3551
|
Nishiya N, Kiosses WB, Han J, Ginsberg MH. An α4 integrin–paxillin–Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nat Cell Biol 2005; 7:343-52. [PMID: 15793570 DOI: 10.1038/ncb1234] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 02/25/2005] [Indexed: 12/14/2022]
Abstract
Formation of a stable lamellipodium at the front of migrating cells requires localization of Rac activation to the leading edge. Restriction of alpha4 integrin phosphorylation to the leading edge limits the interaction of alpha4 with paxillin to the sides and rear of a migrating cell. The alpha4-paxillin complex inhibits stable lamellipodia, thus confining lamellipod formation to the cell anterior. Here we report that binding of paxillin to the alpha4 integrin subunit inhibits adhesion-dependent lamellipodium formation by blocking Rac activation. The paxillin LD4 domain mediates this reduction in Rac activity by recruiting an ADP-ribosylation factor GTPase-activating protein (Arf-GAP) that decreases Arf activity, thereby inhibiting Rac. Finally, the localized formation of the alpha4-paxillin-Arf-GAP complex mediates the polarization of Rac activity and promotes directional cell migration. These findings establish a mechanism for the spatial localization of Rac activity to enhance cell migration.
Collapse
Affiliation(s)
- Naoyuki Nishiya
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0726, USA
| | | | | | | |
Collapse
|
3552
|
Arrieumerlou C, Meyer T. A local coupling model and compass parameter for eukaryotic chemotaxis. Dev Cell 2005; 8:215-27. [PMID: 15691763 DOI: 10.1016/j.devcel.2004.12.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 10/01/2004] [Accepted: 12/09/2004] [Indexed: 02/02/2023]
Abstract
Chemotaxis is a cellular sensing mechanism that guides immune cells to sites of infection and leads fibroblasts to sites of injury. Here, we show in migrating primary dendritic cells and fibroblasts that the leading edge is not a uniform signaling entity, but instead consists of independent coupling units in which transient activation of PI3-kinase links to local lamellipod extension and small discrete turns in the direction of migration. These findings led to a model in which global cell polarization is independent from the chemotaxis mechanism. In this model, chemotaxis does not require spatial integration but is instead a stochastic process in which each receptor binding event within the leading edge triggers a local lamellipod extension and a small turn in the direction of migration. We show that this model and a derived "compass parameter" are sufficient to simulate the observed random migration, biased random walk, and persistent chemotactic behaviors of eukaryotic cells.
Collapse
Affiliation(s)
- Cécile Arrieumerlou
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
3553
|
Windler-Hart SL, Chen KY, Chenn A. A cell behavior screen: identification, sorting, and enrichment of cells based on motility. BMC Cell Biol 2005; 6:14. [PMID: 15784137 PMCID: PMC1079802 DOI: 10.1186/1471-2121-6-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 03/22/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying and isolating cells with specific behavioral characteristics will facilitate the understanding of the molecular basis regulating these behaviors. Although many approaches exist to characterize cell motility, retrieving cells of specific motility following analysis remains challenging. RESULTS Cells migrating on substrates coated with fluorescent microspheres generate non-fluorescent tracks as they move and ingest the spheres. The area cleared by each cell allows for quantitation of single cell and population motility; because individual cell fluorescence is proportional to motility, cells can be sorted according to their degree of movement. Using this approach, we sorted a glioblastoma cell line into high motility and low motility populations and found stable differences in motility following sorting. CONCLUSION We describe an approach to identify, sort, and enrich populations of cells possessing specific levels of motility. Unlike existing assays of cell motility, this approach enables recovery of characterized cell populations, and can enable screens to identify factors that might regulate motility differences even within clonal population of cells.
Collapse
Affiliation(s)
- Sarah L Windler-Hart
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kwan Y Chen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anjen Chenn
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3554
|
Ly DP, Corbett SA. The integrin alpha5beta1 regulates alphavbeta3-mediated extracellular signal-regulated kinase activation. J Surg Res 2005; 123:200-5. [PMID: 15680379 DOI: 10.1016/j.jss.2004.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND Integrin-mediated cell migration is essential for wound repair. Previous studies have shown that the interaction between integrins and the extracellular matrix (ECM) can initiate intracellular signaling pathways to regulate cell movement. Both the focal adhesion kinase (FAK) and the extracellular signal-regulated kinase/activated mitogen-activated protein kinase (ERK/MAPK) signaling pathways are required for efficient cell migration. Our previous work has shown that co-expression of the integrin alpha5beta1 inhibits alphavbeta3-mediated cell migration. We hypothesized that alpha5beta1 may regulate cell migration by modulating these alphavbeta3-mediated intracellular signaling events. METHODS CHO B3 (alphavbeta3+) and B3C5 (alphavbeta3+/alpha5beta1+) cells were monitored by flow cytometry to determine integrin expression. Cells were allowed to migrate on fibrinogen (FBG)-coated transwells, with or without PD98059, an inhibitor of the ERK activator, mitogen-activated protein kinase kinase (MEK). Fixation, staining, and cell counting were used to quantify cell migration. Cells adherent to FBG were lysed and analyzed for FAK and ERK/MAPK activation by immunoblotting followed by image analysis densitometry. All experiments were repeated in triplicate. RESULTS Treatment with PD98059 significantly decreased alphavbeta3-mediated cell migration on FBG (P = 0.0001) to a level comparable to untreated B3C5 cells. Following adhesion to FBG, B3 cells demonstrated a marked increase in ERK/MAPK activation compared to B3C5 cells. However, no significant difference was detected in FAK activation. CONCLUSION Signaling through the ERK/MAPK pathway is required for efficient alphavbeta3-mediated migration on FBG. Inhibition of alphavbeta3-mediated migration by the integrin alpha5beta1 correlates with altered intensity and duration of ERK/MAPK activation, but not FAK activation, in response to adhesion. This suggests a mechanism for the regulatory effect of alpha5beta1 on alphavbeta3-mediated cell migration.
Collapse
Affiliation(s)
- Daphne P Ly
- Department of Surgery, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | | |
Collapse
|
3555
|
Elliott BE, Meens JA, SenGupta SK, Louvard D, Arpin M. The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells. Breast Cancer Res 2005; 7:R365-73. [PMID: 15987432 PMCID: PMC1143558 DOI: 10.1186/bcr1006] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 01/14/2005] [Accepted: 01/31/2005] [Indexed: 01/05/2023] Open
Abstract
Introduction The membrane cytoskeletal crosslinker ezrin participates in several functions including cell adhesion, motility and cell survival, and there is increasing evidence that it regulates tumour progression. However, the role played by ezrin in breast cancer metastasis has not been clearly delineated. Methods We examined the role of ezrin in metastasis using a highly metastatic murine mammary carcinoma cell line, namely AC2M2. Stable cell clones that overexpress wild-type ezrin or a dominant-negative amino-terminal domain of ezrin were selected. They were then tested for cell motility and invasion in vitro, and metastasis in a mouse in vivo tumour transplantation model. Results Parental AC2M2 cells and cells overexpressing wild-type ezrin were transplanted into the mammary fat pad of syngeneic recipient mice; these animals subsequently developed lung metastases. In contrast, expression of the dominant-negative amino-terminal ezrin domain markedly inhibited lung metastasis. Consistent with this effect, we observed that the expression of amino-terminal ezrin caused strong membrane localization of cadherin, with increased cell–cell contact and a decrease in cell motility and invasion, whereas cells expressing wild-type ezrin exhibited strong cytoplasmic expression of cadherins and pseudopodia extensions. In addition, inhibitors of phosphatidylinositol 3-kinase and c-Src significantly blocked cell motility and invasion of AC2M2 cells expressing wild-type ezrin. We further found that overexpression of amino-terminal ezrin reduced levels of Akt pS473 and cytoskeletal-associated c-Src pY418 in AC2M2 cells, which contrasts with the high levels of phosphorylation of these proteins in cells expressing wild-type ezrin. Phosphorylated Erk1/2 was also reduced in amino-terminal ezrin expressing cells, although a mitogen-activated protein kinase kinase (MEK) inhibitor had no detectable effect on cell motility or invasion in this system. Conclusion Our findings indicate that ezrin is required for breast cancer metastasis, and that c-Src and phosphatidylinositol 3-kinase/Akt are effectors of ezrin in the cell motility and invasion stages of the metastatic process. Together, these results suggest that blocking ezrin function may represent a novel and effective strategy for preventing breast cancer metastasis.
Collapse
Affiliation(s)
- Bruce E Elliott
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Jalna A Meens
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Sandip K SenGupta
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Daniel Louvard
- Laboratory of Morphogenesis and Cell Signalling, UMR144 CNRS-Institut Curie, Paris, France
| | - Monique Arpin
- Laboratory of Morphogenesis and Cell Signalling, UMR144 CNRS-Institut Curie, Paris, France
| |
Collapse
|
3556
|
Benzinger A, Muster N, Koch HB, Yates JR, Hermeking H. Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer. Mol Cell Proteomics 2005; 4:785-95. [PMID: 15778465 DOI: 10.1074/mcp.m500021-mcp200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To comprehensively identify proteins interacting with 14-3-3 sigma in vivo, tandem affinity purification and the multidimensional protein identification technology were combined to characterize 117 proteins associated with 14-3-3 sigma in human cells. The majority of identified proteins contained one or several phosphorylatable 14-3-3-binding sites indicating a potential direct interaction with 14-3-3 sigma. 25 proteins were not previously assigned to any function and were named SIP2-26 (for 14-3-3 sigma-interacting protein). Among the 92 interactors with known function were a number of proteins previously implicated in oncogenic signaling (APC, A-RAF, B-RAF, and c-RAF) and cell cycle regulation (AJUBA, c-TAK, PTOV-1, and WEE1). The largest functional classes comprised proteins involved in the regulation of cytoskeletal dynamics, polarity, adhesion, mitogenic signaling, and motility. Accordingly ectopic 14-3-3 sigma expression prevented cellular migration in a wounding assay and enhanced mitogen-activated protein kinase signaling. The functional diversity of the identified proteins indicates that induction of 14-3-3 sigma could allow p53 to affect numerous processes in addition to the previously characterized inhibitory effect on G2/M progression. The data suggest that the cancer-specific loss of 14-3-3 sigma expression by epigenetic silencing or p53 mutations contributes to cancer formation by multiple routes.
Collapse
Affiliation(s)
- Anne Benzinger
- Molecular Oncology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried/Munich, Germany
| | | | | | | | | |
Collapse
|
3557
|
Zhou H, Kramer RH. Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J Biol Chem 2005; 280:10624-35. [PMID: 15611088 DOI: 10.1074/jbc.m411900200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
3558
|
Puri KD, Doggett TA, Huang CY, Douangpanya J, Hayflick JS, Turner M, Penninger J, Diacovo TG. The role of endothelial PI3Kgamma activity in neutrophil trafficking. Blood 2005; 106:150-7. [PMID: 15769890 PMCID: PMC1895128 DOI: 10.1182/blood-2005-01-0023] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositide 3-kinase gamma (PI3Kgamma) in neutrophils plays a critical role in the directed migration of these cells into inflamed tissues. In this study, we demonstrate the importance of the endothelial component of PI3Kgamma activity relative to its leukocyte counterpart in supporting neutrophil interactions with the inflamed vessel wall. Despite the reconstitution of class-Ib PI3K function in neutrophils of p110gamma-/- mice, we observed a 45% reduction in accumulation of these cells in an acute lung injury model. Mechanistically, this appears to result from a perturbation in selectin-mediated adhesion as manifested by a 70% reduction in wild-type (WT) neutrophil attachment to and 17-fold increase in rolling velocities on p110gamma-/- microvessels in vivo in response to tumor necrosis factor alpha (TNFalpha). This alteration in adhesion was further augmented by a deficiency in p110delta, suggesting that the activity of both catalytic subunits is required for efficient capture of neutrophils by cytokine-stimulated endothelium. Interestingly, E-selectin-mediated adhesion in p110gamma-/-) mice was impaired by more than 95%, but no defect in nuclear factor kappa B (NF-kappaB)-induced gene expression was observed. These findings suggest a previously unrecognized partnership between class-I PI3Ks expressed in leukocytes and endothelium, the combination of which is required for the efficient trafficking of immunocompetent cells to sites of inflammation.
Collapse
|
3559
|
Yamauchi J, Chan JR, Miyamoto Y, Tsujimoto G, Shooter EM. The neurotrophin-3 receptor TrkC directly phosphorylates and activates the nucleotide exchange factor Dbs to enhance Schwann cell migration. Proc Natl Acad Sci U S A 2005; 102:5198-203. [PMID: 15758069 PMCID: PMC556009 DOI: 10.1073/pnas.0501160102] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During the development of the peripheral nervous system, Schwann cells, the myelin-forming glia, migrate along axons before initiating myelination. We previously demonstrated that endogenous neurotrophin-3 (NT3) acting through the TrkC tyrosine kinase receptor enhances migration of premyelinating Schwann cells. This signaling pathway is mediated by the c-Jun N-terminal kinase (JNK) cascade regulated by the Rho GTPases Rac1 and Cdc42. However, missing is the link between TrkC and the GTPases. Here, we show that a guanine-nucleotide exchange factor (GEF), Dbl's big sister (Dbs), couples with TrkC to activate Cdc42 in Schwann cells. Furthermore, TrkC directly phosphorylates Dbs, thereby inducing the Cdc42-GEF activity. Taken together, activation of TrkC triggers Schwann cell migration by regulating Dbs upon direct tyrosine phosphorylation, providing a mechanism whereby a membrane receptor tyrosine kinase can induce the activation of Rho GTPase-GEFs.
Collapse
Affiliation(s)
- Junji Yamauchi
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
3560
|
Ehrenreiter K, Piazzolla D, Velamoor V, Sobczak I, Small JV, Takeda J, Leung T, Baccarini M. Raf-1 regulates Rho signaling and cell migration. ACTA ACUST UNITED AC 2005; 168:955-64. [PMID: 15753127 PMCID: PMC2171799 DOI: 10.1083/jcb.200409162] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Raf kinases relay signals inducing proliferation, differentiation, and survival. The Raf-1 isoform has been extensively studied as the upstream kinase linking Ras activation to the MEK/ERK module. Recently, however, genetic experiments have shown that Raf-1 plays an essential role in counteracting apoptosis, and that it does so independently of its ability to activate MEK. By conditional gene ablation, we now show that Raf-1 is required for normal wound healing in vivo and for the migration of keratinocytes and fibroblasts in vitro. Raf-1-deficient cells show a symmetric, contracted appearance, characterized by cortical actin bundles and by a disordered vimentin cytoskeleton. These defects are due to the hyperactivity and incorrect localization of the Rho-effector Rok-alpha to the plasma membrane. Raf-1 physically associates with Rok-alpha in wild-type (WT) cells, and reintroduction of either WT or kinase-dead Raf-1 in knockout fibroblasts rescues their defects in shape and migration. Thus, Raf-1 plays an essential, kinase-independent function as a spatial regulator of Rho downstream signaling during migration.
Collapse
Affiliation(s)
- Karin Ehrenreiter
- Department of Microbiology and Genetics, Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, 1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
3561
|
Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 2005; 6:56-68. [PMID: 15688067 DOI: 10.1038/nrm1549] [Citation(s) in RCA: 1964] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A central question in cell biology is how membrane-spanning receptors transmit extracellular signals inside cells to modulate cell adhesion and motility. Focal adhesion kinase (FAK) is a crucial signalling component that is activated by numerous stimuli and functions as a biosensor or integrator to control cell motility. Through multifaceted and diverse molecular connections, FAK can influence the cytoskeleton, structures of cell adhesion sites and membrane protrusions to regulate cell movement.
Collapse
Affiliation(s)
- Satyajit K Mitra
- The Scripps Research Institute, Department of Immunology, IMM21 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
3562
|
Liu Y, Yerushalmi GM, Grigera PR, Parsons JT. Mislocalization or Reduced Expression of Arf GTPase-activating Protein ASAP1 Inhibits Cell Spreading and Migration by Influencing Arf1 GTPase Cycling. J Biol Chem 2005; 280:8884-92. [PMID: 15632162 DOI: 10.1074/jbc.m412200200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP-ribosylation factor (Arf) family of small GTP-binding proteins plays a central role in membrane trafficking and cytoskeletal remodeling. ASAP1 (Arf-GAP containing SH3, ankyrin repeats, and PH domain) is a phospholipid-dependent Arf GTPase-activating protein (Arf-GAP) that binds to protein-tyrosine kinases Src and focal adhesion kinase. Using affinity chromatography and mass spectrometry (MS), we identified the adaptor protein CD2-associated protein (CD2AP) as a candidate binding partner of ASAP1. Both co-immunoprecipitation and GST pull-down experiments confirmed that CD2AP stably interacts with ASAP1 through its N-terminal SH3 domains. Using a mislocalization strategy, we show that sequestration of endogenous ASAP1 to mitochondria with a CD2AP SH3-mito fusion protein (the three N-terminal SH3 domains of CD2AP fused to Listeria monocytogenes ActA mitochondria-targeting sequence) inhibited REF52 cell spreading and migration in response to fibronectin stimulation. Using an alternative strategy we show that suppressing ASAP1 expression with small interfering RNA duplexes also significantly retarded cell spreading and inhibited cell migration. Furthermore, abrogation of ASAP1 function using either small interfering RNAs or mislocalization approaches caused an increase of GTP loading on Arf1 and loss of paxillin from adhesions. These results taken together with our previous observations that overexpression of ASAP1 inhibits cell spreading and alters paxillin localization to adhesions (Liu, Y., Loijens, J. C., Martin, K. H., Karginov, A. V., and Parsons, J. T. (2002) Mol. Biol. Cell. 13, 2147-2156) suggest that the recruitment of certain adhesion components such as paxillin requires dynamic GTP/GDP turnover of Arf1 GTPase.
Collapse
Affiliation(s)
- Yunhao Liu
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
3563
|
|
3564
|
Beckner ME, Chen X, An J, Day BW, Pollack IF. Proteomic characterization of harvested pseudopodia with differential gel electrophoresis and specific antibodies. J Transl Med 2005; 85:316-27. [PMID: 15654357 DOI: 10.1038/labinvest.3700239] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Malignant gliomas (astrocytomas) are lethal tumors that invade the brain. Invasive cell migration is initiated by extension of pseudopodia into interstitial spaces. In this study, U87 glioma cells formed pseudopodia in vitro as cells pushed through 3 microm pores of polycarbonate membranes. Harvesting pseudopodia in a novel two-step method provided material for proteomic analysis. Differences in the protein profiles of pseudopodia and whole cells were found using differential gel electrophoresis (DIGE) and immunoblotting. Proteins from two-dimensional (2D) gels with M(R)'s of 20-100 kDa and pI's of 3.0-10.0 were identified by peptide mass fingerprinting analysis using mass spectrometry. For DIGE, lysates of pseudopodia and whole cells were each labeled with electrophilic forms of fluorescent dyes, Cy3 or Cy5, and analyzed as mixtures. Analysis was repeated with reciprocal labeling. Differences in protein distributions were detected by manual inspection and computer analysis. Topographical digital maps of the scanned gels were used for algorithmic spot matching, normalization of background, quantifying spot differences, and elimination of artifacts. Pseudopodial proteins in Coomassie-stained 2D gels included isoforms of glycolytic enzymes as the largest group, seven of 24 proteins. Peptide mass fingerprint analysis of DIGE gels demonstrated increased isoforms of annexin (Anx) I, AnxII, enolase, pyruvate kinase, and aldolase, and decreased mitochondrial manganese superoxide dismutase and transketolase in pseudopodia. Specific antibodies showed restricted immunoreactivity of the hepatocyte growth factor (HGF) alpha chain to pseudopodia, indicating localization of its active form. Met (the HGF receptor), actin, and total AnxI were increased in pseudopodial lysates on immunoblots. Increased constituents of the pseudopodial proteome in glioma cells, identified in this study as actin, HGF, Met, and isoforms of AnxI, AnxII, and several glycolytic enzymes, represent therapeutic targets to consider for suppression of tumor invasion.
Collapse
Affiliation(s)
- Marie E Beckner
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
3565
|
Abstract
Directional cell migration requires proper cell polarization. The redistribution of the Golgi apparatus is an important event in the polarization and migration of many types of cells, as a polarized Golgi supplies membrane components for leading edge protrusion. Direct current electric fields induce directional cell migration in a wide variety of cells. Here we show that electric fields of 300 mV/mm induce robust Golgi polarization and directional cell migration in CHO cells. Asymmetric Src and PI 3-kinase signalling as well as actin polymerization are essential for electric field-induced Golgi polarization and directional cell migration. The Golgi polarizes at the same time as cells change morphology and migrate directionally in response to an electric field. Golgi polarization in turn significantly reinforces and maintains optimal electrotaxis. It is not known whether electrical signals, when contradicting other directional cues, are still able to polarize cells and direct cell migration. Most strikingly, Golgi polarization and cell migration simply follow the direction of an applied electric field and ignore all other cues generated by wounding a monolayer of CHO cells. Thus, an electric field of 300 mV/mm is the predominant cue to polarize the Golgi and direct cell migration mediated by PI 3-kinase and Src signalling.
Collapse
Affiliation(s)
| | - Min Zhao
- *Author for correspondence (e-mail:
)
| |
Collapse
|
3566
|
Shan D, Chen L, Njardarson JT, Gaul C, Ma X, Danishefsky SJ, Huang XY. Synthetic analogues of migrastatin that inhibit mammary tumor metastasis in mice. Proc Natl Acad Sci U S A 2005; 102:3772-6. [PMID: 15728385 PMCID: PMC553334 DOI: 10.1073/pnas.0500658102] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tumor metastasis is the most common cause of death in cancer patients. Here, we show that two, fully synthetic migrastatin analogues, core macroketone and core macrolactam, are potent inhibitors of metastasis in a murine breast tumor model. Administration of these readily accessible compounds nearly completely inhibits lung metastasis of highly metastatic mammary carcinoma cells. Treatment of tumor cells with core macroketone and core macrolactam blocks Rac activation, lamellipodia formation, and cell migration, suggesting that these chemical compounds interfere with the invasion step of the metastatic process. These compounds also inhibit the migration of human metastatic breast cancer cells, prostate cancer cells, and colon cancer cells but not normal mammary-gland epithelial cells, fibroblasts, and leukocytes. These data demonstrate that the macroketone and macrolactam core structures are specific small-molecule inhibitors of tumor metastasis. These compounds or their analogues could potentially be used in cancer-therapy strategies.
Collapse
Affiliation(s)
- Dandan Shan
- Department of Physiology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
3567
|
Gojova A, Barakat AI. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol (1985) 2005; 98:2355-62. [PMID: 15705727 DOI: 10.1152/japplphysiol.01136.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Recent work suggests that fluid dynamic shear stress regulates endothelial cell (EC) wound closure. Changes in membrane fluidity and activation of flow-sensitive ion channels are among the most rapid endothelial responses to flow and are thought to play an important role in EC responsiveness to shear stress. The goal of the present study was to probe the role of these responses in bovine aortic EC (BAEC) wound closure under shear stress. BAEC monolayers were mechanically wounded and subsequently subjected to either "high" (19 dyn/cm(2)) or "low" (3 dyn/cm(2)) levels of steady shear stress. Image analysis was used to quantify cell migration and spreading under both flow and static control conditions. Our results demonstrate that, under static conditions, BAECs along both wound edges migrate at similar velocities to cover the wounded area. Low shear stress leads to significantly lower BAEC migration velocities, whereas high shear stress results in cells along the upstream edge of the wound migrating significantly more rapidly than those downstream. The data also show that reducing BAEC membrane fluidity by enriching the cell membrane with exogenous cholesterol significantly slows down both cell spreading and migration under flow and hence retards wound closure. Blocking flow-sensitive K and Cl channels reduces cell spreading under flow but has no impact on cell migration. These findings provide evidence that membrane fluidity and flow-sensitive ion channels play distinct roles in regulating EC wound closure under flow.
Collapse
Affiliation(s)
- Andrea Gojova
- Dept. of Mechanical and Aeronautical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
3568
|
Corbin JA, Dirkx RA, Falke JJ. GRP1 pleckstrin homology domain: activation parameters and novel search mechanism for rare target lipid. Biochemistry 2005; 43:16161-73. [PMID: 15610010 PMCID: PMC3625374 DOI: 10.1021/bi049017a] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pleckstrin homology (PH) domains play a central role in a wide array of signaling pathways by binding second messenger lipids of the phosphatidylinositol phosphate (PIP) lipid family. A given type of PIP lipid is formed in a specific cellular membrane where it is generally a minor component of the bulk lipid mixture. For example, the signaling lipid PI(3,4,5)P(3) (or PIP(3)) is generated primarily in the inner leaflet of the plasma membrane where it is believed to never exceed 0.02% of the bulk lipid. The present study focuses on the PH domain of the general receptor for phosphoinositides, isoform 1 (GRP1), which regulates the actin cytoskeleton in response to PIP(3) signals at the plasma membrane surface. The study systematically analyzes both the equilibrium and kinetic features of GRP1-PH domain binding to its PIP lipid target on a bilayer surface. Equilibrium binding measurements utilizing protein-to-membrane fluorescence resonance energy transfer (FRET) to detect GRP1-PH domain docking to membrane-bound PIP lipids confirm specific binding to PIP(3). A novel FRET competitive binding measurement developed to quantitate docking affinity yields a K(D) of 50 +/- 10 nM for GRP1-PH domain binding to membrane-bound PIP(3) in a physiological lipid mixture approximating the composition of the plasma membrane inner leaflet. This observed K(D) lies in a suitable range for regulation by physiological PIP(3) signals. Interestingly, the affinity of the interaction decreases at least 12-fold when the background anionic lipids phosphatidylserine (PS) and phosphatidylinositol (PI) are removed from the lipid mixture. Stopped-flow kinetic studies using protein-to-membrane FRET to monitor association and dissociation time courses reveal that this affinity decrease arises from a corresponding decrease in the on-rate for GRP1-PH domain docking with little or no change in the off-rate for domain dissociation from membrane-bound PIP(3). Overall, these findings indicate that the PH domain interacts not only with its target lipid, but also with other features of the membrane surface. The results are consistent with a previously undescribed type of two-step search mechanism for lipid binding domains in which weak, nonspecific electrostatic interactions between the PH domain and background anionic lipids facilitate searching of the membrane surface for PIP(3) headgroups, thereby speeding the high-affinity, specific docking of the domain to its rare target lipid.
Collapse
Affiliation(s)
| | | | - Joseph J. Falke
- To whom correspondence should be addressed. ; tel 303-492-3597; fax 303-492-5894
| |
Collapse
|
3569
|
White ES, Atrasz RG, Dickie EG, Aronoff DM, Stambolic V, Mak TW, Moore BB, Peters-Golden M. Prostaglandin E(2) inhibits fibroblast migration by E-prostanoid 2 receptor-mediated increase in PTEN activity. Am J Respir Cell Mol Biol 2005; 32:135-41. [PMID: 15539459 PMCID: PMC1965457 DOI: 10.1165/rcmb.2004-0126oc] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
An increased migratory phenotype exists in lung fibroblasts derived from patients with fibroproliferative lung disease. Prostaglandin E(2) (PGE(2)) suppresses fibroblast migration, but the receptor(s) and mechanism(s) mediating this action are unknown. Our data confirm that treatment of human lung fibroblasts with PGE(2) inhibits migration. Similar effects of butaprost, an E-prostanoid (EP) 2 receptor-specific ligand, implicate the EP2 receptor in migration-inhibitory signaling. Further, migration in fibroblasts deficient for the EP2 receptor cannot be inhibited by PGE(2) or butaprost, confirming the central role of EP2 in mediating these effects. Our previous data suggested that phosphatase and tensin homolog on chromosome ten (PTEN), a phosphatase that opposes the actions of phosphatidylinositol-3-kinase (PI3K), may be important in regulating lung fibroblast motility. We now report that both PGE(2) and butaprost increase PTEN phosphatase activity, without a concomitant increase in PTEN protein levels. This contributes to EP2-mediated migration inhibition, because migration in PTEN-null fibroblasts is similarly unaffected by EP2 receptor signaling. Increased PTEN activity in response to EP2 stimulation is associated with decreased tyrosine phosphorylation on PTEN, a mechanism known to regulate enzyme activity. Collectively, these data describe the novel mechanistic finding that PGE(2), via the EP2 receptor, decreases tyrosine phosphorylation on PTEN, resulting in increased PTEN enzyme activity and inhibition of fibroblast migration.
Collapse
Affiliation(s)
- Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6301 MSRB III/0642, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0642, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3570
|
Zhou YT, Guy GR, Low BC. BNIP-2 induces cell elongation and membrane protrusions by interacting with Cdc42 via a unique Cdc42-binding motif within its BNIP-2 and Cdc42GAP homology domain. Exp Cell Res 2005; 303:263-74. [PMID: 15652341 DOI: 10.1016/j.yexcr.2004.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/23/2004] [Accepted: 08/18/2004] [Indexed: 01/20/2023]
Abstract
The Cdc42 small GTPase regulates cytoskeletal reorganization and cell morphological changes that result in cellular extensions, migration, or cytokinesis. We previously showed that BNIP-2 interacted with Cdc42 and its cognate inactivator, p50RhoGAP/Cdc42GAP via its BNIP-2 and Cdc42GAP homology (BCH) domain, but its cellular and physiological roles still remain unclear. We report here that following transient expression of BNIP-2 in various cells, the expressed protein was located in irregular spots throughout the cytoplasm and concentrated at the leading edge of cellular extensions. The induced cell elongation and membrane protrusions required an intact BCH domain and were variously inhibited by coexpression of dominant negative mutants of Cdc42 (completely inhibited), Rac1 (partially inhibited), and RhoA (least inhibited). Presence of the Cdc42/Rac1 interactive binding (CRIB) motif alone as the dominant negative mutant of p21-activated kinase also inhibited the BNIP-2 effect. Bioinformatic analyses together with progressive deletional mutagenesis and binding studies revealed that a distal part of the BNIP-2 BCH domain contained a sequence with low homology to CRIB motif. However, in contrary to most effectors, BNIP-2 binding to Cdc42 was mediated exclusively via the unique sequence motif 285VPMEYVGI292. Cells expressing the BNIP-2 mutants devoid of this motif or/and the 34-amino acids immediately upstream to this sequence failed to elicit cell elongation and membrane protrusions despite that the protein still remained in the cytoplasm and interacted with Cdc42GAP. Evidence is presented where BNIP-2 in vivo induces cell dynamics by recruiting Cdc42 via its BCH domain, thus providing a novel mechanism for regulating Cdc42 signaling pathway.
Collapse
Affiliation(s)
- Yi Ting Zhou
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, The National University of Singapore, Singapore 117543
| | | | | |
Collapse
|
3571
|
Seals DF, Azucena EF, Pass I, Tesfay L, Gordon R, Woodrow M, Resau JH, Courtneidge SA. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 2005; 7:155-65. [PMID: 15710328 DOI: 10.1016/j.ccr.2005.01.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 12/09/2004] [Accepted: 01/11/2005] [Indexed: 01/11/2023]
Abstract
Tks5/Fish is a scaffolding protein with five SH3 domains and one PX domain. In Src-transformed cells, Tks5/Fish localizes to podosomes, discrete protrusions of the ventral membrane. We generated Src-transformed cells with reduced Tks5/Fish levels. They no longer formed podosomes, did not degrade gelatin, and were poorly invasive. We detected Tks5/Fish expression in podosomes in invasive cancer cells, as well as in human breast cancer and melanoma samples. Tks5/Fish expression was also required for protease-driven matrigel invasion in human cancer cells. Finally, coexpression of Tks5/Fish and Src in epithelial cells resulted in the appearance of podosomes. Thus, Tks5/Fish appears to be required for podosome formation, for degradation of the extracellular matrix, and for invasion of some cancer cells.
Collapse
Affiliation(s)
- Darren F Seals
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | | | | | | | | | |
Collapse
|
3572
|
Zhelev DV, Alteraifi AM, Chodniewicz D. Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants. Biophys J 2005; 87:688-95. [PMID: 15240502 PMCID: PMC1304392 DOI: 10.1529/biophysj.103.036699] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of pseudopods and lamellae after ligation of chemoattractant sensitive G-protein coupled receptors (GPCRs) is essential for chemotaxis. Here, pseudopod extension was stimulated with chemoattractant delivered from a micropipet. The chemoattractant diffusion and convection mass transport were considered, and it is shown that when the delivery of chemoattractant was limited by diffusion there was a strong chemoattractant gradient along the cell surface. The diffusion-limited delivery of chemoattractant from a micropipet allowed for maintaining an almost constant chemoattractant concentration at the leading edge of single pseudopods during their growth. In these conditions, the rate of pseudopod extension was dependent on the concentration of chemoattractant in the pipet delivering chemoattractant. The pseudopod extension induced using micropipets was oscillatory even in the presence of a constant delivery of chemoattractant. This oscillatory pseudopod extension was controlled by activated RhoA and its downstream effector kinase ROCK and was abolished after the inhibition of RhoA activation with Clostridium botulinium C3 exoenzyme (C3) or the blocking of ROCK activation with Y-27632. The ability of the micropipet assay to establish a well-defined chemoattractant distribution around the activated cell over a wide range of molecular weights of the used chemoattractants allowed for comparison of the effect of chemoattractant stimulation on the dynamics of pseudopod growth. Pseudopod growth was stimulated using N-formylated peptide (N-formyl-methionyl-leucyl-phenylalanine (fMLP)), platelet activating factor (PAF), leukotriene B4 (LTB(4)), C5a anaphylotoxin (C5a), and interleukin-8 (IL-8), which represent the typical ligands for G-protein coupled chemotactic receptors. The dependence of the rate of pseudopod extension on the concentration of these chemoattractants and their equimolar mixture was measured and shown to be similar for all chemoattractants. The inhibition of the activity of phosphoinositide-3 kinase (PI3K) with wortmannin showed that 72%-80% of the rate of pseudopod extension induced with N-formyl-methionyl-leucyl-phenylalanine, platelet activating factor, and leukotriene B4 was phosphoinositide-3 kinase-dependent, in contrast to 55% of the rate of pseudopod extension induced with interleukin-8. The dependence of the rate of pseudopod extension on the concentration of individual chemoattractants and their equimolar mixture suggests that there is a common rate-limiting mechanism for the polymerization of cytoskeletal F-actin in the pseudopod region induced by G-protein coupled chemoattractant receptors.
Collapse
Affiliation(s)
- Doncho V Zhelev
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708-0300, USA.
| | | | | |
Collapse
|
3573
|
|
3574
|
Prasad NK, Decker SJ. SH2-containing 5'-inositol phosphatase, SHIP2, regulates cytoskeleton organization and ligand-dependent down-regulation of the epidermal growth factor receptor. J Biol Chem 2005; 280:13129-36. [PMID: 15668240 DOI: 10.1074/jbc.m410289200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phosphoinositide lipid second messengers are integral components of signaling pathways mediated by insulin, growth factors, and integrins. SHIP2 dephosphorylates phosphatidylinositol 3,4,5-trisphosphate generated by the activated phosphatidylinositol 3'-kinase. SHIP2 down-regulates insulin signaling and is present at higher levels in diabetes and obesity. SHIP2 associates with p130Cas and filamin, regulators of cell adhesion/migration and cytoskeleton, influencing cell adhesion/spreading. Type I collagen specifically induces Src-mediated tyrosine phosphorylation of SHIP2. To better understand SHIP2 function, we employed RNA interference (RNAi) approach to silence the expression of the endogenous SHIP2 in HeLa cells. Suppression of SHIP2 levels caused severe F-actin deformities characterized by weak cortical actin and peripheral actin spikes. SHIP2 RNAi cells displayed cell-spreading defects involving a notable absence of focal contact structures and the formation of multiple slender membrane protrusions capped by actin spikes. Furthermore, decreased SHIP2 levels altered distribution of early endocytic antigen 1 (EEA1)-positive endocytic vesicles and of vesicles containing internalized epidermal growth factor (EGF) and transferrin. EGF treatment of SHIP2 RNAi cells led to the following: enhanced EGF receptor (EGFR) degradation; increased EGFR ubiquitination; and increased association of EGFR with c-Cbl ubiquitin ligase. Taken together, these experiments demonstrate that SHIP2 functions in the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation. Accordingly, we suggest that, in HeLa cells, SHIP2 plays a distinct role in signaling pathways mediated by integrins and growth factor receptors.
Collapse
Affiliation(s)
- Nagendra K Prasad
- Department of Basic Medical Sciences and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
3575
|
Silver L, Qiang L, Loudon R, Gallo G. Bidirectional inhibitory interactions between the embryonic chicken metanephros and lumbosacral nerves in vitro. Dev Dyn 2005; 231:190-8. [PMID: 15305299 DOI: 10.1002/dvdy.20111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During chicken embryonic development the metanephros forms from the uretic duct at embryonic day (E) 7. As the metanephric tissue develops between E7 and E10, it comes into close apposition with lumbosacral nerves. Coculturing of metanephric and nerve explants demonstrated that the Schwann cells of the sciatic nerve inhibit the migration of metanephric cells in a contact-dependent manner. Conversely, metanephric cells inhibit dorsal root ganglion axon extension in a contact-dependent manner. However, metanephric cells are not inhibited by contact with growth cones or axons. Dorsal root ganglion growth cones become sensitive to the inhibitory signals on the surfaces of metanephric cells around E8, a time when the metanephros is expanding into the territory occupied by nerves in vivo. These observations demonstrate inhibitory bidirectional tissue-tissue interactions in vitro and provide a novel model system for the study of contact-based guidance of both neuronal and non-neuronal cell migration.
Collapse
Affiliation(s)
- Lee Silver
- Drexel College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
3576
|
Raymond T, Gorbunova E, Gavrilovskaya IN, Mackow ER. Pathogenic hantaviruses bind plexin-semaphorin-integrin domains present at the apex of inactive, bent alphavbeta3 integrin conformers. Proc Natl Acad Sci U S A 2005; 102:1163-8. [PMID: 15657120 PMCID: PMC545842 DOI: 10.1073/pnas.0406743102] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The alphavbeta3 integrins are linked to human bleeding disorders, and pathogenic hantaviruses regulate the function of alphavbeta3 integrins and cause acute vascular diseases. alphavbeta3 integrins are present in either extended (active) or dramatically bent (inactive) structures, and interconversion of alphavbeta3 conformers dynamically regulates integrin functions. Here, we show that hantaviruses bind human alphavbeta3 integrins and that binding maps to the plexin-semaphorin-integrin (PSI) domain present at the apex of inactive, bent, alphavbeta3-integrin structures. Pathogenic hantaviruses [New York-1 virus (NY-1V) and Hantaan virus (HTNV)] bind immobilized beta3 polypeptides containing the PSI domain, and human (but not murine) beta3 polypeptides inhibit hantavirus infectivity. Substitution of human beta3 residues 1-39 for murine beta3 residues directed pathogenic hantavirus infection of nonpermissive CHO cells expressing chimeric alphavbeta3 receptors. Mutation of murine beta3 Asn-39 to Asp-39 present in human beta3 homologues (N39D) permitted hantavirus infection of cells and specified PSI domain residue interactions with pathogenic hantaviruses. In addition, cell-surface expression of alphavbeta3 locked in an inactive bent conformation conferred hantavirus infectivity of CHO cells. Our findings indicate that hantaviruses bind to a unique domain exposed on inactive integrins and, together with prior findings, suggest that this interaction restricts alphavbeta3 functions that regulate vascular permeability. Our findings suggest mechanisms for viruses to direct hemorrhagic or vascular diseases and provide a distinct target for modulating alphavbeta3-integrin functions.
Collapse
Affiliation(s)
- Tracy Raymond
- Department of Medicine and Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
3577
|
Meshel AS, Wei Q, Adelstein RS, Sheetz MP. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 2005; 7:157-64. [PMID: 15654332 DOI: 10.1038/ncb1216] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 12/09/2004] [Indexed: 12/30/2022]
Abstract
Collagen remodelling by fibroblasts has a crucial role in organizing tissue structures that are essential to motility during wound repair, development and regulation of cell growth. However, the mechanism of collagen fibre movement in three-dimensional (3D) matrices is not understood. Here, we show that fibroblast lamellipodia extend along held collagen fibres, bind, and retract them in a 'hand-over-hand' cycle, involving alpha2beta1 integrin. Wild-type fibroblasts move collagen fibres three to four times farther per cycle than fibroblasts lacking myosin II-B (myosin II-B(-/-)). Similarly, myosin II-B(-/-) fibroblasts contract 3D collagen gels threefold less than controls. On two-dimensional (2D) substrates, however, rates of collagen bead and cell movement are not affected by loss of myosin II-B. Green fluorescent protein (GFP)-tagged myosin II-B, but not II-A, restores normal function in knockout cells and localizes to cell processes, whereas myosin II-A is more centrally located. Additionally, GFP-myosin II-B moves out to the periphery and back during hand-over-hand fibre movement, whereas on 2D collagen, myosin II-B is more centrally distributed. Thus, we suggest that cyclic myosin II-B assembly and contraction in lamellipodia power 3D fibre movements.
Collapse
Affiliation(s)
- Adam S Meshel
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
3578
|
Borm B, Requardt RP, Herzog V, Kirfel G. Membrane ruffles in cell migration: indicators of inefficient lamellipodia adhesion and compartments of actin filament reorganization. Exp Cell Res 2005; 302:83-95. [PMID: 15541728 DOI: 10.1016/j.yexcr.2004.08.034] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/25/2004] [Indexed: 01/06/2023]
Abstract
During epithelial cell migration, membrane ruffles can be visualized by phase contrast microscopy as dark waves arising at the leading edge of lamellipodia that move centripetally toward the main cell body. Despite the common use of the term membrane ruffles, their structure, molecular composition, and the mechanisms leading to their formation remained largely unknown. We show here that membrane ruffles differ from the underlying cell lamella by more densely packed bundles of actin filaments that are enriched in the actin cross-linkers filamin and ezrin, pointing to a specific bundling process based on these cross-linkers. The accumulation of phosphorylated, that is, inactivated, cofilin in membrane ruffles suggests that they are compartments of inhibited actin filament turnover. High Rac1 and low RhoA activities were found under conditions of suboptimal integrin-ligand interaction correlating with low lamellipodia persistence, inefficient migration, and high ruffling rates. Based on these findings, we define membrane ruffles as distinct compartments of specific composition that form as a consequence of inefficient lamellipodia adhesion.
Collapse
Affiliation(s)
- Bodo Borm
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | | | | | | |
Collapse
|
3579
|
Watanabe T, Wang S, Noritake J, Sato K, Fukata M, Takefuji M, Nakagawa M, Izumi N, Akiyama T, Kaibuchi K. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev Cell 2005; 7:871-83. [PMID: 15572129 DOI: 10.1016/j.devcel.2004.10.017] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 08/03/2004] [Accepted: 10/26/2004] [Indexed: 01/27/2023]
Abstract
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3580
|
Feral CC, Nishiya N, Fenczik CA, Stuhlmann H, Slepak M, Ginsberg MH. CD98hc (SLC3A2) mediates integrin signaling. Proc Natl Acad Sci U S A 2005; 102:355-60. [PMID: 15625115 PMCID: PMC544283 DOI: 10.1073/pnas.0404852102] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 11/23/2004] [Indexed: 01/27/2023] Open
Abstract
Integrins regulate cellular behaviors through signaling pathways, including Rho GTPases and kinases. CD98 heterodimers, comprised of a heavy chain (CD98hc, SLC3A2) and one of several light chains, interact with integrins through CD98hc. CD98hc overexpression leads to anchorage-independent cell growth and tumorigenesis in 3T3 fibroblasts and activates certain integrin-regulated signaling pathways. To establish the biological function of CD98hc, we disrupted the gene and analyzed CD98hc-null cells. Here we report that CD98hc contributes to integrin-dependent cell spreading, cell migration, and protection from apoptosis. Furthermore, CD98hc is required for efficient adhesion-induced activation of Akt and Rac GTPase, major contributors to the integrin-dependent signals involved in cell survival and cell migration. CD98 promotes amino acid transport through its light chains; however, a CD98hc mutant that interacts with beta1 integrins, but not CD98 light chains, restored integrin-dependent signaling and protection from apoptosis. beta1 integrins are involved in the pathogenesis of certain cancers. CD98hc deletion markedly impaired the ability of embryonic stem cells to form teratocarcinomas in mice; teratocarcinoma formation was reconstituted by reexpression of CD98hc or of the mutant that interacts exclusively with integrins. Thus, CD98hc is an integrin-associated protein that mediates integrin-dependent signals, which promote tumorigenesis.
Collapse
Affiliation(s)
- Chloe C Feral
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
3581
|
Weathington NM, Blalock JE. The Biology of CXC Chemokines and Their Receptors. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(04)55002-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3582
|
Eccles SA, Box C, Court W. Cell migration/invasion assays and their application in cancer drug discovery. BIOTECHNOLOGY ANNUAL REVIEW 2005; 11:391-421. [PMID: 16216785 DOI: 10.1016/s1387-2656(05)11013-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Invasive capacity is the single most important trait that distinguishes benign from malignant lesions. Tumour cells, during intravasation and extravasation of blood and lymphatic channels and when establishing colonies at secondary sites, must move through tissue boundaries that normal adult cells (other than, for example activated leukocytes) do not cross. Similar mechanisms are also utilised by activated endothelial cells during the generation of new blood vessels that enable the sustained growth and dissemination of tumours. It is now increasingly recognised that these processes--cell motility and invasion--might provide a rich source of novel targets for cancer therapy and that appropriate inhibitors may restrain both metastasis and neoangiogenesis. This new paradigm demands screening assays that can rapidly and quantitatively measure cell movement and the ability to traverse physiological barriers. We also need to consider whether simple reductionist in vitro approaches can reliably model the complexity of in vivo tumour invasion/neoangiogenesis. There are both opportunities and challenges ahead in developing a balanced portfolio of assays that will be able to evaluate accurately and finally deliver novel anti-invasive agents with therapeutic potential for clinical use.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Tumour Biology and Metastasis, Cancer Research UK Centre for Cancer Therapeutics, McElwain Laboratories, Institute of Cancer Research, Cotswold Road, Belmont, Sutton, Surrey, SM2 5NG, UK.
| | | | | |
Collapse
|
3583
|
Parmo-Cabañas M, Molina-Ortiz I, Matías-Román S, García-Bernal D, Carvajal-Vergara X, Valle I, Pandiella A, Arroyo AG, Teixidó J. Role of metalloproteinases MMP-9 and MT1-MMP in CXCL12-promoted myeloma cell invasion across basement membranes. J Pathol 2005; 208:108-18. [PMID: 16278822 DOI: 10.1002/path.1876] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Malignant plasma cells in multiple myeloma home to the bone marrow (BM), accumulate in different niches and, in late disease, migrate from the BM into blood. These migratory events involve cell trafficking across extracellular matrix (ECM)-rich basement membranes and interstitial tissues. Metalloproteinases (MMP) degrade ECM and facilitate tumour cell invasion. The chemokine CXCL12 is expressed in the BM, and it was previously shown that it triggers myeloma cell migration and activation. In the present work we show that CXCL12 promotes myeloma cell invasion across Matrigel-reconstituted basement membranes and type I collagen gels. MMP-9 activity was required for invasion through Matrigel towards CXCL12, whereas TIMP-1, a MMP-9 inhibitor that we found to be expressed by myeloma and BM stromal cells, impaired the invasion. In addition, we show that the membrane-bound MT1-MMP metalloproteinase is expressed by myeloma cells and contributes to CXCL12-promoted myeloma cell invasion across Matrigel. Increase in MT1-MMP expression, as well as induction of its membrane polarization by CXCL12 in myeloma cells, might represent potential mechanisms contributing to this invasion. CXCL12-promoted invasion across type I collagen involved metalloproteinases different from MT1-MMP. These data indicate that CXCL12 could contribute to myeloma cell trafficking in the BM involving MMP-9 and MT1-MMP activities.
Collapse
Affiliation(s)
- Marisa Parmo-Cabañas
- Department of Immunology, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
3584
|
Costantino S, Heinze KG, Martínez OE, De Koninck P, Wiseman PW. Two-photon fluorescent microlithography for live-cell imaging. Microsc Res Tech 2005; 68:272-6. [PMID: 16315236 DOI: 10.1002/jemt.20247] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescent dyes added to UV-cure resins allow the rapid fabrication of fluorescent micropatterns on standard glass coverslips by two-photon optical lithography. We use this lithographic method to tailor fiduciary markers, focal references, and calibration tools, for fluorescence and laser scanning microscopy. Fluorescent microlithography provides spatial landmarks to quantify molecular transport, cell growth and migration, and to compensate for focal drift during time-lapse imaging. We show that the fluorescent patterned microstructures are biocompatible with cultures of mammalian cell lines and hippocampal neurons. Furthermore, the high-relief topology of the lithographed substrates is utilized as a mold for poly(dimethylsiloxane) stamps to create protein patterns by microcontact printing, representing an alternative to the current etching techniques. We present two different applications of such protein patterns for localizing cell adhesion and guidance of neurite outgrowth.
Collapse
|
3585
|
Abstract
Modulation of the complex process of wound-healing remains a surgical challenge. Little improvement beyond controlling infection, gentle tissue handling, and debridement of necrotic tissue has been had in the modern era. However, increasing appreciation of the process from a biomolecular perspective offers the potential for making significant strides in wound modulation. The bioactive molecule nitric oxide was found to have wide-ranging impact on cellular activities, including the cellular responses engendered by wound healing. Current research suggests that nitric oxide and several nitric oxide donors can exert biologic effects, although the particular net responses of cells contributing to wound repair are context-dependent.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
| | | | | | | | | |
Collapse
|
3586
|
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23:47-55. [PMID: 15637621 DOI: 10.1038/nbt1055] [Citation(s) in RCA: 3100] [Impact Index Per Article: 155.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
New generations of synthetic biomaterials are being developed at a rapid pace for use as three-dimensional extracellular microenvironments to mimic the regulatory characteristics of natural extracellular matrices (ECMs) and ECM-bound growth factors, both for therapeutic applications and basic biological studies. Recent advances include nanofibrillar networks formed by self-assembly of small building blocks, artificial ECM networks from protein polymers or peptide-conjugated synthetic polymers that present bioactive ligands and respond to cell-secreted signals to enable proteolytic remodeling. These materials have already found application in differentiating stem cells into neurons, repairing bone and inducing angiogenesis. Although modern synthetic biomaterials represent oversimplified mimics of natural ECMs lacking the essential natural temporal and spatial complexity, a growing symbiosis of materials engineering and cell biology may ultimately result in synthetic materials that contain the necessary signals to recapitulate developmental processes in tissue- and organ-specific differentiation and morphogenesis.
Collapse
Affiliation(s)
- M P Lutolf
- Integrative Biosciences Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Building AA-B 039, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
3587
|
Schymeinsky J, Then C, Walzog B. The non-receptor tyrosine kinase Syk regulates lamellipodium formation and site-directed migration of human leukocytes. J Cell Physiol 2005; 204:614-22. [PMID: 15754322 DOI: 10.1002/jcp.20323] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tyrosine kinase Syk is associated with CD18, the beta-subunit of the leukocyte adhesion molecules of the beta(2) integrin family (CD11/CD18), and becomes activated upon beta(2) integrin-mediated adhesion. In this study, we elucidated the role of Syk in polarization and site-directed migration of neutrophil-like differentiated HL-60 cells and monocytic THP-1 cells. By means of confocal microscopy, we detected a homogenous distribution of Syk in unstimulated cells in suspension. The stimulation of HL-60 cells by formyl-methionyl-leucyl-phenylalanine (fMLP, 100 nM) or the activation of THP-1 cells by monocyte chemoattractant protein-1 (10 ng/ml) induced beta(2) integrin-mediated cell adhesion and polarization on immobilized fibrinogen which was associated with an enrichment of Syk at the lamellipodium forming site. This effect was abolished by function blocking anti-CD18 antibody or by treatment of the cells with the Syk inhibitor piceatannol (30 microM) suggesting that the redistribution of Syk required both, beta(2) integrin-mediated adhesion and Syk activation. Moreover, the inhibition of Syk by piceatannol or the downregulation of Syk by antisense technique resulted in an excessive formation of lamellipodia indicating that Syk may act as a negative regulator that limits lamellipodium formation. The analysis of chemotaxis revealed that the inhibition of Syk impaired the ability of the cells to follow a chemotactic gradient whereas random migration was intact. Taken together, our data suggest a novel role for Syk in the maintenance of a bipolar phenotype by regulating lamellipodium formation, which is a critical prerequisite for site-directed migration of leukocytes.
Collapse
Affiliation(s)
- Jürgen Schymeinsky
- Department of Physiology, Ludwig-Maximilians-Universität München, München, Germany
| | | | | |
Collapse
|
3588
|
Ren JG, Jie C, Talbot C. How PEDF prevents angiogenesis: a hypothesized pathway. Med Hypotheses 2005; 64:74-8. [PMID: 15533615 DOI: 10.1016/j.mehy.2004.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 05/18/2004] [Indexed: 01/13/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is a multiple functional protein, coded by the serine proteinase inhibitor, clade F, member 1 (SERPINF1) gene, which has both anti-angiogenic activity and neurotrophic activity at the same time. Its antiangiogenic activity in the mammalian eye is the most potent known at this time. However, the mechanism(s) by which PEDF works in vivo is still uncertain. Some observations suggest that PEDF can simultaneously inhibit the migration and proliferation induced by vascular endothelial growth factor (VEGF), and then further inhibits angiogenesis by interacting with specific cell surface receptors, but no such receptor has been reported to date. Here we propose a hypothesis that PEDF exerts its function by binding with intergrins. Intergrin can therefore serve as the receptor of PEDF.
Collapse
Affiliation(s)
- Jian-Guo Ren
- Department of Pathology, Brighman and Women's Hospital and Harvard Medical School, Thorn 530, 75 Francis Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
3589
|
Barwe SP, Anilkumar G, Moon SY, Zheng Y, Whitelegge JP, Rajasekaran SA, Rajasekaran AK. Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol Biol Cell 2004; 16:1082-94. [PMID: 15616195 PMCID: PMC551475 DOI: 10.1091/mbc.e04-05-0427] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Na,K-ATPase, consisting of alpha- and beta-subunits, regulates intracellular ion homeostasis. Recent studies have demonstrated that Na,K-ATPase also regulates epithelial cell tight junction structure and functions. Consistent with an important role in the regulation of epithelial cell structure, both Na,K-ATPase enzyme activity and subunit levels are altered in carcinoma. Previously, we have shown that repletion of Na,K-ATPase beta1-subunit (Na,K-beta) in highly motile Moloney sarcoma virus-transformed Madin-Darby canine kidney (MSV-MDCK) cells suppressed their motility. However, until now, the mechanism by which Na,K-beta reduces cell motility remained elusive. Here, we demonstrate that Na,K-beta localizes to lamellipodia and suppresses cell motility by a novel signaling mechanism involving a cross-talk between Na,K-ATPase alpha1-subunit (Na,K-alpha) and Na,K-beta with proteins involved in phosphatidylinositol 3-kinase (PI3-kinase) signaling pathway. We show that Na,K-alpha associates with the regulatory subunit of PI3-kinase and Na,K-beta binds to annexin II. These molecular interactions locally activate PI3-kinase at the lamellipodia and suppress cell motility in MSV-MDCK cells, independent of Na,K-ATPase ion transport activity. Thus, these results demonstrate a new role for Na,K-ATPase in regulating carcinoma cell motility.
Collapse
Affiliation(s)
- Sonali P Barwe
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
3590
|
Calle Y, Chou HC, Thrasher AJ, Jones GE. Wiskott-Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells. J Pathol 2004; 204:460-9. [PMID: 15495215 DOI: 10.1002/path.1651] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The regulated migration and spatial localization of dendritic cells in response to environmental signals are critical events during the initiation of physiological immune responses and maintenance of tolerance. Cells deficient in the Wiskott-Aldrich syndrome protein (WASP) have been used to demonstrate the importance of the dynamic remodelling of the actin-based cytoskeleton during the selective adhesion and migration of these cells. Unlike most cell types, macrophages, dendritic cells, and osteoclasts utilize a specialized adhesive array termed the podosome in order to migrate. Podosomes are composed of many of the same structural and regulatory proteins as seen in the more commonly found focal adhesion, but are unique in their requirement for WASP. Without WASP, podosomes cannot form and the affected cells are obliged to use focal adhesions for their migratory activities. Once activated by a series of upstream regulatory proteins, WASP acts as a scaffold for the binding of the potent actin nucleating protein complex known as Arp2/3. This article reviews the available evidence that suggests that failures in the regulation of the actin cytoskeleton may contribute significantly to the immunopathology of the Wiskott-Aldrich syndrome.
Collapse
Affiliation(s)
- Yolanda Calle
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | |
Collapse
|
3591
|
Paladi M, Tepass U. Function of Rho GTPases in embryonic blood cell migration in Drosophila. J Cell Sci 2004; 117:6313-26. [PMID: 15561773 DOI: 10.1242/jcs.01552] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hemocyte development in the Drosophila embryo is a genetic model to study blood cell differentiation, cell migration and phagocytosis. Macrophages, which make up the majority of embryonic hemocytes, migrate extensively as individual cells on basement membrane-covered surfaces. The molecular mechanisms that contribute to this migration process are currently not well understood. We report the generation, by P element replacement, of two Gal4 lines that drive expression of UAS-controlled target genes during early (gcm-Gal4) or late (Coll-Gal4) stages of macrophage migration. gcm-Gal4 is used for live imaging analysis showing that macrophages extend large, dynamic lamellipodia as their main protrusions as well as filopodia. We use both Gal4 lines to express dominantnegative and constitutively active isoforms of the Rho GTPases Rac1, Cdc42, Rho1 and RhoL in macrophages, and complement these experiments by analyzing embryos mutant for Rho GTPases. Our findings suggest that Rac1 and Rac2 act redundantly in controlling migration and lamellipodia formation in Drosophila macrophages, and that the third Drosophila Rac gene, Mtl, makes no significant contribution to macrophage migration. Cdc42 appears not to be required within macrophages but in other tissues of the embryo to guide macrophages to the ventral trunk region. No evidence was found for a requirement of Rho1 or RhoL in macrophage migration. Finally, to estimate the number of genes whose zygotic expression is required for macrophage migration we analyzed 208 chromosomal deletions that cover most of the Drosophila genome. We find eight deletions that cause defects in macrophage migration suggesting the existence of approximately ten zygotic genes essential for macrophage migration.
Collapse
Affiliation(s)
- Magda Paladi
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | | |
Collapse
|
3592
|
Brunton VG, MacPherson IRJ, Frame MC. Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:121-44. [PMID: 15246683 DOI: 10.1016/j.bbamcr.2004.04.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 04/19/2004] [Indexed: 12/31/2022]
Abstract
The interaction of cells with surrounding matrix and neighbouring cells governs many aspects of cell behaviour. Aside from transmitting signals from the external environment, adhesion receptors also receive signals from the cell interior. Here we review the interrelationship between adhesion receptors, tyrosine kinases (both growth factor receptor and non-receptor) and modulators of the actin cytoskeletal network. Deregulation of many aspects of these signalling pathways in cancer highlights the need for a better understanding of the complexities involved.
Collapse
Affiliation(s)
- V G Brunton
- The Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD.
| | | | | |
Collapse
|
3593
|
Howe AK. Regulation of actin-based cell migration by cAMP/PKA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:159-74. [PMID: 15246685 DOI: 10.1016/j.bbamcr.2004.03.005] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 03/29/2004] [Indexed: 01/07/2023]
Abstract
A wide variety of soluble signaling substances utilize the cyclic AMP-dependent protein kinase (PKA) pathway to regulate cellular behaviors including intermediary metabolism, ion channel conductivity, and transcription. A growing literature suggests that integrin-mediated cell adhesion may also utilize PKA to modulate adhesion-associated events such as actin cytoskeletal dynamics and migration. PKA is dynamically regulated by integrin-mediated cell adhesion to extracellular matrix (ECM). Furthermore, while some hallmarks of cell migration and cytoskeletal organization require PKA activity (e.g. activation of Rac and Cdc42; actin filament assembly), others are inhibited by it (e.g. activation of Rho and PAK; interaction of VASP with the c-Abl tyrosine kinase). Also, cell migration and invasion can be impeded by either inhibition or hyper-activation of PKA. Finally, a number of A-kinase anchoring proteins (AKAPs) serve to associate PKA with various components of the actin cytoskeleton, thereby enhancing and/or specifying cAMP/PKA signaling in those regions. This review discusses the growing literature that supports the hypothesis that PKA plays a central role in cytoskeletal regulation and cell migration.
Collapse
Affiliation(s)
- Alan K Howe
- Department of Pharmacology, Vermont Cancer Center, University of Vermont, HSRF# 322, Burlington 05405-0075, USA.
| |
Collapse
|
3594
|
Haga H, Irahara C, Kobayashi R, Nakagaki T, Kawabata K. Collective movement of epithelial cells on a collagen gel substrate. Biophys J 2004; 88:2250-6. [PMID: 15596493 PMCID: PMC1305274 DOI: 10.1529/biophysj.104.047654] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collective cell movement acts as an efficient strategy in many physiological events, including wound healing, embryonic development, and morphogenesis. We found that epithelial cells (Madin-Darby canine kidney cell) migrated collectively along one direction on a collagen gel substrate. Time-lapse images of Madin-Darby canine kidney cells cultured on type-I collagen gels and glass substrates were captured by phase contrast microscopy equipped with an incubation system. On the gel substrate, the directions of cell movement gradually converged on one direction as the number of cells increased, whereas the cells moved randomly on the glass substrate. We also observed "leader" cells, which extended large lamellae and were accompanied by many "follower" cells, migrating in the direction of oriented collagen fibers. The mean-squared displacement of each cell movement and the spatial correlation function calculated from the spatial distribution of cell velocity were obtained as functions of observation time. In the case of the gel substrate, the spatial correlation length increased gradually, representing the collectiveness of multicellular movement.
Collapse
Affiliation(s)
- Hisashi Haga
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | |
Collapse
|
3595
|
Fessler MB, Young SK, Jeyaseelan S, Lieber JG, Arndt PG, Nick JA, Worthen GS. A role for hydroxy-methylglutaryl coenzyme a reductase in pulmonary inflammation and host defense. Am J Respir Crit Care Med 2004; 171:606-15. [PMID: 15591471 DOI: 10.1164/rccm.200406-729oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
RATIONALE A growing literature indicates that hydroxy-methylglutaryl coenzyme A reductase inhibitors (statins) modulate proinflammatory cellular signaling and functions. No studies to date, however, have addressed whether statins modulate pulmonary inflammation triggered by aerogenic stimuli or whether they affect host defense. OBJECTIVES To test whether lovastatin modulates LPS-induced pulmonary inflammation and antibacterial host defense. METHODS To address these questions, and to confirm any effect of statins as dependent on inhibition of hydroxy-methylglutaryl coenzyme A reductase, we treated C57Bl/6 mice with three oral doses of 10 mg/kg lovastatin (or vehicle) and three intraperitoneal doses of 10 mg/kg mevalonic acid (or saline), and then exposed them to the following: (1) aerosolized LPS, (2) intratracheal keratinocyte-derived chemokine (KC), or (3) intratracheal Klebsiella pneumoniae. MEASUREMENTS AND MAIN RESULTS LPS- and KC-induced airspace neutrophils were reduced by lovastatin, an effect that was blocked by mevalonic acid cotreatment. Lovastatin was also associated with reduced parenchymal myeloperoxidase and microvascular permeability, and altered airspace and serum cytokines after LPS. Native pulmonary clearance of K. pneumoniae was inhibited by lovastatin and extrapulmonary dissemination was enhanced, both reversibly with mevalonic acid. Ex vivo studies of neutrophils isolated from lovastatin-treated mice confirmed inhibitory effects on Rac activation, actin polymerization, chemotaxis, and bacterial killing. CONCLUSION Lovastatin attenuates pulmonary inflammation induced by aerosolized LPS and impairs host defense.
Collapse
Affiliation(s)
- Michael B Fessler
- Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, D403 Neustadt, Denver, CO 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
3596
|
Farooqui R, Fenteany G. Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J Cell Sci 2004; 118:51-63. [PMID: 15585576 DOI: 10.1242/jcs.01577] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which epithelial, endothelial and other strongly cell-cell adhesive cells migrate collectively as continuous sheets is not clear, even though this process is crucial for embryonic development and tissue repair in virtually all multicellular animals. Wound closure in Madin-Darby canine kidney (MDCK) epithelial cell monolayers involves Rac GTPase-dependent migration of cells both at and behind the wound edge. We report here for the first time that cells behind the margin of wounded MDCK cell monolayers, even hundreds of microns from the edge, extend 'cryptic' lamellipodia against the substratum beneath cells in front of them, toward the wound, as determined by confocal, two-photon and transmission electron microscopy. These so-called submarginal cells nevertheless strictly maintain their more apical cell-cell contacts when they migrate as part of a coherent cell sheet, hiding their basal protrusions from conventional microscopy. The submarginal protrusions display the hallmarks of traditional lamellipodia based on morphology and dynamics. Cells behind the margin therefore actively crawl, instead of just moving passively when cells at the margin pull on them. The rate of migration is inversely proportional to the distance from the margin, and cells move co-ordinately, yet still in part autonomously, toward the wound area. We also clarify the ancillary role played by nonprotrusive contractile actin bundles that assemble in a Rho GTPase-dependent manner at the margin after wounding. In addition, some cell proliferation occurs at a delay after wounding but does not contribute to closure. Instead, it apparently serves to replace damaged cells so that intact spread cells can revert to their normal cuboidal morphology and the original cell density of the unbroken sheet can be restored.
Collapse
Affiliation(s)
- Rizwan Farooqui
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | | |
Collapse
|
3597
|
Vlahakis NE, Young BA, Atakilit A, Sheppard D. The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J Biol Chem 2004; 280:4544-52. [PMID: 15590642 PMCID: PMC1368959 DOI: 10.1074/jbc.m412816200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice homozygous for a null mutation of the integrin alpha9 subunit die 6-12 days after birth from bilateral chylothoraces suggesting an underlying defect in lymphatic development. However, until now the mechanisms by which the integrin alpha9beta1 modulates lymphangiogenesis have not been described. In this study we show that adhesion to and migration on the lymphangiogenic vascular endothelial growth factors (VEGF-C and -D) are alpha9beta1-dependent. Mouse embryonic fibroblasts and human colon carcinoma cells (SW-480) transfected to express alpha9beta1 adhered and/or migrated on both growth factors in a concentration-dependent fashion, and both adhesion and migration were abrogated by anti-alpha9beta1 function-blocking antibody. In SW-480 cells, which lack cognate receptors for VEGF-C and -D, both growth factors induced alpha9beta1-dependent Erk and paxillin phosphorylation. Human microvascular endothelial cells, which express both alpha9beta1 and VEGF-R3, also adhered to and migrated on both growth factors, and both responses were blocked by anti-alpha9beta1 antibody. Furthermore, in a solid phase binding assay recombinant VEGF-C and -D bound to purified alpha9beta1 integrin in a dose- and cation-dependent fashion showing that VEGF-C and VEGF-D are ligands for the integrin alpha9beta1. The interaction between alpha9beta1 and VEGF-C and/or -D may begin to explain the abnormal lymphatic phenotype of the alpha9 knock-out mice.
Collapse
Affiliation(s)
- Nicholas E. Vlahakis
- From the Lung Biology Center, University of California San Francisco, Box 2922, San Francisco, CA, 94143-2922
- Thoracic Disease Research Unit, Mayo Clinic College of Medicine, 200 First St SW, Rochester, MN 55905
| | - Bradford A. Young
- From the Lung Biology Center, University of California San Francisco, Box 2922, San Francisco, CA, 94143-2922
| | - Amha Atakilit
- From the Lung Biology Center, University of California San Francisco, Box 2922, San Francisco, CA, 94143-2922
| | - Dean Sheppard
- From the Lung Biology Center, University of California San Francisco, Box 2922, San Francisco, CA, 94143-2922
- § To whom correspondence should be addressed: Lung Biology Center, University of California, San Francisco, Box 2922, San Francisco, CA 94143-2922 Ph: 415-514-4270 Fax: 415-514-4278
| |
Collapse
|
3598
|
Zhou B, Liu L, Reddivari M, Zhang XA. The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res 2004; 64:7455-63. [PMID: 15492270 DOI: 10.1158/0008-5472.can-04-1574] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cancer metastasis suppressor protein KAI1/CD82 is a member of the tetraspanin superfamily. Recent studies have demonstrated that tetraspanins are palmitoylated and that palmitoylation contributes to the organization of tetraspanin webs or tetraspanin-enriched microdomains. However, the effect of palmitoylation on tetraspanin-mediated cellular functions remains obscure. In this study, we found that tetraspanin KAI1/CD82 was palmitoylated when expressed in PC3 metastatic prostate cancer cells and that palmitoylation involved all of the cytoplasmic cysteine residues proximal to the plasma membrane. Notably, the palmitoylation-deficient KAI1/CD82 mutant largely reversed the wild-type KAI1/CD82's inhibitory effects on migration and invasion of PC3 cells. Also, palmitoylation regulates the subcellular distribution of KAI1/CD82 and its association with other tetraspanins, suggesting that the localized interaction of KAI1/CD82 with tetraspanin webs or tetraspanin-enriched microdomains is important for KAI1/CD82's motility-inhibitory activity. Moreover, we found that KAI1/CD82 palmitoylation affected motility-related subcellular events such as lamellipodia formation and actin cytoskeleton organization and that the alteration of these processes likely contributes to KAI1/CD82's inhibition of motility. Finally, the reversal of cell motility seen in the palmitoylation-deficient KAI1/CD82 mutant correlates with regaining of p130(CAS)-CrkII coupling, a signaling step important for KAI1/CD82's activity. Taken together, our results indicate that palmitoylation is crucial for the functional integrity of tetraspanin KAI1/CD82 during the suppression of cancer cell migration and invasion.
Collapse
Affiliation(s)
- Bin Zhou
- Vascular Biology Center and Department of Medicine and Department of Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|
3599
|
Tyagi S, Alsmadi O. Imaging native beta-actin mRNA in motile fibroblasts. Biophys J 2004; 87:4153-62. [PMID: 15377515 PMCID: PMC1304924 DOI: 10.1529/biophysj.104.045153] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 08/27/2004] [Indexed: 11/18/2022] Open
Abstract
Nuclease-resistant, cytoplasmically resident molecular beacons were used to specifically label beta-actin mRNA in living and motile chicken embryonic fibroblasts. beta-actin mRNA signals were most abundant in active lamellipodia, which are protrusions that cells extend to adhere to surfaces. Time-lapse images show that the immediate sources of beta-actin mRNA for nascent lamellipodia are adjacent older protrusions. During the development of this method, we observed that conventional molecular beacons are rapidly sequestered in cell nuclei, leaving little time for them to find and bind to their cytoplasmic mRNA targets. By linking molecular beacons to a protein that tends to stay within the cytoplasm, nuclear sequestration was prevented, enabling cytoplasmic mRNAs to be detected and imaged. Probing beta-actin mRNA with these cytoplasmically resident molecular beacons did not affect the motility of the fibroblasts. Furthermore, mRNAs bound to these probes undergo translation within the cell. The use of cytoplasmically resident molecular beacons will enable further studies of the mechanism of beta-actin mRNA localization, and will be useful for understanding the dynamics of mRNA distribution in other living cells.
Collapse
Affiliation(s)
- Sanjay Tyagi
- Department of Molecular Genetics, Public Health Research Institute, Newark, New Jersey 07103, USA.
| | | |
Collapse
|
3600
|
Abstract
Caveolae are specialized plasma membrane subdomains capable of transport and sophisticated compartmentalization of cell signaling. Numerous cell functions, including cell type-specific functions, involve caveolae and require caveolin-1, the major protein component of these organelles. Caveolae are particularly abundant in endothelial cells and participate in endothelial transcytosis, vascular permeability, vasomotor tone control, and vascular reactivity. Caveolin-1 drives the formation of plasma membrane caveolae and anchors them to the actin cytoskeleton, modulates cell interaction with the extracellular matrix, pulls together and regulates signaling molecules, and transports cholesterol. Via these functions, caveolin-1 might play an important role in cell movement through control of cell membrane composition and membrane surface expansion, polarization of signaling molecules and matrix proteolysis, and/or cytoskeleton remodeling. Caveolae and caveolin-1 are polarized in migrating endothelial cells, indicating they may play a role in cell motility. Several studies have shown that manipulation of caveolin-1 expression affects cell migration in a complex way. We are reviewing the current data and hypotheses in favor of an essential role for caveolae in cell migration.
Collapse
Affiliation(s)
- Angels Navarro
- Department of Anesthesiology Research, Cleveland Clinic Foundation, Cleveland, Ohio 44122, USA
| | | | | |
Collapse
|