301
|
Wang Y, Chen J, Wang Y, Taylor CW, Hirata Y, Hagiwara H, Mikoshiba K, Toyo-oka T, Omata M, Sakaki Y. Crucial role of type 1, but not type 3, inositol 1,4,5-trisphosphate (IP(3)) receptors in IP(3)-induced Ca(2+) release, capacitative Ca(2+) entry, and proliferation of A7r5 vascular smooth muscle cells. Circ Res 2001; 88:202-9. [PMID: 11157673 DOI: 10.1161/01.res.88.2.202] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stimulation of G protein- or tyrosine kinase-coupled receptors regulates cell proliferation through intracellular Ca(2+) ([Ca(2+)](i)) signaling. In A7r5 cells, we confirmed that inositol 1,4,5-trisphosphate (IP(3)) mediates vasopressin (VP)-evoked Ca(2+) release from intracellular stores and showed that types 1 (IP(3)R(1)) and 3 (IP(3)R(3)) IP(3) receptors were expressed. Using antisera selective for IP(3)R(1) or IP(3)R(3) and another that interacted equally well with both subtypes, together with membranes from SF:9 cells expressing only single IP(3)R subtypes to calibrate immunoblotting, we established that A7r5 cells express 81% IP(3)R(1) and 19% IP(3)R(3). To elucidate the contributions of IP(3)R(1) and IP(3)R(3) to Ca(2+) signaling and proliferation, stable clones expressing promoter-inducible antisense cDNA fragments (-90 to +9) corresponding to the two IP(3)R subtypes were selected. Mild inhibition of IP(3)R(1) (71+/-8% of control level) slightly attenuated the IP(3)-evoked Ca(2+) release (IICR) induced by VP but significantly decreased the subsequent capacitative Ca(2+) entry (CCE) and proliferation. Moderate inhibition (34+/-6%) strongly decreased both IICR and CCE and further blocked proliferation. Complete inhibition almost abolished IICR and CCE and arrested proliferation entirely. Complete inhibition of IP(3)R(3) expression slightly attenuated IICR without affecting CCE or proliferation. In cells microinjected with a low dose of heparin, VP-induced CCE was more susceptible than IICR to mild inhibition of both IP(3)R(1) and IP(3)R(3). A high dose of heparin had a similar effect to complete inhibition of IP(3)R(1) expression: it blocked VP-evoked IICR entirely and CCE by 90%. We conclude that IP(3)R(1), but not IP(3)R(3), is crucial for IICR, CCE, and proliferation of vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Division/drug effects
- Cell Line
- Clone Cells/cytology
- Clone Cells/drug effects
- Clone Cells/metabolism
- Dose-Response Relationship, Drug
- Heparin/administration & dosage
- Immunoblotting
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Microinjections
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Vasopressins/metabolism
- Vasopressins/pharmacology
Collapse
Affiliation(s)
- Y Wang
- Human Genome Center, Second Department of Internal Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Braun FJ, Broad LM, Armstrong DL, Putney JW. Stable activation of single Ca2+ release-activated Ca2+ channels in divalent cation-free solutions. J Biol Chem 2001; 276:1063-70. [PMID: 11042187 DOI: 10.1074/jbc.m008348200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The regulation of store-operated, calcium-selective channels in the plasma membrane of rat basophilic leukemia cells (RBL-2H3 m1), an immortalized mucosal mast cell line, was studied at the single-channel level with the patch clamp technique by removing divalent cations from both sides of the membrane. The activity of the single channels in excised patches could be modulated by Ca(2+), Mg(2+), and pH. The maximal activation of these channels by divalent cation-free conditions occurred independently of depletion of intracellular Ca(2+) stores, whether in excised patches or in whole cell mode. Yet, a number of points of evidence establish these single-channel openings as amplified store-operated channel events. Specifically, (i) the single channels are exquisitely sensitive to inhibition by intracellular Ca(2+), and (ii) both the store-operated current and the single-channel openings are completely blocked by the capacitative calcium entry blocker, 2-aminoethoxydiphenyl borane. In addition, in Jurkat T cells single-channel openings with lower open probability have been observed in the whole cell mode with intracellular Mg(2+) present (Kerschbaum, H. H., and Cahalan, M. D. (1999) Science 283, 836-839), and in RBL-2H3 m1 cells a current with similar properties is activated by store depletion.
Collapse
Affiliation(s)
- F J Braun
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
303
|
Mery L, Magnino F, Schmidt K, Krause KH, Dufour JF. Alternative splice variants of hTrp4 differentially interact with the C-terminal portion of the inositol 1,4,5-trisphosphate receptors. FEBS Lett 2001; 487:377-83. [PMID: 11163362 DOI: 10.1016/s0014-5793(00)02362-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The molecular basis of capacitative (or store-operated) Ca2+ entry is still subject to debate. The transient receptor potential proteins have been hypothesized to be structural components of store-operated Ca2+ channels and recent evidence suggests that Trp3 and its closely related homolog Trp6 are gated by the N-terminal region of the inositol 1,4,5-triphosphate receptors (InsP3R). In this study, we report the existence of two isoforms of the human Trp4 protein, referred to as alpha-hTrp4 and beta-hTrp4. The shorter variant beta-hTrp4 is generated through alternative splicing and lacks the C-terminal amino acids G785-S868. Using a yeast two-hybrid assay and glutathione-S-transferase-pulldown experiments, we found that the C-terminus of alpha-hTrp4, but not of beta-hTrp4, associates in vitro with the C-terminal domain of the InsP(3) receptors type 1, 2 and 3. Thus, we describe a novel interaction between Trp proteins and InsP3R and we provide evidence suggesting that the formation of hTrp4-InsP3R complexes may be regulated by alternative splicing.
Collapse
Affiliation(s)
- L Mery
- Division of Infectious Diseases, Geneva University Hospital, Switzerland
| | | | | | | | | |
Collapse
|
304
|
Kaznacheyeva E, Zubov A, Gusev K, Bezprozvanny I, Mozhayeva GN. Activation of calcium entry in human carcinoma A431 cells by store depletion and phospholipase C- dependent mechanisms converge on ICRAC-like calcium channels. Proc Natl Acad Sci U S A 2001; 98:148-53. [PMID: 11136251 PMCID: PMC14559 DOI: 10.1073/pnas.98.1.148] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of phospholipase C in nonexcitable cells causes the release of calcium (Ca2+) from intracellular stores and activation of Ca2+ influx by means of Ca2+ release-activated channels (ICRAC) in the plasma membrane. The molecular identity and the mechanism of ICRAC channel activation are poorly understood. Using the patch-clamp technique, here we describe the plasma membrane Ca2+ channels in human carcinoma A431 cells, which can be activated by extracellular UTP, by depletion of intracellular Ca2+ stores after exposure to the Ca2+-pump inhibitor thapsigargin, or by loading the cells with Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate. The observed channels display the same conductance and gating properties as previously described I(min) channels, but have significantly lower conductance for monovalent cations than the ICRAC channels. Thus, we concluded that the depletion-activated Ca2+ current in A431 cells is supported by I(CRAC)-like (ICRACL) channels, identical to I(min). We further demonstrated synergism in activation of ICRACL Ca2+ channels by extracellular UTP and intracellular inositol (1,4,5)-triphosphate (IP3), apparently because of reduction in phosphatidylinositol 4,5-bisphosphate (PIP2) levels in the patch. Prolonged exposure of patches to thapsigargin renders ICRACL Ca2+ channels unresponsive to IP3 but still available to activation by the combined action of IP3 and anti-PIP2 antibody. Based on these data, we concluded that phospholipase C-mediated and store-operated Ca2+ influx pathways in A431 cells converge on the same I(CRACL) Ca2+ channel, which can be modulated by PIP2.
Collapse
Affiliation(s)
- E Kaznacheyeva
- Institute of Cytology RAS, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
305
|
Muto Y, Nagao T, Yamada M, Mikoshiba K, Urushidani T. A proposed mechanism for the potentiation of cAMP-mediated acid secretion by carbachol. Am J Physiol Cell Physiol 2001; 280:C155-65. [PMID: 11121387 DOI: 10.1152/ajpcell.2001.280.1.c155] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acid secretion in isolated rabbit gastric glands was monitored by the accumulation of [(14)C]aminopyrine. Stimulation of the glands with carbachol synergistically augmented the response to dibutyryl cAMP. The augmentation persisted even after carbachol was washed out and was resistant to chelated extracellular Ca(2+) and to inhibitors of either protein kinase C or calmodulin kinase II. Cytochalasin D at 10 microM preferentially blocked the secretory effect of carbachol and its synergism with cAMP, whereas it had no effect on histamine- or cAMP-stimulated acid secretion within 15 min. Cytochalasin D inhibited the carbachol-stimulated intracellular Ca(2+) concentration ([Ca(2+)](i)) increase due to release from the Ca(2+) store. Treatment of the glands with cytochalasin D redistributed type 3 inositol 1,4,5-trisphosphate receptor (the major subtype in the parietal cell) from the fraction containing membranes of large size to the microsomal fraction, suggesting a dissociation of the store from the plasma membrane. These findings suggest that intracellular Ca(2+) release by cholinergic stimulation is critical for determining synergism with cAMP in parietal cell activation and that functional coupling between the Ca(2+) store and the receptor is maintained by actin microfilaments.
Collapse
Affiliation(s)
- Y Muto
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
306
|
Li M, Kondo T, Zhao QL, Li FJ, Tanabe K, Arai Y, Zhou ZC, Kasuya M. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria- dependent pathways. J Biol Chem 2000; 275:39702-9. [PMID: 10970901 DOI: 10.1074/jbc.m007369200] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apoptosis induced by cadmium has been shown in many tissues in vivo and in cultured cells in vitro. However, its molecular mechanism is not fully understood. When the human histiocytic lymphoma cell line U937 was treated with cadmium for 12 h, evidence of apoptotic features, including change in nuclear morphology, DNA fragmentation, formation of DNA ladder in agarose gel electrophoresis, and phosphatidylserine externalization, were obtained. Moreover, loss of the mitochondrial membrane potential (Deltapsi(m)) was observed in the cadmium-treated cells and was inhibited by a broad caspase inhibitor (Z-VAD-FMK). Caspase inhibitors suppressed the DNA fragmentation in the order of Z-VAD-FMK > caspase-8 inhibitor > caspase-3 inhibitor. Expression of Bcl-x(L) and Bid decreased significantly in the cadmium-treated cells, although no apparent change in Bcl-2 and Bax expression was found. Tetrakis-(2-pyridylmethyl) ethylendiamine, a cell-permeable heavy metal chelator, partially reversed the increase of fluorescence of Fura-2 in the cadmium-treated cells. In addition, verapamil (70 microm), a voltage-dependent Ca(2+) channel blocker, inhibited the DNA fragmentation induced by cadmium less than 100 microm and decreased the fluorescence of Fura-2. Cadmium up-regulated the expression of type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R) but not type 2 or type 3 IP(3)R. Calpain inhibitors I and II partially prevented DNA fragmentation. No effects of Z-VAD-FMK on the expression of type 1 IP(3)R or of calpain inhibitors on the loss of Deltapsi(m) were observed. These results suggest that cadmium possibly induced apoptosis in U937 cells through two independent pathways, the Ca(2+)-calpain-dependent pathway and the caspase-mitochondria-dependent pathway.
Collapse
Affiliation(s)
- M Li
- Department of Public Health, the Department of Radiological Sciences, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama, 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Abstract
Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.
Collapse
Affiliation(s)
- D Dutta
- National Centre for Biological Sciences, UAS Campus, GKVK, Bangalore 560 065, India.
| |
Collapse
|
308
|
Okada T, Maeda A, Iwamatsu A, Gotoh K, Kurosaki T. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 2000; 13:817-27. [PMID: 11163197 DOI: 10.1016/s1074-7613(00)00079-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tyrosine phosphorylation of adaptor proteins permits the B cell antigen receptor (BCR)-associated protein tyrosine kinases to regulate downstream effector molecules. Here, we report the identification of a novel B cell adaptor for phosphoinositide 3-kinase (PI3K), termed BCAP. Tyrosine phosphorylation of BCAP is mediated by Syk and Btk, thereby providing binding site(s) for the p85 subunit of PI3K. Disruption of the BCAP gene in the DT40 B cell line inhibits BCR-mediated phosphatidylinositol 3,4,5-trisphosphate generation, leading to impaired Akt response. Moreover, recruitment of PI3K to glycolipid-enriched microdomains (GEMs) is significantly attenuated in the absence of BCAP. Hence, these data suggest that BCAP bridges BCR-associated kinases to the PI3K pathway by regulating PI3K localization.
Collapse
Affiliation(s)
- T Okada
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | |
Collapse
|
309
|
Haug LS, Walaas SI, Ostvold AC. Degradation of the type I inositol 1,4,5-trisphosphate receptor by caspase-3 in SH-SY5Y neuroblastoma cells undergoing apoptosis. J Neurochem 2000; 75:1852-61. [PMID: 11032874 DOI: 10.1046/j.1471-4159.2000.0751852.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The type I inositol 1,4,5-trisphosphate (IP(3)) receptor is selectively down-regulated in several neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and ischemia, all conditions in which apoptotic neuronal loss occurs. In the present study, we used a neuronal cell line, human neuroblastoma SH-SY5Y cells, to investigate whether the levels of IP(3) receptor are changed during apoptosis in these cells. Following induction of apoptosis by staurosporine, the immunoreactivity of the type I IP(3) receptor in microsome preparations from SH-SY5Y cells was reduced within 2 h, with a further reduction during subsequent hours. Immunoblot analyses, using antibodies to poly(ADP-ribose) polymerase and spectrin breakdown products, revealed proteolysis of these caspase-3 substrates within 3 h, confirming that IP(3) receptor cleavage is an early consequence of apoptosis. In vitro incubation of SH-SY5Y microsomes or immunopurified IP(3) receptor from rat cerebellum with recombinant caspase-3 led to generation of immunoreactive breakdown products similar to those observed in intact cells, suggesting that the type I IP(3) receptor is a potential substrate for caspase-3. Preincubation of the neuroblastoma cells with the caspase-3 inhibitor Z-Asp-Glu-Val-Asp-fluoromethyl ketone prevented IP(3) receptor degradation. These results show that the type I IP(3) receptor is a substrate for caspase-3 in neuronal cells and indicate that apoptotic down-regulation of IP(3) receptor levels may contribute to the pathology of neurodegenerative conditions.
Collapse
Affiliation(s)
- L S Haug
- Neurochemical Laboratory, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
310
|
Hajnóczky G, Csordás G, Madesh M, Pacher P. Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals. Cell Calcium 2000; 28:349-63. [PMID: 11115374 DOI: 10.1054/ceca.2000.0169] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intracellular calcium signals mediated by IP(3)and ryanodine receptors (IP(3)R/RyR) play a central role in cell survival, but emerging evidence suggests that IP(3)R/RyR are also important in apoptotic cell death. Switch from the life program to the death program may involve coincident detection of proapoptotic stimuli and calcium signals or changes in the spatiotemporal pattern of the calcium signal or changes at the level of effectors activated by the calcium signal (e.g. calpain, calcineurin). The fate of the cell is often determined in the mitochondria, where calcium spikes may support cell survival through stimulation of ATP production or initiate apoptosis v ia opening of the permeability transition pore and release of apoptotic factors such as cytochrome c. The functional importance of these mitochondrial calcium signalling pathways has been underscored by the elucidation of a highly effective, local Ca(2+)coupling between IP(3)R/RyR and mitochondrial Ca(2+)uptake sites. This article will focus on the IP(3)R/RyR-dependent pathways to apoptosis, particularly on the mitochondrial phase of the death cascade.
Collapse
Affiliation(s)
- G Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia 19107, USA.
| | | | | | | |
Collapse
|
311
|
Mikoshiba K, Hattori M. IP3 Receptor-Operated Calcium Entry. Sci Signal 2000. [DOI: 10.1126/scisignal.512000pe1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
312
|
Mikoshiba K, Hattori M. IP3 receptor-operated calcium entry. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:pe1. [PMID: 11752610 DOI: 10.1126/stke.2000.51.pe1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This Perspective by Mikoshiba and Hattori is the third in a series on cellular calcium release mechanisms. The authors describe the regulated release of calcium from intracellular stores by the inositol 1,4,5 trisphosphate receptor (IP(3)R) and the relationship of this release mechanism to calcium influx from the extracellular milieu through store-operated calcium channels. They discuss a model proposing that intracellular and plasma membrane calcium channels are functionally and physically coupled.
Collapse
Affiliation(s)
- K Mikoshiba
- Division of Molecular Neurobiology, Institute of Medical Sciences, The University of Tokyo, Japan.
| | | |
Collapse
|
313
|
Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, Swagemakers SM, Kanaar R, Thompson LH, Takeda S. The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol 2000; 20:6476-82. [PMID: 10938124 PMCID: PMC86122 DOI: 10.1128/mcb.20.17.6476-6482.2000] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The highly conserved Saccharomyces cerevisiae Rad51 protein plays a central role in both mitotic and meiotic homologous DNA recombination. Seven members of the Rad51 family have been identified in vertebrate cells, including Rad51, Dmc1, and five Rad51-related proteins referred to as Rad51 paralogs, which share 20 to 30% sequence identity with Rad51. In chicken B lymphocyte DT40 cells, we generated a mutant with RAD51B/RAD51L1, a member of the Rad51 family, knocked out. RAD51B(-/-) cells are viable, although spontaneous chromosomal aberrations kill about 20% of the cells in each cell cycle. Rad51B deficiency impairs homologous recombinational repair (HRR), as measured by targeted integration, sister chromatid exchange, and intragenic recombination at the immunoglobulin locus. RAD51B(-/-) cells are quite sensitive to the cross-linking agents cisplatin and mitomycin C and mildly sensitive to gamma-rays. The formation of damage-induced Rad51 nuclear foci is much reduced in RAD51B(-/-) cells, suggesting that Rad51B promotes the assembly of Rad51 nucleoprotein filaments during HRR. These findings show that Rad51B is important for repairing various types of DNA lesions and maintaining chromosome integrity.
Collapse
Affiliation(s)
- M Takata
- Bayer-Chair Department of Molecular Immunology and Allergy, Faculty of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Kiselyov KI, Shin DM, Wang Y, Pessah IN, Allen PD, Muallem S. Gating of store-operated channels by conformational coupling to ryanodine receptors. Mol Cell 2000; 6:421-31. [PMID: 10983988 DOI: 10.1016/s1097-2765(00)00041-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report here that RyRs interact with and gate the store-operated hTrp3 and Icrac channels. This gating contributes to activation of hTrp3 and Icrac by agonists. Coupling of hTrp3 to IP3Rs or RyRs in the same cells was found to be mutually exclusive. Biochemical and functional evidence suggest that mutually exclusive coupling reflects clustering and segregation of hTrp3-IP3R and hTrp3-RyR complexes in plasma membrane microdomains. Gating of CCE by RyRs indicates that gating by conformational coupling is not unique to skeletal muscle but is a general mechanism for communication between events in the plasma and endoplasmic reticulum membranes.
Collapse
Affiliation(s)
- K I Kiselyov
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
315
|
Blackshaw S, Sawa A, Sharp AH, Ross CA, Snyder SH, Khan AA. Type 3 inositol 1,4,5‐trisphosphate receptor modulates cell death. FASEB J 2000. [DOI: 10.1096/fasebj.14.10.1375] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seth Blackshaw
- Departments of NeurosciencePsychiatry, Johns Hopkins University School of Medicine Baltimore Maryland 21205 USA
| | - Akira Sawa
- Departments of NeurosciencePsychiatry, Johns Hopkins University School of Medicine Baltimore Maryland 21205 USA
| | - Alan H. Sharp
- Departments of NeurosciencePsychiatry, Johns Hopkins University School of Medicine Baltimore Maryland 21205 USA
| | - Christopher A. Ross
- Departments of NeurosciencePsychiatry, Johns Hopkins University School of Medicine Baltimore Maryland 21205 USA
| | - Solomon H. Snyder
- Departments of NeurosciencePsychiatry, Johns Hopkins University School of Medicine Baltimore Maryland 21205 USA
| | - Adil A. Khan
- Departments of NeurosciencePsychiatry, Johns Hopkins University School of Medicine Baltimore Maryland 21205 USA
| |
Collapse
|
316
|
Bultynck G, De Smet P, Weidema AF, Ver Heyen M, Maes K, Callewaert G, Missiaen L, Parys JB, De Smedt H. Effects of the immunosuppressant FK506 on intracellular Ca2+ release and Ca2+ accumulation mechanisms. J Physiol 2000; 525 Pt 3:681-93. [PMID: 10856121 PMCID: PMC2269973 DOI: 10.1111/j.1469-7793.2000.t01-1-00681.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The immunophilin FKBP12 associates with intracellular Ca2+ channels and this interaction can be disrupted by the immunosuppressant FK506. We have investigated the effect of FK506 on Ca2+ release and Ca2+ uptake in permeabilized cell types. Changes in medium free [Ca2+] were detected by the fluorescent Ca2+ indicator fluo-3 in digitonin-permeabilized SH-SY5Y human neuroblastoma cells, DT40 and R23-11 (i.e. triple inositol 1,4,5-trisphosphate (IP3) receptor knockout cells) chicken B lymphocytes and differentiated and undifferentiated BC3H1 skeletal muscle cells. 45Ca2+ fluxes were studied in saponin-permeabilized A7r5 rat smooth muscle cells. Addition of FK506 to permeabilized SH-SY5Y cells led to a sustained elevation of the medium [Ca2+] corresponding to approximately 30 % of the Ca2+ ionophore A23187-induced [Ca2+] rise. This rise in [Ca2+] was not dependent on mitochondrial activity. This FK506-induced [Ca2+] rise was related to the inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-Mg2+-ATPase (SERCA) Ca2+ pump. Oxalate-facilitated 45Ca2+ uptake in SH-SY5Y microsomes was inhibited by FK506 with an IC50 of 19 microM. The inhibition of the SERCA Ca2+ pump was not specific since several macrocyclic lactone compounds (ivermectin > FK506, ascomycin and rapamycin) were able to inhibit Ca2+ uptake activity. FK506 (10 microM) did not affect IP3-induced Ca2+ release in permeabilized SH-SY5Y and A7r5 cells, but enhanced caffeine-induced Ca2+ release via the ryanodine receptor (RyR) in differentiated BC3H1 cells. In conclusion, FK506 inhibited active Ca2+ uptake by the SERCA Ca2+ pump; in addition, FK506 enhanced intracellular Ca2+ release through the RyR, but it had no direct effect on IP3-induced Ca2+ release.
Collapse
MESH Headings
- Animals
- Antiprotozoal Agents/pharmacology
- Aorta/cytology
- B-Lymphocytes/cytology
- Biological Transport/drug effects
- Biological Transport/physiology
- Caffeine/pharmacology
- Calcimycin/pharmacology
- Calcium/pharmacokinetics
- Calcium Channels/physiology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Calcium-Transporting ATPases/metabolism
- Chickens
- Enzyme Inhibitors/pharmacology
- Humans
- Immunosuppressive Agents/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Ionophores/pharmacology
- Ivermectin/pharmacology
- Mice
- Microsomes/chemistry
- Microsomes/enzymology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Neuroblastoma
- Oxalates/pharmacology
- Phosphodiesterase Inhibitors/pharmacology
- Rats
- Receptors, Cytoplasmic and Nuclear/physiology
- Sirolimus/pharmacology
- Spermine/pharmacology
- Tacrolimus/analogs & derivatives
- Tacrolimus/pharmacology
- Thapsigargin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- G Bultynck
- Laboratorium voor Fysiologie, K.U.Leuven Campus Gasthuisberg O/N, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Lail-Trecker MR, Peluso CE, Peluso JJ. Hepatocyte growth factor disrupts cell contact and stimulates an increase in type 3 inositol triphosphate receptor expression, intracellular calcium levels, and apoptosis of rat ovarian surface epithelial cells. Endocrine 2000; 12:303-14. [PMID: 10963052 DOI: 10.1385/endo:12:3:303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/1999] [Revised: 02/18/2000] [Accepted: 02/23/2000] [Indexed: 11/11/2022]
Abstract
The present studies revealed that hepatocyte growth factor (HGF) disrupts cell contact, increases both type 3 IP3 receptor and intracellular calcium ([Ca2+]i) levels and induces apoptosis of rat ovarian surface epithelial cells (ROSE-179 cells). Type 3 IP3 receptor was only increased in cells that lost cell contact. Disrupting cell contact by depleting extracellular calcium (Ca2+) also resulted in an increase in [Ca2+]i levels and an increase in apoptosis. These responses were prevented by the addition of 0.7 mM Ca2+. Actinomycin D and cycloheximide prevented apoptosis that resulted from Ca2+ removal. In situ hybridization studies revealed that type 3 IP3 receptor was expressed at relatively low levels by ROSE-179 cells cultured with Ca2+ but at high levels in the absence of Ca2+. ROSE-179 cells cultured in Ca2+-free medium with type 3 IP3 receptor antisense oligonucleotide lost cell contact but did not show an increase in either type 3 IP3 receptor protein, [Ca2+]i, or apoptosis. The nonsense oligonucleotide did not alter these responses to Ca2+ removal. Thus, the disruption of cell contact by either HGF or Ca2+ depletion increases the expression of type 3 IP3 receptor, which causes an increase in [Ca2+]i and the apoptotic death of ROSE-179 cells.
Collapse
Affiliation(s)
- M R Lail-Trecker
- Department of Physiology, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
318
|
Jayaraman T, Marks AR. Calcineurin is downstream of the inositol 1,4,5-trisphosphate receptor in the apoptotic and cell growth pathways. J Biol Chem 2000; 275:6417-20. [PMID: 10692444 DOI: 10.1074/jbc.275.9.6417] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (IP(3)R) is a calcium (Ca(2+)) release channel found on the endoplasmic reticulum of virtually all types of cells. Human T lymphocytes (Jurkat) that are made deficient in IP(3)R do not generate Ca(2+) signals in response to T cell receptor stimulation, fail to translocate the nuclear factor for activated T cells to the nucleus, and are remarkably resistant to induction of apoptosis with CD95 (Fas), dexamethasone, gamma irradiation, and T cell receptor stimulation using anti-CD3 antibody. Expression of constitutively active calcineurin A in IP(3)R-deficient T cells restored nuclear factor for activated T cells translocation to the nucleus and dephosphorylation of Bad and rendered the cells sensitive to apoptotic inducers. Induction of apoptosis required both active calcineurin A (DeltaCnA) and activation-dependent colocalization of CnA with its substrate. Thus, the Ca(2+)-dependent phosphatase calcineurin (CnA) is downstream of the IP(3)R in both the cell growth and apoptotic signaling pathways.
Collapse
Affiliation(s)
- T Jayaraman
- Departments of Medicine, Molecular Cardiology Program, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
319
|
Kaznacheyeva E, Zubov A, Nikolaev A, Alexeenko V, Bezprozvanny I, Mozhayeva GN. Plasma membrane calcium channels in human carcinoma A431 cells are functionally coupled to inositol 1,4,5-trisphosphate receptor-phosphatidylinositol 4,5-bisphosphate complexes. J Biol Chem 2000; 275:4561-4. [PMID: 10671480 DOI: 10.1074/jbc.275.7.4561] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most nonexcitable cells, calcium (Ca(2+)) release from inositol 1,4,5-trisphosphate (InsP(3))-sensitive intracellular Ca(2+) stores is coupled to Ca(2+) influx (calcium release-activated channels (I(CRAC))) pathway. Despite intense investigation, the molecular identity of I(CRAC) and the mechanism of its activation remain poorly understood. InsP(3)-dependent miniature calcium channels (I(min)) display functional properties characteristic for I(CRAC). Here we used patch clamp recordings of I(min) channels in human carcinoma A431 cells to demonstrate that I(min) activity was greatly enchanced in the presence of anti-phosphatidylinositol 4, 5-bisphosphate antibody (PIP(2)Ab) and diminished in the presence of PIP(2). Anti-PIP(2) antibody induced a greater than 6-fold increase in I(min) sensitivity for InsP(3) activation and an almost 4-fold change in I(min) maximal open probability. The addition of exogenous PIP(2) vesicles to the cytosolic surface of inside-out patches inhibited I(min) activity. These results lead us to propose an existence of a Ca(2+) influx pathway in nonexcitable cells activated via direct conformational coupling with a selected population of InsP(3) receptors, located just underneath the plasma membrane and coupled to PIP(2). The described pathway provides for a highly compartmentalized Ca(2+) influx and intracellular Ca(2+) store refilling mechanism.
Collapse
Affiliation(s)
- E Kaznacheyeva
- Institute of Cytology RAS, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia
| | | | | | | | | | | |
Collapse
|
320
|
Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L. Modulation of Ca(2+) entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc Natl Acad Sci U S A 1999; 96:14955-60. [PMID: 10611319 PMCID: PMC24754 DOI: 10.1073/pnas.96.26.14955] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologues of Drosophilia transient receptor potential (TRP) have been proposed to be unitary subunits of plasma membrane ion channels that are activated as a consequence of active or passive depletion of Ca(2+) stores. In agreement with this hypothesis, cells expressing TRPs display novel Ca(2+)-permeable cation channels that can be activated by the inositol 1,4,5-trisphosphate receptor (IP3R) protein. Expression of TRPs alters cells in many ways, including up-regulation of IP3Rs not coded for by TRP genes, and proof that TRP forms channels of these and other cells is still missing. Here, we document physical interaction of TRP and IP3R by coimmunoprecipitation and glutathione S-transferase-pulldown experiments and identify two regions of IP3R, F2q and F2g, that interact with one region of TRP, C7. These interacting regions were expressed in cells with an unmodified complement of TRPs and IP3Rs to study their effect on agonist- as well as store depletion-induced Ca(2+) entry and to test for a role of their respective binding partners in Ca(2+) entry. C7 and an F2q-containing fragment of IP3R decreased both forms of Ca(2+) entry. In contrast, F2g enhanced the two forms of Ca(2+) entry. We conclude that store depletion-activated Ca(2+) entry occurs through channels that have TRPs as one of their normal structural components, and that these channels are directly activated by IP3Rs. IP3Rs, therefore, have the dual role of releasing Ca(2+) from stores and activating Ca(2+) influx in response to either increasing IP3 or decreasing luminal Ca(2+).
Collapse
Affiliation(s)
- G Boulay
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Affiliation(s)
- C W Taylor
- Department of Pharmacology, University of Cambridge, UK.
| | | | | |
Collapse
|
322
|
Hirota J, Furuichi T, Mikoshiba K. Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J Biol Chem 1999; 274:34433-7. [PMID: 10567423 DOI: 10.1074/jbc.274.48.34433] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), an IP(3)-gated Ca(2+) channel located on intracellular Ca(2+) stores, modulates intracellular Ca(2+) signaling. During apoptosis of the human T-cell line, Jurkat cells, as induced by staurosporine or Fas ligation, IP(3)R type 1 (IP(3)R1) was found to be cleaved. IP(3)R1 degradation during apoptosis was inhibited by pretreatment of Jurkat cells with the caspase-3 (-like protease) inhibitor, Ac-DEVD-CHO, and the caspases inhibitor, z-VAD-CH(2)DCB but not by the caspase-1 (-like protease) inhibitor, Ac-YVAD-CHO, suggesting that IP(3)R1 was cleaved by a caspase-3 (-like) protease. The recombinant caspase-3 cleaved IP(3)R1 in vitro to produce a fragmentation pattern consistent with that seen in Jurkat cells undergoing apoptosis. N-terminal amino acid sequencing revealed that the major cleavage site is (1888)DEVD*(1892)R (mouse IP(3)R1), which involves consensus sequence for caspase-3 cleavage (DEVD). To determine whether IP(3)R1 is cleaved by caspase-3 or is proteolyzed in its absence by other caspases, we examined the cleavage of IP(3)R1 during apoptosis in the MCF-7 breast carcinoma cell line, which has genetically lost caspase-3. Tumor necrosis factor-alpha- or staurosporine-induced apoptosis in caspase-3-deficient MCF-7 cells failed to demonstrate cleavage of IP(3)R1. In contrast, MCF-7/Casp-3 cells stably expressing caspase-3 showed IP(3)R1 degradation upon apoptotic stimuli. Therefore IP(3)R1 is a newly identified caspase-3 substrate, and caspase-3 is essential for the cleavage of IP(3)R1 during apoptosis. This cleavage resulted in a decrease in the channel activity as IP(3)R1 was digested, indicating that caspase-3 inactivates IP(3)R1 channel functions.
Collapse
Affiliation(s)
- J Hirota
- Mikoshiba Calciosignal Net Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, 2-28-8 Honkomagome, Bunkyo-ku, Tokyo 113-0021, Japan.
| | | | | |
Collapse
|
323
|
Swatton JE, Morris SA, Cardy TJ, Taylor CW. Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca2+ and mediate quantal Ca2+ mobilization. Biochem J 1999; 344 Pt 1:55-60. [PMID: 10548533 PMCID: PMC1220613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
There are three subtypes of mammalian Ins(1,4,5)P(3) (InsP(3)) receptor, each of which forms an intracellular Ca(2+) channel. Biphasic regulation of InsP(3) receptors by cytosolic Ca(2+) is well documented in cells expressing predominantly type 1 or type 2 InsP(3) receptors and might contribute to the regenerative recruitment of Ca(2+) release events and to limiting their duration in intact cells. The properties of type 3 receptors are less clear. Bilayer recording from InsP(3) receptors of RIN-5F cells, cells in which the InsP(3) receptors are likely to be largely type 3, recently suggested that the receptors are not inhibited by Ca(2+) [Hagar, Burgstahler, Nathanson and Ehrlich (1998) Nature (London) 296, 81-84]. By using antipeptide antisera that either selectively recognized each InsP(3) receptor subtype or interacted equally well with all subtypes, together with membranes from Spodoptera frugiperda (Sf9) cells expressing only single receptor subtypes to calibrate the immunoblotting, we quantified the relative levels of expression of type 1 (17%) and type 3 (77%) InsP(3) receptors in RINm5F cells. In unidirectional (45)Ca(2+) efflux experiments from permeabilized RINm5F cells, submaximal concentrations of InsP(3) released only a fraction of the InsP(3)-sensitive Ca(2+) stores, indicating that responses to InsP(3) are quantal. Increasing the cytosolic free [Ca(2+)] ([Ca(2+)](i)) from approx. 4 to 186 nM increased the sensitivity of the Ca(2+) stores to InsP(3): the EC(50) decreased from 281+/-15 to 82+/-2 nM. Further increases in [Ca(2+)](i) massively decreased the sensitivity of the stores to InsP(3), by almost 10-fold when [Ca(2+)](i) was 2.4 microM, and by more than 3000-fold when it was 100 microM. The inhibition caused by 100 microM Ca(2+) was fully reversed within 60 s of the restoration of [Ca(2+)](i) to 186 nM. The effect of submaximal InsP(3) concentrations on Ca(2+) mobilization from permeabilized RINm5F cells is therefore biphasically regulated by cytosolic Ca(2+). We conclude that type 3 InsP(3) receptors of RINm5F cells mediate quantal Ca(2+) release and they are biphasically regulated by cytosolic Ca(2+), either because a single type 1 subunit within the tetrameric receptor confers the Ca(2+) inhibition or because the type 3 subtype is itself directly inhibited by Ca(2+).
Collapse
Affiliation(s)
- J E Swatton
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, U.K
| | | | | | | |
Collapse
|
324
|
Broad LM, Armstrong DL, Putney JW. Role of the inositol 1,4,5-trisphosphate receptor in Ca(2+) feedback inhibition of calcium release-activated calcium current (I(crac)). J Biol Chem 1999; 274:32881-8. [PMID: 10551852 DOI: 10.1074/jbc.274.46.32881] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the activation and regulation of calcium release-activated calcium current (I(crac)) in RBL-1 cells in response to various Ca(2+) store-depleting agents. With [Ca(2+)](i) strongly buffered to 100 nM, I(crac) was activated by ionomycin, thapsigargin, inositol 1,4,5-trisphosphate (IP(3)), and two metabolically stable IP(3) receptor agonists, adenophostin A and L-alpha-glycerophospho-D-myoinositol-4,5-bisphosphate (GPIP(2)). With minimal [Ca(2+)](i) buffering, with [Ca(2+)](i) free to fluctuate I(crac) was activated by ionomycin, thapsigargin, and by the potent IP(3) receptor agonist, adenophostin A, but not by GPIP(2) or IP(3) itself. Likewise, when [Ca(2+)](i) was strongly buffered to 500 nM, ionomycin, thapsigargin, and adenophostin A did and GPIP(2) and IP(3) did not activate detectable I(crac). However, with minimal [Ca(2+)](i) buffering, or with [Ca(2+)](i) buffered to 500 nM, GPIP(2) was able to fully activate detectable I(crac) if uptake of Ca(2+) intracellular stores was first inhibited. Our findings suggest that when IP(3) activates the IP(3) receptor, the resulting influx of Ca(2+) quickly inactivates the receptor, and Ca(2+) is re-accumulated at sites that regulate I(crac). Adenophostin A, by virtue of its high receptor affinity, is resistant to this inactivation. Comparison of thapsigargin-releasable Ca(2+) pools following activation by different IP(3) receptor agonists indicates that the critical regulatory pool of Ca(2+) may be very small in comparison to the total IP(3)-sensitive component of the endoplasmic reticulum. These findings reveal new and important roles for IP(3) receptors located on discrete IP(3)-sensitive Ca(2+) pools in calcium feedback regulation of I(crac) and capacitative calcium entry.
Collapse
Affiliation(s)
- L M Broad
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
325
|
Affiliation(s)
- K M Coggeshall
- Department of Microbiology, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
326
|
Takami Y, Kikuchi H, Nakayama T. Chicken histone deacetylase-2 controls the amount of the IgM H-chain at the steps of both transcription of its gene and alternative processing of its pre-mRNA in the DT40 cell line. J Biol Chem 1999; 274:23977-90. [PMID: 10446166 DOI: 10.1074/jbc.274.34.23977] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylases (HDACs) are involved in the deacetylation of core histones, which is an important event in transcription regulation in eukaryotes through alterations in the chromatin structure. We cloned cDNAs and genomic DNAs encoding two chicken HDACs (chHDAC-1 and -2), which are preferentially localized in nuclei. Treatment with trichostatin A reduced the HDAC activities in immunoprecipitates obtained with anti-chHDAC-1 and -2 antisera. Using gene targeting techniques, we generated homozygous DT40 mutants, DeltachHDAC-1 and -2, devoid of two alleles of the chHDAC-1 and -2 genes, respectively. The protein patterns on two-dimensional PAGE definitely changed for DeltachHDAC-2, and the amounts of the IgM H- and L-chains increased in it. Of the two IgM H-chain forms, the secreted form mu(s) increased in DeltachHDAC-2, but the membrane-bound form mu(m) decreased. The IgM H-chain gene was transcribed more in DeltachHDAC-2 than in DT40 cells. In the mutant, the alternative processing of IgM H-chain pre-mRNA preferentially occurred, resulting in an increase in the amount of mu(s) mRNA, whereas the stability of the two types of mRNA, mu(s) and mu(m), was unchanged. In DT40 cells, treatment with trichostatin A increased both the amounts of IgM H-chain mRNAs and the switch from mu(m) to mu(s) mRNAs. Based on these results, we propose a model for a role of chHDAC-2 in both the transcription and alternative processing steps, resulting in control of the amount of the mu(s) IgM H-chain in the DT40 cell line.
Collapse
Affiliation(s)
- Y Takami
- Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | |
Collapse
|
327
|
Affiliation(s)
- S Bolland
- Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
328
|
Abstract
In B lymphocytes, a signaling complex that contributes to cell fate decisions is the B cell antigen receptor (BCR). Data from knockout experiments in cell lines and mice have revealed distinct functions for the intracellular protein tyrosine kinases (Lyn, Syk, Btk) in BCR signaling and B cell development. Combinations of intracellular signaling pathways downstream of these PTKs determine the quality and quantity of BCR signaling. For example, concerted actions of the PLC-gamma 2 and PI3-K pathways are required for proper calcium responses. Similarly, the regulation of ERK and JNK responses involves both PLC-gamma 2 and GTPases pathways. Since the immune response in vivo is regulated by alteration of these signaling outcomes, achieving a precise understanding of intracellular molecular events leading to B lymphocyte proliferation, deletion, anergy, receptor editing, and survival still remains a challenge for the future.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Kansai Medical University, Moriguchi, Japan.
| |
Collapse
|
329
|
Abstract
Ligation of the B cell antigen-receptor triggers an intricate maze of intercalated biochemical events that ultimately affect B cell biological responses. Recent advances have helped to connect many loose ends by identifying key adaptor proteins, such as BLNK/SLP-65, defining crucial roles for phosphatidylinositol-3-kinase and mapping pathways controlling the mitogen-activated protein kinases (ERK, JNK and p38).
Collapse
Affiliation(s)
- K S Campbell
- Fox Chase Cancer Center, Institute for Cancer Research, Division of Basic Science, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
330
|
Guinamard R, Signoret N, Ishiai M, Marsh M, Kurosaki T, Ravetch JV, Masamichi I. B cell antigen receptor engagement inhibits stromal cell-derived factor (SDF)-1alpha chemotaxis and promotes protein kinase C (PKC)-induced internalization of CXCR4. J Exp Med 1999; 189:1461-6. [PMID: 10224286 PMCID: PMC2193069 DOI: 10.1084/jem.189.9.1461] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The entry of B lymphocytes into secondary lymphoid organs is a critical step in the development of an immune response, providing a site for repertoire shaping, antigen-induced activation and selection. These events are controlled by signals generated through the B cell antigen receptor (BCR) and are associated with changes in the migration properties of B cells in response to chemokine gradients. The chemokine stromal cell-derived factor (SDF)-1alpha is thought to be one of the driving forces during those processes, as it is produced inside secondary lymphoid organs and induces B lymphocyte migration that arrests upon BCR engagement. The signaling pathway that mediates this arrest was genetically dissected using B cells deficient in specific BCR-coupled signaling components. BCR-induced inhibition of SDF-1alpha chemotaxis was dependent on Syk, BLNK, Btk, and phospholipase C (Plc)gamma2 but independent of Ca2+ mobilization, suggesting that the target of BCR stimulation was a protein kinase C (PKC)-dependent substrate. This target was identified as the SDF-1alpha receptor, CXCR4, which undergoes PKC- dependent internalization upon BCR stimulation. Mutation of the internalization motif SSXXIL in the COOH terminus of CXCR4 resulted in B cells that constitutively expressed this receptor upon BCR engagement. These studies suggest that one pathway by which BCR stimulation results in inhibition of SDF-1alpha migration is through PKC-dependent downregulation of CXCR4.
Collapse
Affiliation(s)
- R Guinamard
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
331
|
Hashimoto A, Hirose K, Okada H, Kurosaki T, Iino M. Inhibitory modulation of B cell receptor-mediated Ca2+ mobilization by Src homology 2 domain-containing inositol 5'-phosphatase (SHIP). J Biol Chem 1999; 274:11203-8. [PMID: 10196207 DOI: 10.1074/jbc.274.16.11203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src homology 2 domain-containing inositol 5'-phosphatase (SHIP) mediates inhibitory signals that attenuate intracellular Ca2+ mobilization in B cells upon B cell receptor (BCR) stimulation. To clarify the mechanisms affected by SHIP, we analyzed Ca2+ mobilization in the DT40 B cell line in which the SHIP gene was disrupted. In SHIP-deficient cells, Ca2+ transient elicited by BCR stimulation was more prolonged than that in control cells both in the presence and absence of extracellular Ca2+. Inositol 1,4, 5-trisphosphate production following BCR stimulation was enhanced in SHIP-deficient cells. In SHIP-deficient cells in comparison with the control cells, BCR stimulation in the absence of extracellular Ca2+ induced a greater degree of Ca2+ store depletion and the Ca2+ influx upon re-addition of extracellular Ca2+ was also greater. However, store-operated Ca2+ influx (SOC) elicited by thapsigargin-induced store depletion was not affected by SHIP. These results indicate that the primary target pathway of SHIP is the Ca2+ release from the stores, and that Ca2+ influx by the SOC mechanism is secondarily controlled by the level of Ca2+ in the stores without direct inhibition of SOC. In this way, SHIP may play an important role in ensuring the robust tuning of Ca2+ signaling in B cells.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cell Line
- Chickens
- Inositol 1,4,5-Trisphosphate/biosynthesis
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/metabolism
- Receptors, Antigen, B-Cell/agonists
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/physiology
- Thapsigargin/pharmacology
- src Homology Domains
Collapse
Affiliation(s)
- A Hashimoto
- Department of Pharmacology, Faculty of Medicine, University of Tokyo, and CREST, Japan Science and Technology Corporation, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
332
|
Maeda A, Scharenberg AM, Tsukada S, Bolen JB, Kinet JP, Kurosaki T. Paired immunoglobulin-like receptor B (PIR-B) inhibits BCR-induced activation of Syk and Btk by SHP-1. Oncogene 1999; 18:2291-7. [PMID: 10327049 DOI: 10.1038/sj.onc.1202552] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coligation of paired immunoglobulin-like receptor B (PIR-B) with B cell antigen receptor (BCR) blocks antigen-induced B cell activation. This inhibition is mediated in part by recruitment of SHP-1 and SHP-2 to the phosphorylated ITIMs in the cytoplasmic domain of PIR-B; however the molecular target(s) of these phosphatases remain elusive. Here we show that PIR-B ligation inhibits the BCR-induced tyrosine phosphorylation of Igalpha/Igbeta, Syk, Btk and phospholipase C (PLC)-gamma2. Overexpression of a catalytically inactive form of SHP-1 prevents the PIR-B-mediated inhibition of tyrosine phosphorylation of Syk, Btk, and PLC-gamma2. Dephosphorylation of Syk and Btk mediated by SHP-1 leads to a decrease of their kinase activity, which in turn inhibits tyrosine phosphorylation of PLC-gamma2. Furthermore, we define a requirement for Lyn in mediating tyrosine phosphorylation of PIR-B. Based on these results, we propose a model of PIR-B-mediated inhibitory signaling in which coligation of PIR-B and BCR results in phosphorylation of ITIMs by Lyn, subsequent recruitment of SHP-1, and a resulting inhibition of the BCR-induced inositol 1,4,5-trisphosphate generation by dephosphorylation of Syk and Btk.
Collapse
Affiliation(s)
- A Maeda
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | | | |
Collapse
|
333
|
Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 1999; 18:1303-8. [PMID: 10064596 PMCID: PMC1171220 DOI: 10.1093/emboj/18.5.1303] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) plays a key role in Ca2+ signalling, which exhibits a variety of spatio-temporal patterns that control important cell functions. Multiple subtypes of IP3 receptors (IP3R-1, -2 and -3) are expressed in a tissue- and development-specific manner and form heterotetrameric channels through which stored Ca2+ is released, but the physiological significance of the differential expression of IP3R subtypes is not known. We have studied the Ca2+-signalling mechanism in genetically engineered B cells that express either a single or a combination of IP3R subtypes, and show that Ca2+-signalling patterns depend on the IP3R subtypes, which differ significantly in their response to agonists, i.e. IP3, Ca2+ and ATP. IP3R-2 is the most sensitive to IP3 and is required for the long lasting, regular Ca2+ oscillations that occur upon activation of B-cell receptors. IP3R-1 is highly sensitive to ATP and mediates less regular Ca2+ oscillations. IP3R-3 is the least sensitive to IP3 and Ca2+, and tends to generate monophasic Ca2+ transients. Furthermore, we show for the first time functional interactions between coexpressed subtypes. Our results demonstrate that differential expression of IP3R subtypes helps to encode IP3-mediated Ca2+ signalling.
Collapse
MESH Headings
- Adenosine Triphosphate/pharmacology
- Animals
- Antibodies/metabolism
- B-Lymphocytes/metabolism
- Calcium/metabolism
- Calcium Channels/classification
- Calcium Channels/metabolism
- Chickens
- Fura-2
- Gene Expression Regulation/genetics
- Gene Targeting
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Cytoplasmic and Nuclear/classification
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T Miyakawa
- Department of Pharmacology, Faculty of Medicine, The University of Tokyo, CREST, Japan
| | | | | | | | | | | |
Collapse
|
334
|
Barritt GJ. Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 1999; 337 ( Pt 2):153-69. [PMID: 9882611 PMCID: PMC1219948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Receptor-activated Ca2+ channels (RACCs) play a central role in regulation of the functions of animal cells. Together with voltage-operated Ca2+ channels (VOCCs) and ligand-gated non-selective cation channels, RACCs provide a variety of pathways by which Ca2+ can be delivered to the cytoplasmic space and the endoplasmic reticulum (ER) in order to initiate or maintain specific types of intracellular Ca2+ signal. Store-operated Ca2+ channels (SOCs), which are activated by a decrease in Ca2+ in the ER, are a major subfamily of RACCs. A careful analysis of the available data is required in order to discern the different types of RACCs (differentiated chiefly on the basis of ion selectivity and mechanism of activation) and to properly develop hypotheses for structures and mechanisms of activation. Despite much intensive research, the structures and mechanisms of activation of RACCs are only now beginning to be understood. In considering the physiological functions of the different RACCs, it is useful to consider the specificity for Ca2+ of each type of cation channel and the rate at which Ca2+ flows through a single open channel; the locations of the channels on the plasma membrane (in relation to the ER, cytoskeleton and other intracellular units of structure and function); the Ca2+-responsive enzymes and proteins; and the intracellular buffers and proteins that control the distribution of Ca2+ in the cytoplasmic space. RACCs which are non-selective cation channels can deliver Ca2+ directly to specific regions of the cytoplasmic space, and can also admit Na+, which induces depolarization of the plasma membrane, the opening of VOCCs and the subsequent inflow of Ca2+. SOCs appear to deliver Ca2+ specifically to the ER, thereby maintaining oscillating Ca2+ signals.
Collapse
Affiliation(s)
- G J Barritt
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, G.P.O. Box 2100, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
335
|
|
336
|
Paschen W, Doutheil J. Disturbances of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury? J Cereb Blood Flow Metab 1999; 19:1-18. [PMID: 9886350 DOI: 10.1097/00004647-199901000-00001] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cerebral ischemia leads to a massive increase in cytoplasmic calcium activity resulting from an influx of calcium ions into cells and a release of calcium from mitochondria and endoplasmic reticulum (ER). It is widely believed that this increase in cytoplasmic calcium activity plays a major role in ischemic cell injury in neurons. Recently, this concept was modified, taking into account that disturbances occurring during ischemia are potentially reversible: it then was proposed that after reversible ischemia, calcium ions are taken up by mitochondria, leading to disturbances of oxidative phosphorylation, formation of free radicals, and deterioration of mitochondrial functions. The current review focuses on the possible role of disturbances of ER calcium homeostasis in the pathologic process culminating in ischemic cell injury. The ER is a subcellular compartment that fulfills important functions such as the folding and processing of proteins, all of which are strictly calcium dependent. ER calcium activity is therefore relatively high, lying in the lower millimolar range (i.e., close to that of the extracellular space). Depletion of ER calcium stores is a severe form of stress to which cells react with a highly conserved stress response, the most important changes being a suppression of global protein synthesis and activation of stress gene expression. The response of cells to disturbances of ER calcium homeostasis is almost identical to their response to transient ischemia, implying common underlying mechanisms. Many observations from experimental studies indicate that disturbances of ER calcium homeostasis are involved in the pathologic process leading to ischemic cell injury. Evidence also has been presented that depletion of ER calcium stores alone is sufficient to activate the process of programmed cell death. Furthermore, it has been shown that activation of the ER-resident stress response system by a sublethal form of stress affords tolerance to other, potentially lethal insults. Also, disturbances of ER function have been implicated in the development of degenerative disorders such as prion disease and Alzheimer's disease. Thus, disturbances of the functioning of the ER may be a common denominator of neuronal cell injury in a wide variety of acute and chronic pathologic states of the brain. Finally, there is evidence that ER calcium homeostasis plays a key role in maintaining cells in their physiologic state, since depletion of ER calcium stores causes growth arrest and cell death, whereas cells in which the regulatory link between ER calcium homeostasis and protein synthesis has been blocked enter a state of uncontrolled proliferation.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
337
|
Abstract
In the phospholipase C signaling system, Ca(2+) is mobilized from intracellular stores by an action of inositol 1,4,5-trisphosphate. The depletion of intracellular calcium stores activates a calcium entry mechanism at the plasma membrane called capacitative calcium entry. The signal for activating the entry is unknown but likely involves either the generation or release, or both, from the endoplasmic reticulum of some diffusible signal. Recent research has focused on mammalian homologues of the Drosophila TRP protein as potential candidates for capacitative calcium entry channels. This review summarizes current knowledge about the nature of capacitative calcium entry signals, as well as the potential role of mammalian TRP proteins as capacitative calcium entry channel molecules.
Collapse
Affiliation(s)
- J W Putney
- Calcium Regulation Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
338
|
Kubista H, Hawkins T, Moss SE. Characterisation of calcium signalling in DT40 chicken B-cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1448:299-310. [PMID: 9920420 DOI: 10.1016/s0167-4889(98)00132-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chicken DT40 pre-B-cell line is becoming a potent experimental tool in the elucidation of higher organism cellular functions due to its unique genetic tractability. While several publications have described the effects of disruption of a range of genes in DT40 cells on calcium signalling, there has been no general overview of Ca2+ responses in wild-type cells. Here, we present experimental data comparing and contrasting the calcium responses to a range of agonists, such as alphaIgM, H2O2 and thapsigargin, applied singly or consecutively in the presence or absence of extracellular calcium. Briefly, we show that calcium release is from thapsigargin-sensitive and also -insensitive stores. This release results in, or is concomitant with, calcium entry across the plasma membrane through store-operated, receptor-operated and possibly L-type like Ca2+ channels. The agonists activate these pathways differentially producing a wide range of different sized and shaped Ca2+ signals. Furthermore, we report that Ca2+ responses in DT40 cells are dependent on the growth conditions. The presence of 1% chicken serum in the growth medium increased amplitudes of calcium responses and enhanced the sustained phase of the alphaIgM response, while 10 microM beta-mercaptoethanol in the medium (not, however, present during calcium measurements) resulted in more transient H2O2 responses and larger amplitude alphaIgM responses while failing to affect thapsigargin responses. The possible causes of these effects and their importance in comparing data from different studies on DT40 cells is discussed.
Collapse
Affiliation(s)
- H Kubista
- Department of Physiology, University College London, UK
| | | | | |
Collapse
|
339
|
Shears SB. The versatility of inositol phosphates as cellular signals. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:49-67. [PMID: 9838040 DOI: 10.1016/s0005-2760(98)00131-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cells from across the phylogenetic spectrum contain a variety of inositol phosphates. Many different functions have been ascribed to this group of compounds. However, it is remarkable how frequently several of these different inositol phosphates have been linked to various aspects of signal transduction. Therefore, this review assesses the evidence that inositol phosphates have evolved into a versatile family of second messengers.
Collapse
Affiliation(s)
- S B Shears
- Inositide Signalling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
340
|
Taylor CW. Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:19-33. [PMID: 9838027 DOI: 10.1016/s0005-2760(98)00122-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The three subtypes of inositol trisphosphate (InsP3) receptor expressed in mammalian cells are each capable of forming intracellular Ca2+ channels that are regulated by both InsP3 and cytosolic Ca2+. The InsP3 receptors of many, though perhaps not all, tissues are biphasically regulated by cytosolic Ca2+: a rapid stimulation of the receptors by modest increases in Ca2+ concentration is followed by a slower inhibition at higher Ca2+ concentrations. Despite the widespread occurrence of this form of regulation and the belief that it is an important element of the mechanisms responsible for the complex Ca2+ signals evoked by physiological stimuli, the underlying mechanisms are not understood. Both accessory proteins and Ca2+-binding sites on InsP3 receptors themselves have been proposed to mediate the effects of cytosolic Ca2+ on InsP3 receptor function, but the evidence is equivocal. The effects of cytosolic Ca2+ on InsP3 binding and channel opening, and the possible means whereby the effects are mediated are discussed in this review.
Collapse
Affiliation(s)
- C W Taylor
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, UK.
| |
Collapse
|
341
|
Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 1998; 396:478-82. [PMID: 9853757 DOI: 10.1038/24890] [Citation(s) in RCA: 503] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium ions are released from intracellular stores in response to agonist-stimulated production of inositol 1,4,5-trisphosphate (InsP3), a second messenger generated at the cell membrane. Depletion of Ca2+ from internal stores triggers a capacitative influx of extracellular Ca2+ across the plasma membrane. The influx of Ca2+ can be recorded as store-operated channels (SOC) in the plasma membrane or as a current known as the Ca2+-release-activated current (I(crac)). A critical question in cell signalling is how SOC and I(crac) sense and respond to Ca2+-store depletion: in one model, a messenger molecule is generated that activates Ca2+ entry in response to store depletion; in an alternative model, InsP3 receptors in the stores are coupled to SOC and I(crac). The mammalian Htrp3 protein forms a well defined store-operated channel and so provides a suitable system for studying the effect of Ca2+-store depletion on SOC and I(crac). We show here that Htrp3 channels stably expressed in HEK293 cells are in a tight functional interaction with the InsP3 receptors. Htrp3 channels present in the same plasma membrane patch can be activated by Ca2+ mobilization in intact cells and by InsP3 in excised patches. This activation of Htrp3 by InsP3 is lost on extensive washing of excised patches but is restored by addition of native or recombinant InsP3-bound InsP3 receptors. Our results provide evidence for the coupling hypothesis, in which InsP3 receptors activated by InsP3 interact with SOC and regulate I(crac).
Collapse
Affiliation(s)
- K Kiselyov
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 75235, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Okada H, Bolland S, Hashimoto A, Kurosaki M, Kabuyama Y, Iino M, Ravetch JV, Kurosaki T. Cutting Edge: Role of the Inositol Phosphatase SHIP in B Cell Receptor-Induced Ca2+ Oscillatory Response. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Src homology-2 domain-containing inositol polyphosphate 5′-phosphatase (SHIP) is a recently identified protein that has been implicated as an important signaling molecule. Although SHIP has been shown to participate in the FcγRIIB-mediated inhibitory signal, the functional role of SHIP in activation responses by immunoreceptor tyrosine-based activation motif-bearing receptors such as B cell receptor (BCR) remains unclear. Indeed, it has been proposed that SHIP serves as a linking molecule for the regulation of the extracellular signal-regulated kinase pathway in BCR signaling, because SHIP associates with Shc. We now report that SHIP-deficient DT40 B cells display enhanced Ca2+ mobilization in response to BCR ligation, whereas extracellular signal-regulated kinase activation is unaffected. This Ca2+ enhancement is due to a sustained intracellular Ca2+ increase or to long-lasting Ca2+ oscillations by loss of SHIP, as revealed by single-cell Ca2+ imaging analysis. These results demonstrate the importance of SHIP in B cell activation by the modulation of Ca2+ mobilization.
Collapse
Affiliation(s)
- Hidetaka Okada
- *Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan
| | - Silvia Bolland
- †Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10021
| | - Akiko Hashimoto
- ‡Department of Pharmacology, Faculty of Medicine, University of Tokyo, Tokyo Japan
- §Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan; and
| | - Mari Kurosaki
- *Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan
| | - Yukihito Kabuyama
- ¶Department of Biomolecular Sciences, Fukushima Medical College, Fukushima, Japan
| | - Masamitsu Iino
- ‡Department of Pharmacology, Faculty of Medicine, University of Tokyo, Tokyo Japan
- §Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan; and
| | - Jeffrey V. Ravetch
- †Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10021
| | - Tomohiro Kurosaki
- *Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan
| |
Collapse
|
343
|
Wilcox RA, Primrose WU, Nahorski SR, Challiss RA. New developments in the molecular pharmacology of the myo-inositol 1,4,5-trisphosphate receptor. Trends Pharmacol Sci 1998; 19:467-75. [PMID: 9850611 DOI: 10.1016/s0165-6147(98)01260-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Receptor-mediated activation of phospholipase C to generate inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] is a ubiquitous signalling pathway in mammalian systems. A family of three IP3 receptor subtype monomers form functional tetramers, which act as effectors for Ins(1,4,5)P3, providing a ligand-gated channel that allows Ca2+ ions to move between cellular compartments. As IP3 receptors are located principally, although not exclusively, in the endoplasmic reticular membrane, Ins(1,4,5)P3 is considered to be a second messenger that mobilizes Ca2+ from intracellular stores. Ca2+ store mobilization by Ins(1,4,5)P3 can be shown to contribute to a variety of physiological and pathophysiological phenomena, and therefore the IP3 receptor represents a novel, potential pharmacological target. In this article, Rob Wilcox and colleagues review recent developments in IP3 receptor pharmacology, with particular emphasis on ligand molecular recognition by this receptor-channel complex. The potential for designing non-inositol phosphate-based agonists and antagonists is also discussed.
Collapse
Affiliation(s)
- R A Wilcox
- School of Medicine, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
344
|
McLeod SJ, Ingham RJ, Bos JL, Kurosaki T, Gold MR. Activation of the Rap1 GTPase by the B cell antigen receptor. J Biol Chem 1998; 273:29218-23. [PMID: 9786933 DOI: 10.1074/jbc.273.44.29218] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The B cell antigen receptor (BCR) activates Ras, a GTPase that promotes cell proliferation by activating the Raf-1/MEK/ERK signaling module and other signaling enzymes. In its active GTP-bound form, the Rap1 GTPase may act as a negative regulator of Ras-mediated signaling by sequestering Ras effectors (e.g., Raf-1) and preventing their activation. In this report, we show that BCR engagement activates Rap1 and that this is dependent on production of diacylglycerol (DAG) by phospholipase C-gamma. Activation of Rap1 by the BCR was greatly reduced in phospholipase C-gamma-deficient B cells, whereas both a synthetic DAG and phorbol dibutyrate could activate Rap1 in B cells. We had previously shown that C3G, an activator of Rap1, associates with the Crk adaptor proteins in B cells and that BCR engagement causes Crk to bind to the Cas and Cbl docking proteins. However, the DAG-dependent pathway by which the BCR activates Rap1 apparently does not involve Crk signaling complexes since phorbol dibutyrate could activate Rap1 without inducing the formation of these complexes. Thus, the BCR activates Rap1 via a novel DAG-dependent pathway.
Collapse
Affiliation(s)
- S J McLeod
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
345
|
Hashimoto A, Okada H, Jiang A, Kurosaki M, Greenberg S, Clark EA, Kurosaki T. Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J Exp Med 1998; 188:1287-95. [PMID: 9763608 PMCID: PMC2212492 DOI: 10.1084/jem.188.7.1287] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1998] [Revised: 07/29/1998] [Indexed: 01/07/2023] Open
Abstract
Mitogen-activated protein (MAP) kinase family members, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase ( JNK), and p38 MAP kinase, have been implicated in coupling the B cell antigen receptor (BCR) to transcriptional responses. However, the mechanisms that lead to the activation of these MAP kinase family members have been poorly elucidated. Here we demonstrate that the BCR-induced ERK activation is reduced by loss of Grb2 or expression of a dominant-negative form of Ras, RasN17, whereas this response is not affected by loss of Shc. The inhibition of the ERK response was also observed in phospholipase C (PLC)-gamma2-deficient DT40 B cells, and expression of RasN17 in the PLC-gamma2-deficient cells completely abrogated the ERK activation. The PLC-gamma2 dependency of ERK activation was most likely due to protein kinase C (PKC) activation rather than calcium mobilization, since loss of inositol 1,4,5-trisphosphate receptors did not affect ERK activation. Similar to cooperation of Ras with PKC activation in ERK response, both PLC-gamma2-dependent signal and GTPase are required for BCR-induced JNK and p38 responses. JNK response is dependent on Rac1 and calcium mobilization, whereas p38 response requires Rac1 and PKC activation.
Collapse
Affiliation(s)
- A Hashimoto
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
346
|
Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998; 17:5497-508. [PMID: 9736627 PMCID: PMC1170875 DOI: 10.1093/emboj/17.18.5497] [Citation(s) in RCA: 891] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells repair DNA double-strand breaks (DSBs) by at least two pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ). Rad54 participates in the first recombinational repair pathway while Ku proteins are involved in NHEJ. To investigate the distinctive as well as redundant roles of these two repair pathways, we analyzed the mutants RAD54(-/-), KU70(-/-) and RAD54(-/-)/KU70(-/-), generated from the chicken B-cell line DT40. We found that the NHEJ pathway plays a dominant role in repairing gamma-radiation-induced DSBs during G1-early S phase while recombinational repair is preferentially used in late S-G2 phase. RAD54(-/-)/KU70(-/-) cells were profoundly more sensitive to gamma-rays than either single mutant, indicating that the two repair pathways are complementary. Spontaneous chromosomal aberrations and cell death were observed in both RAD54(-/-) and RAD54(-/-)/KU70(-/-) cells, with RAD54(-/-)/KU70(-/-) cells exhibiting significantly higher levels of chromosomal aberrations than RAD54(-/-) cells. These observations provide the first genetic evidence that both repair pathways play a role in maintaining chromosomal DNA during the cell cycle.
Collapse
Affiliation(s)
- M Takata
- Department of Molecular Immunology and Allergology, Kyoto University Medical School, Konoe Yoshida, Sakyo-ku, Kyoto 606-8315, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Maeda A, Kurosaki M, Kurosaki T. Paired immunoglobulin-like receptor (PIR)-A is involved in activating mast cells through its association with Fc receptor gamma chain. J Exp Med 1998; 188:991-5. [PMID: 9730901 PMCID: PMC2213385 DOI: 10.1084/jem.188.5.991] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Paired immunoglobulin-like receptor (PIR)-A and PIR-B possess similar ectodomains with six immunoglobulin-like loops, but have distinct transmembrane and cytoplasmic domains. PIR-B bears immunoreceptor tyrosine-based inhibitory motif (ITIM) sequences in its cytoplasmic domain that recruit Src homology (SH)2 domain-containing tyrosine phosphatases SHP-1 and SHP-2, leading to inhibition of B and mast cell activation. In contrast, the PIR-A protein has a charged Arg residue in its transmembrane region and a short cytoplasmic domain that lacks ITIM sequences. Here we show that Fc receptor gamma chain, containing an immunoreceptor tyrosine-based activation motif (ITAM), associates with PIR-A. Cross-linking of this PIR-A complex results in mast cell activation such as calcium mobilization in an ITAM-dependent manner. Thus, our data provide evidence for the existence of two opposite signaling pathways upon PIR aggregation. PIR-A induces the stimulatory signal by using ITAM in the associated gamma chain, whereas PIR-B mediates the inhibitory signal through its ITIMs.
Collapse
Affiliation(s)
- A Maeda
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan
| | | | | |
Collapse
|
348
|
Cardy TJ, Taylor CW. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors. Biochem J 1998; 334 ( Pt 2):447-55. [PMID: 9716504 PMCID: PMC1219708 DOI: 10.1042/bj3340447] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calmodulin inhibits both inositol 1,4,5-trisphosphate (IP3) binding to, and IP3-evoked Ca2+ release by, cerebellar IP3 receptors [Patel, Morris, Adkins, O'Beirne and Taylor (1997) Proc. Natl. Acad. Sci. U. S.A. 94, 11627-11632]. In the present study, full-length rat type-1 and -3 IP3 receptors were expressed at high levels in insect Spodoptera frugiperda 9 cells and the effects of calmodulin were examined. In the absence of Ca2+, calmodulin caused a concentration-dependent and reversible inhibition of [3H]IP3 binding to type-1 IP3 receptors by decreasing their apparent affinity for IP3. The effect was not reproduced by high concentrations of troponin C, parvalbumin or S-100. Increasing the medium free [Ca2+] ([Ca2+]m) inhibited [3H]IP3 binding to type-1 receptors, but the further inhibition caused by a submaximal concentration of calmodulin was similar at each [Ca2+]m. In the absence of Ca2+, 125I-calmodulin bound to a single site on each type-1 receptor subunit and to an additional site in the presence of Ca2+. There was no detectable binding of 125I-calmodulin to type-3 receptors and binding of [3H]IP3 was insensitive to calmodulin at all [Ca2+]m. Both peptide and conventional Ca2+-calmodulin antagonists affected neither [3H]IP3 binding directly nor the inhibitory effect of calmodulin in the absence of Ca2+, but each caused a [Ca2+]m-dependent reversal of the inhibition of [3H]IP3 binding caused by calmodulin. Camstatin, a peptide that binds to calmodulin equally well in the presence or absence of Ca2+, reversed the inhibitory effects of calmodulin on [3H]IP3 binding at all [Ca2+]m. We conclude that calmodulin specifically inhibits [3H]IP3 binding to type-1 IP3 receptors: the first example of a protein regulated by calmodulin in an entirely Ca2+-independent manner. Inhibition of type-1 IP3 receptors by calmodulin may dynamically regulate their sensitivity to IP3 in response to the changes in cytosolic free calmodulin concentration thought to accompany stimulation of neurones.
Collapse
Affiliation(s)
- T J Cardy
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | | |
Collapse
|
349
|
Hirota J, Baba M, Matsumoto M, Furuichi T, Takatsu K, Mikoshiba K. T-cell-receptor signalling in inositol 1,4,5-trisphosphate receptor (IP3R) type-1-deficient mice: is IP3R type 1 essential for T-cell-receptor signalling? Biochem J 1998; 333 ( Pt 3):615-9. [PMID: 9677320 PMCID: PMC1219624 DOI: 10.1042/bj3330615] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stimulation of T-cells via the T-cell receptor (TCR) complex is accompanied by an increase in intracellular Ca2+ concentration ([Ca2+]i). Recently, it was reported that a stable transformant of the human T-cell line, Jurkat, expressing an antisense cDNA construct of inositol 1,4,5-trisphosphate receptor (IP3R) type 1 (IP3R1), failed to demonstrate increased [Ca2+]i or interleukin-2 production after TCR stimulation and was also resistant to apoptotic stimuli. This cell line lacked IP3R1 expression, but expressed the type-2 and -3 receptors, IP3R2 and IP3R3 respectively [Jayaraman, Ondriasova, Ondrias, Harnick and Marks (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 6007-6011, and Jayaraman and Marks (1997) Mol. Cell. Biol. 17, 3005-3012]. The authors concluded that IP3R1 is essential for TCR signalling and suggested that Ca2+ release via IP3R1 is a critical mediator of apoptosis. To establish whether a loss of IP3R1 function in T-cells occurred in vivo and in vitro, we investigated Ca2+ signalling after TCR stimulation and the properties of T-cells using IP3R1-deficient (IP3R1-/-) mice. As IP3R1-/- mice die at weaning, we transplanted bone marrow cells of IP3R1-/- mice into irradiated wild-type mice. Western blot analysis showed that the recipient IP3R1-containing (IP3R1+/+) lymphocytes were replaced by the donor IP3R1-/- lymphocytes after transplantation and that expression of IP3R2 and IP3R3 was unaltered. In contrast with the previous reports, T-cells lacking IP3R1 were able to mobilize Ca2+ from intracellular Ca2+ stores after stimulation via the TCR. We observed no significant differences between IP3R1+/+ and IP3R1-/- T-cells in terms of the number of thymocytes and splenocytes, the proportion of the T-cell phenotype, proliferative response to anti-CD3 monoclonal antibody (mAb) stimulation and cell viability. Therefore IP3R1 is not essential for T-cell development and function.
Collapse
Affiliation(s)
- J Hirota
- Mikoshiba Calciosignal Net Project, Exploratory Research for Advanced Technology (ERATO), c/o Banyu Pharmaceutical Co., Ltd. 2-9-3 Shimomeguro, Meguro-ku, Tokyo 153, Japan.
| | | | | | | | | | | |
Collapse
|
350
|
Meyer zu Heringdorf D, Lass H, Alemany R, Laser KT, Neumann E, Zhang C, Schmidt M, Rauen U, Jakobs KH, van Koppen CJ. Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors. EMBO J 1998; 17:2830-7. [PMID: 9582276 PMCID: PMC1170623 DOI: 10.1093/emboj/17.10.2830] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Formation of inositol 1,4,5-trisphosphate (IP3) by phospholipase C (PLC) with subsequent release of Ca2+ from intracellular stores, is one of the major Ca2+ signalling pathways triggered by G-protein-coupled receptors (GPCRs). However, in a large number of cellular systems, Ca2+ mobilization by GPCRs apparently occurs independently of the PLC-IP3 pathway, mediated by an as yet unknown mechanism. The present study investigated whether sphingosine kinase activation, leading to production of sphingosine-1-phosphate (SPP), is involved in GPCR-mediated Ca2+ signalling as proposed for platelet-derived growth factor and FcepsilonRI antigen receptors. Inhibition of sphingosine kinase by DL-threo-dihydrosphingosine and N,N-dimethylsphingosine markedly inhibited [Ca2+]i increases elicited by m2 and m3 muscarinic acetylcholine receptors (mAChRs) expressed in HEK-293 cells without affecting mAChR-induced PLC stimulation. Activation of mAChRs rapidly and transiently stimulated production of SPP in HEK-293 cells. Finally, intracellular injection of SPP induced a rapid and transient Ca2+ mobilization in HEK-293 cells which was not antagonized by heparin. We conclude that mAChRs utilize the sphingosine kinase-SPP pathway in addition to PLC-IP3 to mediate Ca2+ mobilization. As Ca2+ signalling by various, but not all, GPCRs in different cell types was likewise attenuated by the sphingosine kinase inhibitors, we suggest a general role for sphingosine kinase, besides PLC, in mediation of GPCR-induced Ca2+ signalling.
Collapse
|