301
|
Baião DDS, Conte-Junior CA, Paschoalin VMF, Alvares TS. Beetroot juice increase nitric oxide metabolites in both men and women regardless of body mass. Int J Food Sci Nutr 2015; 67:40-6. [DOI: 10.3109/09637486.2015.1121469] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
302
|
Borgognone A, Loka T, Chimen M, Rainger E, Feelisch M, Watson SP, Frenneaux MP, Madhani M. Nitrite is a cGMP generator in isolated platelets. BMC Pharmacol Toxicol 2015. [PMCID: PMC4565568 DOI: 10.1186/2050-6511-16-s1-a65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
303
|
Clifton P. From sodium intake restriction to nitrate supplementation: Different measures with converging mechanistic pathways? Nutr Metab Cardiovasc Dis 2015; 25:1079-1086. [PMID: 26614018 DOI: 10.1016/j.numecd.2015.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/01/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023]
Abstract
Endothelial nitric oxide synthase is at the centre of endothelial physiology producing nitric oxide which dilates blood vessels, inhibits platelet aggregation and smooth muscle cell proliferation and reduces adhesion molecule production. The laminar shear stress is a common test used usually as the flow mediated dilatation test (FMD) which is sensitive to saturated fat, sodium and potassium although with the latter ion it is possible potassium has direct effects on ion channels in the smooth muscle cell as well as the endothelial cell. High blood pressure and blood cholesterol both reduce nitric oxide production, the latter probably by increasing caveolin-1 which binds nitric oxide synthase. Saturated fat reduces nitric oxide by elevating LDL cholesterol and caveolin-1 while insulin stimulates nitric oxide synthase activity by serine phosphorylation. Polyphenols from tea, coffee and cocoa and virgin olive oil enhance FMD and eNOS activity is essential for this activity. Wine polyphenols produce mixed results and it is not clear at present that they are beneficial. Blackberries and other polyphenol-rich fruit also enhance FMD. Dietary nitrate from beetroot and green leafy vegetables is converted to nitrite by salivary microbes and then to nitric oxide and this acts directly on the smooth muscle to lower blood pressure particularly in a low oxygen environment. Dietary nitrate also improves work efficiency and improves flow mediated dilatation.
Collapse
Affiliation(s)
- P Clifton
- University of South Australia, P5-16, GPO Box 2471, Adelaide SA 5000, Australia.
| |
Collapse
|
304
|
Acute dietary nitrate supplementation improves arterial endothelial function at high altitude: A double-blinded randomized controlled cross over study. Nitric Oxide 2015; 50:58-64. [DOI: 10.1016/j.niox.2015.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022]
|
305
|
Haider G, Folland JP. Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med Sci Sports Exerc 2015; 46:2234-43. [PMID: 24681572 DOI: 10.1249/mss.0000000000000351] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Dietary nitrate supplementation positively affects cardiovascular function at rest and energy metabolism during exercise in humans and has recently also been reported to markedly enhance the in vitro contractile properties of mouse fast-twitch muscle. The aim of this study was to investigate the effects of short-term nitrate supplementation on the in vivo contractile properties of the skeletal muscle and voluntary muscle function of humans. METHODS In a double-blind, randomized, crossover design, 19 healthy untrained men (21 ± 3 yr) ingested a nitrate-rich concentrated beetroot juice (NIT; nitrate dosage, approximately 9.7 mmol·d) and a placebo (PLA) for seven consecutive days. After the last supplementation dose, force was recorded while participants completed a series of voluntary and involuntary (electrically evoked) unilateral isometric contractions of the knee extensors. RESULTS NIT enhanced the peak force response to low-frequency electrical stimulation, as follows: maximal twitch (NIT, 149 ± 41 N, vs PLA, 138 ± 37 N; P = 0.008; effect size, r (ES) = 0.56) and submaximal 1- to 20-Hz contractions (5%-10%, ES = 0.53-0.63). Whereas explosive (rising phase) force production during the first 50 ms of evoked maximal twitch and octet contractions (eight electrical impulses at 300 Hz) was also 3%-15% greater after NIT compared with that after PLA (P = 0.023-0.048, ES = 0.52-0.59), explosive voluntary force remained similar (P = 0.510, ES = 0.16). Maximum voluntary force was also unchanged after NIT (P = 0.539, ES = 0.15). CONCLUSIONS These results indicate that 7 d of dietary nitrate supplementation enhanced the in vivo contractile properties of the human skeletal muscle. Specifically, nitrate supplementation improved excitation-contraction coupling at low frequencies of stimulation and enhanced evoked explosive force production but did not affect maximum or explosive voluntary force production in untrained individuals.
Collapse
Affiliation(s)
- Georg Haider
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | | |
Collapse
|
306
|
Pinheiro LC, Amaral JH, Ferreira GC, Portella RL, Ceron CS, Montenegro MF, Toledo JC, Tanus-Santos JE. Gastric S-nitrosothiol formation drives the antihypertensive effects of oral sodium nitrite and nitrate in a rat model of renovascular hypertension. Free Radic Biol Med 2015; 87:252-62. [PMID: 26159506 DOI: 10.1016/j.freeradbiomed.2015.06.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/11/2015] [Accepted: 06/26/2015] [Indexed: 01/01/2023]
Abstract
Many effects of nitrite and nitrate are attributed to increased circulating concentrations of nitrite, ultimately converted into nitric oxide (NO(•)) in the circulation or in tissues by mechanisms associated with nitrite reductase activity. However, nitrite generates NO(•) , nitrous anhydride, and other nitrosating species at low pH, and these reactions promote S-nitrosothiol formation when nitrites are in the stomach. We hypothesized that the antihypertensive effects of orally administered nitrite or nitrate involve the formation of S-nitrosothiols, and that those effects depend on gastric pH. The chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats treated with omeprazole (or vehicle). Oral nitrite lowered blood pressure and increased plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Increasing gastric pH with omeprazole did not affect the increases in plasma nitrite and nitrate levels found after treatment with nitrite. However, treatment with omeprazole severely attenuated the increases in plasma S-nitrosothiol concentrations and completely blunted the antihypertensive effects of nitrite. Confirming these findings, very similar results were found with oral nitrate. To further confirm the role of gastric S-nitrosothiol formation, we studied the effects of oral nitrite in hypertensive rats treated with the glutathione synthase inhibitor buthionine sulfoximine (BSO) to induce partial thiol depletion. BSO treatment attenuated the increases in S-nitrosothiol concentrations and antihypertensive effects of oral nitrite. These data show that gastric S-nitrosothiol formation drives the antihypertensive effects of oral nitrite or nitrate and has major implications, particularly to patients taking proton pump inhibitors.
Collapse
Affiliation(s)
- Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Jefferson H Amaral
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Rafael L Portella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Marcelo F Montenegro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Jose Carlos Toledo
- Department of Chemistry, Faculty of Philosophy and Sciences of Ribeirao Preto, University of Sao Paulo, 14040-901, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
307
|
Roberts LD. Does inorganic nitrate say NO to obesity by browning white adipose tissue? Adipocyte 2015; 4:311-4. [PMID: 26451288 DOI: 10.1080/21623945.2015.1005525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 12/28/2022] Open
Abstract
The dietary constituent inorganic nitrate, found in large concentrations in green leafy vegetables, has beneficial effects on cardiometabolic health. Contemporary studies employing nitrate have demonstrated that the anion has anti-obesity and anti-diabetic properties; however the nitrate-mediated mechanisms for improving metabolic health remain unclear. Recently, we employed a combined histological, metabolomics, and transcriptional and protein analysis approach to establish that nitrate promoted the "browning" of white adipose tissue via the xanthine oxidoreductase catalyzed reductive nitrate-nitrite-nitric oxide pathway. Interestingly, it was observed that nitrate-stimulated brown adipose-associated gene expression in white adipose tissue was augmented in hypoxia. These findings not only suggest that protection from metabolic disease offered by vegetable consumption may, in part, be mediated through the effects of nitrate on white adipose tissue, but also, since hypoxia is a serious co-morbidity affecting adipose tissue in obese individuals, that nitrate may be effective in promoting the browning of adipose tissue to improve metabolic fitness.
Collapse
|
308
|
Rathod KS, Velmurugan S, Ahluwalia A. A 'green' diet-based approach to cardiovascular health? Is inorganic nitrate the answer? Mol Nutr Food Res 2015; 60:185-202. [PMID: 26256112 DOI: 10.1002/mnfr.201500313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/16/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022]
Abstract
Ingestion of fruit and vegetables rich in inorganic nitrate (NO(3)(-)) has emerged as an effective method for acutely elevating vascular nitric oxide (NO) levels through formation of an NO(2)(-) intermediate. As such a number of beneficial effects of NO(3)(-) and NO(2)(-) ingestion have been demonstrated including reductions in blood pressure, measures of arterial stiffness and platelet activity. The pathway for NO generation from such dietary interventions involves the activity of facultative oral microflora that facilitate the reduction of inorganic NO(3)(-), ingested in the diet, to inorganic NO(2)(-). This NO(2)(-) then eventually enters the circulation where, through the activity of one or more of a range of distinct NO(2)(-) reductases, it is chemically reduced to NO. This pathway provides an alternative route for in vivo NO generation that could be utilized for therapeutic benefit in those cardiovascular disease states where reduced bioavailable NO is thought to contribute to pathogenesis. Indeed, the cardiovascular benefits of NO(2)(-) and NO(3)(-) are now starting to be translated in patients in several clinical trials. In this review, we discuss recent evidence supporting the potential utility of delivery of NO(3)(-) or NO(2)(-) for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Krishnaraj Sinhji Rathod
- William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London, Charterhouse Square, London, UK
| | - Shanti Velmurugan
- William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London, Charterhouse Square, London, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
309
|
Golzarand M, Bahadoran Z, Mirmiran P, Zadeh-Vakili A, Azizi F. Consumption of nitrate-containing vegetables is inversely associated with hypertension in adults: a prospective investigation from the Tehran Lipid and Glucose Study. J Nephrol 2015; 29:377-384. [PMID: 26335410 DOI: 10.1007/s40620-015-0229-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/19/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND There is growing evidence of the potential properties of nitrate-rich foods against development of hypertension (HTN) and vascular disease. In this study, we investigated the association of nitrate-containing vegetables (NCVs) with risk of HTN after 3 years of follow-up. METHODS This prospective study was conducted on 1546 non-hypertensive subjects, aged 20-70 years. Blood pressure was measured at baseline and after 3 years and HTN was defined by the Joint National Committee on prevention, detection, evaluation and treatment of high blood pressure criteria. Dietary intake was collected using a validated semi-quantitative food frequency questionnaire (FFQ). NCVs and high-, medium- and low-NCV subcategories were defined, and the odds of HTN after 3 years according to tertiles of NCV and NCV-category intake were estimated by logistic regression and adjusted for potential variables. RESULTS Mean age of participants was 38.0 ± 12.0 years at baseline and 57.0 % were women. Mean dietary intake of energy-adjusted NCV was 298.0 ± 177.3 g/day. After adjustment for total energy intake, fiber, sodium, potassium and processed meat, a significant inverse association was observed between NCV and the risk of HTN in the highest tertile category (odds ratio 0.63, 95 % confidence interval: 0.41-0.98, p for trend = 0.05). There was no significant association of 3 year risk of HTN across tertiles of low nitrate-, medium nitrate- and high-nitrate vegetables. CONCLUSION Higher dietary nitrate intake from vegetables sources may have a protective effect against development of HTN.
Collapse
Affiliation(s)
- Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.,Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.,Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran. .,, No. 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 19395-4763, Tehran, Islamic Republic of Iran.
| | - Azita Zadeh-Vakili
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.,Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
310
|
Wruss J, Waldenberger G, Huemer S, Uygun P, Lanzerstorfer P, Müller U, Höglinger O, Weghuber J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.03.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
311
|
McNally B, Griffin JL, Roberts LD. Dietary inorganic nitrate: From villain to hero in metabolic disease? Mol Nutr Food Res 2015; 60:67-78. [PMID: 26227946 PMCID: PMC4863140 DOI: 10.1002/mnfr.201500153] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022]
Abstract
Historically, inorganic nitrate was believed to be an inert by‐product of nitric oxide (NO) metabolism that was readily excreted by the body. Studies utilising doses of nitrate far in excess of dietary and physiological sources reported potentially toxic and carcinogenic effects of the anion. However, nitrate is a significant component of our diets, with the majority of the anion coming from green leafy vegetables, which have been consistently shown to offer protection against obesity, type 2 diabetes and metabolic diseases. The discovery of a metabolic pathway in mammals, in which nitrate is reduced to NO, via nitrite, has warranted a re‐examination of the physiological role of this small molecule. Obesity, type 2 diabetes and the metabolic syndrome are associated with a decrease in NO bioavailability. Recent research suggests that the nitrate‐nitrite‐NO pathway may be harnessed as a therapeutic to supplement circulating NO concentrations, with both anti‐obesity and anti‐diabetic effects, as well as improving vascular function. In this review, we examine the key studies that have led to the re‐evaluation of the physiological function of inorganic nitrate, from toxic and carcinogenic metabolite, to a potentially important and beneficial agent in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Ben McNally
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Julian L Griffin
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Lee D Roberts
- Elsie Widdowson Laboratory, Medical Research Council - Human Nutrition Research, Cambridge, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
312
|
Quantitative and Comparative Contents of Nitrate and Nitrite in Beta vulgaris L. by Reversed-Phase High-Performance Liquid Chromatography-Fluorescence. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0275-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
313
|
Bryan NS, Ivy JL. Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients. Nutr Res 2015; 35:643-54. [DOI: 10.1016/j.nutres.2015.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 01/29/2023]
|
314
|
Sandbakk SB, Sandbakk Ø, Peacock O, James P, Welde B, Stokes K, Böhlke N, Tjønna AE. Effects of acute supplementation of L-arginine and nitrate on endurance and sprint performance in elite athletes. Nitric Oxide 2015; 48:10-5. [DOI: 10.1016/j.niox.2014.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/06/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
|
315
|
Ahrén IL, Xu J, Önning G, Olsson C, Ahrné S, Molin G. Antihypertensive activity of blueberries fermented by Lactobacillus plantarum DSM 15313 and effects on the gut microbiota in healthy rats. Clin Nutr 2015; 34:719-26. [DOI: 10.1016/j.clnu.2014.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 02/05/2023]
|
316
|
Khambata RS, Ghosh SM, Ahluwalia A. "Repurposing" of Xanthine Oxidoreductase as a Nitrite Reductase: A New Paradigm for Therapeutic Targeting in Hypertension. Antioxid Redox Signal 2015; 23:340-53. [PMID: 25714611 DOI: 10.1089/ars.2015.6254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE In contrast to nitric oxide (NO), which has well-established, important effects in regulation of cardiovascular homeostasis, its oxidative metabolite nitrite has, until recently, been considered to be of minor functional significance. RECENT ADVANCES However, this view of nitrite has been radically revised over the past 10 years with evidence now supporting a critical role for this anion as a storage form of NO. CRITICAL ISSUES Importantly, while hypoxia and acidosis have been shown to play a pivotal role in the generation of nitrite to NO, a number of mammalian nitrite reductases have been identified that facilitate the reduction of nitrite. Critically, these nitrite reductases have been demonstrated to operate under physiological pH conditions and in normoxia, extending the functional remit of this anion from an ischemic mediator to an important regulator of physiology. One particular nitrite reductase that has been shown to operate under a wide range of environmental conditions is the enzyme xanthine oxidoreductase (XOR). FUTURE DIRECTIONS In this review, we discuss the evidence supporting a role for XOR as a nitrite reductase while focusing particularly on its function in hypertension. In addition, we discuss the potential merit in exploiting this activity of XOR in the therapeutics of hypertension.
Collapse
Affiliation(s)
- Rayomand S Khambata
- The William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London , London, United Kingdom
| | - Suborno M Ghosh
- The William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London , London, United Kingdom
| | - Amrita Ahluwalia
- The William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London , London, United Kingdom
| |
Collapse
|
317
|
de Lima Portella R, Lynn Bickta J, Shiva S. Nitrite Confers Preconditioning and Cytoprotection After Ischemia/Reperfusion Injury Through the Modulation of Mitochondrial Function. Antioxid Redox Signal 2015; 23:307-27. [PMID: 26094636 DOI: 10.1089/ars.2015.6260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nitrite is now recognized as an intrinsic signaling molecule that mediates a number of biological processes. One of the most reproducible effects of nitrite is its ability to mediate cytoprotection after ischemia/reperfusion (I/R). This robust phenomenon has been reproduced by a number of investigators in varying animal models focusing on different target organs. Furthermore, nitrite's cytoprotective versatility is highlighted by its ability to mediate delayed preconditioning and remote conditioning in addition to acute protection. RECENT ADVANCES In the last 10 years, significant progress has been made in elucidating the mechanisms underlying nitrite-mediated ischemic tolerance. CRITICAL ISSUES The mitochondrion, which is essential to both the progression of I/R injury and the protection afforded by preconditioning, has emerged as a major subcellular target for nitrite. This review will outline the role of the mitochondrion in I/R injury and preconditioning, review the accumulated preclinical studies demonstrating nitrite-mediated cytoprotection, and finally focus on the known interactions of nitrite with mitochondria and their role in the mechanism of nitrite-mediated ischemic tolerance. FUTURE DIRECTIONS These studies set the stage for current clinical trials testing the efficacy of nitrite to prevent warm and cold I/R injury.
Collapse
Affiliation(s)
- Rafael de Lima Portella
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Janelle Lynn Bickta
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Bioengineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
318
|
James PE, Willis GR, Allen JD, Winyard PG, Jones AM. Nitrate pharmacokinetics: Taking note of the difference. Nitric Oxide 2015; 48:44-50. [DOI: 10.1016/j.niox.2015.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/14/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023]
|
319
|
Carlström M, Liu M, Yang T, Zollbrecht C, Huang L, Peleli M, Borniquel S, Kishikawa H, Hezel M, Persson AEG, Weitzberg E, Lundberg JO. Cross-talk Between Nitrate-Nitrite-NO and NO Synthase Pathways in Control of Vascular NO Homeostasis. Antioxid Redox Signal 2015; 23:295-306. [PMID: 24224525 PMCID: PMC4523008 DOI: 10.1089/ars.2013.5481] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Inorganic nitrate and nitrite from endogenous and dietary sources have emerged as alternative substrates for nitric oxide (NO) formation in addition to the classic L-arginine NO synthase (NOS)-dependent pathway. Here, we investigated a potential cross-talk between these two pathways in the regulation of vascular function. RESULTS Long-term dietary supplementation with sodium nitrate (0.1 and 1 mmol kg(-1) day(-1)) in rats caused a reversible dose-dependent reduction in phosphorylated endothelial NOS (eNOS) (Ser1177) in aorta and a concomitant increase in phosphorylation at Thr495. Moreover, eNOS-dependent vascular responses were attenuated in vessels harvested from nitrate-treated mice or when nitrite was acutely added to control vessels. The citrulline-to-arginine ratio in plasma, as a measure of eNOS activity, was reduced in nitrate-treated rodents. Telemetry measurements revealed that a low dietary nitrate dose reduced blood pressure, whereas a higher dose was associated with a paradoxical elevation. Finally, plasma cyclic guanosine monophosphate increased in mice that were treated with a low dietary nitrate dose and decreased with a higher dose. INNOVATION AND CONCLUSIONS These results demonstrate the existence of a cross-talk between the nitrate-nitrite-NO pathway and the NOS-dependent pathway in control of vascular NO homeostasis.
Collapse
Affiliation(s)
- Mattias Carlström
- 1 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden .,2 Department of Medical Cell Biology, Uppsala University , Uppsala, Sweden
| | - Ming Liu
- 1 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Ting Yang
- 1 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Christa Zollbrecht
- 1 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Liyue Huang
- 1 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden .,2 Department of Medical Cell Biology, Uppsala University , Uppsala, Sweden
| | - Maria Peleli
- 1 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Sara Borniquel
- 1 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Hiroaki Kishikawa
- 1 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Michael Hezel
- 1 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - A Erik G Persson
- 2 Department of Medical Cell Biology, Uppsala University , Uppsala, Sweden
| | - Eddie Weitzberg
- 3 Division of Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Jon O Lundberg
- 1 Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
320
|
Jovanovski E, Bosco L, Khan K, Au-Yeung F, Ho H, Zurbau A, Jenkins AL, Vuksan V. Effect of Spinach, a High Dietary Nitrate Source, on Arterial Stiffness and Related Hemodynamic Measures: A Randomized, Controlled Trial in Healthy Adults. Clin Nutr Res 2015; 4:160-7. [PMID: 26251834 PMCID: PMC4525132 DOI: 10.7762/cnr.2015.4.3.160] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 11/25/2022] Open
Abstract
Diets rich in fruits and vegetables reduce risk of adverse cardiovascular events. However, the constituents responsible for this effect have not been well established. Lately, the attention has been brought to vegetables with high nitrate content with evidence that this might represent a source of vasoprotective nitric oxide. We hypothesized that short-term consumption of spinach, a vegetable having high dietary nitrate content, can affect the arterial waveform indicative of arterial stiffness, as well as central and peripheral blood pressure (BP). Using a placebo-controlled, crossover design, 27 healthy participants were randomly assigned to receive either a high-nitrate (spinach; 845 mg nitrate/day) or low-nitrate soup (asparagus; 0.6 mg nitrate/day) for 7 days with a 1-week washout period. On days 1 and 7, profiles of augmentation index, central, and brachial BP were obtained over 180 min post-consumption in 4 fasted visits. A postprandial reduction in augmentation index was observed at 180 min on high-nitrate compared to low-nitrate intervention (-6.54 ± 9.7% vs. -0.82 ± 8.0%, p = 0.01) on Day 1, and from baseline on Day 7 (-6.93 ± 8.7%, p < 0.001; high vs. low: -2.28 ± 12.5%, p = 0.35), suggesting that the nitrate intervention is not associated with the development of tolerance for at least 7 days of continued supplementation. High vs. low-nitrate intervention also reduced central systolic (-3.39 ± 5.6 mmHg, p = 0.004) and diastolic BP (-2.60 ± 5.8 mmHg, p = 0.028) and brachial systolic BP (-3.48 ± 7.4 mmHg, p = 0.022) at 180 min following 7-day supplementation only. These findings suggest that dietary nitrate from spinach may contribute to beneficial hemodynamic effects of vegetable-rich diets and highlights the potential of developing a targeted dietary approach in the management of elevated BP.
Collapse
Affiliation(s)
- Elena Jovanovski
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada. ; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Laura Bosco
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada. ; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kashif Khan
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Fei Au-Yeung
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Hoang Ho
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada. ; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andreea Zurbau
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Alexandra L Jenkins
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Vladimir Vuksan
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada. ; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada. ; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada. ; Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada. ; Division of Endocrinology & Metabolism, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
321
|
Coggan AR, Leibowitz JL, Spearie CA, Kadkhodayan A, Thomas DP, Ramamurthy S, Mahmood K, Park S, Waller S, Farmer M, Peterson LR. Acute Dietary Nitrate Intake Improves Muscle Contractile Function in Patients With Heart Failure: A Double-Blind, Placebo-Controlled, Randomized Trial. Circ Heart Fail 2015; 8:914-20. [PMID: 26179185 DOI: 10.1161/circheartfailure.115.002141] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Skeletal muscle strength, velocity, and power are markedly reduced in patients with heart failure, which contributes to their impaired exercise capacity and lower quality of life. This muscle dysfunction may be partially because of decreased nitric oxide (NO) bioavailability. We therefore sought to determine whether ingestion of inorganic nitrate (NO3 (-)) would increase NO production and improve muscle function in patients with heart failure because of systolic dysfunction. METHODS AND RESULTS Using a double-blind, placebo-controlled, randomized crossover design, we determined the effects of dietary NO3 (-) in 9 patients with heart failure. After fasting overnight, subjects drank beetroot juice containing or devoid of 11.2 mmol of NO3 (-). Two hours later, muscle function was assessed using isokinetic dynamometry. Dietary NO3 (-) increased (P<0.05-0.001) breath NO by 35% to 50%. This was accompanied by 9% (P=0.07) and 11% (P<0.05) increases in peak knee extensor power at the 2 highest movement velocities tested (ie, 4.71 and 6.28 rad/s). Maximal power (calculated by fitting peak power data with a parabola) was therefore greater (ie, 4.74±0.41 versus 4.20±0.33 W/kg; P<0.05) after dietary NO3 (-) intake. Calculated maximal velocity of knee extension was also higher after NO3 (-) ingestion (ie, 12.48±0.95 versus 11.11±0.53 rad/s; P<0.05). Blood pressure was unchanged, and no adverse clinical events occurred. CONCLUSIONS In this pilot study, acute dietary NO3 (-) intake was well tolerated and enhanced NO bioavailability and muscle power in patients with systolic heart failure. Larger-scale studies should be conducted to determine whether the latter translates into an improved quality of life in this population. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01682356.
Collapse
Affiliation(s)
- Andrew R Coggan
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO.
| | - Joshua L Leibowitz
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Catherine Anderson Spearie
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Ana Kadkhodayan
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Deepak P Thomas
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Sujata Ramamurthy
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Kiran Mahmood
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Soo Park
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Suzanne Waller
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Marsha Farmer
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Linda R Peterson
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
322
|
Future Treatment of Hypertension: Shifting the Focus from Blood Pressure Lowering to Arterial Stiffness Modulation? Curr Hypertens Rep 2015; 17:67. [DOI: 10.1007/s11906-015-0569-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
323
|
Singamsetty S, Watanabe Y, Guo L, Corey C, Wang Y, Tejero J, McVerry BJ, Gladwin MT, Shiva S, O'Donnell CP. Inorganic nitrite improves components of the metabolic syndrome independent of weight change in a murine model of obesity and insulin resistance. J Physiol 2015; 593:3135-45. [PMID: 25952686 DOI: 10.1113/jp270386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/27/2015] [Indexed: 01/08/2023] Open
Abstract
Nitrite acts as an endocrine source of bioactive nitric oxide, impacting vascular reactivity, angiogenesis and cytoprotection. Nitrite has recently been shown to have a metabolic role although its effects and mechanisms of action in the obese insulin-resistant state are unknown. We examined glucose tolerance and insulin secretion using the frequently sampled intravenous glucose tolerance test and insulin sensitivity using the hyperinsulinaemic euglycaemic clamp in obese male ob(lep) mice administered nitrite (100 mg kg(-1) day(-1) ) or saline (control) for 7 days and compared responses to the known insulin-sensitizing effects of rosiglitazone (6 mg kg(-1) day(-1) ). Under weight-matched conditions, nitrite lowered blood pressure relative to saline and rosiglitazone, whereas only rosiglitazone was effective at reducing hepatic glucose output and basal blood glucose. Both nitrite and rosiglitazone produced improvements, relative to saline, in glucose tolerance (12,524 ± 602, 12,811 ± 692 vs.14,428 ± 335 mg (dl min)(-1) , respectively; P < 0.05) and insulin sensitivity (8.6 ± 0.7, 7.9 ± 0.3 vs. 6.6 ± 0.5 mg kg(-1) min(-1) , respectively; P < 0.001), but there was no effect on insulin secretion. Nitrite exhibited an uncoupling of mitochondrial respiration and a decrease in ATP generation in muscle that was independent of mitochondrial biogenesis or activation of uncoupling proteins. There was no insulin-stimulated phosphorylation of Akt, but nitrite increased the phosphorylation of AMP-activated protein kinase. We conclude that nitrite improves two key components of the metabolic syndrome, blood pressure and insulin sensitivity, independent of weight and with effectiveness comparable to rosiglitazone.
Collapse
Affiliation(s)
- Srikanth Singamsetty
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 3459 Fifth Avenue 628 NW, Pittsburgh, PA, 15213, USA
| | - Yoshio Watanabe
- First Department of Internal Medicine, Showa University, School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Lanping Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 3459 Fifth Avenue 628 NW, Pittsburgh, PA, 15213, USA
| | - Catherine Corey
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 3459 Fifth Avenue 628 NW, Pittsburgh, PA, 15213, USA
| | - Yinna Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 3459 Fifth Avenue 628 NW, Pittsburgh, PA, 15213, USA
| | - Jesus Tejero
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 3459 Fifth Avenue 628 NW, Pittsburgh, PA, 15213, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 3459 Fifth Avenue 628 NW, Pittsburgh, PA, 15213, USA
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 3459 Fifth Avenue 628 NW, Pittsburgh, PA, 15213, USA
| | - Sruti Shiva
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 3459 Fifth Avenue 628 NW, Pittsburgh, PA, 15213, USA
| | - Christopher P O'Donnell
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 3459 Fifth Avenue 628 NW, Pittsburgh, PA, 15213, USA
| |
Collapse
|
324
|
Kobayashi J, Ohtake K, Uchida H. NO-Rich Diet for Lifestyle-Related Diseases. Nutrients 2015; 7:4911-37. [PMID: 26091235 PMCID: PMC4488823 DOI: 10.3390/nu7064911] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
Decreased nitric oxide (NO) availability due to obesity and endothelial dysfunction might be causally related to the development of lifestyle-related diseases such as insulin resistance, ischemic heart disease, and hypertension. In such situations, instead of impaired NO synthase (NOS)-dependent NO generation, the entero-salivary nitrate-nitrite-NO pathway might serve as a backup system for NO generation by transmitting NO activities in the various molecular forms including NO and protein S-nitrosothiols. Recently accumulated evidence has demonstrated that dietary intake of fruits and vegetables rich in nitrate/nitrite is an inexpensive and easily-practicable way to prevent insulin resistance and vascular endothelial dysfunction by increasing the NO availability; a NO-rich diet may also prevent other lifestyle-related diseases, including osteoporosis, chronic obstructive pulmonary disease (COPD), and cancer. This review provides an overview of our current knowledge of NO generation through the entero-salivary pathway and discusses its safety and preventive effects on lifestyle-related diseases.
Collapse
Affiliation(s)
- Jun Kobayashi
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Saitama 350-0295, Japan.
| | - Kazuo Ohtake
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Saitama 350-0295, Japan.
| | - Hiroyuki Uchida
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Saitama 350-0295, Japan.
| |
Collapse
|
325
|
Joy JM, Lowery RP, Falcone PH, Vogel RM, Mosman MM, Tai CY, Carson LR, Kimber D, Choate D, Kim MP, Wilson JM, Moon JR. A multi-ingredient, pre-workout supplement is apparently safe in healthy males and females. Food Nutr Res 2015; 59:27470. [PMID: 26085481 PMCID: PMC4471216 DOI: 10.3402/fnr.v59.27470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/07/2015] [Accepted: 05/26/2015] [Indexed: 11/14/2022] Open
Abstract
Background Pre-workout supplements (PWS) have become increasingly popular with recreational and competitive athletes. While many ingredients used in PWS have had their safety assessed, the interactions when combined are less understood. Objective The purpose of this study was to examine the safety of 1 and 2 servings of a PWS. Design Forty-four males and females (24.4±4.6 years; 174.7±9.3 cm; 78.9±18.6 kg) from two laboratories participated in this study. Subjects were randomly assigned to consume either one serving (G1; n=14) or two servings (G2; n=18) of PWS or serve as an unsupplemented control (CRL; n=12). Blood draws for safety panels were conducted by a trained phlebotomist before and after the supplementation period. Results Pooled data from both laboratories revealed significant group×time interactions (p<0.05) for mean corpuscular hemoglobin (MCH; CRL: 30.9±0.8–31.0±0.9 pg; G1: 30.7±1.1–30.2±0.7 pg; G2: 30.9±1.2–30.9±1.1 pg), MCH concentration (CRL: 34.0±0.9–34.4±0.7 g/dL; G1: 34.1±0.9–33.8±0.6 g/dL; G2: 34.0±1.0–33.8±0.8 g/dL), platelets (CRL: 261.9±45.7–255.2±41.2×103/µL; G1: 223.8±47.7–238.7±49.6×103/µL; G2: 239.1±28.3–230.8±34.5×103/µL), serum glucose (CRL: 84.1±5.2–83.3±5.8 mg/dL; G1: 86.5±7.9–89.7±5.6 mg/dL; G2: 87.4±7.2–89.9±6.6 mg/dL), sodium (CRL: 137.0±2.7–136.4±2.4 mmol/L; 139.6±1.4–140.0±2.2 mmol/L; G2: 139.0±2.2–138.7±1.7 mmol/L), albumin (CRL: 4.4±0.15–4.4±0.22 g/dL; G1: 4.5±0.19–4.5±0.13 g/dL; G2: 4.6±0.28–4.3±0.13 g/dL), and albumin:globulin (CRL: 1.8±0.30–1.8±0.28; G1: 1.9±0.30–2.0±0.31; G2: 1.8±0.34–1.8±0.34). Each of these variables remained within the clinical reference ranges. Conclusions The PWS appears to be safe for heart, liver, and kidney function in both one-serving and two-serving doses when consumed daily for 28 days. Despite the changes observed for select variables, no variable reached clinical significance.
Collapse
Affiliation(s)
- Jordan M Joy
- MusclePharm Sports Science Institute, MusclePharm Corp., Denver, CO, USA
| | - Ryan P Lowery
- Health Science and Human Performance Department, University of Tampa, Tampa, FL, USA
| | - Paul H Falcone
- MusclePharm Sports Science Institute, MusclePharm Corp., Denver, CO, USA
| | - Roxanne M Vogel
- MusclePharm Sports Science Institute, MusclePharm Corp., Denver, CO, USA
| | - Matt M Mosman
- MusclePharm Sports Science Institute, MusclePharm Corp., Denver, CO, USA
| | - Chih-Yin Tai
- MusclePharm Sports Science Institute, MusclePharm Corp., Denver, CO, USA
| | - Laura R Carson
- MusclePharm Sports Science Institute, MusclePharm Corp., Denver, CO, USA
| | - Dylan Kimber
- MusclePharm Sports Science Institute, MusclePharm Corp., Denver, CO, USA.,Human Performance and Sport, Metropolitan State University of Denver, Denver, CO, USA
| | - David Choate
- MusclePharm Sports Science Institute, MusclePharm Corp., Denver, CO, USA.,Human Performance and Sport, Metropolitan State University of Denver, Denver, CO, USA
| | - Michael P Kim
- MusclePharm Sports Science Institute, MusclePharm Corp., Denver, CO, USA
| | - Jacob M Wilson
- Health Science and Human Performance Department, University of Tampa, Tampa, FL, USA
| | - Jordan R Moon
- MusclePharm Sports Science Institute, MusclePharm Corp., Denver, CO, USA.,Department of Sports Exercise Science, United States Sports Academy, Daphne, AL, USA;
| |
Collapse
|
326
|
A combination of isolated phytochemicals and botanical extracts lowers diastolic blood pressure in a randomized controlled trial of hypertensive subjects. Eur J Clin Nutr 2015; 70:10-6. [PMID: 26059745 DOI: 10.1038/ejcn.2015.88] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/11/2015] [Accepted: 05/02/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND/OBJECTIVES Isolated phytochemicals have been shown to reduce blood pressure; however, combinations of phytochemicals have rarely been tested in humans. We hypothesized that a combination of extracts from grape seed and skin (330 mg), green tea (100 mg), resveratrol (60 mg) and a blend of quercetin, ginkgo biloba and bilberry (60 mg) would reduce blood pressure (BP) in hypertensive subjects. SUBJECTS/METHODS Eighteen individuals meeting BP requirements (⩾130 mm Hg systolic or ⩾85 mm Hg diastolic) and criteria for metabolic syndrome were enrolled in a double-blinded, placebo-controlled, crossover trial (ClinicalTrials.gov, NCT01106170). The 28-day placebo and supplement arms were separated by a 2-week washout period, and 14 -h daytime ambulatory BP was assessed at baseline and at the end point of each arm. RESULTS BP was not altered after placebo. After supplement treatment, diastolic pressure was reduced by 4.4 mm Hg (P=0.024, 95% CI, 0.6-8.1), systolic pressure was unchanged and mean arterial pressure trended (P=0.052) toward reduction. Serum angiotensin-converting enzyme activity was similar between placebo and supplement arms, but urinary nitrate and nitrite concentrations were significantly increased (P=0.022) after supplementation. Human aortic endothelial cells treated with metabolites of the polyphenols used in the human supplement trial had a significant increase (P=0.005) in insulin-stimulated eNOS phosphorylation and greater (P<0.001) accumulation of nitrates/nitrites. CONCLUSIONS Our clinical and in vitro data support the theory that this combination of polyphenols reduced diastolic pressure by potentiating eNOS activation and nitric oxide production. Such supplements may have clinical relevance as stand-alone or adjunct therapy to help reduce BP.
Collapse
|
327
|
Anele UA, Burnett AL. Nitrergic Mechanisms for Management of Recurrent Priapism. Sex Med Rev 2015; 3:160-168. [PMID: 26478814 DOI: 10.1002/smrj.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Priapism is a condition involving prolonged penile erection unrelated to sexual interest or desire. The ischemic type, including its recurrent variant, is often associated with both physical and psychological complications. As such, management is of critical importance. Ideal therapies for recurrent priapism should address its underlying pathophysiology. AIM To review the available literature on priapism management approaches particularly related to nitrergic mechanisms. METHODS A literature review of the pathophysiology and management of priapism was performed using PubMed. MAIN OUTCOME MEASURE Publications pertaining to mechanisms of the molecular pathophysiology of priapism. RESULTS Nitrergic mechanisms are characterized as major players in the molecular pathophysiology of priapism. PDE5 inhibitors represent an available therapeutic option with demonstrated ability in attenuating these underlying nitrergic derangements. Several additional signaling pathways have been found to play a role in the molecular pathophysiology of priapism and have also been associated with these nitrergic mechanisms. CONCLUSION An increasing understanding of the molecular pathophysiology of priapism has led to the discovery of new potential targets. Several mechanism-based therapeutic approaches may become available in the future.
Collapse
Affiliation(s)
- Uzoma A Anele
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 20817
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 20817
| |
Collapse
|
328
|
Levitt EL, Keen JT, Wong BJ. Augmented reflex cutaneous vasodilatation following short-term dietary nitrate supplementation in humans. Exp Physiol 2015; 100:708-18. [DOI: 10.1113/ep085061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Erica L. Levitt
- Department of Kinesiology; Kansas State University; Manhattan KS USA
| | - Jeremy T. Keen
- Department of Kinesiology; Kansas State University; Manhattan KS USA
| | - Brett J. Wong
- Department of Kinesiology; Kansas State University; Manhattan KS USA
- Department of Kinesiology and Health; Georgia State University; Atlanta GA USA
| |
Collapse
|
329
|
Leong P, Basham JE, Yong T, Chazan A, Finlay P, Barnes S, Bardin PG, Campbell D. A double blind randomized placebo control crossover trial on the effect of dietary nitrate supplementation on exercise tolerance in stable moderate chronic obstructive pulmonary disease. BMC Pulm Med 2015; 15:52. [PMID: 25934631 PMCID: PMC4423518 DOI: 10.1186/s12890-015-0057-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dietary nitrate supplementation has been shown to decrease the oxygen cost of exercise and prolong exercise tolerance, as measured by sub-maximal exercise endurance distance and time at 85% V̇O2max, in both elite athletes and normal healthy subjects. Patients with chronic obstructive pulmonary disease (COPD) have reduced quality of life and ability to perform activities of daily living attributable to diminished exercise tolerance, and dietary nitrate may be able to ameliorate this. METHODS We performed a double-blind, computer-randomized placebo control crossover trial at a tertiary Australian hospital to investigate whether dietary nitrate supplementation as beetroot juice (BR) would augment submaximal exercise endurance in individuals with spirometrically confirmed stable moderate COPD. Volunteers underwent an incremental shuttle walk test to determine V̇O2max followed by a test dose of BR to establish safety in the study population. Participants performed an endurance shuttle walk test (ESWT) at 85% V̇O2max after randomization to either a 3 day wash-in of BR (4.8 mmol twice a day) or placebo (nitrate deplete BR), with a final dose on the morning of testing. They then crossed over after 4 day washout. Repeated measures two sided paired t-tests were employed. RESULTS 35 participants were recruited with 19 completing the trial. In the initial safety phase, we measured systolic blood pressure over four hours post first dose of BR, and found a mean 10 mmHg decrement maximal at 1 hour. One individual developed symptomatic postural hypotension and was excluded. The primary outcomes of ESWT distance and time to fatigue improved by 11% and 6% respectively; however these differences did not achieve statistical significance (p = 0.494 and 0.693 respectively). CONCLUSIONS Our study does not support a role for routine dietary nitrate supplementation for enhancement of exercise endurance in COPD. TRIAL REGISTRATION Australia and New Zealand Clinical Trial Register: ACTRN12611001088932.
Collapse
Affiliation(s)
- Paul Leong
- Monash Lung and Sleep, Monash Medical Centre, Clayton, VIC, Australia.
| | - Jane E Basham
- Department of General Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| | - Theresa Yong
- Monash Lung and Sleep, Monash Medical Centre, Clayton, VIC, Australia.
| | - Adrian Chazan
- Department of General Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| | - Paul Finlay
- Monash Lung and Sleep, Monash Medical Centre, Clayton, VIC, Australia.
- Monash University, Clayton, VIC, Australia.
| | - Sara Barnes
- Department of General Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC, 3168, Australia.
- Monash University, Clayton, VIC, Australia.
| | - Phillip G Bardin
- Monash Lung and Sleep, Monash Medical Centre, Clayton, VIC, Australia.
- Monash University, Clayton, VIC, Australia.
| | - Donald Campbell
- Department of General Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC, 3168, Australia.
- Monash University, Clayton, VIC, Australia.
| |
Collapse
|
330
|
Bondonno CP, Liu AH, Croft KD, Considine MJ, Puddey IB, Woodman RJ, Hodgson JM. Antibacterial mouthwash blunts oral nitrate reduction and increases blood pressure in treated hypertensive men and women. Am J Hypertens 2015; 28:572-5. [PMID: 25359409 DOI: 10.1093/ajh/hpu192] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/01/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Endothelial nitric oxide (NO) is fundamental to cardiovascular health. Dietary nitrate and nitrate from endothelial derived NO metabolism provides a significant contribution to the circulating NO pool through the nitrate-nitrite-NO pathway. A critical step in this pathway is the reduction of nitrate to nitrite by the oral microbiota. We aimed to assess the effects of antibacterial mouthwash use on markers of nitrate-nitrite-NO metabolism and blood pressure in treated hypertensive men and women. METHODS Fifteen treated hypertensive men and women (mean age 65 years) were recruited to a randomized controlled cross-over trial. The effects of 3-day use of antibacterial mouthwash on oral nitrate to nitrite reduction, salivary and plasma nitrate and nitrite, plasma cyclic guanosine monophosphate (cGMP) and systolic and diastolic blood pressure were compared to control (water). RESULTS Relative to control, 3-day antibacterial mouthwash use resulted in decreased oral nitrate to nitrite reduction (P = 0.02), decreased salivary nitrite (P = 0.01) and increased salivary nitrate (P < 0.001), and there was a trend toward a decrease in plasma nitrite concentration (P = 0.09). Use of antibacterial mouthwash over 3 days also resulted in higher systolic blood pressure (2.3mm Hg; 95% CI: 0.5, 4.0; P = 0.01), but not diastolic blood pressure (P = 0.4) or plasma cGMP (P = 0.7), relative to control. CONCLUSIONS Interruption of the nitrate-nitrite-NO pathway through the use of antibacterial mouthwash was paralleled by a small elevation of systolic blood pressure in treated hypertensive men and women.
Collapse
Affiliation(s)
- Catherine P Bondonno
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia;
| | - Alex H Liu
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Kevin D Croft
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Michael J Considine
- School of Plant Biology, University of Western Australia, Perth, WA, Australia; Department of Agriculture and Food Western Australia, South Perth, WA, Australia
| | - Ian B Puddey
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, SA, Australia
| | - Jonathan M Hodgson
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
331
|
Acute and chronic effects of beetroot supplementation on blood pressure and arterial stiffness in humans. Proc Nutr Soc 2015. [DOI: 10.1017/s0029665115001275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
332
|
Bondonno CP, Croft KD, Ward N, Considine MJ, Hodgson JM. Dietary flavonoids and nitrate: effects on nitric oxide and vascular function. Nutr Rev 2015; 73:216-35. [PMID: 26024545 DOI: 10.1093/nutrit/nuu014] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence highlights dietary flavonoids and nitrate as candidates that may explain at least part of the cardioprotective effect of a fruit and vegetable diet. Nitric oxide plays a pivotal role in cardiovascular health. Components of a fruit and vegetable diet that are cardioprotective, in part through effects on nitric oxide status, could substantially reduce the cardiovascular risk profile of the general population with increased intake of such a diet. Epidemiological evidence suggests that dietary flavonoids and nitrate have a cardioprotective effect. Clinical trials with flavonoid- and nitrate-rich foods have shown benefits on measures of vascular health. While the molecular mechanisms by which flavonoids and nitrate are cardioprotective are not completely understood, recent evidence suggests both nonspecific and specific effects through nitric oxide pathways. This review presents an overview of nitric oxide and its key role in cardiovascular health and discusses the possible vascular benefits of flavonoids and nitrate, individually and in combination, through effects on nitric oxide status.
Collapse
Affiliation(s)
- Catherine P Bondonno
- C.P. Bondonno, K.D. Croft, N.C. Ward, and J.M. Hodgson are with the School of Medicine and Pharmacology, University of Western Australia, Perth Western Australia, Australia. M.J. Considine is with the School of Plant Biology, University of Western Australia, Perth Western Australia and the Department of Agriculture and Food Western Australia, Perth, Western Australia, Australia.
| | - Kevin D Croft
- C.P. Bondonno, K.D. Croft, N.C. Ward, and J.M. Hodgson are with the School of Medicine and Pharmacology, University of Western Australia, Perth Western Australia, Australia. M.J. Considine is with the School of Plant Biology, University of Western Australia, Perth Western Australia and the Department of Agriculture and Food Western Australia, Perth, Western Australia, Australia
| | - Natalie Ward
- C.P. Bondonno, K.D. Croft, N.C. Ward, and J.M. Hodgson are with the School of Medicine and Pharmacology, University of Western Australia, Perth Western Australia, Australia. M.J. Considine is with the School of Plant Biology, University of Western Australia, Perth Western Australia and the Department of Agriculture and Food Western Australia, Perth, Western Australia, Australia
| | - Michael J Considine
- C.P. Bondonno, K.D. Croft, N.C. Ward, and J.M. Hodgson are with the School of Medicine and Pharmacology, University of Western Australia, Perth Western Australia, Australia. M.J. Considine is with the School of Plant Biology, University of Western Australia, Perth Western Australia and the Department of Agriculture and Food Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- C.P. Bondonno, K.D. Croft, N.C. Ward, and J.M. Hodgson are with the School of Medicine and Pharmacology, University of Western Australia, Perth Western Australia, Australia. M.J. Considine is with the School of Plant Biology, University of Western Australia, Perth Western Australia and the Department of Agriculture and Food Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
333
|
Cicero AFG, Colletti A. Nutraceuticals and Blood Pressure Control: Results from Clinical Trials and Meta-Analyses. High Blood Press Cardiovasc Prev 2015; 22:203-13. [PMID: 25788027 DOI: 10.1007/s40292-015-0081-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/03/2015] [Indexed: 12/16/2022] Open
Abstract
Beyond the well-known effects on blood pressure (BP) of the dietary approaches to stop hypertension (DASH) and the Mediterranean diets, a large number of studies has investigated the possible BP lowering effect of different dietary supplements and nutraceuticals, the most part of them being antioxidant agents with a high tolerability and safety profile. In particular relatively large body of evidence support the use of potassium, L-arginine, vitamin C, cocoa flavonoids, beetroot juice, coenzyme Q10, controlled-release melatonin, and aged garlic extract. However there is a need for data about the long-term safety of a large part of the above discussed products. Moreover further clinical research is advisable to identify between the available active nutraceuticals those with the best cost-effectiveness and risk-benefit ratio for a large use in general population with low-added cardiovascular risk related to uncomplicated hypertension.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy,
| | | |
Collapse
|
334
|
Lara J, Ashor AW, Oggioni C, Ahluwalia A, Mathers JC, Siervo M. Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysis. Eur J Nutr 2015; 55:451-459. [DOI: 10.1007/s00394-015-0872-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/02/2015] [Indexed: 01/19/2023]
|
335
|
Dietary nitrate is a modifier of vascular gene expression in old male mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:658264. [PMID: 25838870 PMCID: PMC4369962 DOI: 10.1155/2015/658264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
Aging leads to a number of disadvantageous changes in the cardiovascular system. Deterioration of vascular homoeostasis with increase in oxidative stress, chronic low-grade inflammation, and impaired nitric oxide bioavailability results in endothelial dysfunction, increased vascular stiffness, and compromised arterial-ventricular interactions. A chronic dietary supplementation with the micronutrient nitrate has been demonstrated to improve vascular function. Healthy dietary patterns may regulate gene expression profiles. However, the mechanisms are incompletely understood. The changes that occur at the gene expression level and transcriptional profile following a nutritional modification with nitrate have not been elucidated. To determine the changes of the vascular transcriptome, we conducted gene expression microarray experiments on aortas of old mice, which were treated with dietary nitrate. Our results highlight differentially expressed genes overrepresented in gene ontology categories. Molecular interaction and reaction pathways involved in the calcium-signaling pathway and the detoxification system were identified. Our results provide novel insight to an altered gene-expression profile in old mice following nitrate supplementation. This supports the general notion of nutritional approaches to modulate age-related changes of vascular functions and its detrimental consequences.
Collapse
|
336
|
Wobst J, Kessler T, Dang TA, Erdmann J, Schunkert H. Role of sGC-dependent NO signalling and myocardial infarction risk. J Mol Med (Berl) 2015; 93:383-94. [PMID: 25733135 DOI: 10.1007/s00109-015-1265-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
The NO/cGMP pathway plays an important role in many physiological functions and pathophysiological conditions. In the last few years, several genetic and functional studies pointed to an underestimated role of this pathway in the development of atherosclerosis. Indeed, several genetic variants of key enzymes modulating the generation of NO and cGMP have been strongly associated with coronary artery disease and myocardial infarction risk. In this review, we aim to place the genomic findings on components of the NO/cGMP pathway, namely endothelial nitric oxide synthase, soluble guanylyl cyclase and phosphodiesterase 5A, in context of preventive and therapeutic strategies for treating atherosclerosis and its sequelae.
Collapse
Affiliation(s)
- Jana Wobst
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany
| | | | | | | | | |
Collapse
|
337
|
Rodriguez-Mateos A, Hezel M, Aydin H, Kelm M, Lundberg JO, Weitzberg E, Spencer JPE, Heiss C. Interactions between cocoa flavanols and inorganic nitrate: additive effects on endothelial function at achievable dietary amounts. Free Radic Biol Med 2015; 80:121-8. [PMID: 25530151 DOI: 10.1016/j.freeradbiomed.2014.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/28/2023]
Abstract
Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose-response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4-10.9 mg/kg bw) or nitrate (0.1-10 mg/kg bw). To study flavanol-nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial function when ingested together.
Collapse
Affiliation(s)
- Ana Rodriguez-Mateos
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, and.
| | - Michael Hezel
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Hilal Aydin
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, and
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, and; Cardiovascular Research Institute Düsseldorf, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jeremy P E Spencer
- Molecular Nutrition Group, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, and
| |
Collapse
|
338
|
Keen JT, Levitt EL, Hodges GJ, Wong BJ. Short-term dietary nitrate supplementation augments cutaneous vasodilatation and reduces mean arterial pressure in healthy humans. Microvasc Res 2015; 98:48-53. [DOI: 10.1016/j.mvr.2014.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 12/26/2022]
|
339
|
High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women. Public Health Nutr 2015; 18:2669-78. [DOI: 10.1017/s1368980015000038] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractObjectiveEpidemiological studies suggest that green leafy vegetables, which are high in dietary nitrate, are protective against CVD such as stroke. High blood pressure (BP) is a major risk factor for stroke and inorganic nitrate has been shown to reduce BP. The objective of the present study was to test the hypothesis that diets containing high-nitrate (HN) vegetables would increase plasma nitrate and nitrite concentrations and reduce BP in healthy women.DesignA randomized, crossover trial, where participants received HN vegetables (HN diet) or avoided HN vegetables (Control diet) for 1 week. Before and after each intervention, resting BP and plasma nitrate and nitrite concentrations were measured.SettingUniversity of Exeter, UK.SubjectsNineteen healthy women (mean age 20 (sd2) years; mean BMI 22·5 (sd3·8) kg/m2).ResultsThe HN diet significantly increased plasma nitrate concentration (before HN diet: mean 24·4 (sd5·6) µmol/l; after HN diet: mean 61·0 (sd44·1) µmol/l,P<0·05) and plasma nitrite concentration (before HN diet: mean 98 (sd91) nmol/l; after HN diet: mean 185 (sd34) nmol/l,P<0·05). No significant change in plasma nitrate or nitrite concentration was observed after the Control diet. The HN diet significantly reduced resting systolic BP (before HN diet: mean 107 (sd9) mmHg; after HN diet: mean 103 (sd6) mmHg,P<0·05). No significant change in systolic BP was observed after the Control diet (before Control diet: mean 106 (sd8) mmHg; after Control diet: mean 106 (sd8) mmHg).ConclusionsConsumption of HN vegetables significantly increased plasma nitrate and nitrite concentrations and reduced BP in normotensive women.
Collapse
|
340
|
Roberts LD, Ashmore T, Kotwica AO, Murfitt SA, Fernandez BO, Feelisch M, Murray AJ, Griffin JL. Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway. Diabetes 2015; 64:471-484. [PMID: 25249574 PMCID: PMC4351918 DOI: 10.2337/db14-0496] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inorganic nitrate was once considered an oxidation end product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach, we mechanistically defined that nitrate not only increases the expression of thermogenic genes in brown adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious comorbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Because resulting beige/brite cells exhibit antiobesity and antidiabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome.
Collapse
MESH Headings
- Adipocytes, Brown/physiology
- Adipocytes, White/drug effects
- Adipocytes, White/physiology
- Adipose Tissue, Brown
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Cells, Cultured
- Cyclic GMP
- Cyclic GMP-Dependent Protein Kinases
- Dose-Response Relationship, Drug
- Male
- Mice
- Mice, Inbred C57BL
- Nitrates/metabolism
- Nitrates/pharmacology
- Nitric Oxide/metabolism
- Nitrites/metabolism
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Lee D Roberts
- Medical Research Council – Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB2 9NL, UK
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Old Addenbrooke’s Site, Cambridge, CB2 1GA, UK
| | - Tom Ashmore
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Old Addenbrooke’s Site, Cambridge, CB2 1GA, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Aleksandra O Kotwica
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Steven A Murfitt
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Old Addenbrooke’s Site, Cambridge, CB2 1GA, UK
| | - Bernadette O Fernandez
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Martin Feelisch
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Julian L Griffin
- Medical Research Council – Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB2 9NL, UK
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Old Addenbrooke’s Site, Cambridge, CB2 1GA, UK
| |
Collapse
|
341
|
Bryan NS. The potential use of salivary nitrite as a marker of NO status in humans. Nitric Oxide 2015; 45:4-6. [DOI: 10.1016/j.niox.2014.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/22/2023]
|
342
|
Omar SA, Fok H, Tilgner KD, Nair A, Hunt J, Jiang B, Taylor P, Chowienczyk P, Webb AJ. Paradoxical normoxia-dependent selective actions of inorganic nitrite in human muscular conduit arteries and related selective actions on central blood pressures. Circulation 2015; 131:381-9; discussion 389. [PMID: 25533964 DOI: 10.1161/circulationaha.114.009554] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inorganic nitrite dilates small resistance arterioles via hypoxia-facilitated reduction to vasodilating nitric oxide. The effects of nitrite in human conduit arteries have not been investigated. In contrast to nitrite, organic nitrates are established selective dilators of conduit arteries. METHODS AND RESULTS We examined the effects of local and systemic administration of sodium nitrite on the radial artery (a muscular conduit artery), forearm resistance vessels (forearm blood flow), and systemic hemodynamics in healthy male volunteers (n=43). Intrabrachial sodium nitrite (8.7 μmol/min) increased radial artery diameter by a median of 28.0% (25th and 75th percentiles, 25.7% and 40.1%; P<0.001). Nitrite (0.087-87 μmol/min) displayed conduit artery selectivity similar to that of glyceryl trinitrate (0.013-4.4 nmol/min) over resistance arterioles. Nitrite dose-dependently increased local cGMP production at the dose of 2.6 μmol/min by 1.1 pmol·min(-1)·100 mL(-1) tissue (95% confidence interval, 0.5-1.8). Nitrite-induced radial artery dilation was enhanced by administration of acetazolamide (oral or intra-arterial) and oral raloxifene (P=0.0248, P<0.0001, and P=0.0006, respectively) but was inhibited under hypoxia (P<0.0001) and hyperoxia (P=0.0006) compared with normoxia. Systemic intravenous administration of sodium nitrite (8.7 μmol/min) dilated the radial artery by 10.7% (95% confidence interval, 6.8-14.7) and reduced central systolic blood pressure by 11.6 mm Hg (95% confidence interval, 2.4-20.7), augmentation index, and pulse wave velocity without changing peripheral blood pressure. CONCLUSIONS Nitrite selectively dilates conduit arteries at supraphysiological and near-physiological concentrations via a normoxia-dependent mechanism that is associated with cGMP production and is enhanced by acetazolamide and raloxifene. The selective central blood pressure-lowering effects of nitrite have therapeutic potential to reduce cardiovascular events.
Collapse
Affiliation(s)
- Sami A Omar
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Henry Fok
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Katharina D Tilgner
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Ashok Nair
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Joanne Hunt
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Benyu Jiang
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Paul Taylor
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Phil Chowienczyk
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Andrew J Webb
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
343
|
Papapetropoulos A, Hobbs AJ, Topouzis S. Extending the translational potential of targeting NO/cGMP-regulated pathways in the CVS. Br J Pharmacol 2015; 172:1397-414. [PMID: 25302549 DOI: 10.1111/bph.12980] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 09/08/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023] Open
Abstract
The discovery of NO as both an endogenous signalling molecule and as a mediator of the cardiovascular effects of organic nitrates was acknowledged in 1998 by the Nobel Prize in Physiology/Medicine. The characterization of its downstream signalling, mediated through stimulation of soluble GC (sGC) and cGMP generation, initiated significant translational interest, but until recently this was almost exclusively embodied by the use of PDE5 inhibitors in erectile dysfunction. Since then, research progress in two areas has contributed to an impressive expansion of the therapeutic targeting of the NO-sGC-cGMP axis: first, an increased understanding of the molecular events operating within this complex pathway and second, a better insight into its dys-regulation and uncoupling in human disease. Already-approved PDE5 inhibitors and novel, first-in-class molecules, which up-regulate the activity of sGC independently of NO and/or of the enzyme's haem prosthetic group, are undergoing clinical evaluation to treat pulmonary hypertension and myocardial failure. These molecules, as well as combinations or second-generation compounds, are also being assessed in additional experimental disease models and in patients in a wide spectrum of novel indications, such as endotoxic shock, diabetic cardiomyopathy and Becker's muscular dystrophy. There is well-founded optimism that the modulation of the NO-sGC-cGMP pathway will sustain the development of an increasing number of successful clinical candidates for years to come.
Collapse
|
344
|
Gao X, Yang T, Liu M, Peleli M, Zollbrecht C, Weitzberg E, Lundberg JO, Persson AEG, Carlström M. NADPH Oxidase in the Renal Microvasculature Is a Primary Target for Blood Pressure–Lowering Effects by Inorganic Nitrate and Nitrite. Hypertension 2015; 65:161-70. [DOI: 10.1161/hypertensionaha.114.04222] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Renal oxidative stress and nitric oxide (NO) deficiency are key events in hypertension. Stimulation of a nitrate–nitrite–NO pathway with dietary nitrate reduces blood pressure, but the mechanisms or target organ are not clear. We investigated the hypothesis that inorganic nitrate and nitrite attenuate reactivity of renal microcirculation and blood pressure responses to angiotensin II (ANG II) by modulating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NO bioavailability. Nitrite in the physiological range (10
−7
–10
−5
mol/L) dilated isolated perfused renal afferent arterioles, which were associated with increased NO. Contractions to ANG II (34%) and simultaneous NO synthase inhibition (56%) were attenuated by nitrite (18% and 26%). In a model of oxidative stress (superoxide dismutase-1 knockouts), abnormal ANG II–mediated arteriolar contractions (90%) were normalized by nitrite (44%). Mechanistically, effects of nitrite were abolished by NO scavenger and xanthine oxidase inhibitor, but only partially attenuated by inhibiting soluble guanylyl cyclase. Inhibition of NADPH oxidase with apocynin attenuated ANG II–induced contractility (35%) similar to that of nitrite. In the presence of nitrite, no further effect of apocynin was observed, suggesting NADPH oxidase as a possible target. In preglomerular vascular smooth muscle cells and kidney cortex, nitrite reduced both basal and ANG II–induced NADPH oxidase activity. These effects of nitrite were also abolished by xanthine oxidase inhibition. Moreover, supplementation with dietary nitrate (10
−2
mol/L) reduced renal NADPH oxidase activity and attenuated ANG II–mediated arteriolar contractions and hypertension (99±2–146±2 mm Hg) compared with placebo (100±3–168±3 mm Hg). In conclusion, these novel findings position NADPH oxidase in the renal microvasculature as a prime target for blood pressure–lowering effects of inorganic nitrate and nitrite.
Collapse
Affiliation(s)
- Xiang Gao
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Ting Yang
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Ming Liu
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Maria Peleli
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Christa Zollbrecht
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Eddie Weitzberg
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Jon O. Lundberg
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - A. Erik G. Persson
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Mattias Carlström
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| |
Collapse
|
345
|
Mills CE, Govoni V, Casagrande ML, Faconti L, Webb AJ, Cruickshank JK. Design and progress of a factorial trial testing the effect of spironolactone and inorganic nitrate on arterial function in people at risk of or with type 2 diabetes. Artery Res 2015. [DOI: 10.1016/j.artres.2015.10.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
346
|
28 days of creatine nitrate supplementation is apparently safe in healthy individuals. J Int Soc Sports Nutr 2014; 11:60. [PMID: 25589898 PMCID: PMC4293808 DOI: 10.1186/s12970-014-0060-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Creatine monohydrate has become a very popular nutritional supplement for its ergogenic effects. The safety of creatine monohydrate has previously been confirmed. However with each novel form of creatine that emerges, its safety must be verified. Therefore, the purpose of this study was to examine the safety of a novel form of creatine, creatine nitrate (CN), over a 28 day period. METHODS 58 young males and females (Pooled: 24.3 ± 3.9 years, 144.9 ± 8.0 cm, 74.2 ± 13.0 kg) participated in this study across two laboratories. Subjects were equally and randomly assigned to consume either 1 g (n = 18) or 2 g (n = 20) of CN or remained unsupplemented (n = 20). Blood draws for full safety panels were conducted by a trained phlebotomist prior to and at the conclusion of the supplementation period. RESULTS Pooled data from both laboratories revealed significant group x time interactions for absolute lymphocytes and absolute monocytes (p < 0.05). Analysis of the 1 g treatment revealed lab x time differences for red blood cell distribution width, platelets, absolute monocytes, creatinine, blood urea nitrogen (BUN):creatinine, sodium, protein, and alanine aminotransferase (ALT) (p < 0.05). Analysis of the 2 g treatment revealed lab x time differences for BUN:creatinine and ALT (p < 0.05). BUN and BUN:creatinine increased beyond the clinical reference range for the 2 g treatment of Lab 2, but BUN did not reach statistical significance. CONCLUSION Overall, CN appears to be safe in both 1 g and 2 g servings daily for up to a 28 day period. While those with previously elevated BUN levels may see additional increases resulting in post-supplementation values slightly beyond normal physiological range, these results have minor clinical significance and are not cause for concern. Otherwise, all hematological safety markers remained within normal range, suggesting that CN supplementation has no adverse effects in daily doses up to 2 g over 28 days and may be an alternative to creatine monohydrate supplementation.
Collapse
|
347
|
Pahlavani N, Jafari M, Sadeghi O, Rezaei M, Rasad H, Rahdar HA, Entezari MH. L-arginine supplementation and risk factors of cardiovascular diseases in healthy men: a double-blind randomized clinical trial. F1000Res 2014; 3:306. [PMID: 28751963 PMCID: PMC5510020 DOI: 10.12688/f1000research.5877.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 01/10/2023] Open
Abstract
Context: The effect of L-arginine on risk factors of cardiovascular diseases (CVD) has mostly focused on western countries. Since cardiovascular diseases is the second cause of death in Iran and, as far as we are aware, there have been no studies about the effect of L-arginine on CVD risk factors, the aim of this trial was to assess the effects of L-arginine supplementation on CVD risk factors in healthy men. Objective: The purpose of this study was to evaluate the effect of low-dose L-arginine supplementation on CVD risk factors (lipid profile, blood sugar and blood pressure) in Iranian healthy men. Design, setting, participants: We conducted a double-blind randomized controlled trial in 56 patients selected from sport clubs at the Isfahan University of Medical Science between November 2013 and December 2013. Interventions: Healthy men received L-arginine supplementation (2000 mg daily) in the intervention group or placebo (2000 mg maltodextrin daily) in the control group for 45 days. Main outcome measure: The primary outcome measures were we measured the levels of fasting blood sugar, blood pressure and lipid profile including triglyceride (TG), cholesterol, LDL and HDL in healthy subjects. It was hypothesized that these measures would be significantly improved in those receiving L–arginine supplementation. at the beginning and end of the study. Results: In this trial, we had complete data for 52 healthy participants with mean age of 20.85±4.29 years. At the end of study, fasting blood sugar (P=0.001) and lipid profile (triglycerideTG (P<0.001), cholesterol (P<0.001), LDL (P=0.04), HDL (P=0.015)) decreased in the L-arginine group but we found no significant change in the placebo group. In addition, the reduction of fasting blood sugar and lipid profile in L-arginine was significant compared with placebo group. No significant changes were found about systolic (P=0.81) and diastolic blood pressure either in L-arginine or placebo group. (P=0.532). Conclusion: The use of L-arginine significantly improved outcomes compared to placebo.
Collapse
Affiliation(s)
- Naseh Pahlavani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Jafari
- Student Research Committee, Arak University of Medical Science, Arak, Iran
| | - Omid Sadeghi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Rezaei
- Faculty of Nursing and Midwifery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Rasad
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hasan Entezari
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
348
|
Pahlavani N, Jafari M, Sadeghi O, Rezaei M, Rasad H, Rahdar HA, Entezari MH. L-arginine supplementation and risk factors of cardiovascular diseases in healthy men: a double-blind randomized clinical trial. F1000Res 2014; 3:306. [PMID: 28751963 DOI: 10.12688/f1000research.5877.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2014] [Indexed: 01/04/2023] Open
Abstract
Context: The effect of L-arginine on risk factors of cardiovascular diseases (CVD) has mostly focused on western countries. Since cardiovascular diseases is the second cause of death in Iran and, as far as we are aware, there have been no studies about the effect of L-arginine on CVD risk factors, the aim of this trial was to assess the effects of L-arginine supplementation on CVD risk factors in healthy men. Objective: The purpose of this study was to evaluate the effect of low-dose L-arginine supplementation on CVD risk factors (lipid profile, blood sugar and blood pressure) in Iranian healthy men. Design, setting, participants: We conducted a double-blind randomized controlled trial in 56 patients selected from sport clubs at the Isfahan University of Medical Science between November 2013 and December 2013. Interventions: Healthy men received L-arginine supplementation (2000 mg daily) in the intervention group or placebo (2000 mg maltodextrin daily) in the control group for 45 days. Main outcome measure: The primary outcome measures were we measured the levels of fasting blood sugar, blood pressure and lipid profile including triglyceride (TG), cholesterol, LDL and HDL in healthy subjects. It was hypothesized that these measures would be significantly improved in those receiving L-arginine supplementation. at the beginning and end of the study. Results: In this trial, we had complete data for 52 healthy participants with mean age of 20.85±4.29 years. At the end of study, fasting blood sugar (P=0.001) and lipid profile (triglycerideTG (P<0.001), cholesterol (P<0.001), LDL (P=0.04), HDL (P=0.015)) decreased in the L-arginine group but we found no significant change in the placebo group. In addition, the reduction of fasting blood sugar and lipid profile in L-arginine was significant compared with placebo group. No significant changes were found about systolic (P=0.81) and diastolic blood pressure either in L-arginine or placebo group. (P=0.532). Conclusion: The use of L-arginine significantly improved outcomes compared to placebo.
Collapse
Affiliation(s)
- Naseh Pahlavani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Jafari
- Student Research Committee, Arak University of Medical Science, Arak, Iran
| | - Omid Sadeghi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Rezaei
- Faculty of Nursing and Midwifery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Rasad
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hasan Entezari
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
349
|
Ashor AW, Jajja A, Sutyarjoko A, Brandt K, Qadir O, Lara J, Siervo M. Effects of beetroot juice supplementation on microvascular blood flow in older overweight and obese subjects: a pilot randomised controlled study. J Hum Hypertens 2014; 29:511-3. [PMID: 25471613 DOI: 10.1038/jhh.2014.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A W Ashor
- 1] Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, UK [2] Department of Pharmacology, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - A Jajja
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, UK
| | - A Sutyarjoko
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, UK
| | - K Brandt
- Human Nutrition Research Centre, School of Agriculture, Food & Rural Development, Newcastle University, Newcastle upon Tyne, UK
| | - O Qadir
- Human Nutrition Research Centre, School of Agriculture, Food & Rural Development, Newcastle University, Newcastle upon Tyne, UK
| | - J Lara
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, UK
| | - M Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, UK
| |
Collapse
|
350
|
Capurso C, Massaro M, Scoditti E, Vendemiale G, Capurso A. Vascular effects of the Mediterranean diet Part I: Anti-hypertensive and anti-thrombotic effects. Vascul Pharmacol 2014; 63:118-26. [DOI: 10.1016/j.vph.2014.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/10/2014] [Accepted: 10/04/2014] [Indexed: 01/31/2023]
|