301
|
Laribee RN, Weisman R. Nuclear Functions of TOR: Impact on Transcription and the Epigenome. Genes (Basel) 2020; 11:E641. [PMID: 32532005 PMCID: PMC7349558 DOI: 10.3390/genes11060641] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The target of rapamycin (TOR) protein kinase is at the core of growth factor- and nutrient-dependent signaling pathways that are well-known for their regulation of metabolism, growth, and proliferation. However, TOR is also involved in the regulation of gene expression, genomic and epigenomic stability. TOR affects nuclear functions indirectly through its activity in the cytoplasm, but also directly through active nuclear TOR pools. The mechanisms by which TOR regulates its nuclear functions are less well-understood compared with its cytoplasmic activities. TOR is an important pharmacological target for several diseases, including cancer, metabolic and neurological disorders. Thus, studies of the nuclear functions of TOR are important for our understanding of basic biological processes, as well as for clinical implications.
Collapse
Affiliation(s)
- R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, University Road 1, Ra’anana 4353701, Israel
| |
Collapse
|
302
|
Milanesi R, Coccetti P, Tripodi F. The Regulatory Role of Key Metabolites in the Control of Cell Signaling. Biomolecules 2020; 10:biom10060862. [PMID: 32516886 PMCID: PMC7356591 DOI: 10.3390/biom10060862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Robust biological systems are able to adapt to internal and environmental perturbations. This is ensured by a thick crosstalk between metabolism and signal transduction pathways, through which cell cycle progression, cell metabolism and growth are coordinated. Although several reports describe the control of cell signaling on metabolism (mainly through transcriptional regulation and post-translational modifications), much fewer information is available on the role of metabolism in the regulation of signal transduction. Protein-metabolite interactions (PMIs) result in the modification of the protein activity due to a conformational change associated with the binding of a small molecule. An increasing amount of evidences highlight the role of metabolites of the central metabolism in the control of the activity of key signaling proteins in different eukaryotic systems. Here we review the known PMIs between primary metabolites and proteins, through which metabolism affects signal transduction pathways controlled by the conserved kinases Snf1/AMPK, Ras/PKA and TORC1. Interestingly, PMIs influence also the mitochondrial retrograde response (RTG) and calcium signaling, clearly demonstrating that the range of this phenomenon is not limited to signaling pathways related to metabolism.
Collapse
|
303
|
Picchioni D, Antolin-Fontes A, Camacho N, Schmitz C, Pons-Pons A, Rodríguez-Escribà M, Machallekidou A, Güler MN, Siatra P, Carretero-Junquera M, Serrano A, Hovde SL, Knobel PA, Novoa EM, Solà-Vilarrubias M, Kaguni LS, Stracker TH, Ribas de Pouplana L. Mitochondrial Protein Synthesis and mtDNA Levels Coordinated through an Aminoacyl-tRNA Synthetase Subunit. Cell Rep 2020; 27:40-47.e5. [PMID: 30943413 DOI: 10.1016/j.celrep.2019.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/13/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022] Open
Abstract
The aminoacylation of tRNAs by aminoacyl-tRNA synthetases (ARSs) is a central reaction in biology. Multiple regulatory pathways use the aminoacylation status of cytosolic tRNAs to monitor and regulate metabolism. The existence of equivalent regulatory networks within the mitochondria is unknown. Here, we describe a functional network that couples protein synthesis to DNA replication in animal mitochondria. We show that a duplication of the gene coding for mitochondrial seryl-tRNA synthetase (SerRS2) generated in arthropods a paralog protein (SLIMP) that forms a heterodimeric complex with a SerRS2 monomer. This seryl-tRNA synthetase variant is essential for protein synthesis and mitochondrial respiration. In addition, SLIMP interacts with the substrate binding domain of the mitochondrial protease LON, thus stimulating proteolysis of the DNA-binding protein TFAM and preventing mitochondrial DNA (mtDNA) accumulation. Thus, mitochondrial translation is directly coupled to mtDNA levels by a network based upon a profound structural modification of an animal ARS.
Collapse
Affiliation(s)
- Daria Picchioni
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Albert Antolin-Fontes
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Claus Schmitz
- Structural MitoLab, Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alba Pons-Pons
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Marta Rodríguez-Escribà
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Antigoni Machallekidou
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Merve Nur Güler
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Panagiota Siatra
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Maria Carretero-Junquera
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Alba Serrano
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Stacy L Hovde
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, USA
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain; Laboratory for Molecular Radiobiology, Clinic of Radiation Oncology, University of Zurich, 8057 Zurich, Switzerland
| | - Eva M Novoa
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003 Barcelona, Spain; Garvan Institute of Medical Research, 384 Victoria Street, 2010 Darlinghurst, NSW, Australia
| | - Maria Solà-Vilarrubias
- Structural MitoLab, Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, USA; Institute of Biosciences and Medical Technology, University of Tampere, 33014 Tampere, Finland
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain; Catalan Institution for Research and Advanced Studies (ICREA), P/Lluis Companys 23, 08010 Barcelona, Catalonia, Spain.
| |
Collapse
|
304
|
Abstract
A complex molecular machinery converges on the surface of lysosomes to ensure that the growth-promoting signaling mediated by mechanistic target of rapamycin complex 1 (mTORC1) is tightly controlled by the availability of nutrients and growth factors. The final step in this activation process is dependent on Rheb, a small GTPase that binds to mTOR and allosterically activates its kinase activity. Here we review the mechanisms that determine the subcellular localization of Rheb (and the closely related RhebL1 protein) as well as the significance of these mechanisms for controlling mTORC1 activation. In particular, we explore how the relatively weak membrane interactions conferred by C-terminal farnesylation are critical for the ability of Rheb to activate mTORC1. In addition to supporting transient membrane interactions, Rheb C-terminal farnesylation also supports an interaction between Rheb and the δ subunit of phosphodiesterase 6 (PDEδ). This interaction provides a potential mechanism for targeting Rheb to membranes that contain Arl2, a small GTPase that triggers the release of prenylated proteins from PDEδ. The minimal membrane targeting conferred by C-terminal farnesylation of Rheb and RhebL1 distinguishes them from other members of the Ras superfamily that possess additional membrane interaction motifs that work with farnesylation for enrichment on the specific subcellular membranes where they engage key effectors. Finally, we highlight diversity in Rheb membrane targeting mechanisms as well as the potential for alternative mTORC1 activation mechanisms across species.
Collapse
Affiliation(s)
- Brittany Angarola
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
305
|
A selective autophagy cargo receptor NBR1 modulates abscisic acid signalling in Arabidopsis thaliana. Sci Rep 2020; 10:7778. [PMID: 32385330 PMCID: PMC7211012 DOI: 10.1038/s41598-020-64765-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/18/2020] [Indexed: 12/17/2022] Open
Abstract
The plant selective autophagy cargo receptor neighbour of breast cancer 1 gene (NBR1) has been scarcely studied in the context of abiotic stress. We wanted to expand this knowledge by using Arabidopsis thaliana lines with constitutive ectopic overexpression of the AtNBR1 gene (OX lines) and the AtNBR1 Knock-Out (KO lines). Transcriptomic analysis of the shoots and roots of one representative OX line indicated differences in gene expression relative to the parental (WT) line. In shoots, many differentially expressed genes, either up- or down-regulated, were involved in responses to stimuli and stress. In roots the most significant difference was observed in a set of downregulated genes that is mainly related to translation and formation of ribonucleoprotein complexes. The link between AtNBR1 overexpression and abscisic acid (ABA) signalling was suggested by an interaction network analysis of these differentially expressed genes. Most hubs of this network were associated with ABA signalling. Although transcriptomic analysis suggested enhancement of ABA responses, ABA levels were unchanged in the OX shoots. Moreover, some of the phenotypes of the OX (delayed germination, increased number of closed stomata) and the KO lines (increased number of lateral root initiation sites) indicate that AtNBR1 is essential for fine-tuning of the ABA signalling pathway. The interaction of AtNBR1 with three regulatory proteins of ABA pathway (ABI3, ABI4 and ABI5) was observed in planta. It suggests that AtNBR1 might play role in maintaining the balance of ABA signalling by controlling their level and/or activity.
Collapse
|
306
|
Gobet C, Weger BD, Marquis J, Martin E, Neelagandan N, Gachon F, Naef F. Robust landscapes of ribosome dwell times and aminoacyl-tRNAs in response to nutrient stress in liver. Proc Natl Acad Sci U S A 2020; 117:9630-9641. [PMID: 32295881 PMCID: PMC7196831 DOI: 10.1073/pnas.1918145117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Translation depends on messenger RNA (mRNA)-specific initiation, elongation, and termination rates. While translation elongation is well studied in bacteria and yeast, less is known in higher eukaryotes. Here we combined ribosome and transfer RNA (tRNA) profiling to investigate the relations between translation elongation rates, (aminoacyl-) tRNA levels, and codon usage in mammals. We modeled codon-specific ribosome dwell times from ribosome profiling, considering codon pair interactions between ribosome sites. In mouse liver, the model revealed site- and codon-specific dwell times that differed from those in yeast, as well as pairs of adjacent codons in the P and A site that markedly slow down or speed up elongation. While translation efficiencies vary across diurnal time and feeding regimen, codon dwell times were highly stable and conserved in human. Measured tRNA levels correlated with codon usage and several tRNAs showed reduced aminoacylation, which was conserved in fasted mice. Finally, we uncovered that the longest codon dwell times could be explained by aminoacylation levels or high codon usage relative to tRNA abundance.
Collapse
Affiliation(s)
- Cédric Gobet
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Benjamin Dieter Weger
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Nestlé Research, CH-1015 Lausanne, Switzerland
| | | | - Eva Martin
- Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Nagammal Neelagandan
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | | | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland;
| |
Collapse
|
307
|
Mat Nanyan NSB, Takagi H. Proline Homeostasis in Saccharomyces cerevisiae: How Does the Stress-Responsive Transcription Factor Msn2 Play a Role? Front Genet 2020; 11:438. [PMID: 32411186 PMCID: PMC7198862 DOI: 10.3389/fgene.2020.00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Overexpression of MSN2, which is the transcription factor gene in response to stress, is well-known to increase the tolerance of the yeast Saccharomyces cerevisiae cells to a wide variety of environmental stresses. Recent studies have found that the Msn2 is a feasible potential mediator of proline homeostasis in yeast. This result is based on the finding that overexpression of the MSN2 gene exacerbates the cytotoxicity of yeast to various amino acid analogs whose uptake is increased by the active amino acid permeases localized on the plasma membrane as a result of a dysfunctional deubiquitination process. Increased understanding of the cellular responses induced by the Msn2-mediated proline incorporation will provide better comprehension of how cells respond to and counteract to different kinds of stimuli and will also contribute to the breeding of industrial yeast strains with increased productivity.
Collapse
Affiliation(s)
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
308
|
Kluck GEG, Durham KK, Yoo JA, Trigatti BL. High Density Lipoprotein and Its Precursor Protein Apolipoprotein A1 as Potential Therapeutics to Prevent Anthracycline Associated Cardiotoxicity. Front Cardiovasc Med 2020; 7:65. [PMID: 32411725 PMCID: PMC7198830 DOI: 10.3389/fcvm.2020.00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease and cancer are the leading causes of death in developed societies. Despite their effectiveness, many cancer therapies exhibit deleterious cardiovascular side effects such as cardiotoxicity and heart failure. The cardiotoxic effects of anthracyclines such as doxorubicin are the most well-characterized of cardiotoxic anti-cancer therapies. While other anti-neoplastic drugs also induce cardiotoxicity, often leading to heart failure, they are beyond the scope of this review. This review first summarizes the mechanisms of doxorubicin-induced cardiotoxicity. It then reviews emerging preclinical evidence that high density lipoprotein and its precursor protein apolipoprotein A1, which are known for their protective effects against ischemic cardiovascular disease, may also protect against doxorubicin-induced cardiotoxicity both directly and indirectly, when used therapeutically.
Collapse
Affiliation(s)
- George E. G. Kluck
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Kristina K. Durham
- Faculty of Health Sciences, Institute of Applied Health Sciences, School of Rehabilitation Sciences, McMaster University, Hamilton, ON, Canada
| | - Jeong-Ah Yoo
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| |
Collapse
|
309
|
Pascual-Carreras E, Marin-Barba M, Herrera-Úbeda C, Font-Martín D, Eckelt K, de Sousa N, García-Fernández J, Saló E, Adell T. Planarian cell number depends on blitzschnell, a novel gene family that balances cell proliferation and cell death. Development 2020; 147:dev.184044. [PMID: 32122990 DOI: 10.1242/dev.184044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023]
Abstract
Control of cell number is crucial to define body size during animal development and to restrict tumoral transformation. The cell number is determined by the balance between cell proliferation and cell death. Although many genes are known to regulate those processes, the molecular mechanisms underlying the relationship between cell number and body size remain poorly understood. This relationship can be better understood by studying planarians, flatworms that continuously change their body size according to nutrient availability. We identified a novel gene family, blitzschnell (bls), that consists of de novo and taxonomically restricted genes that control cell proliferation:cell death ratio. Their silencing promotes faster regeneration and increases cell number during homeostasis. Importantly, this increase in cell number leads to an increase in body size only in a nutrient-rich environment; in starved planarians, silencing results in a decrease in cell size and cell accumulation that ultimately produces overgrowths. bls expression is downregulated after feeding and is related to activity of the insulin/Akt/mTOR network, suggesting that the bls family evolved in planarians as an additional mechanism for restricting cell number in nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Marta Marin-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Daniel Font-Martín
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Kay Eckelt
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Nidia de Sousa
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Jordi García-Fernández
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| |
Collapse
|
310
|
Redhai S, Pilgrim C, Gaspar P, Giesen LV, Lopes T, Riabinina O, Grenier T, Milona A, Chanana B, Swadling JB, Wang YF, Dahalan F, Yuan M, Wilsch-Brauninger M, Lin WH, Dennison N, Capriotti P, Lawniczak MKN, Baines RA, Warnecke T, Windbichler N, Leulier F, Bellono NW, Miguel-Aliaga I. An intestinal zinc sensor regulates food intake and developmental growth. Nature 2020; 580:263-268. [PMID: 32269334 PMCID: PMC8833092 DOI: 10.1038/s41586-020-2111-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment1. In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system; however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes1. Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes-interstitial cells-by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR-Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. Our findings highlight the need to consider the instructive contributions of metals-and, more generally, micronutrients-to energy homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Clare Pilgrim
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Pedro Gaspar
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Lena van Giesen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Tatiana Lopes
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Olena Riabinina
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Department of Biosciences, Durham University, Durham, UK
| | - Théodore Grenier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, ENS de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Bhavna Chanana
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jacob B Swadling
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, London, UK
| | - Farah Dahalan
- Department of Life Sciences, Imperial College London, London, UK
- Malaria Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Michaela Yuan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Wei-Hsiang Lin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nathan Dennison
- Department of Life Sciences, Imperial College London, London, UK
| | - Paolo Capriotti
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | - Francois Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, ENS de Lyon, CNRS UMR 5242, Lyon, France
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
311
|
Hijazi I, Knupp J, Chang A. Retrograde signaling mediates an adaptive survival response to endoplasmic reticulum stress in Saccharomyces cerevisiae. J Cell Sci 2020; 133:jcs.241539. [PMID: 32005698 DOI: 10.1242/jcs.241539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
One major cause of endoplasmic reticulum (ER) stress is homeostatic imbalance between biosynthetic protein folding and protein folding capacity. Cells utilize mechanisms such as the unfolded protein response (UPR) to cope with ER stress. Nevertheless, when ER stress is prolonged or severe, cell death may occur, accompanied by production of mitochondrial reactive oxygen species (ROS). Using a yeast model (Saccharomyces cerevisiae), we describe an innate, adaptive response to ER stress to increase select mitochondrial proteins, O2 consumption and cell survival. The mitochondrial response allows cells to resist additional ER stress. The ER stress-induced mitochondrial response is mediated by activation of retrograde (RTG) signaling to enhance anapleurotic reactions of the tricarboxylic acid cycle. Mitochondrial response to ER stress is accompanied by inactivation of the conserved TORC1 pathway, and activation of Snf1/AMPK, the conserved energy sensor and regulator of metabolism. Our results provide new insight into the role of respiration in cell survival in the face of ER stress, and should help in developing therapeutic strategies to limit cell death in disorders linked to ER stress.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Imadeddin Hijazi
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| | - Jeffrey Knupp
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| | - Amy Chang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| |
Collapse
|
312
|
Phosphate in Virulence of Candida albicans and Candida glabrata. J Fungi (Basel) 2020; 6:jof6020040. [PMID: 32224872 PMCID: PMC7344514 DOI: 10.3390/jof6020040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
Candida species are the most commonly isolated invasive human fungal pathogens. A role for phosphate acquisition in their growth, resistance against host immune cells, and tolerance of important antifungal medications is becoming apparent. Phosphorus is an essential element in vital components of the cell, including chromosomes and ribosomes. Producing the energy currency of the cell, ATP, requires abundant inorganic phosphate. A comparison of the network of regulators and effectors that controls phosphate acquisition and intracellular distribution, the PHO regulon, between the model yeast Saccharomyces cerevisiae, a plant saprobe, its evolutionarily close relative C. glabrata, and the more distantly related C. albicans, highlights the need to coordinate phosphate homeostasis with adenylate biosynthesis for ATP production. It also suggests that fungi that cope with phosphate starvation as they invade host tissues, may link phosphate acquisition to stress responses as an efficient mechanism of anticipatory regulation. Recent work indicates that connections among the PHO regulon, Target of Rapamycin Complex 1 signaling, oxidative stress management, and cell wall construction are based both in direct signaling links, and in the provision of phosphate for sufficient metabolic intermediates that are substrates in these processes. Fundamental differences in fungal and human phosphate homeostasis may offer novel drug targets.
Collapse
|
313
|
Chi F, Sharpley MS, Nagaraj R, Roy SS, Banerjee U. Glycolysis-Independent Glucose Metabolism Distinguishes TE from ICM Fate during Mammalian Embryogenesis. Dev Cell 2020; 53:9-26.e4. [PMID: 32197068 DOI: 10.1016/j.devcel.2020.02.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 01/01/2023]
Abstract
The mouse embryo undergoes compaction at the 8-cell stage, and its transition to 16 cells generates polarity such that the outer apical cells are trophectoderm (TE) precursors and the inner cell mass (ICM) gives rise to the embryo. Here, we report that this first cell fate specification event is controlled by glucose. Glucose does not fuel mitochondrial ATP generation, and glycolysis is dispensable for blastocyst formation. Furthermore, glucose does not help synthesize amino acids, fatty acids, and nucleobases. Instead, glucose metabolized by the hexosamine biosynthetic pathway (HBP) allows nuclear localization of YAP1. In addition, glucose-dependent nucleotide synthesis by the pentose phosphate pathway (PPP), along with sphingolipid (S1P) signaling, activates mTOR and allows translation of Tfap2c. YAP1, TEAD4, and TFAP2C interact to form a complex that controls TE-specific gene transcription. Glucose signaling has no role in ICM specification, and this process of developmental metabolism specifically controls TE cell fate.
Collapse
Affiliation(s)
- Fangtao Chi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark S Sharpley
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Raghavendra Nagaraj
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shubhendu Sen Roy
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
314
|
Mutvei AP, Nagiec MJ, Hamann JC, Kim SG, Vincent CT, Blenis J. Rap1-GTPases control mTORC1 activity by coordinating lysosome organization with amino acid availability. Nat Commun 2020; 11:1416. [PMID: 32184389 PMCID: PMC7078236 DOI: 10.1038/s41467-020-15156-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
The kinase mTOR complex 1 (mTORC1) promotes cellular growth and is frequently dysregulated in cancers. In response to nutrients, mTORC1 is activated on lysosomes by Rag and Rheb guanosine triphosphatases (GTPases) and drives biosynthetic processes. How limitations in nutrients suppress mTORC1 activity remains poorly understood. We find that when amino acids are limited, the Rap1-GTPases confine lysosomes to the perinuclear region and reduce lysosome abundance, which suppresses mTORC1 signaling. Rap1 activation, which is independent of known amino acid signaling factors, limits the lysosomal surface available for mTORC1 activation. Conversely, Rap1 depletion expands the lysosome population, which markedly increases association between mTORC1 and its lysosome-borne activators, leading to mTORC1 hyperactivity. Taken together, we establish Rap1 as a critical coordinator of the lysosomal system, and propose that aberrant changes in lysosomal surface availability can impact mTORC1 signaling output.
Collapse
Affiliation(s)
- Anders P Mutvei
- Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, Belfer Research Building, 413 E. 69th St., New York, NY, 10021, USA.
- Karolinska Institutet, Department of Microbiology, Tumor and Cell biology, Nobels väg 16, KI Solna Campus Karolinska Institutet, Box 280, SE-171 77, Stockholm, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85, Uppsala, Sweden.
| | - Michal J Nagiec
- Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, Belfer Research Building, 413 E. 69th St., New York, NY, 10021, USA
| | - Jens C Hamann
- Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, Belfer Research Building, 413 E. 69th St., New York, NY, 10021, USA
| | - Sang Gyun Kim
- Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, Belfer Research Building, 413 E. 69th St., New York, NY, 10021, USA
| | - C Theresa Vincent
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85, Uppsala, Sweden
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - John Blenis
- Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, Belfer Research Building, 413 E. 69th St., New York, NY, 10021, USA.
| |
Collapse
|
315
|
Rodríguez-López M, Gonzalez S, Hillson O, Tunnacliffe E, Codlin S, Tallada VA, Bähler J, Rallis C. The GATA Transcription Factor Gaf1 Represses tRNAs, Inhibits Growth, and Extends Chronological Lifespan Downstream of Fission Yeast TORC1. Cell Rep 2020; 30:3240-3249.e4. [PMID: 32160533 PMCID: PMC7068653 DOI: 10.1016/j.celrep.2020.02.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/17/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Target of Rapamycin Complex 1 (TORC1) signaling promotes growth and aging. Inhibition of TORC1 leads to reduced protein translation, which promotes longevity. TORC1-dependent post-transcriptional regulation of protein translation has been well studied, while analogous transcriptional regulation is less understood. Here we screen fission yeast mutants for resistance to Torin1, which inhibits TORC1 and cell growth. Cells lacking the GATA factor Gaf1 (gaf1Δ) grow normally even in high doses of Torin1. The gaf1Δ mutation shortens the chronological lifespan of non-dividing cells and diminishes Torin1-mediated longevity. Expression profiling and genome-wide binding experiments show that upon TORC1 inhibition, Gaf1 directly upregulates genes for small-molecule metabolic pathways and indirectly represses genes for protein translation. Surprisingly, Gaf1 binds to and downregulates the tRNA genes, so it also functions as a transcription factor for RNA polymerase III. Thus, Gaf1 controls the transcription of both protein-coding and tRNA genes to inhibit translation and growth downstream of TORC1.
Collapse
Affiliation(s)
- María Rodríguez-López
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Olivia Hillson
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Edward Tunnacliffe
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Sandra Codlin
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC, 41013 Sevilla, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK.
| | - Charalampos Rallis
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK; School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
316
|
Tarnowski L, Collados Rodriguez M, Brzywczy J, Cysewski D, Wawrzynska A, Sirko A. Overexpression of the Selective Autophagy Cargo Receptor NBR1 Modifies Plant Response to Sulfur Deficit. Cells 2020; 9:E669. [PMID: 32164165 PMCID: PMC7140714 DOI: 10.3390/cells9030669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Plants exposed to sulfur deficit elevate the transcription of NBR1 what might reflect an increased demand for NBR1 in such conditions. Therefore, we investigated the role of this selective autophagy cargo receptor in plant response to sulfur deficit (-S). Transcriptome analysis of the wild type and NBR1 overexpressing plants pointed out differences in gene expression in response to -S. Our attention focused particularly on the genes upregulated by -S in roots of both lines because of significant overrepresentation of cytoplasmic ribosomal gene family. Moreover, we noticed overrepresentation of the same family in the set of proteins co-purifying with NBR1 in -S. One of these ribosomal proteins, RPS6 was chosen for verification of its direct interaction with NBR1 and proven to bind outside the NBR1 ubiquitin binding domains. The biological significance of this novel interaction and the postulated role of NBR1 in ribosomes remodeling in response to starvation remain to be further investigated. Interestingly, NBR1 overexpressing seedlings have significantly shorter roots than wild type when grown in nutrient deficient conditions in the presence of TOR kinase inhibitors. This phenotype probably results from excessive autophagy induction by the additive effect of NBR1 overexpression, starvation, and TOR inhibition.
Collapse
Affiliation(s)
- Leszek Tarnowski
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| | - Milagros Collados Rodriguez
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| | - Jerzy Brzywczy
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| | - Dominik Cysewski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| | - Anna Wawrzynska
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| |
Collapse
|
317
|
González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab 2020; 31:472-492. [PMID: 32130880 DOI: 10.1016/j.cmet.2020.01.015] [Citation(s) in RCA: 423] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are interlinked, opposing signaling pathways involved in sensing availability of nutrients and energy and regulation of cell growth. AMPK (Yin, or the "dark side") is switched on by lack of energy or nutrients and inhibits cell growth, while TOR (Yang, or the "bright side") is switched on by nutrient availability and promotes cell growth. Genes encoding the AMPK and TOR complexes are found in almost all eukaryotes, suggesting that these pathways arose very early during eukaryotic evolution. During the development of multicellularity, an additional tier of cell-extrinsic growth control arose that is mediated by growth factors, but these often act by modulating nutrient uptake so that AMPK and TOR remain the underlying regulators of cellular growth control. In this review, we discuss the evolution, structure, and regulation of the AMPK and TOR pathways and the complex mechanisms by which they interact.
Collapse
Affiliation(s)
- Asier González
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Sheng-Cai Lin
- School of Life Sciences, Xiamen University, Xiamen, 361102 Fujian, China
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
318
|
Nutrient mTORC1 signaling contributes to hepatic lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
319
|
O'Leary BM, Oh GGK, Lee CP, Millar AH. Metabolite Regulatory Interactions Control Plant Respiratory Metabolism via Target of Rapamycin (TOR) Kinase Activation. THE PLANT CELL 2020; 32:666-682. [PMID: 31888967 PMCID: PMC7054028 DOI: 10.1105/tpc.19.00157] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Accepted: 12/23/2019] [Indexed: 05/03/2023]
Abstract
Respiration rate measurements provide an important readout of energy expenditure and mitochondrial activity in plant cells during the night. As plants inhabit a changing environment, regulatory mechanisms must ensure that respiratory metabolism rapidly and effectively adjusts to the metabolic and environmental conditions of the cell. Using a high-throughput approach, we have directly identified specific metabolites that exert transcriptional, translational, and posttranslational control over the nighttime O2 consumption rate (RN) in mature leaves of Arabidopsis (Arabidopsis thaliana). Multi-hour RN measurements following leaf disc exposure to a wide array of primary carbon metabolites (carbohydrates, amino acids, and organic acids) identified phosphoenolpyruvate (PEP), Pro, and Ala as the most potent stimulators of plant leaf RN Using metabolite combinations, we discovered metabolite-metabolite regulatory interactions controlling RN Many amino acids, as well as Glc analogs, were found to potently inhibit the RN stimulation by Pro and Ala but not PEP. The inhibitory effects of amino acids on Pro- and Ala-stimulated RN were mitigated by inhibition of the Target of Rapamycin (TOR) kinase signaling pathway. Supporting the involvement of TOR, these inhibitory amino acids were also shown to be activators of TOR kinase. This work provides direct evidence that the TOR signaling pathway in plants responds to amino acid levels by eliciting regulatory effects on respiratory energy metabolism at night, uniting a hallmark mechanism of TOR regulation across eukaryotes.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - Glenda Guek Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - Chun Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| |
Collapse
|
320
|
Meghil MM, Cutler CW. Oral Microbes and Mucosal Dendritic Cells, "Spark and Flame" of Local and Distant Inflammatory Diseases. Int J Mol Sci 2020; 21:E1643. [PMID: 32121251 PMCID: PMC7084622 DOI: 10.3390/ijms21051643] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly "under the radar" in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an "awakening" of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer's disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized.
Collapse
Affiliation(s)
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
321
|
Nguyen DV, Roret T, Fernandez-Gonzalez A, Kohler A, Morel-Rouhier M, Gelhaye E, Sormani R. Target Of Rapamycin pathway in the white-rot fungus Phanerochaete chrysosporium. PLoS One 2020; 15:e0224776. [PMID: 32078630 PMCID: PMC7032718 DOI: 10.1371/journal.pone.0224776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022] Open
Abstract
The Target Of Rapamycin (TOR) signaling pathway is known to regulate growth in response to nutrient availability and stress in eukaryotic cells. In the present study, we have investigated the TOR pathway in the white-rot fungus Phanerochaete chrysosporium. Inhibition of TOR activity by rapamycin affects conidia germination and hyphal growth highlighting the conserved mechanism of susceptibility to rapamycin. Interestingly, the secreted protein content is also affected by the rapamycin treatment. Finally, homologs of the components of TOR pathway can be identified in P. chrysosporium. Altogether, those results indicate that the TOR pathway of P. chrysosporium plays a central role in this fungus.
Collapse
|
322
|
Giguère V. DNA-PK, Nuclear mTOR, and the Androgen Pathway in Prostate Cancer. Trends Cancer 2020; 6:337-347. [PMID: 32209447 DOI: 10.1016/j.trecan.2020.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
Androgen and its receptor (AR) are major drivers of prostate cancer (PCa), a leading cause of mortality in aging men. Thus, understanding the numerous mechanisms by which AR can promote the growth and proliferation of PCa cells and enable their escape from hormone-dependent therapies, eventually leading to metastasis and death of the patient, is essential to discover alternative therapeutic approaches. Recently, two structurally related members of the phosphatidylinositol 3-kinase-like protein kinase (PIKK) family, DNA-dependent protein kinase (DNA-PK) and mammalian target of rapamycin (mTOR), were shown to have a direct role in modulating AR activity on chromatin of PCa cells. In this review, the common features of DNA-PK and mTOR and the similarities in their noncanonical roles as transcription coregulators of the AR are highlighted. An outlook on how these findings could be translated into new approaches to manage and treat PCa is provided.
Collapse
Affiliation(s)
- Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, QC, H3G 1Y6, Canada.
| |
Collapse
|
323
|
Lokdarshi A, Papdi C, Pettkó-Szandtner A, Dorokhov S, Scheres B, Magyar Z, von Arnim AG, Bögre L, Horváth BM. ErbB-3 BINDING PROTEIN 1 Regulates Translation and Counteracts RETINOBLASTOMA RELATED to Maintain the Root Meristem. PLANT PHYSIOLOGY 2020; 182:919-932. [PMID: 31818906 PMCID: PMC6997692 DOI: 10.1104/pp.19.00805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/22/2019] [Indexed: 05/09/2023]
Abstract
The ErbB-3 BINDING PROTEIN 1 (EBP1) drives growth, but the mechanism of how it acts in plants is little understood. Here, we show that EBP1 expression and protein abundance in Arabidopsis (Arabidopsis thaliana) are predominantly confined to meristematic cells and are induced by sucrose and partially dependent on TARGET OF RAPAMYCIN (TOR) kinase activity. Consistent with being downstream of TOR, silencing of EBP1 restrains, while overexpression promotes, root growth, mostly under sucrose-limiting conditions. Inducible overexpression of RETINOBLASTOMA RELATED (RBR), a sugar-dependent transcriptional repressor of cell proliferation, depletes meristematic activity and causes precocious differentiation, which is attenuated by EBP1. To understand the molecular mechanism, we searched for EBP1- and RBR-interacting proteins by affinity purification and mass spectrometry. In line with the double-stranded RNA-binding activity of EBP1 in human (Homo sapiens) cells, the overwhelming majority of EBP1 interactors are part of ribonucleoprotein complexes regulating many aspects of protein synthesis, including ribosome biogenesis and mRNA translation. We confirmed that EBP1 associates with ribosomes and that EBP1 silencing hinders ribosomal RNA processing. We revealed that RBR also interacts with a set of EBP1-associated nucleolar proteins as well as factors that function in protein translation. This suggests EBP1 and RBR act antagonistically on common processes that determine the capacity for translation to tune meristematic activity in relation to available resources.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Csaba Papdi
- Department of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, United Kingdom
| | - Aladár Pettkó-Szandtner
- Laboratory of Proteomics Research, Biological Research Centre, POB 521, H-6701 Szeged, Hungary
| | - Stefan Dorokhov
- Department of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, United Kingdom
| | - Ben Scheres
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, POB 521, H-6701 Szeged, Hungary
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, Tennessee 37996
| | - László Bögre
- Department of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, United Kingdom
| | - Beatrix M Horváth
- Department of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, United Kingdom
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
324
|
Rashid S, Pho KB, Mesbahi H, MacNeil LT. Nutrient Sensing and Response Drive Developmental Progression in Caenorhabditis elegans. Bioessays 2020; 42:e1900194. [PMID: 32003906 DOI: 10.1002/bies.201900194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/22/2019] [Indexed: 12/18/2022]
Abstract
In response to nutrient limitation, many animals, including Caenorhabditis elegans, slow or arrest their development. This process requires mechanisms that sense essential nutrients and induce appropriate responses. When faced with nutrient limitation, C. elegans can induce both short and long-term survival strategies, including larval arrest, decreased developmental rate, and dauer formation. To select the most advantageous strategy, information from many different sensors must be integrated into signaling pathways, including target of rapamycin (TOR) and insulin, that regulate developmental progression. Here, how nutrient information is sensed and integrated into developmental decisions that determine developmental rate and progression in C. elegans is reviewed.
Collapse
Affiliation(s)
- Sabih Rashid
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Kim B Pho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Hiva Mesbahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| |
Collapse
|
325
|
Rybiński M, Möller S, Sunnåker M, Lormeau C, Stelling J. TopoFilter: a MATLAB package for mechanistic model identification in systems biology. BMC Bioinformatics 2020; 21:34. [PMID: 31996136 PMCID: PMC6990465 DOI: 10.1186/s12859-020-3343-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
Background To develop mechanistic dynamic models in systems biology, one often needs to identify all (or minimal) representations of the biological processes that are consistent with experimental data, out of a potentially large set of hypothetical mechanisms. However, a simple enumeration of all alternatives becomes quickly intractable when the number of model parameters grows. Selecting appropriate dynamic models out of a large ensemble of models, taking the uncertainty in our biological knowledge and in the experimental data into account, is therefore a key current problem in systems biology. Results The TopoFilter package addresses this problem in a heuristic and automated fashion by implementing the previously described topological filtering method for Bayesian model selection. It includes a core heuristic for searching the space of submodels of a parametrized model, coupled with a sampling-based exploration of the parameter space. Recent developments of the method allow to balance exhaustiveness and speed of the model space search, to efficiently re-sample parameters, to parallelize the search, and to use custom scoring functions. We use a theoretical example to motivate these features and then demonstrate TopoFilter’s applicability for a yeast signaling network with more than 250’000 possible model structures. Conclusions TopoFilter is a flexible software framework that makes Bayesian model selection and reduction efficient and scalable to network models of a complexity that represents contemporary problems in, for example, cell signaling. TopoFilter is open-source, available under the GPL-3.0 license at https://gitlab.com/csb.ethz/TopoFilter. It includes installation instructions, a quickstart guide, a description of all package options, and multiple examples.
Collapse
Affiliation(s)
- Mikołaj Rybiński
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland.,ID Scientific IT Services, ETH Zurich, Zurich, 8092, Switzerland
| | - Simon Möller
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland
| | - Mikael Sunnåker
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland
| | - Claude Lormeau
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland.,Life Science Zurich Ph.D. program "Systems Biology", Zurich, 8092, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland.
| |
Collapse
|
326
|
Jackson CA, Castro DM, Saldi GA, Bonneau R, Gresham D. Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments. eLife 2020; 9:e51254. [PMID: 31985403 PMCID: PMC7004572 DOI: 10.7554/elife.51254] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding how gene expression programs are controlled requires identifying regulatory relationships between transcription factors and target genes. Gene regulatory networks are typically constructed from gene expression data acquired following genetic perturbation or environmental stimulus. Single-cell RNA sequencing (scRNAseq) captures the gene expression state of thousands of individual cells in a single experiment, offering advantages in combinatorial experimental design, large numbers of independent measurements, and accessing the interaction between the cell cycle and environmental responses that is hidden by population-level analysis of gene expression. To leverage these advantages, we developed a method for scRNAseq in budding yeast (Saccharomyces cerevisiae). We pooled diverse transcriptionally barcoded gene deletion mutants in 11 different environmental conditions and determined their expression state by sequencing 38,285 individual cells. We benchmarked a framework for learning gene regulatory networks from scRNAseq data that incorporates multitask learning and constructed a global gene regulatory network comprising 12,228 interactions.
Collapse
Affiliation(s)
- Christopher A Jackson
- Center For Genomics and Systems BiologyNew York UniversityNew YorkUnited States
- Department of BiologyNew York UniversityNew YorkUnited States
| | | | | | - Richard Bonneau
- Center For Genomics and Systems BiologyNew York UniversityNew YorkUnited States
- Department of BiologyNew York UniversityNew YorkUnited States
- Courant Institute of Mathematical Sciences, Computer Science DepartmentNew York UniversityNew YorkUnited States
- Center For Data ScienceNew York UniversityNew YorkUnited States
- Flatiron Institute, Center for Computational BiologySimons FoundationNew YorkUnited States
| | - David Gresham
- Center For Genomics and Systems BiologyNew York UniversityNew YorkUnited States
- Department of BiologyNew York UniversityNew YorkUnited States
| |
Collapse
|
327
|
Rumala CZ, Liu J, Locasale JW, Corkey BE, Deeney JT, Rameh LE. Exposure of Pancreatic β-Cells to Excess Glucose Results in Bimodal Activation of mTORC1 and mTOR-Dependent Metabolic Acceleration. iScience 2020; 23:100858. [PMID: 32058969 PMCID: PMC7005503 DOI: 10.1016/j.isci.2020.100858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/28/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic exposure of pancreatic β-cells to excess glucose can lead to metabolic acceleration and loss of stimulus-secretion coupling. Here, we examined how exposure to excess glucose (defined here as concentrations above 5 mM) affects mTORC1 signaling and the metabolism of β-cells. Acute exposure to excess glucose stimulated glycolysis-dependent mTORC1 signaling, without changes in the PI3K or AMPK pathways. Prolonged exposure to excess glucose led to hyperactivation of mTORC1 and metabolic acceleration, characterized by higher basal respiration and maximal respiratory capacity, increased energy demand, and enhanced flux through mitochondrial pyruvate metabolism. Inhibition of pyruvate transport to the mitochondria decelerated the metabolism of β-cells chronically exposed to excess glucose and re-established glucose-dependent mTORC1 signaling, disrupting a positive feedback loop for mTORC1 hyperactivation. mTOR inhibition had positive and negative impacts on various metabolic pathways and insulin secretion, demonstrating a role for mTOR signaling in the long-term metabolic adaptation of β-cells to excess glucose. Acute glucose stimulates mTORC1 in β-cells through a glycolysis-dependent mechanism Chronic excess glucose promotes mTOR-dependent metabolic acceleration of β-cells Metabolic acceleration activates a positive feedback loop for mTORC1 hyperactivation mTOR hyperactivation disturbs the metabolism and insulin secretion patterns of β-cells
Collapse
Affiliation(s)
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Jason Wei Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Barbara Ellen Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jude Thaddeus Deeney
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lucia Egydio Rameh
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
328
|
Abstract
Macropinocytosis is an evolutionarily conserved form of endocytosis that mediates non-selective uptake of extracellular fluid and the solutes contained therein. In mammalian cells, macropinocytosis is initiated by growth factor-mediated activation of the Ras and PI3-kinase signalling pathways. In malignant cells, oncogenic activation of growth factor signalling sustains macropinocytosis cell autonomously. Recent studies of cancer metabolism, discussed here, have begun to define a role for macropinocytosis as a nutrient uptake route. Macropinocytic cancer cells ingest macromolecules in bulk and break them down in the lysosome to support metabolism and macromolecular synthesis. Thereby, macropinocytosis allows cells to tap into the copious nutrient stores of extracellular macromolecules when canonical nutrients are scarce. These findings demonstrate that macropinocytosis promotes metabolic flexibility and resilience, which enables cancer cells to survive and grow in nutrient-poor environments. Implications for physiological roles of growth factor-stimulated macropinocytosis in cell metabolism and its relationship with other nutrient uptake pathways are considered. This article is part of the Theo Murphy meeting issue ‘Macropinocytosis’.
Collapse
Affiliation(s)
- Wilhelm Palm
- German Cancer Research Center (DKFZ) , Im Neuenheimer Feld 280, 69120 Heidelberg , Germany
| |
Collapse
|
329
|
Relevance and Regulation of Cell Density. Trends Cell Biol 2020; 30:213-225. [PMID: 31980346 DOI: 10.1016/j.tcb.2019.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023]
Abstract
Cell density shows very little variation within a given cell type. For example, in humans variability in cell density among cells of a given cell type is 100 times smaller than variation in cell mass. This tight control indicates that maintenance of a cell type-specific cell density is important for cell function. Indeed, pathological conditions such as cellular senescence are accompanied by changes in cell density. Despite the apparent importance of cell-type-specific density, we know little about how cell density affects cell function, how it is controlled, and how it sometimes changes as part of a developmental process or in response to changes in the environment. The recent development of new technologies to accurately measure the cell density of single cells in suspension and in tissues is likely to provide answers to these important questions.
Collapse
|
330
|
Autophagy as a Cellular Stress Response Mechanism in the Nervous System. J Mol Biol 2020; 432:2560-2588. [PMID: 31962122 DOI: 10.1016/j.jmb.2020.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Cells of an organism face with various types of insults during their lifetime. Exposure to toxins, metabolic problems, ischaemia/reperfusion, physical trauma, genetic diseases, neurodegenerative diseases are among the conditions that trigger cellular stress responses. In this context, autophagy is one of the mechanisms that supports cell survival under stressful conditions. Autophagic vesicle engulfs the cargo and transports it to lysosome for degradation and turnover. As such, autophagy eliminates abnormal proteins, clears damaged organelles, limits oxidative stress and helps to improve metabolic balance. Nervous system cells and particularly postmitotic neurons are highly sensitive to a spectrum of insults, and autophagy emerges as one of the key stress response mechanism, ensuring health and survival of these vulnerable cell types. In this review, we will overview mechanisms through which cells cope with stress, and how these stress responses regulate autophagy, with a special focus on the nervous system.
Collapse
|
331
|
Kessi-Pérez EI, Molinet J, Martínez C. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation. Biol Res 2020; 53:2. [PMID: 31918759 PMCID: PMC6950849 DOI: 10.1186/s40659-019-0270-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been considered for more than 20 years as a premier model organism for biological sciences, also being the main microorganism used in wide industrial applications, like alcoholic fermentation in the winemaking process. Grape juice is a challenging environment for S. cerevisiae, with nitrogen deficiencies impairing fermentation rate and yeast biomass production, causing stuck or sluggish fermentations, thus generating sizeable economic losses for wine industry. In the present review, we summarize some recent efforts in the search of causative genes that account for yeast adaptation to low nitrogen environments, specially focused in wine fermentation conditions. We start presenting a brief perspective of yeast nitrogen utilization under wine fermentative conditions, highlighting yeast preference for some nitrogen sources above others. Then, we give an outlook of S. cerevisiae genetic diversity studies, paying special attention to efforts in genome sequencing for population structure determination and presenting QTL mapping as a powerful tool for phenotype-genotype correlations. Finally, we do a recapitulation of S. cerevisiae natural diversity related to low nitrogen adaptation, specially showing how different studies have left in evidence the central role of the TORC1 signalling pathway in nitrogen utilization and positioned wild S. cerevisiae strains as a reservoir of beneficial alleles with potential industrial applications (e.g. improvement of industrial yeasts for wine production). More studies focused in disentangling the genetic bases of S. cerevisiae adaptation in wine fermentation will be key to determine the domestication effects over low nitrogen adaptation, as well as to definitely proof that wild S. cerevisiae strains have potential genetic determinants for better adaptation to low nitrogen conditions.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
332
|
Frias MA, Mukhopadhyay S, Lehman E, Walasek A, Utter M, Menon D, Foster DA. Phosphatidic acid drives mTORC1 lysosomal translocation in the absence of amino acids. J Biol Chem 2020; 295:263-274. [PMID: 31767684 PMCID: PMC6952608 DOI: 10.1074/jbc.ra119.010892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Indexed: 01/30/2023] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) promotes cell growth and proliferation in response to nutrients and growth factors. Amino acids induce lysosomal translocation of mTORC1 via the Rag GTPases. Growth factors activate Ras homolog enriched in brain (Rheb), which in turn activates mTORC1 at the lysosome. Amino acids and growth factors also induce the phospholipase D (PLD)-phosphatidic acid (PA) pathway, required for mTORC1 signaling through mechanisms that are not fully understood. Here, using human and murine cell lines, along with immunofluorescence, confocal microscopy, endocytosis, PLD activity, and cell viability assays, we show that exogenously supplied PA vesicles deliver mTORC1 to the lysosome in the absence of amino acids, Rag GTPases, growth factors, and Rheb. Of note, pharmacological or genetic inhibition of endogenous PLD prevented mTORC1 lysosomal translocation. We observed that precancerous cells with constitutive Rheb activation through loss of tuberous sclerosis complex subunit 2 (TSC2) exploit the PLD-PA pathway and thereby sustain mTORC1 activation at the lysosome in the absence of amino acids. Our findings indicate that sequential inputs from amino acids and growth factors trigger PA production required for mTORC1 translocation and activation at the lysosome.
Collapse
Affiliation(s)
- Maria A Frias
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10021; Clinical and Translational Master's Program, Clinical and Translational Science Center, Weill Cornell Medicine, New York, New York 10065.
| | - Suman Mukhopadhyay
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10021
| | - Elyssa Lehman
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10021
| | - Aleksandra Walasek
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10021
| | - Matthew Utter
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10021
| | - Deepak Menon
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10021
| | - David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10021; Department of Pharmacology, Weill Cornell Medicine, New York, New York 10065.
| |
Collapse
|
333
|
Couso I, Pérez-Pérez ME, Ford MM, Martínez-Force E, Hicks LM, Umen JG, Crespo JL. Phosphorus Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas. THE PLANT CELL 2020; 32:69-80. [PMID: 31712405 PMCID: PMC6961625 DOI: 10.1105/tpc.19.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/07/2019] [Accepted: 11/08/2019] [Indexed: 05/05/2023]
Abstract
Target of rapamycin complex 1 (TORC1) is a central regulator of cell growth. It balances anabolic and catabolic processes in response to nutrients, growth factors, and energy availability. Nitrogen- and carbon-containing metabolites have been shown to activate TORC1 in yeast, animals, and plants. Here, we show that phosphorus (P) regulates TORC1 signaling in the model green alga Chlamydomonas (Chlamydomonas reinhardtii) via LST8, a conserved TORC1 subunit that interacts with the kinase domain of TOR. P starvation results in a sharp decrease in LST8 abundance and downregulation of TORC1 activity. A hypomorphic lst8 mutation resulted in decreased LST8 abundance, and it both reduced TORC1 signaling and altered the cellular response to P starvation. Additionally, we found that LST8 levels and TORC1 activity were not properly regulated in a mutant defective in the transcription factor PSR1, which is the major mediator of P deprivation responses in Chlamydomonas. Unlike wild-type cells, the psr1 mutant failed to downregulate LST8 abundance and TORC1 activity when under P limitation. These results identify PSR1 as an upstream regulator of TORC1 and demonstrate that TORC1 is a key component in P signaling in Chlamydomonas.
Collapse
Affiliation(s)
- Inmaculada Couso
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Sevilla, Spain
| | - Megan M Ford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Enrique Martínez-Force
- Instituto de la Grasa (Consejo Superior de Investigaciones Científicas), Edificio 46, Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
334
|
Bertoni G. Phosphorus Sensing by LST8 Acts as a TOR Guide for Cell Growth in Chlamydomonas. THE PLANT CELL 2020; 32:7. [PMID: 31732702 PMCID: PMC6961629 DOI: 10.1105/tpc.19.00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
335
|
Interconversion between Anticipatory and Active GID E3 Ubiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly. Mol Cell 2020; 77:150-163.e9. [DOI: 10.1016/j.molcel.2019.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/04/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
|
336
|
Mechanisms of Autophagy in Metabolic Stress Response. J Mol Biol 2020; 432:28-52. [DOI: 10.1016/j.jmb.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
|
337
|
Yu R, Nielsen J. Yeast systems biology in understanding principles of physiology underlying complex human diseases. Curr Opin Biotechnol 2019; 63:63-69. [PMID: 31901548 DOI: 10.1016/j.copbio.2019.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022]
Abstract
Complex human diseases commonly arise from deregulation of cell growth, metabolism, and/or gene expression. Yeast is a eukaryal model organism that is widely used to study these processes. Yeast systems biology benefits from the ability to exert fine experimental control over the cell growth rate and nutrient composition, which allows orthogonal experimental design and generation of multi-omics data at high resolution. This has led to several insights on the principles of cellular physiology, including many cellular processes associated with complex human diseases. Here we review these biological insights together with experimental and modeling approaches developed in yeast to study systems biology. The role of yeast systems biology to further advance systems and personalized therapies for complex diseases is discussed.
Collapse
Affiliation(s)
- Rosemary Yu
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; BioInnovation Institute, Ole Måløes Vej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
338
|
Umekawa M, Shiraishi D, Fuwa M, Sawaguchi K, Mashima Y, Katayama T, Karita S. Mitotic cyclin Clb4 is required for the intracellular adaptation to glucose starvation inSaccharomyces cerevisiae. FEBS Lett 2019; 594:1329-1338. [DOI: 10.1002/1873-3468.13722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Midori Umekawa
- Graduate School of Bioresources Mie University Tsu Japan
| | | | - Marin Fuwa
- Faculty of Bioresources Mie University Tsu Japan
| | | | | | | | - Shuichi Karita
- Graduate School of Bioresources Mie University Tsu Japan
| |
Collapse
|
339
|
Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. Protein synthesis and quality control in aging. Aging (Albany NY) 2019; 10:4269-4288. [PMID: 30562164 PMCID: PMC6326689 DOI: 10.18632/aging.101721] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is characterized by the accumulation of damage and other deleterious changes, leading to the loss of functionality and fitness. Age-related changes occur at most levels of organization of a living organism (molecular, organellar, cellular, tissue and organ). However, protein synthesis is a major biological process, and thus understanding how it changes with age is of paramount importance. Here, we discuss the relationships between lifespan, aging, protein synthesis and translational control, and expand this analysis to the various aspects of proteome behavior in organisms with age. Characterizing the consequences of changes in protein synthesis and translation fidelity, and determining whether altered translation is pathological or adaptive is necessary for understanding the aging process, as well as for developing approaches to target dysfunction in translation as a strategy for extending lifespan.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nadezhda E Makarova
- School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
340
|
Cardarelli S, Giorgi M, Poiana G, Biagioni S, Saliola M. Metabolic role of cGMP in S. cerevisiae: the murine phosphodiesterase-5 activity affects yeast cell proliferation by altering the cAMP/cGMP equilibrium. FEMS Yeast Res 2019; 19:5322165. [PMID: 30772891 DOI: 10.1093/femsyr/foz016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
In higher eukaryotes, cAMP and cGMP are signal molecules of major transduction pathways while phosphodiesterases (PDE) are a superfamily of cAMP/cGMP hydrolysing enzymes, modulatory components of these routes. Saccharomyces cerevisiae harbours two genes for PDE: Pde2 is a high affinity cAMP-hydrolysing enzyme, while Pde1 can hydrolyse both cAMP and cGMP. To gain insight into the metabolic role of cGMP in the physiology of yeast, the murine Pde5a1 gene encoding a specific cGMP-hydrolysing enzyme, was expressed in S. cerevisiae pdeΔ strains. pde1Δ and pde2Δ PDE5A1-transformed strain displayed opposite growth-curve profiles; while PDE5A1 recovered the growth delay of pde1Δ, PDE5A1 reversed the growth profile of pde2Δ to that of the untransformed pde1Δ. Growth test analysis and the use of Adh2 and Adh1 as respiro-fermentative glycolytic flux markers confirmed that PDE5A1 altered the metabolism by acting on Pde1-Pde2/cyclic nucleotides content and also on the TORC1 nutrient-sensing cascade. cGMP is required during the log-phase of cell proliferation to adjust/modulate cAMP levels inside well-defined ranges. A model is presented proposing the role of cGMP in the cAMP/PKA pathway. The expression of the PDE5A1 cassette in other mutant strains might constitute the starting tool to define cGMP metabolic role in yeast nutrient signaling.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Mauro Giorgi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Michele Saliola
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| |
Collapse
|
341
|
Liu H, Ding J, Köhnlein K, Urban N, Ori A, Villavicencio-Lorini P, Walentek P, Klotz LO, Hollemann T, Pfirrmann T. The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. Autophagy 2019; 16:1618-1634. [PMID: 31795790 PMCID: PMC8386601 DOI: 10.1080/15548627.2019.1695399] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by sensing the metabolic status of the cell. AMPK is regulated by phosphorylation and dephosphorylation as a result of changing AMP/ATP levels and by removal of inhibitory ubiquitin residues by USP10. In this context, we identified the GID-complex, an evolutionarily conserved ubiquitin-ligase-complex (E3), as a negative regulator of AMPK activity. Our data show that the GID-complex targets AMPK for ubiquitination thereby altering its activity. Cells depleted of GID-subunits mimic a state of starvation as shown by increased AMPK activity and macroautophagic/autophagic flux as well as reduced MTOR activation. Consistently, gid-genes knockdown in C. elegans results in increased organismal lifespan. This study may contribute to understand metabolic disorders such as type 2 diabetes mellitus and morbid obesity and implements alternative therapeutic approaches to alter AMPK activity.
Collapse
Affiliation(s)
- Huaize Liu
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg , Halle, Germany
| | - Jie Ding
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg , Halle, Germany
| | - Karl Köhnlein
- Institute of Nutritional Sciences, Friedrich Schiller University Jena , Jena, Germany
| | - Nadine Urban
- Institute of Nutritional Sciences, Friedrich Schiller University Jena , Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI) , Jena, Germany
| | | | - Peter Walentek
- Division of Genetics, Genomics and Development, Molecular and Cell Biology Department, University of California at Berkeley , Berkeley, USA.,Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg , Germany.,CIBSS - Center for Integrative Biological Signalling Studies, Albert Ludwigs University , Freiburg, Germany
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Friedrich Schiller University Jena , Jena, Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg , Halle, Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg , Halle, Germany
| |
Collapse
|
342
|
Toribio R, Muñoz A, Castro-Sanz AB, Merchante C, Castellano MM. A novel eIF4E-interacting protein that forms non-canonical translation initiation complexes. NATURE PLANTS 2019; 5:1283-1296. [PMID: 31819221 PMCID: PMC6914366 DOI: 10.1038/s41477-019-0553-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Translation is a fundamental step in gene expression that regulates multiple developmental and stress responses. One key step of translation initiation is the association between eIF4E and eIF4G. This process is regulated in different eukaryotes by proteins that bind to eIF4E; however, evidence of eIF4E-interacting proteins able to regulate translation is missing in plants. Here, we report the discovery of CERES, a plant eIF4E-interacting protein. CERES contains an LRR domain and a canonical eIF4E-binding site. Although the CERES-eIF4E complex does not include eIF4G, CERES forms part of cap-binding complexes, interacts with eIF4A, PABP and eIF3, and co-sediments with translation initiation complexes in vivo. Moreover, CERES promotes translation in vitro and general translation in vivo, while it modulates the translation of specific mRNAs related to light and carbohydrate response. These data suggest that CERES is a non-canonical translation initiation factor that modulates translation in plants.
Collapse
Affiliation(s)
- René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Cordova, Spain
| | - Ana B Castro-Sanz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Catharina Merchante
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga- Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Málaga, Spain
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| |
Collapse
|
343
|
Shen K, Rogala KB, Chou HT, Huang RK, Yu Z, Sabatini DM. Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex. Cell 2019; 179:1319-1329.e8. [PMID: 31704029 PMCID: PMC7008705 DOI: 10.1016/j.cell.2019.10.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
mTORC1 controls anabolic and catabolic processes in response to nutrients through the Rag GTPase heterodimer, which is regulated by multiple upstream protein complexes. One such regulator, FLCN-FNIP2, is a GTPase activating protein (GAP) for RagC/D, but despite its important role, how it activates the Rag GTPase heterodimer remains unknown. We used cryo-EM to determine the structure of FLCN-FNIP2 in a complex with the Rag GTPases and Ragulator. FLCN-FNIP2 adopts an extended conformation with two pairs of heterodimerized domains. The Longin domains heterodimerize and contact both nucleotide binding domains of the Rag heterodimer, while the DENN domains interact at the distal end of the structure. Biochemical analyses reveal a conserved arginine on FLCN as the catalytic arginine finger and lead us to interpret our structure as an on-pathway intermediate. These data reveal features of a GAP-GTPase interaction and the structure of a critical component of the nutrient-sensing mTORC1 pathway.
Collapse
Affiliation(s)
- Kuang Shen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA; Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, 01605, USA
| | - Kacper B Rogala
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Hui-Ting Chou
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Rick K Huang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
344
|
Layoun A, Goldberg AA, Baig A, Eng M, Attias O, Nelson K, Carella A, Amberber N, Fielhaber JA, Joung KB, Schmeing TM, Han Y, Downey J, Divangahi M, Roux PP, Kristof AS. Regulation of protein kinase Cδ Nuclear Import and Apoptosis by Mechanistic Target of Rapamycin Complex-1. Sci Rep 2019; 9:17620. [PMID: 31772273 PMCID: PMC6879585 DOI: 10.1038/s41598-019-53909-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Inactivation of the protein complex ‘mechanistic target of rapamycin complex 1’ (mTORC1) can increase the nuclear content of transcriptional regulators of metabolism and apoptosis. Previous studies established that nuclear import of signal transducer and activator of transcription-1 (STAT1) requires the mTORC1-associated adaptor karyopherin-α1 (KPNA1) when mTORC1 activity is reduced. However, the role of other mTORC1-interacting proteins in the complex, including ‘protein kinase C delta’ (PKCδ), have not been well characterized. In this study, we demonstrate that PKCδ, a STAT1 kinase, contains a functional ‘target of rapamycin signaling’ (TOS) motif that directs its interaction with mTORC1. Depletion of KPNA1 by RNAi prevented the nuclear import of PKCδ in cells exposed to the mTORC1 inhibitor rapamycin or amino acid restriction. Mutation of the TOS motif in PKCδ led to its loss of regulation by mTORC1 or karyopherin-α1, resulting in increased constitutive nuclear content. In cells expressing wild-type PKCδ, STAT1 activity and apoptosis were increased by rapamycin or interferon-β. Those expressing the PKCδ TOS mutant exhibited increased STAT1 activity and apoptosis; further enhancement by rapamycin or interferon-β, however, was lost. Therefore, the TOS motif in PKCδ is a novel structural mechanism by which mTORC1 prevents PKCδ and STAT1 nuclear import, and apoptosis.
Collapse
Affiliation(s)
- Antonio Layoun
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Alexander A Goldberg
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Ayesha Baig
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Mikaela Eng
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Ortal Attias
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Kristoff Nelson
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Alexandra Carella
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Nahomi Amberber
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Jill A Fielhaber
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Kwang-Bo Joung
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, Québec, H3G 0B1, Canada
| | - Yingshan Han
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Jeffrey Downey
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, EM3.2219, Montréal, Québec, H4A 3J1, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, EM3.2219, Montréal, Québec, H4A 3J1, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Faculty of Medicine, University of Montreal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec, H3C 2J7, Canada
| | - Arnold S Kristof
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada.
| |
Collapse
|
345
|
Yaguchi M, Ikeya S, Kozaki A. The activation mechanism of plant S6 kinase (S6K), a substrate of TOR kinase, is different from that of mammalian S6K. FEBS Lett 2019; 594:776-787. [PMID: 31705659 DOI: 10.1002/1873-3468.13661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/06/2022]
Abstract
The S6 kinases (S6Ks) are known to be activated by the target of rapamycin through phosphorylation of their hydrophobic motif (HM). However, our previous research showed that the HM site of plant S6Ks is not phosphorylated and is not essential for their activity in yeast cells lacking Ypk3, an ortholog of mammalian S6K. Here, we demonstrate that the HM site of mammalian S6Ks is phosphorylated and is indispensable for their activity in yeast ypk3∆ cells. Furthermore, pseudo-phosphorylation at the HM site of plant S6Ks results in regaining of activity that is lost due to mutation in the conserved phosphorylation sites, namely the T-loop and Turn motif. These results indicate the activation mechanism of plant S6Ks is different from that of mammals.
Collapse
Affiliation(s)
| | - Shun Ikeya
- Department of Biology, Shizuoka University, Japan
| | - Akiko Kozaki
- Department of Biology, Shizuoka University, Japan
| |
Collapse
|
346
|
tRNA wobble-uridine modifications as amino acid sensors and regulators of cellular metabolic state. Curr Genet 2019; 66:475-480. [PMID: 31758251 DOI: 10.1007/s00294-019-01045-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Cells must appropriately sense available nutrients and accordingly regulate their metabolic outputs, to survive. This mini-review considers the idea that conserved chemical modifications of wobble (U34) position tRNA uridines enable cells to sense nutrients and regulate their metabolic state. tRNA wobble uridines are chemically modified at the 2- and 5- positions, with a thiol (s2), and (commonly) a methoxycarbonylmethyl (mcm5) modification, respectively. These modifications reflect sulfur amino acid (methionine and cysteine) availability. The loss of these modifications has minor translation defects. However, they result in striking phenotypes consistent with an altered metabolic state. Using yeast, we recently discovered that the s2 modification regulates overall carbon and nitrogen metabolism, dependent on methionine availability. The loss of this modification results in rewired carbon (glucose) metabolism. Cells have reduced carbon flux towards the pentose phosphate pathway and instead increased flux towards storage carbohydrates-primarily trehalose, along with reduced nucleotide synthesis, and perceived amino acid starvation signatures. Remarkably, this metabolic rewiring in the s2U mutants is caused by mechanisms leading to intracellular phosphate limitation. Thus this U34 tRNA modification responds to methionine availability and integratively regulates carbon and nitrogen homeostasis, wiring cells to a 'growth' state. We interpret the importance of U34 modifications in the context of metabolic sensing and anabolism, emphasizing their intimate coupling to methionine metabolism.
Collapse
|
347
|
Concurrent activation of growth factor and nutrient arms of mTORC1 induces oxidative liver injury. Cell Discov 2019; 5:60. [PMID: 31754457 PMCID: PMC6868011 DOI: 10.1038/s41421-019-0131-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023] Open
Abstract
mTORC1 is a protein kinase important for metabolism and is regulated by growth factor and nutrient signaling pathways, mediated by the Rheb and Rag GTPases, respectively. Here we provide the first animal model in which both pathways were upregulated through concurrent mutations in their GTPase-activating proteins, Tsc1 and Depdc5. Unlike former models that induced limited mTORC1 upregulation, hepatic deletion of both Tsc1 and Depdc5 (DKO) produced strong, synergistic activation of the mTORC1 pathway and provoked pronounced and widespread hepatocyte damage, leading to externally visible liver failure phenotypes, such as jaundice and systemic growth defects. The transcriptome profile of DKO was different from single knockout mutants but similar to those of diseased human livers with severe hepatitis and mouse livers challenged with oxidative stress-inducing chemicals. In addition, DKO liver cells exhibited prominent molecular pathologies associated with excessive endoplasmic reticulum (ER) stress, oxidative stress, DNA damage and inflammation. Although DKO liver pathologies were ameliorated by mTORC1 inhibition, ER stress suppression unexpectedly aggravated them, suggesting that ER stress signaling is not the major conduit of how hyperactive mTORC1 produces liver damage. Interestingly, superoxide scavengers N-acetylcysteine (NAC) and Tempol, chemicals that reduce oxidative stress, were able to recover liver phenotypes, indicating that mTORC1 hyperactivation induced liver damage mainly through oxidative stress pathways. Our study provides a new model of unregulated mTORC1 activation through concomitant upregulation of growth factor and nutrient signaling axes and shows that mTORC1 hyperactivation alone can provoke oxidative tissue injury.
Collapse
|
348
|
Afroz S, Shama, Battu S, Matin S, Solouki S, Elmore JP, Minhas G, Huang W, August A, Khan N. Amino acid starvation enhances vaccine efficacy by augmenting neutralizing antibody production. Sci Signal 2019; 12:12/607/eaav4717. [PMID: 31719173 DOI: 10.1126/scisignal.aav4717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specific reduction in the intake of proteins or amino acids (AAs) offers enormous health benefits, including increased life span, protection against age-associated disorders, and improved metabolic fitness and immunity. Cells respond to conditions of AA starvation by activating the amino acid starvation response (AAR). Here, we showed that mimicking AAR with halofuginone (HF) enhanced the magnitude and affinity of neutralizing, antigen-specific antibody responses in mice immunized with dengue virus envelope domain III protein (DENVrEDIII), a potent vaccine candidate against DENV. HF enhanced the formation of germinal centers (GCs) and increased the production of the cytokine IL-10 in the secondary lymphoid organs of vaccinated mice. Furthermore, HF promoted the transcription of genes associated with memory B cell formation and maintenance and maturation of GCs in the draining lymph nodes of vaccinated mice. The increased abundance of IL-10 in HF-preconditioned mice correlated with enhanced GC responses and may promote the establishment of long-lived plasma cells that secrete antigen-specific, high-affinity antibodies. Thus, these data suggest that mimetics of AA starvation could provide an alternative strategy to augment the efficacy of vaccines against dengue and other infectious diseases.
Collapse
Affiliation(s)
- Sumbul Afroz
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Shama
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Srikanth Battu
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Shaikh Matin
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Sabrina Solouki
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jessica P Elmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gillipsie Minhas
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Nooruddin Khan
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India.
| |
Collapse
|
349
|
MacVicar T, Ohba Y, Nolte H, Mayer FC, Tatsuta T, Sprenger HG, Lindner B, Zhao Y, Li J, Bruns C, Krüger M, Habich M, Riemer J, Schwarzer R, Pasparakis M, Henschke S, Brüning JC, Zamboni N, Langer T. Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature 2019; 575:361-365. [PMID: 31695197 DOI: 10.1038/s41586-019-1738-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/19/2019] [Indexed: 01/18/2023]
Abstract
Reprogramming of mitochondria provides cells with the metabolic flexibility required to adapt to various developmental transitions such as stem cell activation or immune cell reprogramming, and to respond to environmental challenges such as those encountered under hypoxic conditions or during tumorigenesis1-3. Here we show that the i-AAA protease YME1L rewires the proteome of pre-existing mitochondria in response to hypoxia or nutrient starvation. Inhibition of mTORC1 induces a lipid signalling cascade via the phosphatidic acid phosphatase LIPIN1, which decreases phosphatidylethanolamine levels in mitochondrial membranes and promotes proteolysis. YME1L degrades mitochondrial protein translocases, lipid transfer proteins and metabolic enzymes to acutely limit mitochondrial biogenesis and support cell growth. YME1L-mediated mitochondrial reshaping supports the growth of pancreatic ductal adenocarcinoma (PDAC) cells as spheroids or xenografts. Similar changes to the mitochondrial proteome occur in the tumour tissues of patients with PDAC, suggesting that YME1L is relevant to the pathophysiology of these tumours. Our results identify the mTORC1-LIPIN1-YME1L axis as a post-translational regulator of mitochondrial proteostasis at the interface between metabolism and mitochondrial dynamics.
Collapse
Affiliation(s)
- Thomas MacVicar
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Yohsuke Ohba
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Hendrik Nolte
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Takashi Tatsuta
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Hans-Georg Sprenger
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Barbara Lindner
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jiahui Li
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Robin Schwarzer
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Manolis Pasparakis
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Sinika Henschke
- Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Max-Planck-Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
| | - Nicola Zamboni
- Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Thomas Langer
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany. .,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Center for Molecular Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
350
|
Upadhyaya S, Rao BJ. Reciprocal regulation of photosynthesis and mitochondrial respiration by TOR kinase in Chlamydomonas reinhardtii. PLANT DIRECT 2019; 3:e00184. [PMID: 31832599 PMCID: PMC6854518 DOI: 10.1002/pld3.184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 05/03/2023]
Abstract
While the role of TOR kinase in the chloroplast biogenesis and transcriptional regulation of photosynthesis is well documented in Arabidopsis, the functional relevance of this metabolic sensor kinase in chloroplast-mitochondria cross talk is unknown. Using Chlamydomonas reinhardtii as the model system, we demonstrate the role of TOR kinase in the regulation of chloroplast and mitochondrial functions: We show that TOR kinase inhibition impairs the maintenance of high ETR associated with PSII and low NPQ and inhibits efficient state transitions between PSII and PSI. While compromised photosynthetic functions are observed in TOR kinase inhibited cells, same conditions lead to augmentation in mitochondrial basal respiration rate by twofold and concomitantly a rise in ATP production. Interestingly, such upregulated mitochondrial functions in TOR-inhibited cells are mediated by fragmented mitochondria via upregulating COXIIb and downregulating Hxk1 and AOX1 protein levels. We propose that TOR kinase may act as a sensor that counter-regulates chloroplast versus mitochondrial functions in a normal C. reinhardtii cell.
Collapse
Affiliation(s)
- Shivani Upadhyaya
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
| | - Basuthkar Jagadeeshwar Rao
- Indian Institute of Science Education and Research (IISER) TirupatiTransit Campus: Sree Rama Engineering CollegeTirupatiIndia
| |
Collapse
|