)H-MR spectroscopy) is a well-established method for the in vivo investigation of the normal-appearing white matter (NAWM) in patients with multiple sclerosis (MS). Metabolic changes in NAWM are of special interest in patients with clinically isolated syndromes (CIS) suggestive of MS regarding further prognostic classifications. The purpose of this study was to investigate metabolic alterations in NAWM in patients with CIS with use of high-field (1)H-MR spectroscopy and to compare the results to those in patients with an early course of MS. MATERIALS AND METHODS With use of a 3T whole-body MR imaging system, single-voxel (1)H-MR spectroscopy (PRESS; TR: 2000 ms; TE: 38 ms and 140 ms) of the parietal NAWM was performed in 20 control subjects, 36 patients with CIS, and 12 patients with MS. Metabolite ratios and concentrations of N-acetylaspartate (tNAA), myo-inositol (mIns), choline, and total creatine (tCr) were determined. RESULTS Compared with the control group, mean NAWM mIns concentrations were significantly elevated in the MS group (4.56 mmol/L versus 3.75 mmol/L, P = .02) but not in the CIS group (4.04 mmol/L, P = .44). The higher concentration of mIns in the MS group was also reflected in the increased Ins/tCr ratio (P = .02). The mean NAWM tNAA was significantly decreased in both patient groups compared with the control group (CIS, 13.42 mmol/L, P = .02; MS, 12.77 mmol/L versus 14.51 mmol/L, P = .008). CONCLUSIONS A significant increase of the activity of the glial cells can only be observed in patients with an established diagnosis of MS but not in patients with CIS. Axonal damage occurs already during the first demyelinating episode in patients with CIS as well as in patients with definite MS.
Collapse
Affiliation(s)
- M P Wattjes
- Department of Radiology/Neuroradiology, University of Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
311
|
Newcombe J, Uddin A, Dove R, Patel B, Turski L, Nishizawa Y, Smith T. Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 2007; 18:52-61. [PMID: 17924980 DOI: 10.1111/j.1750-3639.2007.00101.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Blockade of receptors for the excitatory neurotransmitter glutamate ameliorates neurological clinical signs in models of the CNS inflammatory demyelinating disease multiple sclerosis (MS). To investigate whether glutamate excitoxicity may play a role in MS pathogenesis, the cellular localization of glutamate and its receptors, transporters and enzymes was examined. Expression of glutamate receptor (GluR) 1, a Ca(++)-permeable ionotropic AMPA receptor subunit, was up-regulated on oligodendrocytes in active MS lesion borders, but Ca(++)-impermeable AMPA GluR2 subunit levels were not increased. Reactive astrocytes in active plaques expressed AMPA GluR3 and metabotropic mGluR1, 2/3 and 5 receptors and the GLT-1 transporter, and a subpopulation was immunostained with glutamate antibodies. Activated microglia and macrophages were immunopositive for GluR2, GluR4 and NMDA receptor subunit 1. Kainate receptor GluR5-7 immunostaining showed endothelial cells and dystrophic axons. Astrocyte and macrophage populations expressed glutamate metabolizing enzymes and unexpectedly the EAAC1 transporter, which may play a role in glutamate uptake in lesions. Thus, reactive astrocytes in MS white matter lesions are equipped for a protective role in sequestering and metabolizing extracellular glutamate. However, they may be unable to maintain glutamate at levels low enough to protect oligodendrocytes rendered vulnerable to excitotoxic damage because of GluR1 up-regulation.
Collapse
Affiliation(s)
- Jia Newcombe
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
312
|
Neema M, Stankiewicz J, Arora A, Guss ZD, Bakshi R. MRI in multiple sclerosis: what's inside the toolbox? Neurotherapeutics 2007; 4:602-17. [PMID: 17920541 PMCID: PMC7479680 DOI: 10.1016/j.nurt.2007.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Magnetic resonance imaging (MRI) has played a central role in the diagnosis and management of multiple sclerosis (MS). In addition, MRI metrics have become key supportive outcome measures to explore drug efficacy in clinical trials. Conventional MRI measures have contributed to the understanding of MS pathophysiology at the macroscopic level yet have failed to provide a complete picture of underlying MS pathology. They also show relatively weak relationships to clinical status such as predictive strength for clinical progression. Advanced quantitative MRI measures such as magnetization transfer, spectroscopy, diffusion imaging, and relaxometry techniques are somewhat more specific and sensitive for underlying pathology. These measures are particularly useful in revealing diffuse damage in cerebral white and gray matter and therefore may help resolve the dissociation between clinical and conventional MRI findings. In this article, we provide an overview of the array of tools available with brain and spinal cord MRI technology as it is applied to MS. We review the most recent data regarding the role of conventional and advanced MRI techniques in the assessment of MS. We focus on the most relevant pathologic and clinical correlation studies relevant to these measures.
Collapse
Affiliation(s)
- Mohit Neema
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - James Stankiewicz
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Ashish Arora
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Zachary D. Guss
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Rohit Bakshi
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
- Department of Radiology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| |
Collapse
|
313
|
Okuda DT. ETHICAL PERSPECTIVES IN NEUROLOGY. Continuum (Minneap Minn) 2007. [DOI: 10.1212/01.con.0000293646.28611.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
314
|
Abstract
There is increasing evidence that multiple sclerosis (MS) is not only characterized by immune mediated inflammatory reactions but also by neurodegenerative processes. In neurodegenerative diseases, neuronal and axonal loss is mediated by oxidative stress and excitotoxicity which constitute a final common toxic pathway. Importantly, peroxynitrite is the key mediator of those two intertwined pathomechanisms. In MS, peroxynitrite is consistently associated with active lesions and produces highly toxic nitrating and oxidizing radical species that alter lipid, protein, DNA and mitochondrial structures and functions. During the remitting phase, peroxynitrite participates to neuron and oligodendrocyte damage in association with inflammatory processes. During the chronic phase, peroxynitrite contributes to self-perpetuating mechanisms responsible for disease progression. Neutralization of oxidative stress and excitotoxicity, and in particular of peroxynitrite derived free radicals, might represent a therapeutic approach to provide neuroprotection in MS.
Collapse
Affiliation(s)
- R E Gonsette
- National Centre for Multiple Sclerosis, B 1820 Melsbroek, Belgium.
| |
Collapse
|
315
|
Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients. J Neuroimmunol 2007; 188:146-58. [PMID: 17628700 DOI: 10.1016/j.jneuroim.2007.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 05/21/2007] [Accepted: 05/31/2007] [Indexed: 11/28/2022]
Abstract
The present study was aimed at confirming the presence of GluR3 on T lymphocytes and to assess the effect of glutamate on proliferative responses to myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) and chemotactic migration to CXCL12/stromal cell-derived factor-1, RANTES, and MIP-1alpha in 15 control subjects and 20 relapsing-remitting multiple sclerosis (MS) patients (10 in a stable clinical phase and 10 during relapse). T lymphocytes of control subjects and MS patients express both mRNA and protein of GluR3 receptors, as shown by RT-PCR and immunoblot analyses. An up-regulation was evident during relapse and in patients with neuroradiological evidence of disease activity. Glutamate and AMPA at concentrations of 10 nM to 10 muM were able to enhance T lymphocyte proliferation to MBP and MOG and the chemotactic migration of T cells both in controls and MS patients. In the latter group, significantly higher proliferation values in response to glutamate were found in patients assessed during relapse and in those with gadolinium (Gd)+ enhancing lesions on MRI. Glutamate concentrations above 10 muM appeared to be inhibitory on MBP and MOG-specific T-lymphocyte proliferation as well as chemotactic response in both patients and controls. Higher GluR3 expression and higher activating effect of glutamate on T cells of MS patients during relapses and with evidence of disease activity on MRI suggests the involvement of glutamate-mediated mechanisms in the T-cell detrimental effects. In MS patients, glutamate within physiological ranges in the cerebrospinal fluid and brain extracellular space might enhance myelin antigen-specific proliferation and chemotactic migration via activation of AMPA receptors, which can be relevant for myelin and neuronal damage in MS. Excess glutamate levels seem to induce an inhibitory effect on lymphocyte function, and therefore the detrimental effect of this excitatory amino acid in this case could be attributed to a direct toxicity on glial and neuronal cells.
Collapse
|
316
|
Lutz NW, Viola A, Malikova I, Confort-Gouny S, Audoin B, Ranjeva JP, Pelletier J, Cozzone PJ. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS One 2007; 2:e595. [PMID: 17611627 PMCID: PMC1899231 DOI: 10.1371/journal.pone.0000595] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 06/10/2007] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS), an inflammatory disease of the central nervous system, manifests itself in numerous forms and stages. A number of brain metabolic alterations have been reported for MS patients vs. control subjects. However, metabolite profiles of cerebrospinal fluid (CSF) are not consistent among the published MS studies, most probably due to variations in the patient cohorts studied. We undertook the first investigation of highly homogeneous MS patient cohorts to determine characteristic effects of inflammatory MS plaques on the CSF metabolome, including only patients with clinically isolated syndrome (CIS) with or without inflammatory brain plaques, and controls. Methodology/Principal Findings CSF obtained by lumbar puncture was analyzed by proton magnetic resonance spectroscopy. 27 metabolites were quantified. Differences between groups of control subjects (n = 10), CIS patients with (n = 21) and without (n = 12) inflammatory plaques were evaluated by univariate statistics and principal component analysis (PCA). Seven metabolites showed statistically significant inter-group differences (p<0.05). Interestingly, a significant increase in β-hydroxyisobutyrate (BHIB) was detected in CIS with vs. without active plaques, but not when comparing either CIS group with control subjects. Moreover, a significant correlation was found, for the first time, between CSF lactate concentration and the number of inflammatory MS brain plaques. In contrast, fructose concentrations were equally enhanced in CIS with or without active plaques. PCA based on all 27 metabolites yielded group-specific clusters. Conclusions/Significance CSF metabolic profiles suggest a close link between MS plaque activity in CIS patients on the one hand and organic-acid metabolism on the other. Our detection of increased BHIB levels points to a hitherto unsuspected role for this compound in MS with active plaques, and serves as a basis for further investigation. The metabolic effects described in our study are crucial elements in the explanation of biochemical mechanisms involved in specific MS manifestations.
Collapse
Affiliation(s)
- Norbert W Lutz
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de la Timone, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
317
|
Abstract
Over the past two decades, proton magnetic resonance spectroscopy (proton MRS) of the brain has made the transition from research tool to a clinically useful modality. In this review, we first describe the localization methods currently used in MRS studies of the brain and discuss the technical and practical factors that determine the applicability of the methods to particular clinical studies. We also describe each of the resonances detected by localized solvent-suppressed proton MRS of the brain and discuss the metabolic and biochemical information that can be derived from an analysis of their concentrations. We discuss spectral quantitation and summarize the reproducibility of both single-voxel and multivoxel methods at 1.5 and 3-4 T. We have selected three clinical neurologic applications in which there has been a consensus as to the diagnostic value of MRS and summarize the information relevant to clinical applications. Finally, we speculate about some of the potential technical developments, either in progress or in the future, that may lead to improvements in the performance of proton MRS.
Collapse
Affiliation(s)
- Yael Rosen
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts
| | - Robert E. Lenkinski
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts
| |
Collapse
|
318
|
Domercq M, Sánchez-Gómez MV, Sherwin C, Etxebarria E, Fern R, Matute C. System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:6549-56. [PMID: 17475885 DOI: 10.4049/jimmunol.178.10.6549] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elevated levels of extracellular glutamate cause excitotoxic oligodendrocyte cell death and contribute to progressive oligodendrocyte loss and demyelination in white matter disorders such as multiple sclerosis and periventricular leukomalacia. However, the mechanism by which glutamate homeostasis is altered in such conditions remains elusive. We show here that microglial cells, in their activated state, compromise glutamate homeostasis in cultured oligodendrocytes. Both activated and resting microglial cells release glutamate by the cystine-glutamate antiporter system xc-. In addition, activated microglial cells act to block glutamate transporters in oligodendrocytes, leading to a net increase in extracellular glutamate and subsequent oligodendrocyte death. The blocking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors or the system xc- antiporter prevented the oligodendrocyte injury produced by exposure to LPS-activated microglial cells in mixed glial cultures. In a whole-mount rat optic nerve, LPS exposure produced wide-spread oligodendrocyte injury that was prevented by AMPA/kainate receptor block and greatly reduced by a system xc- antiporter block. The cell death was typified by swelling and disruption of mitochondria, a feature that was not found in closely associated axonal mitochondria. Our results reveal a novel mechanism by which reactive microglia can contribute to altering glutamate homeostasis and to the pathogenesis of white matter disorders.
Collapse
Affiliation(s)
- María Domercq
- Departamento de Neurociencias, Universidad del País Vasco, Leioa, Vizcaya, Spain
| | | | | | | | | | | |
Collapse
|
319
|
Matute C, Alberdi E, Domercq M, Sánchez-Gómez MV, Pérez-Samartín A, Rodríguez-Antigüedad A, Pérez-Cerdá F. Excitotoxic damage to white matter. J Anat 2007; 210:693-702. [PMID: 17504270 PMCID: PMC2375761 DOI: 10.1111/j.1469-7580.2007.00733.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Glutamate kills neurons by excitotoxicity, which is caused by sustained activation of glutamate receptors. In recent years, it has been shown that glutamate can also be toxic to white matter oligodendrocytes and to myelin by this mechanism. In particular, glutamate receptor-mediated injury to these cells can be triggered by activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, kainate and N-methyl-D-aspartate glutamate receptor types. Thus, these receptor classes, and the intermediaries of the signal cascades they activate, are potential targets for drug development to treat white matter damage in acute and chronic diseases. In addition, alterations of glutamate homeostasis in white matter can determine glutamate injury to oligodendrocytes and myelin. Astrocytes are responsible for most glutamate uptake in synaptic and non-synaptic areas and consequently are the major regulators of glutamate homeostasis. Activated microglia in turn may secrete cytokines and generate radical oxygen species, which impair glutamate uptake and reduce the expression of glutamate transporters. Finally, oligodendrocytes also contribute to glutamate homeostasis. This review aims at summarizing the current knowledge about the mechanisms leading to oligodendrocyte cell death and demyelination as a consequence of alterations in glutamate signalling, and their clinical relevance to disease. In addition, we show evidence that oligodendrocytes can also be killed by ATP acting at P2X receptors. A thorough understanding of how oligodendrocytes and myelin are damaged by excitotoxicity will generate knowledge that can lead to improved therapeutic strategies to protect white matter.
Collapse
Affiliation(s)
- Carlos Matute
- Departamento de Neurociencias, Universidad del País Vasco, Leioa, and Neurotek-UPV/EHU, Parque Tecnológico deBizkaia, Zamudio, Spain. carlos.,
| | | | | | | | | | | | | |
Collapse
|
320
|
Kimura T, Ohkubo M, Igarashi H, Kwee IL, Nakada T. Increase in glutamate as a sensitive indicator of extracellular matrix integrity in peritumoral edema: a 3.0-tesla proton magnetic resonance spectroscopy study. J Neurosurg 2007; 106:609-13. [PMID: 17432711 DOI: 10.3171/jns.2007.106.4.609] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors of previous studies based on diffusion tensor imaging have indicated that there are two types of peritumoral edema-namely, edema with preserved structural integrity of the glial matrix and edema with compromised glial matrix. The authors of this study hypothesized that functionality of the glutamate (Glu)-glutamine shuttle, a vital neuron-glia interaction, may be differentially affected by peritumoral edema. They tested this hypothesis using proton magnetic resonance (MR) spectroscopy on a 3.0-tesla system that is capable of quantifying Glu without need of editing. METHODS Twenty-three patients, each with a single brain tumor mass and peritumoral edema (nine high-grade gliomas, eight metastatic brain tumors, and six meningiomas), and nine healthy individuals participated in this study. Single-voxel proton MR imaging targeting the region of peritumoral edema was performed using a 3.0-tesla system. Glutamate levels in the peritumoral edema of nonglial tumors was significantly elevated (p < 0.01) compared with edema associated with glial tumors or normal white matter. The finding confirmed that peritumoral edema in nonglial tumors is distinct from that of glial tumors, as previously indicated in diffusion tensor imaging studies. The authors hypothesized that the former condition represents a compensatory increase in activities of the Glu-glutamine shuttle brought about by simple expansion of the extracellular space due to edema. CONCLUSIONS The assessment of Glu concentrations in peritumoral edema using 3.0-tesla proton MR spectroscopy may be developed into an objective index of the structural integrity of the glial matrix.
Collapse
Affiliation(s)
- Teruo Kimura
- Center for Integrated Human Brain Science, Brain Research Institute, School of Health Sciences, Faculty of Medicine, University of Niigata, Japan
| | | | | | | | | |
Collapse
|
321
|
Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A. Glia: the fulcrum of brain diseases. Cell Death Differ 2007; 14:1324-35. [PMID: 17431421 DOI: 10.1038/sj.cdd.4402144] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuroglia represented by astrocytes, oligodendrocytes and microglial cells provide for numerous vital functions. Glial cells shape the micro-architecture of the brain matter; they are involved in information transfer by virtue of numerous plasmalemmal receptors and channels; they receive synaptic inputs; they are able to release 'glio'transmitters and produce long-range information exchange; finally they act as pluripotent neural precursors and some of them can even act as stem cells, which provide for adult neurogenesis. Recent advances in gliology emphasised the role of glia in the progression and handling of the insults to the nervous system. The brain pathology, is, to a very great extent, a pathology of glia, which, when falling to function properly, determines the degree of neuronal death, the outcome and the scale of neurological deficit. Glial cells are central in providing for brain homeostasis. As a result glia appears as a brain warden, and as such it is intrinsically endowed with two opposite features: it protects the nervous tissue as long as it can, but it also can rapidly assume the guise of a natural killer, trying to eliminate and seal the damaged area, to save the whole at the expense of the part.
Collapse
Affiliation(s)
- C Giaume
- INSERM, U840 and Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
322
|
Abstract
In the last decade, the use of magnetic resonance imaging (MRI) has led to a reevaluation of the pathogenesis and the natural history of multiple sclerosis (MS). This has been driven to a significant degree by results of proton magnetic resonance spectroscopy (1H-MRS) studies. By providing evidence of early neurodegeneration (based on levels of N-acetylaspartate), results of 1H-MRS studies have led to a reconsideration of the role of axonal damage in MS. By measuring brain changes of metabolites such as choline and myo-inosol, 1H-MRS has confirmed the importance of assessing myelin damage and repair. However, despite the pathological specificity of 1H-MRS and the relatively large number of clinical 1H-MRS studies on patients with MS, measures provided by this MR technique are not used routinely for assessing and monitoring MS patients. This is due to technical difficulties and limitations that are at present not entirely solved. We will review here the most relevant results in MS studies that have used 1H-MRS measures, the clinical importance of these results and the pending issues that need to be solved for a larger and more reliable use of 1H-MRS in clinical MS studies.
Collapse
Affiliation(s)
- Nicola De Stefano
- Department of Neurological and Behavioural Sciences, University of Siena, Italy.
| | | |
Collapse
|
323
|
Sheehan JJ, Zhou C, Gravanis I, Rogove AD, Wu YP, Bogenhagen DF, Tsirka SE. Proteolytic activation of monocyte chemoattractant protein-1 by plasmin underlies excitotoxic neurodegeneration in mice. J Neurosci 2007; 27:1738-45. [PMID: 17301181 PMCID: PMC6673734 DOI: 10.1523/jneurosci.4987-06.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exposure of neurons to high concentrations of excitatory neurotransmitters causes them to undergo excitotoxic death via multiple synergistic injury mechanisms. One of these mechanisms involves actions undertaken locally by microglia, the CNS-resident macrophages. Mice deficient in the serine protease plasmin exhibit decreased microglial migration to the site of excitatory neurotransmitter release and are resistant to excitotoxic neurodegeneration. Microglial chemotaxis can be signaled by the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 (CC chemokine ligand 2). We show here that mice genetically deficient for MCP-1 phenocopy plasminogen deficiency by displaying decreased microglial recruitment and resisting excitotoxic neurodegeneration. Connecting these pathways, we demonstrate that MCP-1 undergoes a proteolytic processing step mediated by plasmin. The processing, which consists of removal of the C terminus of MCP-1, enhances the potency of MCP-1 in in vitro migration assays. Finally, we show that infusion of the cleaved form of MCP-1 into the CNS restores microglial recruitment and excitotoxicity in plasminogen-deficient mice. These findings identify MCP-1 as a key downstream effector in the excitotoxic pathway triggered by plasmin and identify plasmin as an extracellular chemokine activator. Finally, our results provide a mechanism that explains the resistance of plasminogen-deficient mice to excitotoxicity.
Collapse
Affiliation(s)
- John J. Sheehan
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Chun Zhou
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Iordanis Gravanis
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Andrew D. Rogove
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Yan-Ping Wu
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Daniel F. Bogenhagen
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Stella E. Tsirka
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| |
Collapse
|
324
|
Maier K, Merkler D, Gerber J, Taheri N, Kuhnert AV, Williams SK, Neusch C, Bähr M, Diem R. Multiple neuroprotective mechanisms of minocycline in autoimmune CNS inflammation. Neurobiol Dis 2007; 25:514-25. [PMID: 17239606 DOI: 10.1016/j.nbd.2006.10.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/08/2006] [Accepted: 10/29/2006] [Indexed: 12/24/2022] Open
Abstract
Axonal destruction and neuronal loss occur early during multiple sclerosis, an autoimmune inflammatory CNS disease that frequently manifests with acute optic neuritis. Available therapies mainly target the inflammatory component of the disease but fail to prevent neurodegeneration. To investigate the effect of minocycline on the survival of retinal ganglion cells (RGCs), the neurons that form the axons of the optic nerve, we used a rat model of myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis. Optic neuritis in this model was diagnosed by recording visual evoked potentials and RGC function was monitored by measuring electroretinograms. Functional and histopathological data of RGCs and optic nerves revealed neuronal and axonal protection when minocycline treatment was started on the day of immunization. Furthermore, we demonstrate that minocycline-induced neuroprotection is related to a direct antagonism of multiple mechanisms leading to neuronal cell death such as the induction of anti-apoptotic intracellular signalling pathways and a decrease in glutamate excitotoxicity. From these observations, we conclude that minocycline exerts neuroprotective effects independent of its anti-inflammatory properties. This hypothesis was confirmed in a non-inflammatory disease model leading to degeneration of RGCs, the surgical transection of the optic nerve.
Collapse
Affiliation(s)
- Katharina Maier
- Neurologische Universitätsklinik, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Khiat A, Lesage J, Boulanger Y. Quantitative MRS study of Baló's concentric sclerosis lesions. Magn Reson Imaging 2007; 25:1112-5. [PMID: 17707174 DOI: 10.1016/j.mri.2006.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 11/28/2006] [Indexed: 12/27/2022]
Abstract
Baló's concentric sclerosis (BCS) lesions display specific metabolite changes detected by magnetic resonance spectroscopy (MRS). We report on two cases of BCS lesions examined by MRS; the first case was evaluated 36 days after the onset of symptoms, whereas the second case was evaluated 9 days after the onset of symptoms. MRS data were obtained from single voxels located in the lesion and in the contralateral region. Relative to the creatine/phosphocreatine peak, BCS lesions displayed decreases of N-acetyl aspartate and increases of choline, myo-inositol (mI), glutamine/glutamate (Glx), lactate and lipid+macromolecule signals, in agreement with previous reports. In addition, previously unreported decreases of mI (-19% to -29%) and increases of Glx (+55% to +198%) were measured; these could be useful in characterizing BCS lesions.
Collapse
Affiliation(s)
- Abdesslem Khiat
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada H2X 3J4
| | | | | |
Collapse
|
326
|
Scott G, Bowman S, Smith T, Flower R, Bolton C. Glutamate-stimulated peroxynitrite production in a brain-derived endothelial cell line is dependent on N-methyl-D-aspartate (NMDA) receptor activation. Biochem Pharmacol 2007; 73:228-36. [PMID: 17118345 PMCID: PMC1855445 DOI: 10.1016/j.bcp.2006.09.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/19/2006] [Accepted: 09/20/2006] [Indexed: 11/04/2022]
Abstract
There is accumulating and convincing evidence indicating a role for glutamate in the pathogenesis of the human demyelinating disease multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, demonstrate that pharmacological inhibition of specific glutamate receptors suppresses neurological symptoms and prevents blood-brain barrier (BBB) breakdown. The mechanisms through which glutamate influences BBB function during EAE remain unclear. Glutamate triggers the production of nitric oxide and superoxide, which can lead to the formation of peroxynitrite (ONOO(-)). Recent studies have implicated ONOO(-) in the loss of neurovascular integrity during EAE. We propose that glutamate contributes to BBB breakdown via the actions of ONOO(-). The present investigation examined glutamate-induced ONOO(-) formation in the b.End3 brain-derived endothelial cell line. b.End3 cells were incubated with a concentration range of glutamate and ONOO(-) production was assessed over time. Results showed a concentration- and time-dependent increase in ONOO(-) levels in glutamate-treated cells that were suppressed by selective and non-selective inhibitors of ONOO(-)-mediated reactions. Specific activation of b.End3-associated NMDA receptors also resulted in a concentration-dependent increase in ONOO(-) production. The ability of b.End3 cells to respond to the presence of glutamate was confirmed through the detection of NMDA receptor immnuoreactivity in cell extracts. In addition, the use of the NMDA receptor antagonists MK-801 and memantine reduced glutamate-mediated ONOO(-) generation from b.End3 cells. The data reinforce the important relationship between glutamate and the NMDA receptor, positioned at neurovascular sites, which may be of particular relevance to the pathogenesis of demyelinating disease.
Collapse
Affiliation(s)
- G.S. Scott
- Centre of Biochemical Pharmacology & Experimental Pathology, The William Harvey Research Institute, St. Bartholomew's Hospital Medical College and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - S.R. Bowman
- Centre of Biochemical Pharmacology & Experimental Pathology, The William Harvey Research Institute, St. Bartholomew's Hospital Medical College and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - T. Smith
- NeuMatRx, Truro, Cornwall TR3 6NT, United Kingdom
| | - R.J. Flower
- Centre of Biochemical Pharmacology & Experimental Pathology, The William Harvey Research Institute, St. Bartholomew's Hospital Medical College and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - C. Bolton
- Centre of Biochemical Pharmacology & Experimental Pathology, The William Harvey Research Institute, St. Bartholomew's Hospital Medical College and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
327
|
Greenstein JI. Current concepts of the cellular and molecular pathophysiology of multiple sclerosis. Dev Neurobiol 2007; 67:1248-65. [PMID: 17514718 DOI: 10.1002/dneu.20387] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease. It poses many challenges both clinically and scientifically. Progress made in understanding the genetics, immunology, and neurobiology of MS to date has positioned the field for further breakthroughs both in understanding the etiology and pathogenesis as well as the development of rationally based therapeutics. This review will cover fundamental aspects of the clinical and pathologic features of MS. Identified genetic markers will be considered as well as the evolving understanding of immunologic and neurobiological aspects of the disease. The development of immune therapy based on this knowledge is already apparent and it is likely that neuroprotective therapies will evolve to complement immune modulation in treating the disease.
Collapse
|
328
|
Abstract
Conventional magnetic resonance imaging (MRI) has routinely been used to improve the accuracy of multiple sclerosis (MS) diagnosis and prognosis. Metrics derived from conventional MRI are now routinely used to detect therapeutic effects and extend clinical observations. However, conventional MRI measures, such as the use of lesion volume and count of gadolinium-enhancing and T2 lesions, have insufficient sensitivity and specificity to reveal the true degree of pathological changes occurring in MS. They cannot distinguish between inflammation, edema, demyelination, Wallerian degeneration, and axonal loss. In addition, they do not show a reliable correlation with clinical measures of disability and do not provide a complete assessment of therapeutic outcomes. Recent neuropathologic studies of typical chronic MS brains reveal macroscopic demyelination in cortical and deep gray matter (GM) that cannot be detected by currently available MRI techniques. Therefore, there is a pressing need for the development of newer MRI techniques to detect these lesions. Newer metrics of MRI analysis, including T1-weighted hypointense lesions, central nervous system atrophy measures, magnetization transfer imaging, magnetic resonance spectroscopy, and diffusion tensor imaging, are able to capture a more global picture of the range of tissue alterations caused by inflammation and neurodegeneration. At this time, they provide the only proof--albeit indirect--that important occult pathology is occurring in the GM. However, evidence is increasing that these nonconventional MRI measures correlate better with both existing and developing neurological impairment and disability when compared to conventional metrics.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, The Jacobs Neurological Institute, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | | |
Collapse
|
329
|
Centonze D, Rossi S, Finazzi-Agrò A, Bernardi G, Maccarrone M. The (Endo)Cannabinoid System in Multiple Sclerosis and Amyotrophic Lateral Sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:171-86. [PMID: 17678961 DOI: 10.1016/s0074-7742(07)82009-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alterations of the endocannabinoid system (ECS) have been recently implicated in a number of neuroinflammatory and neurodegenerative conditions so that the pharmacological modulation of cannabinoid (CB) receptors and/or of the enzymes controlling synthesis, transport, and degradation of these substances has emerged as a valuable option to treat neurological diseases. Here, we describe the current knowledge concerning the rearrangement of ECS in a primarily inflammatory disorder of the central nervous system such as multiple sclerosis (MS), and in a primarily degenerative condition such as amyotrophic lateral sclerosis (ALS). Furthermore, the data supporting a therapeutic role of agents modulating CB receptors or endocannabinoid tone in these disorders will also be reviewed. Complex changes of ECS take place in both diseases, influencing crucial aspects of their pathophysiology and clinical manifestations. Neuroinflammation, microglial activation, oxidative stress, and excitotoxicity are variably combined in MS and in ALS and can be modulated by endocannabinoids or by drugs targeting the ECS.
Collapse
Affiliation(s)
- Diego Centonze
- Neurological Clinics, Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | |
Collapse
|
330
|
Adalsteinsson E, Sullivan EV, Mayer D, Pfefferbaum A. In vivo quantification of ethanol kinetics in rat brain. Neuropsychopharmacology 2006; 31:2683-91. [PMID: 16407891 DOI: 10.1038/sj.npp.1301023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proton magnetic resonance spectroscopy was used at 3T to measure the uptake and clearance of brain ethanol in rats after bolus intraperitoneal (i.p.) or intragastric (i.g.) alcohol injection, and to estimate the effects of acute alcohol on brain metabolites. The observation duration was 1-1.5 h with temporal resolution of alcohol sampling ranging from 4 s-4 min. The observed time course of alcohol brain concentration followed a consistent pattern characterized by a rapid absorption, an intermediate distribution, and a slower clearance that approached a linear decay. In a sample of eight healthy Wistar rats, the intercept of the linear clearance term, extrapolated back to the time of injection, correlated well with the administered dose per unit of lean body mass. Alcohol concentration estimation based on spectroscopically measured clearance was compared with blood alcohol levels from blood samples at the end of observation, and were in good agreement with the administered dose. Serial proton spectroscopy measurements provide a valid in vivo method for quantifying brain alcohol uptake and elimination kinetics in real time.
Collapse
Affiliation(s)
- Elfar Adalsteinsson
- Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, USA
| | | | | | | |
Collapse
|
331
|
Beart PM, O'Shea RD. Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 2006; 150:5-17. [PMID: 17088867 PMCID: PMC2013845 DOI: 10.1038/sj.bjp.0706949] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
L-Glutamate (Glu) is the major excitatory neurotransmitter in the mammalian CNS and five types of high-affinity Glu transporters (EAAT1-5) have been identified. The transporters EAAT1 and EAAT2 in glial cells are responsible for the majority of Glu uptake while neuronal EAATs appear to have specialized roles at particular types of synapses. Dysfunction of EAATs is specifically implicated in the pathology of neurodegenerative conditions such as amyotrophic lateral sclerosis, epilepsy, Huntington's disease, Alzheimer's disease and ischemic stroke injury, and thus treatments that can modulate EAAT function may prove beneficial in these conditions. Recent advances have been made in our understanding of the regulation of EAATs, including their trafficking, splicing and post-translational modification. This article summarises some recent developments that improve our understanding of the roles and regulation of EAATs.
Collapse
Affiliation(s)
- P M Beart
- Howard Florey Institute, The University of Melbourne, Parkville, Victoria 3800, Australia.
| | | |
Collapse
|
332
|
Gonzalez-Toledo E, Kelley RE, Minagar A. Role of magnetic resonance spectroscopy in diagnosis and management of multiple sclerosis. Neurol Res 2006; 28:280-3. [PMID: 16687054 DOI: 10.1179/016164106x98161] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Application of magnetic resonance spectroscopy (MRS) to study the nature, pathogenesis, tissue injury and therapeutic response of MS patients has altered our view of multiple sclerosis (MS) fundamentally. By offering biochemical analysis of demyelinating lesions and axonal injury, MRS generates objective and quantifiable data on central nervous system tissue and metabolism during pathogenesis of MS. Of these biochemical markers, N-acetylaspartate, which serves as an indicator of neuronal and axonal injury and choline (Cho) peaks which demonstrate cell membrane metabolism, provide a plethora of data on the neuropathology of MS. Based on these findings, MRS provides neuroscientists with a unique diagnostic and prognostic tool to follow MS patients and assess their response to treatment with immunomodulators. MRS findings are so significant that consideration should be given to their routine inclusion as secondary outcome measures in clinical trials of MS patients.
Collapse
|
333
|
Abstract
PURPOSE OF REVIEW The aim of this review is to describe the recent findings regarding the pathogenesis of multiple sclerosis and their translation to new therapies. RECENT FINDINGS Basic research is providing new insights into the immune elements involved in the pathogenesis of multiple sclerosis, both in the periphery as well as in the central nervous system. Unveiling the complex interplay of the molecules involved in the immunological cascade of the disease supplies new targets for the development of new immunotherapeutic strategies. Similarly, clinical studies and identification of distinct subgroups of patients based on their responsiveness to immunotherapies provides support for the existence of immunopathological disease subtypes that seem to require different therapeutic approaches. These studies extend the theoretical basis that facilitates development of neuroprotective and repair-promoting therapeutic strategies. SUMMARY The application of novel and cutting-edge technologies in the fields of genomics and proteomics is providing a better understanding of the genetic and environmental factors involved in multiple sclerosis susceptibility and progression, as well as the detection of biomarkers for disease activity and response to therapy. Implementation of these facilitates identification of new targets for therapy towards tailoring treatment to the individual patient with multiple sclerosis.
Collapse
Affiliation(s)
- Paulo Fontoura
- Department of Immunology, Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal
| | | | | |
Collapse
|
334
|
Alonso A, Jick SS, Jick H, Hernán MA. Antibiotic use and risk of multiple sclerosis. Am J Epidemiol 2006; 163:997-1002. [PMID: 16597708 DOI: 10.1093/aje/kwj123] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Some reports suggest that bacteria, including Chlamydophila pneumoniae, could be involved in the etiology of multiple sclerosis. If that is true, persons who used antibiotics active against these bacteria, compared with nonusers, might be at lower risk of multiple sclerosis. Using a 1993-2000 case-control study nested in the United Kingdom-based General Practice Research Database cohort, the authors identified 163 multiple sclerosis cases who were followed up for at least 3 years before their first symptoms (the index date). Up to 10 controls matched to the cases by age, sex, general practice, and time in the cohort were selected. Exposure to antibiotics was assessed through computerized medical records. Overall antibiotic use or use of antibiotics against C. pneumoniae was not associated with multiple sclerosis risk. However, use of penicillins in the 3 years before the index date decreased the risk of developing a first attack of multiple sclerosis (odds ratio=0.5, 95% confidence interval: 0.3, 0.9 for those who used penicillins for >or=15 days compared with no use). In conclusion, use of antibiotics active against C. pneumoniae was not associated with a decreased risk of short-term multiple sclerosis. The observed lower risk of multiple sclerosis for penicillin users needs to be confirmed in other populations.
Collapse
Affiliation(s)
- Alvaro Alonso
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
335
|
Grover VPB, Dresner MA, Forton DM, Counsell S, Larkman DJ, Patel N, Thomas HC, Taylor-Robinson SD. Current and future applications of magnetic resonance imaging and spectroscopy of the brain in hepatic encephalopathy. World J Gastroenterol 2006; 12:2969-78. [PMID: 16718775 PMCID: PMC4124369 DOI: 10.3748/wjg.v12.i19.2969] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common neuro-psychiatric abnormality, which complicates the course of patients with liver disease and results from hepatocellular failure and/or portosystemic shunting. The manifestations of HE are widely variable and involve a spectrum from mild subclinical disturbance to deep coma. Research interest has focused on the role of circulating gut-derived toxins, particularly ammonia, the development of brain swelling and changes in cerebral neurotransmitter systems that lead to global CNS depression and disordered function. Until recently the direct investigation of cerebral function has been difficult in man. However, new magnetic resonance imaging (MRI) techniques provide a non-invasive means of assessment of changes in brain volume (coregistered MRI) and impaired brain function (fMRI), while proton magnetic resonance spectroscopy (1H MRS) detects changes in brain biochemistry, including direct measurement of cerebral osmolytes, such as myoinositol, glutamate and glutamine which govern processes intrinsic to cellular homeostasis, including the accumulation of intracellular water. The concentrations of these intracellular osmolytes alter with hyperammonaemia. MRS-detected metabolite abnormalities correlate with the severity of neuropsychiatric impairment and since MR spectra return towards normal after treatment, the technique may be of use in objective patient monitoring and in assessing the effectiveness of various treatment regimens.
Collapse
Affiliation(s)
- V-P Bob Grover
- Hepatology Section, Division of Medicine A, St Mary's Campus, Faculty of Medicine, Imperial College London, South Wharf Street, London W2 1NY, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
336
|
Srinivasan R, Cunningham C, Chen A, Vigneron D, Hurd R, Nelson S, Pelletier D. TE-Averaged two-dimensional proton spectroscopic imaging of glutamate at 3 T. Neuroimage 2006; 30:1171-8. [PMID: 16431138 DOI: 10.1016/j.neuroimage.2005.10.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/26/2005] [Accepted: 10/31/2005] [Indexed: 12/01/2022] Open
Abstract
Glutamate and glutamine are important neurochemicals in the central nervous system and the neurotoxic properties of excess glutamate have been associated with several neurodegenerative diseases. The TE-Averaged PRESS technique has been shown by our group to detect an unobstructed glutamate signal at 3 T that is resolved from glutamine and NAA at 2.35 ppm. TE-Averaged PRESS therefore provides an unambiguous measurement of glutamate as well as other metabolites such as NAA, choline, creatine, and myo-inositol. In this study, we extend the single voxel TE-Averaged PRESS technique for two-dimensional (2D) spectroscopic imaging (TE-Averaged MRSI) to generate 2D glutamate maps. To facilitate TE-Averaged MRSI within a reasonable time, a fast encoding trajectory was used. This enabled rapid acquisition of TE-Averaged spectral arrays with good spectral bandwidth (977 Hz) and resolution (approximately 2 Hz). MRSI data arrays of 10 x 16 were acquired with 1.8 cm3 spatial resolution over a approximately 110 cm3 volume in a scan time of approximately 21 min. Two-dimensional metabolite maps were obtained with good SNR and clear differentiation in glutamate levels was observed between gray and white matter with significantly higher glutamate in gray matter relative to white matter as anticipated.
Collapse
Affiliation(s)
- Radhika Srinivasan
- Center for Molecular and Functional Imaging, University of California San Francisco, 185 Berry Street, Suite #350, San Francisco, CA 94107-1739, USA.
| | | | | | | | | | | | | |
Collapse
|
337
|
Alberdi E, Sánchez-Gómez MV, Torre I, Domercq M, Pérez-Samartín A, Pérez-Cerdá F, Matute C. Activation of kainate receptors sensitizes oligodendrocytes to complement attack. J Neurosci 2006; 26:3220-8. [PMID: 16554473 PMCID: PMC6674098 DOI: 10.1523/jneurosci.3780-05.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate excitotoxicity and complement attack have both been implicated separately in the generation of tissue damage in multiple sclerosis and in its animal model, experimental autoimmune encephalomyelitis. Here, we investigated whether glutamate receptor activation sensitizes oligodendrocytes to complement attack. We found that a brief incubation with glutamate followed by exposure to complement was lethal to oligodendrocytes in vitro and in freshly isolated optic nerves. Complement toxicity was induced by activation of kainate but not of AMPA receptors and was abolished by removing calcium from the medium during glutamate priming. Dose-response studies showed that sensitization to complement attack is induced by two distinct kainate receptor populations displaying high and low affinities for glutamate. Oligodendrocyte death by complement required the formation of the membrane attack complex, which in turn increased membrane conductance and induced calcium overload and mitochondrial depolarization as well as a rise in the level of reactive oxygen species. Treatment with the antioxidant Trolox and inhibition of poly(ADP-ribose) polymerase-1, but not of caspases, protected oligodendrocytes against damage induced by complement. These findings indicate that glutamate sensitization of oligodendrocytes to complement attack may contribute to white matter damage in acute and chronic neurological disorders.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Calcium/metabolism
- Cell Death/drug effects
- Cell Death/immunology
- Cell Membrane/drug effects
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cells, Cultured
- Complement System Proteins/immunology
- Complement System Proteins/metabolism
- Demyelinating Autoimmune Diseases, CNS/immunology
- Demyelinating Autoimmune Diseases, CNS/metabolism
- Demyelinating Autoimmune Diseases, CNS/physiopathology
- Dose-Response Relationship, Drug
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Male
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/metabolism
- Neurotoxins/metabolism
- Oligodendroglia/drug effects
- Oligodendroglia/immunology
- Oligodendroglia/metabolism
- Optic Nerve/drug effects
- Optic Nerve/immunology
- Optic Nerve/metabolism
- Oxidative Stress/drug effects
- Oxidative Stress/immunology
- Patch-Clamp Techniques
- Polynucleotide Adenylyltransferase/antagonists & inhibitors
- Polynucleotide Adenylyltransferase/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/metabolism
Collapse
|
338
|
Caramanos Z, Narayanan S, Arnold DL. 1H-MRS quantification of tNA and tCr in patients with multiple sclerosis: a meta-analytic review. Brain 2005; 128:2483-506. [PMID: 16230321 DOI: 10.1093/brain/awh640] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meta-analysis was performed on the results of 75 comparisons from the 30 peer-reviewed publications that used proton magnetic resonance spectroscopy (1H-MRS) or spectroscopic imaging to (i) quantify the mean concentrations of total creatine (tCr, found in neurons, astrocytes and oligodendrocytes), and/or total N-acetyl groups (tNA, found only in neurons), in the lesional and/or non-lesional white matter (WM) and/or the grey matter (GM) of patients with multiple sclerosis (MS) and (ii) compare these values with those in the homologous tissues of normal controls (NC). For mean [tNA] values, there was (i) a large-effect-sized overall decrease in patients' lesional WM relative to NC WM (25 comparisons), (ii) a medium-effect-sized overall decrease in patients' non-lesional WM relative to NC WM (36 comparisons) and (iii) a medium-effect-sized overall decrease in patients' GM relative to NC GM (14 comparisons). Patients' mean [tNA] values were sometimes statistically normal but were never statistically increased. For mean [tCr] values, there was (i) no statistically significant overall change in the patients' lesional WM relative to NC WM (24 comparisons), although statistically significant increases and decreases were sometimes found, (ii) a medium-effect-sized overall increase in patients' non-lesional WM relative to NC WM (33 comparisons) and (iii) no statistically significant overall change in patients' GM relative to NC GM (12 comparisons), although a significant decrease was found in one comparison. Of 41 comparisons with statistically significant changes, 38 combined in a way that would probably result in decreased mean [tNA]/[tCr] ratios such that (i) 66% had statistically decreased mean [tNA] and statistically unchanged mean [tCr] values, (ii) 13% had statistically decreased mean [tNA] and statistically increased mean [tCr] values and (iii) 21% had statistically unchanged mean [tNA] values and statistically increased mean [tCr] values. Of the 25 comparisons that came from studies that also analysed [tNA]/[tCr] ratios, the direction of change in mean [tNA] values and mean [tNA]/[tCr] ratios was concordant in 84%. In comparisons that quantified both [tNA] and [tCr], there was a similar amount of variability in both measures in each of the different tissue types studied, both in patients and NCs. Together, these results suggest that within-voxel tNA/tCr ratios can be interpreted as valid and accurate surrogate measures of 'cerebral tissue integrity'-with decreased tNA/tCr ratios indicating some combination of neuroaxonal disturbance, oligodendroglial disturbance, and astrocytic proliferation. These results also suggest that, although within-voxel tNA/tCr ratios are not perfect indicators of [tNA] content, they do represent a practical compromise to acquiring surrogate measures of within-voxel neuroaxonal integrity.
Collapse
Affiliation(s)
- Zografos Caramanos
- Magnetic Resonance Spectroscopy Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
339
|
Vallejo-Illarramendi A, Domercq M, Pérez-Cerdá F, Ravid R, Matute C. Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis 2005; 21:154-64. [PMID: 16061389 DOI: 10.1016/j.nbd.2005.06.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/13/2005] [Accepted: 06/28/2005] [Indexed: 10/25/2022] Open
Abstract
Recent studies have shown that glutamate excitotoxicity may be a component in the etiology of multiple sclerosis (MS). Glutamate transporters determine the levels of extracellular glutamate and are essential to prevent excitotoxicity. We have analyzed here the expression of the glutamate transporters EAAT1, EAAT2 and EAAT3 in control and in MS optic nerve samples. We observed an overall increase in the level of the glutamate transporters EAAT1 and EAAT2 mRNA and protein. In turn, functional assays showed that glutamate uptake was also increased in MS samples. Furthermore, glutamate transporter increases were mimicked in rat optic nerves treated with excitotoxic levels of glutamate. Together, these results indicate that enhanced expression of glutamate transporters in MS constitutes a regulatory response of glial cells to toxic levels of glutamate in the CNS during inflammation and neurodegeneration.
Collapse
|
340
|
Matute C, Domercq M, Sánchez-Gómez MV. Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia 2005; 53:212-24. [PMID: 16206168 DOI: 10.1002/glia.20275] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Primary and/or secondary glial cell death can cause and/or aggravate human diseases of the central nervous system (CNS). Like neurons, glial cells are vulnerable to glutamate insults. Astrocytes, microglia, and oligodendrocytes express a wide variety of glutamate receptors and transporters that mediate many of the deleterious effects of glutamate. Astrocytes are responsible for most glutamate uptake in synaptic and nonsynaptic areas and consequently, are the major regulators of glutamate homeostasis. Microglia in turn may secrete cytokines, which can impair glutamate uptake and reduce the expression of glutamate transporters. Finally, oligodendrocytes, the myelinating cells of the CNS, are very sensitive to excessive glutamate signaling, which can lead to the apoptosis or necrosis of these cells. This review aims at summarizing the mechanisms leading to glial cell death as a consequence of alterations in glutamate signaling, and their clinical relevance. A thorough understanding of these events will undoubtedly lead to better therapeutic strategies to treat CNS diseases affecting glia and in particular, those that involve damage to white matter tracts.
Collapse
Affiliation(s)
- Carlos Matute
- Departamento de Neurociencias, Universidad del País Vasco, Leioa, Vizcaya, Spain.
| | | | | |
Collapse
|
341
|
Abstract
In addition to providing information on tissue structure, magnetic resonance (MR) technology offers the potential to investigate tissue metabolism and function. MR spectroscopy (MRS) offers a wealth of data on the biochemistry of a selected brain tissue volume, which represent potential surrogate markers for the pathology underlying multiple sclerosis (MS). In particular, the N-acetylaspartate peak in an MR spectrum is a putative marker of neuronal and axonal integrity, and the choline peak appears to reflect cell-membrane metabolism. On this basis, a diminished N-acetylaspartate peak is interpreted to represent neuronal/axonal dysfunction or loss, and an elevated choline peak represents heightened cell-membrane turnover, as seen in demyelination, remyelination, inflammation, or gliosis. Therefore, MRS may provide a unique tool to evaluate the severity of MS, establish a prognosis, follow disease evolution, understand its pathogenesis, and evaluate the efficacy of therapeutic interventions, which complements the information obtained from the various forms of assessment made by conventional MR imaging.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Interventional Imaging, University of Texas Medical School at Houston, TX 77030, USA.
| |
Collapse
|