351
|
Oordt-Speets AM, Spinardi JR, Mendoza CF, Yang J, del Carmen Morales G, Kyaw MH. Duration of SARS-CoV-2 shedding: A systematic review. J Glob Health 2024; 14:05005. [PMID: 38547496 PMCID: PMC10978056 DOI: 10.7189/jogh.14.05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Background Positive viral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cultures indicate shedding of infectious virus and corresponding transmission risk of coronavirus disease 2019 (COVID-19). The research question of this systematic review was: Is there a discernible pattern in the timing of SARS-CoV-2 virus isolation, and what is the proportion of positive and negative results for isolation of SARS-CoV-2 virus with viral culture relative to the onset of clinical symptoms or the day of diagnosis, as indicated by longitudinal studies? Methods We systematically searched PubMed and Embase from inception to 16 February 2023 for English-language studies with serial viral culture testing within symptomatic or asymptomatic SARS-CoV-2 infected persons during the post-vaccination period. Outcomes of interest were the daily culture status per study and the overall daily culture positivity rate of SARS-CoV-2. We critically appraised the selected studies using the Newcastle-Ottawa quality assessment scale. Results We included 14 viral shedding studies in this systematic review. Positive viral SARS-CoV-2 cultures were detected in samples ranging from 4 days before to 18 days after symptom onset. The daily culture SARS-CoV-2 positivity rate since symptom onset or diagnosis showed a steep decline between day 5 and 9, starting with a peak ranging from 44% to 50% on days -1 to 5, decreasing to 28% on day 7 and 11% on day 9, and finally ranging between 0% and 8% on days 10-17. Conclusions Viral shedding peaked within 5 days since symptom onset or diagnosis and the culture positivity rate rapidly declined hereafter. This systematic review provides an overview of current evidence on the daily SARS-CoV-2 culture positivity rates during the post-vaccination period. These findings could be used to estimate the effectiveness of public health control measures, including treatment and preventive strategies, to reduce the spread of COVID-19.
Collapse
Affiliation(s)
| | - Julia R Spinardi
- Vaccine Medical Affairs, Emerging Markets, Pfizer Inc., Itapevi, Brazil
| | | | - Jingyan Yang
- Global Value and Access, Pfizer Inc., New York, USA
| | | | - Moe H Kyaw
- Vaccine Scientific Affairs, Emerging Markets, Pfizer Inc., New York, USA
| |
Collapse
|
352
|
Chan T, Ginders J, Kuhlmeier E, Meli ML, Bönzli E, Meili T, Hüttl J, Hatt JM, Hindenlang Clerc K, Kipar A, Wyss F, Wenker C, Ryser-Degiorgis MP, Valenzuela Agüí C, Urban C, Beisel C, Stadler T, Hofmann-Lehmann R. Detection of SARS-CoV-2 RNA in a Zoo-Kept Red Fox ( Vulpes vulpes). Viruses 2024; 16:521. [PMID: 38675864 PMCID: PMC11054100 DOI: 10.3390/v16040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Many different animal species are susceptible to SARS-CoV-2, including a few Canidae (domestic dog and raccoon dog). So far, only experimental evidence is available concerning SARS-CoV-2 infections in red foxes (Vulpes vulpes). This is the first report of SARS-CoV-2 RNA detection in a sample from a red fox. The RT-qPCR-positive fox was zoo-kept together with another fox and two bears in the Swiss Canton of Zurich. Combined material from a conjunctival and nasal swab collected for canine distemper virus diagnostics tested positive for SARS-CoV-2 RNA with Ct values of 36.9 (E gene assay) and 35.7 (RdRp gene assay). The sample was analysed for SARS-CoV-2 within a research project testing residual routine diagnostic samples from different animal species submitted between spring 2020 and December 2022 to improve knowledge on SARS-CoV-2 infections within different animal species and investigate their potential role in a One Health context. Within this project, 246 samples from 153 different animals from Swiss zoos and other wild animal species all tested SARS-CoV-2 RT-qPCR and/or serologically negative so far, except for the reported fox. The source of SARS-CoV-2 in the fox is unknown. The fox disappeared within the naturally structured enclosure, and the cadaver was not found. No further control measures were undertaken.
Collapse
Affiliation(s)
- Tatjana Chan
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Julia Ginders
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Evelyn Kuhlmeier
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Eva Bönzli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Theres Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Julia Hüttl
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Department of Small Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland;
| | | | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland;
| | - Fabia Wyss
- Zoologischer Garten Basel AG, Binningerstrasse 40, 4054 Basel, Switzerland; (F.W.); (C.W.)
| | - Christian Wenker
- Zoologischer Garten Basel AG, Binningerstrasse 40, 4054 Basel, Switzerland; (F.W.); (C.W.)
| | | | - Cecilia Valenzuela Agüí
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, Postfach, 4009 Basel, Switzerland; (C.V.A.); (C.B.); (T.S.)
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Christian Urban
- Functional Genomics Center, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, Postfach, 4009 Basel, Switzerland; (C.V.A.); (C.B.); (T.S.)
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, Postfach, 4009 Basel, Switzerland; (C.V.A.); (C.B.); (T.S.)
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| |
Collapse
|
353
|
Sun MJ, Xing JH, Yan QS, Zou BS, Wang YJ, Niu TM, Yu T, Huang HB, Zhang D, Zhang SM, Sun WS, Zou RN, Wang CF, Shi CW. The Acetic Acid Produced by Lactobacillus Species Regulates Immune Function to Alleviate PEDV Infection in Piglets. Probiotics Antimicrob Proteins 2024. [DOI: 10.1007/s12602-024-10243-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 01/05/2025]
|
354
|
Baek JH, Lee YM, Vu ND, Kim MH, Zhao J, Le VP, Cho JH, Park JE. A multiplex real-time RT-qPCR assay for simultaneous detection of porcine epidemic diarrhea virus, porcine deltacoronavirus, and swine acute diarrhea syndrome coronavirus. Arch Virol 2024; 169:82. [PMID: 38520595 DOI: 10.1007/s00705-024-06003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) cause intestinal diseases with similar manifestations in suckling piglets. In this study, we developed a multiplex real-time PCR for differential diagnosis of PEDV, PDCoV, and SADS-CoV. The assay demonstrated high specificity with a detection limit of 5 copies/µl for each virus. The assay specifically detected PEDV, PDCoV, and SADS-CoV and excluded all other swine pathogens circulating in pigs. Furthermore, the assay exhibited satisfactory performance in analyzing clinical samples. The data indicate that the newly developed multiplex real-time PCR method can be applied for differential diagnosis of porcine enteric coronaviruses.
Collapse
Affiliation(s)
- Ji Hye Baek
- Molecular Diagnostics Team, Genes Laboratories, 388, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13403, Republic of Korea
| | - Yu-Min Lee
- Molecular Diagnostics Team, Genes Laboratories, 388, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13403, Republic of Korea
| | - Ngoc Duong Vu
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Min-Hui Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Van Phan Le
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Joo Hyuk Cho
- Molecular Diagnostics Team, Genes Laboratories, 388, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13403, Republic of Korea
| | - Jung-Eun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
355
|
Thieulent CJ, Carossino M, Peak L, Wolfson W, Balasuriya UBR. Development and validation of multiplex one-step qPCR/RT-qPCR assays for simultaneous detection of SARS-CoV-2 and pathogens associated with feline respiratory disease complex. PLoS One 2024; 19:e0297796. [PMID: 38517847 PMCID: PMC10959388 DOI: 10.1371/journal.pone.0297796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/12/2024] [Indexed: 03/24/2024] Open
Abstract
Feline respiratory disease complex (FRDC) is caused by a wide range of viral and bacterial pathogens. Both Influenza A virus (IAV) and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) also induce respiratory diseases in cats. Two one-step multiplex qPCR/RT-qPCR assays were developed and validated: FRA_1 (Feline respiratory assay 1) for the detection of four viral targets and FRA_2 for the detection of three bacteria associated with FRDC. Both multiplex assays demonstrated high specificity, efficiency (93.51%-107.8%), linearity (> 0.998), analytical sensitivity (≤ 15 genome copies/μl), repeatability (coefficient of variation [CV] < 5%), and reproducibility (CV < 6%). Among the 63 clinical specimens collected from FRDC-suspected cats, 92.1% were positive for at least one pathogen and co-infection was detected in 57.1% of samples. Mycoplasma felis (61.9%) was the most found pathogen, followed by feline herpesvirus-1 (30.2%), Chlamydia felis (28.7%) and feline calicivirus (27.0%). SARS-CoV-2 was detected in two specimens. In summary, this new panel of qPCR/RT-qPCR assays constitutes a useful and reliable tool for the rapid detection of SARS-CoV-2 and viral and bacterial pathogens associated with FRDC in cats.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Wendy Wolfson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
356
|
Guo J, Lai Y, Yang Z, Song W, Zhou J, Li Z, Su W, Xiao S, Fang L. Coinfection and Nonrandom Recombination Drive the Evolution of Swine Enteric Coronaviruses. Emerg Microbes Infect 2024:2332653. [PMID: 38517703 DOI: 10.1080/22221751.2024.2332653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Coinfection with multiple viruses is a common phenomenon in clinical settings and is a crucial driver of viral evolution. Although numerous studies have demonstrated viral recombination arising from coinfections of different strains of a specific species, the role of coinfections of different species or genera during viral evolution is rarely investigated. Here, we analyzed coinfections of and recombination events between four different swine enteric coronaviruses that infect the jejunum and ileum in pigs, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), and a deltacoronavirus, porcine deltacoronavirus (PDCoV). Various coinfection patterns were observed in 4,468 fecal and intestinal tissue samples collected from pigs in a 4-year survey. PEDV/PDCoV was the most frequent coinfection. However, recombination analyses have only detected events involving PEDV/TGEV and SADS-CoV/TGEV, indicating that inter-species recombination among coronaviruses is most likely to occur within the same genus. We also analyzed recombination events within the newly identified genus Deltacoronavirus and found that sparrows have played a unique host role in the recombination history of the deltacoronaviruses. The emerging virus PDCoV, which can infect humans, has a different recombination history. In summary, our study demonstrates that swine enteric coronaviruses are a valuable model for investigating the relationship between viral coinfection and recombination, which provide new insights into both inter- and intraspecies recombination events among swine enteric coronaviruses, and extend our understanding of the relationship between coronavirus coinfection and recombination.
Collapse
Affiliation(s)
- Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Yinan Lai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wenbo Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wen Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| |
Collapse
|
357
|
Townsley H, Gahir J, Russell TW, Greenwood D, Carr EJ, Dyke M, Adams L, Miah M, Clayton B, Smith C, Miranda M, Mears HV, Bailey C, Black JRM, Fowler AS, Crawford M, Wilkinson K, Hutchinson M, Harvey R, O’Reilly N, Kelly G, Goldstone R, Beale R, Papineni P, Corrah T, Gilson R, Caidan S, Nicod J, Gamblin S, Kassiotis G, Libri V, Williams B, Gandhi S, Kucharski AJ, Swanton C, Bauer DLV, Wall EC. COVID-19 in non-hospitalised adults caused by either SARS-CoV-2 sub-variants Omicron BA.1, BA.2, BA.4/5 or Delta associates with similar illness duration, symptom severity and viral kinetics, irrespective of vaccination history. PLoS One 2024; 19:e0294897. [PMID: 38512960 PMCID: PMC10956747 DOI: 10.1371/journal.pone.0294897] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/11/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND SARS-CoV-2 variant Omicron rapidly evolved over 2022, causing three waves of infection due to sub-variants BA.1, BA.2 and BA.4/5. We sought to characterise symptoms and viral loads over the course of COVID-19 infection with these sub-variants in otherwise-healthy, vaccinated, non-hospitalised adults, and compared data to infections with the preceding Delta variant of concern (VOC). METHODS In a prospective, observational cohort study, healthy vaccinated UK adults who reported a positive polymerase chain reaction (PCR) or lateral flow test, self-swabbed on alternate weekdays until day 10. We compared participant-reported symptoms and viral load trajectories between infections caused by VOCs Delta and Omicron (sub-variants BA.1, BA.2 or BA.4/5), and tested for relationships between vaccine dose, symptoms and PCR cycle threshold (Ct) as a proxy for viral load using Chi-squared (χ2) and Wilcoxon tests. RESULTS 563 infection episodes were reported among 491 participants. Across infection episodes, there was little variation in symptom burden (4 [IQR 3-5] symptoms) and duration (8 [IQR 6-11] days). Whilst symptom profiles differed among infections caused by Delta compared to Omicron sub-variants, symptom profiles were similar between Omicron sub-variants. Anosmia was reported more frequently in Delta infections after 2 doses compared with Omicron sub-variant infections after 3 doses, for example: 42% (25/60) of participants with Delta infection compared to 9% (6/67) with Omicron BA.4/5 (χ2 P < 0.001; OR 7.3 [95% CI 2.7-19.4]). Fever was less common with Delta (20/60 participants; 33%) than Omicron BA.4/5 (39/67; 58%; χ2 P = 0.008; OR 0.4 [CI 0.2-0.7]). Amongst infections with an Omicron sub-variants, symptoms of coryza, fatigue, cough and myalgia predominated. Viral load trajectories and peaks did not differ between Delta, and Omicron, irrespective of symptom severity (including asymptomatic participants), VOC or vaccination status. PCR Ct values were negatively associated with time since vaccination in participants infected with BA.1 (β = -0.05 (CI -0.10-0.01); P = 0.031); however, this trend was not observed in BA.2 or BA.4/5 infections. CONCLUSION Our study emphasises both the changing symptom profile of COVID-19 infections in the Omicron era, and ongoing transmission risk of Omicron sub-variants in vaccinated adults. TRIAL REGISTRATION NCT04750356.
Collapse
Affiliation(s)
- Hermaleigh Townsley
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| | - Joshua Gahir
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| | - Timothy W. Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Matala Dyke
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| | - Lorin Adams
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Murad Miah
- The Francis Crick Institute, London, United Kingdom
| | | | - Callie Smith
- The Francis Crick Institute, London, United Kingdom
| | | | | | - Chris Bailey
- The Francis Crick Institute, London, United Kingdom
| | - James R. M. Black
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | | | | | | | | | - Ruth Harvey
- The Francis Crick Institute, London, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | | | - Gavin Kelly
- The Francis Crick Institute, London, United Kingdom
| | | | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK)
| | | | - Tumena Corrah
- London Northwest University Healthcare NHS Trust, London, United Kingdom
| | - Richard Gilson
- Camden and North West London NHS Community Trust, London, United Kingdom
| | - Simon Caidan
- The Francis Crick Institute, London, United Kingdom
| | - Jerome Nicod
- The Francis Crick Institute, London, United Kingdom
| | | | - George Kassiotis
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St Mary’s Hospital, Imperial College London, London, United Kingdom
| | - Vincenzo Libri
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Bryan Williams
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Sonia Gandhi
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | - Adam J. Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Charles Swanton
- The Francis Crick Institute, London, United Kingdom
- University College London, London, United Kingdom
| | - David L. V. Bauer
- The Francis Crick Institute, London, United Kingdom
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK)
| | - Emma C. Wall
- The Francis Crick Institute, London, United Kingdom
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre and NIHR UCLH Clinical Research Facility, London, United Kingdom
| |
Collapse
|
358
|
He H, Li Y, Chen Y, Chen J, Li Z, Li L, Shi D, Zhang X, Shi H, Xue M, Feng L. NLRP1 restricts porcine deltacoronavirus infection via IL-11 inhibiting the phosphorylation of the ERK signaling pathway. J Virol 2024; 98:e0198223. [PMID: 38411106 PMCID: PMC10949457 DOI: 10.1128/jvi.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Continuously emerging highly pathogenic coronaviruses remain a major threat to human and animal health. Porcine deltacoronavirus (PDCoV) is a newly emerging enterotropic swine coronavirus that causes large-scale outbreaks of severe diarrhea disease in piglets. Unlike other porcine coronaviruses, PDCoV has a wide range of species tissue tropism, including primary human cells, which poses a significant risk of cross-species transmission. Nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) has a key role in linking host innate immunity to microbes and the regulation of inflammatory pathways. We now report a role for NLRP1 in the control of PDCoV infection. Overexpression of NLRP1 remarkably suppressed PDCoV infection, whereas knockout of NLRP1 led to a significant increase in PDCoV replication. A mechanistic study revealed that NLRP1 suppressed PDCoV replication in cells by upregulating IL-11 expression, which in turn inhibited the phosphorylation of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor U0126 effectively hindered PDCoV replication in pigs. Together, our results demonstrated that NLRP1 exerted an anti-PDCoV effect by IL-11-mediated inhibition of the phosphorylation of the ERK signaling pathway, providing a novel antiviral signal axis of NLRP1-IL-11-ERK. This study expands our understanding of the regulatory network of NLRP1 in the host defense against virus infection and provides a new insight into the treatment of coronaviruses and the development of corresponding drugs.IMPORTANCECoronavirus, which mainly infects gastrointestinal and respiratory epithelial cells in vivo, poses a huge threat to both humans and animals. Although porcine deltacoronavirus (PDCoV) is known to primarily cause fatal diarrhea in piglets, reports detected in plasma samples from Haitian children emphasize the potential risk of animal-to-human spillover. Finding effective therapeutics against coronaviruses is crucial for controlling viral infection. Nucleotide-binding oligomerization-like receptor (NLR) family pyrin domain-containing 1 (NLRP1), a key regulatory factor in the innate immune system, is highly expressed in epithelial cells and associated with the pathogenesis of viruses. We demonstrate here that NLRP1 inhibits the infection of the intestinal coronavirus PDCoV through IL-11-mediated phosphorylation inhibition of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor can control the infection of PDCoV in pigs. Our study emphasizes the importance of NLRP1 as an immune regulatory factor and may open up new avenues for the treatment of coronavirus infection.
Collapse
Affiliation(s)
- Haojie He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yunyan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhongyuan Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Liang Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Mei Xue
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
359
|
Niu S, Zhao Z, Liu Z, Rong X, Chai Y, Bai B, Han P, Shang G, Ren J, Wang Y, Zhao X, Liu K, Tian WX, Wang Q, Gao GF. Structural basis and analysis of hamster ACE2 binding to different SARS-CoV-2 spike RBDs. J Virol 2024; 98:e0115723. [PMID: 38305152 PMCID: PMC10949455 DOI: 10.1128/jvi.01157-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Pet golden hamsters were first identified being infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC) and transmitted the virus back to humans in Hong Kong in January 2022. Here, we studied the binding of two hamster (golden hamster and Chinese hamster) angiotensin-converting enzyme 2 (ACE2) proteins to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants, including alpha, beta, gamma, delta, and four omicron sub-variants (BA.1, BA.2, BA.3, and BA.4/BA.5). We found that the two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2 (hACE2). Furthermore, the similar infectivity to host cells expressing hamster ACE2s and hACE2 was confirmed with the nine pseudotyped SARS-CoV-2 viruses. Additionally, we determined two cryo-electron microscopy (EM) complex structures of golden hamster ACE2 (ghACE2)/delta RBD and ghACE2/omicron BA.3 RBD. The residues Q34 and N82, which exist in many rodent ACE2s, are responsible for the lower binding affinity of ghACE2 compared to hACE2. These findings suggest that all SARS-CoV-2 VOCs may infect hamsters, highlighting the necessity of further surveillance of SARS-CoV-2 in these animals.IMPORTANCESARS-CoV-2 can infect many domestic animals, including hamsters. There is an urgent need to understand the binding mechanism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to hamster receptors. Herein, we showed that two hamster angiotensin-converting enzyme 2s (ACE2s) (golden hamster ACE2 and Chinese hamster ACE2) can bind to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants and that pseudotyped SARS-CoV-2 viruses can infect hamster ACE2-expressing cells. The binding pattern of golden hamster ACE2 to SARS-CoV-2 RBDs is similar to that of Chinese hamster ACE2. The two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2. We solved the cryo-electron microscopy (EM) structures of golden hamster ACE2 in complex with delta RBD and omicron BA.3 RBD and found that residues Q34 and N82 are responsible for the lower binding affinity of ghACE2 compared to hACE2. Our work provides valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.
Collapse
Affiliation(s)
- Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhimin Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyu Rong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Han
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guijun Shang
- Cryo-EM Center, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Jianle Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wen-xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Qihui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George Fu Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
360
|
Ruedas-Torres I, Sánchez-Carvajal JM, Salguero FJ, Pallarés FJ, Carrasco L, Mateu E, Gómez-Laguna J, Rodríguez-Gómez IM. The scene of lung pathology during PRRSV-1 infection. Front Vet Sci 2024; 11:1330990. [PMID: 38566751 PMCID: PMC10985324 DOI: 10.3389/fvets.2024.1330990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases for the pig industry worldwide. The disease was firstly reported in 1987 and became endemic in many countries. Since then, outbreaks caused by strains of high virulence have been reported several times in Asia, America and Europe. Interstitial pneumonia, microscopically characterised by thickened alveolar septa, is the hallmark lesion of PRRS. However, suppurative bronchopneumonia and proliferative and necrotising pneumonia are also observed, particularly when a virulent strain is involved. This raises the question of whether the infection by certain strains results in an overstimulation of the proinflammatory response and whether there is some degree of correlation between the strain involved and a particular pattern of lung injury. Thus, it is of interest to know how the inflammatory response is modulated in these cases due to the interplay between virus and host factors. This review provides an overview of the macroscopic, microscopic, and molecular pathology of PRRSV-1 strains in the lung, emphasising the differences between strains of different virulence.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- United Kingdom Health Security Agency (UKHSA Porton Down), Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | | | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
361
|
Zhang Y, Si L, Gao J, Shu X, Qiu C, Zhang Y, Zu S, Hu H. Serial passage of PDCoV in cell culture reduces its pathogenicity and its damage of gut microbiota homeostasis in piglets. mSystems 2024; 9:e0134623. [PMID: 38349151 PMCID: PMC10949489 DOI: 10.1128/msystems.01346-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 03/20/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteropathogenic coronavirus that mainly causes diarrhea in suckling piglets, and also has the potential for cross-species transmission. However, there are still no commercial vaccines available to prevent and control PDCoV infection. In this study, PDCoV strain HNZK-02 was serially propagated in vitro for up to 150 passages and the amino acid changes have mainly occurred in the S protein during serial passage which caused structure change. PDCoV HNZK-02-passage 5 (P5)-infected piglets exhibited acute and severe watery diarrhea, an obvious intestinal damage, while the piglets infected with PDCoV HNZK-02-P150 showed no obvious clinical signs, weak intestinal lesions, and lower viral loads in rectal swabs and various tissues. Compared with the PDCoV HNZK-02-P5 infection, HNZK-02-P150 infection resulted in a decrease in intestinal mucosal permeability and pro-inflammatory cytokines. Moreover, PDCoV HNZK-02-P5 infection had significantly reduced bacterial diversity and increased relative abundance of opportunistic pathogens, while PDCoV HNZK-02-P150 infection did not significantly affect the bacterial diversity, and the relative abundance of probiotics increased. Furthermore, the alterations of gut microbiota were closely related to the change of pro-inflammatory factor. Metagenomics prediction analysis demonstrated that HNZK-02-P150 modulated the tyrosine metabolism, Nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathway, and lipopolysaccharide biosynthesis, which coincided with lower inflammatory response and intestinal permeability in the piglets infected with HNZK-02-P150. In conclusion, the PDCoV HNZK-02 was successfully attenuated by serial passage in vitro, and the changes of S gene, metabolic function, and gut microbiota may contribute to the attenuation. The PDCoV HNZK-02-P150 may have the potential for developing live-attenuated vaccine.IMPORTANCEPorcine deltacoronavirus (PDCoV) is an enteropathogen causing severe diarrhea, dehydration, and death in nursing piglets, devastating great economic losses for the global swine industry, and has cross-species transmission and zoonotic potential. There are currently no approved treatments or vaccines available for PDCoV. In addition, gut microbiota has an important relationship with the development of many diseases. Here, the PDCoV virulent HNZK-02 strain was successfully attenuated by serial passage on cell cultures, and the pathogenesis and effects on the gut microbiota composition and metabolic function of the PDCoV HNZK-02-P5 and P150 strains were investigated in piglets. We also found the genetic changes in the S protein during passage in vitro and the gut microbiota may contribute to the pathogenesis of PDCoV, while their interaction molecular mechanism would need to be explored further.
Collapse
Affiliation(s)
- Yunfei Zhang
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lulu Si
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Junlong Gao
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangli Shu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Congrui Qiu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue Zhang
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
| | - Shaopo Zu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
| | - Hui Hu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| |
Collapse
|
362
|
Magwira CA, Nndwamato NP, Selabe G, Seheri ML. Lewis a-b- histo-blood group antigen phenotype is predictive of severe COVID-19 in the black South African population group. Glycobiology 2024; 34:cwad090. [PMID: 37950443 DOI: 10.1093/glycob/cwad090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Several risk factors have been associated with SARS-CoV-2 infections and severity of COVID-19 disease it causes. This study investigated whether variations in histo-blood group antigen (HBGA) expression can predispose individuals to SARS-CoV-2 infections and severity of the disease. Nasopharyngeal swabs, randomly selected from SARS-CoV-2 positive and SARS-CoV-2 negative individuals, were tested for Lewis and H-type 1 HBGA phenotypes by ELISA using monoclonal antibodies specific to Lewis a, Lewis b and H type 1 antigens. The most common Lewis HBGA phenotype among all study participants was Lewis a-b+ (46%), followed by Lewis a-b- (24%), Lewis a+b- and Lewis a+b+ (15% each), while 55% of the study participants were H-type 1. Although SARS-CoV-2 negative individuals had a lower likelihood of having a Lewis a-b- phenotype compared to their SARS-CoV-2 positives counterparts (OR: 0.53, 95% C.I: 0.255-1.113), it did not reach statistical significance (P = 0.055). The frequency of Lewis a+b+, Lewis a+B-, Lewis a-b+, H type 1 positive and H type 1 negative were consistent between SARS-CoV-2 positive and SARS-CoV-2 negative individuals. When stratified according to severity of the disease, individuals with Lewis a+b- phenotype had a higher likelihood of developing mild COVID-19 symptoms (OR: 3.27, 95% CI; 0.9604-11.1), but was not statistically significant (P = 0.055), while Lewis a-b- phenotype was predictive of severe COVID-19 symptoms (OR: 4.3, 95% CI: 1.274-14.81), P = 0.016. In conclusion, individuals with Lewis a-b- phenotype were less likely to be infected by SARS-CoV-2, but when infected, they were at risk of severe COVID-19.
Collapse
Affiliation(s)
- Cliff A Magwira
- Diarrheal Pathogens Research Unit (DPRU), Department of Medical Virology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
| | - Ndivho P Nndwamato
- Diarrheal Pathogens Research Unit (DPRU), Department of Medical Virology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
| | - Gloria Selabe
- Hepatitis and HIV Research Unit, Department of Medical Virology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
| | - Mapaseka L Seheri
- Diarrheal Pathogens Research Unit (DPRU), Department of Medical Virology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
| |
Collapse
|
363
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
364
|
Wang Y, Song J, Deng X, Wang J, Zhang M, Liu Y, Tang P, Liu H, Zhou Y, Tong G, Li G, Yu L. Nanoparticle vaccines based on the receptor binding domain of porcine deltacoronavirus elicit robust protective immune responses in mice. Front Immunol 2024; 15:1328266. [PMID: 38550592 PMCID: PMC10972852 DOI: 10.3389/fimmu.2024.1328266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Background Porcine deltacoronavirus (PDCoV), a novel swine enteropathogenic coronavirus, challenges the global swine industry. Currently, there are no approaches preventing swine from PDCoV infection. Methods A new PDCoV strain named JS2211 was isolated. Next, the dimer receptor binding domain of PDCoV spike protein (RBD-dimer) was expressed using the prokaryotic expression system, and a novel nanoparticle containing RBD-dimer and ferritin (SC-Fe) was constructed using the SpyTag/SpyCatcher system. Finally, the immunoprotection of RBD-Fe nanoparticles was evaluated in mice. Results The novel PDCoV strain was located in the clade of the late Chinese isolate strains and close to the United States strains. The RBD-Fe nanoparticles were successfully established. Immune responses of the homologous prime-boost regime showed that RBD-Fe nanoparticles efficiently elicited specific humoral and cellular immune responses in mice. Notably, high level PDCoV RBD-specific IgG and neutralizing antibody (NA) could be detected, and the histopathological results showed that PDCoV infection was dramatically reduced in mice immunized with RBD-Fe nanoparticles. Conclusion This study effectively developed a candidate nanoparticle with receptor binding domain of PDCoV spike protein that offers protection against PDCoV infection in mice.
Collapse
Affiliation(s)
- Yuanhong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junhan Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoying Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junna Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Miao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Pan Tang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
365
|
Kikuti M, Picasso-Risso C, Corzo CA. Porcine Deltacoronavirus Occurrence in the United States Breeding Herds since Its Emergence in 2014. Viruses 2024; 16:445. [PMID: 38543810 PMCID: PMC10975363 DOI: 10.3390/v16030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
PDCoV, an enveloped RNA virus, causes atrophic enteritis in neonatal piglets, leading to diarrhea, malabsorption, dehydration, and death. The study aims to fill the gap in the current epidemiological information about PDCoV in the U.S. pig population after its emergence in 2014. Data from the Morrison Swine Health Monitoring Project (MSHMP) between January 2015 and December 2023 were analyzed, representing approximately 60% of the U.S. breeding herd. Participating herds report weekly PDCoV health status. In total, 244 PDCoV outbreaks occurred in 186 sites from 22 production systems across 16 states. Case counts peaked during winter, and incidence ranged from 0.44% in 2017 to 4.28% in 2023. For sites that experienced more than one PDCoV outbreak during the study period, the interval between outbreaks was a median of 2.11 years. The South and Midwest regions reported the majority of cases. In 2017, a shift in the spatial distribution of cases from the Midwest to the South was observed. The findings underscore the importance of continued monitoring and strengthened control measures to mitigate the impact of PDCoV in U.S. breeding herds.
Collapse
Affiliation(s)
- Mariana Kikuti
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (M.K.)
| | - Catalina Picasso-Risso
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (M.K.)
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Cesar A. Corzo
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (M.K.)
| |
Collapse
|
366
|
Tao J, Li B, Shi Y, Cheng J, Tang P, Jiao J, Liu H. Genomic Evolution and Selective Pressure Analysis of a Novel Porcine Sapovirus in Shanghai, China. Microorganisms 2024; 12:569. [PMID: 38543620 PMCID: PMC10975609 DOI: 10.3390/microorganisms12030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine sapovirus (PoSaV) is one of the most significant pathogens causing piglet diarrhea, and one with limited genetic characterization. In this study, the prevalence, infection pattern, and genetic evolution of porcine sapovirus were elucidated in detail. The positive rate of PoSaV was 10.1% (20/198), with dual, triple, and quadruple infections of 45%, 40%, and 5%, respectively. To further explore the viral composition in the PoSaV-positive diarrhea feces, metagenomic sequencing was carried out. The results confirmed that RNA viruses accounted for a higher proportion (55.47%), including the two primary viruses of PoSaV (21.78%) and porcine astrovirus (PAstV) (24.54%) in the tested diarrhea feces samples. Afterward, a full-length sequence of the PoSaV isolate was amplified and named SHCM/Mega2023, and also given the identifier of GenBank No. PP388958. Phylogenetic analysis identified the prevalent PoSaV strain SHCM/Mega2023 in the GIII genogroup, involving a recombinant event with MK962338 and KT922089, with the breakpoint at 2969-5132 nucleotides (nt). The time tree revealed that the GIII genogroup exhibits the widest divergence time span, indicating a high likelihood of viral recombination. Moreover, SHCM/Mega2023 had three nucleotide "RPL" insertions at the 151-153 nt site in the VP2 gene, compared to the other GIII strains. Further selective pressure calculations demonstrate that the whole genome of the SHCM/Mega2023 strain was under purifying selection (dN/dS < 1), with seven positively selected sites in the VP1 protein, which might be related to antigenicity. In conclusion, this study presents a novel genomic evolution of PoSaV, offering valuable insights into antigenicity and for vaccine research.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Pan Tang
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jiajie Jiao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| |
Collapse
|
367
|
Mohapatra L, Patel G, Tripathi AS, Alka, Mishra D, Parida SK, Yasir M, Maurya RK. Swine Flu. RISING CONTAGIOUS DISEASES 2024:50-65. [DOI: 10.1002/9781394188741.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
368
|
Hassanien RT, Thieulent CJ, Carossino M, Li G, Balasuriya UBR. Modulation of Equid Herpesvirus-1 Replication Dynamics In Vitro Using CRISPR/Cas9-Assisted Genome Editing. Viruses 2024; 16:409. [PMID: 38543774 PMCID: PMC10975850 DOI: 10.3390/v16030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 05/23/2024] Open
Abstract
(1) Background: equid alphaherpesvirus-1 (EHV-1) is a highly contagious viral pathogen prevalent in most horse populations worldwide. Genome-editing technologies such as CRISPR/Cas9 have become powerful tools for precise RNA-guided genome modifications; (2) Methods: we designed single guide RNAs (sgRNA) to target three essential (ORF30, ORF31, and ORF7) and one non-essential (ORF74) EHV-1 genes and determine their effect on viral replication dynamics in vitro; (3) Results: we demonstrated that sgRNAs targeting essential lytic genes reduced EHV-1 replication, whereas those targeting ORF74 had a negligible effect. The sgRNAs targeting ORF30 showed the strongest effect on the suppression of EHV-1 replication, with a reduction in viral genomic copy numbers and infectious progeny virus output. Next-generation sequencing identified variants with deletions in the specific cleavage site of selective sgRNAs. Moreover, we evaluated the combination between different sgRNAs and found that the dual combination of sgRNAs targeting ORF30 and ORF7 significantly suppressed viral replication to lower levels compared to the use of a single sgRNA, suggesting a synergic effect; (4) Conclusion: data demonstrate that sgRNA-guided CRISPR/Cas9 can be used to inhibit EHV-1 replication in vitro, indicating that this programmable technique can be used to develop a novel, safe, and efficacious therapeutic and prophylactic approach against EHV-1.
Collapse
Affiliation(s)
- Rabab T. Hassanien
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Virology Department, Animal Health Research Institute, Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ganwu Li
- Department of Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
369
|
Li L, Liu Z, Shi J, Yang M, Yan Y, Fu Y, Shen Z, Peng G. The CDE region of feline Calicivirus VP1 protein is a potential candidate subunit vaccine. BMC Vet Res 2024; 20:80. [PMID: 38443948 PMCID: PMC10916247 DOI: 10.1186/s12917-024-03914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Feline calicivirus (FCV) infection causes severe upper respiratory disease in cats, but there are no effective vaccines available for preventing FCV infection. Subunit vaccines have the advantages of safety, low cost and excellent immunogenicity, but no FCV subunit vaccine is currently available. The CDE protein is the dominant neutralizing epitope region of the main antigenic structural protein of FCV, VP1. Therefore, this study evaluated the effectiveness of the CDE region as a truncated FCV VP1 protein in preventing FCV infection to provide a strategy for developing potential FCV subunit vaccines. RESULTS Through the prediction of FCV VP1 epitopes, we found that the E region is the dominant neutralizing epitope region. By analysing the spatial structure of VP1 protein, 13 amino acid sites in the CD and E regions were found to form hydrogen bonding interactions. The results show the presence of these interaction forces supports the E region, helping improve the stability and expression level of the soluble E protein. Therefore, we selected the CDE protein as the immunogen for the immunization of felines. After immunization with the CDE protein, we found significant stimulation of IgG, IgA and neutralizing antibody production in serum and swab samples, and the cytokine TNF-α levels and the numbers of CD4+ T lymphocytes were increased. Moreover, a viral challenge trial indicated that the protection generated by the CDE subunit vaccine significantly reduced the incidence of disease in animals. CONCLUSIONS For the first time, we studied the efficacy of the CDE protein, which is the dominant neutralizing epitope region of the FCV VP1 protein, in preventing FCV infection. We revealed that the CDE protein can significantly activate humoral, mucosal and cellular immunity, and the resulting protective effect can significantly reduce the incidence of animal disease. The CDE region of the FCV capsid is easy to produce and has high stability and excellent immunogenicity, which makes it a candidate for low-cost vaccines.
Collapse
Affiliation(s)
- Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanan Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
370
|
Zyoud S. Global Mapping and Visualization Analysis of One Health Knowledge in the COVID-19 Context. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241236017. [PMID: 38449589 PMCID: PMC10916474 DOI: 10.1177/11786302241236017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Globally, the COVID-19 pandemic had a significant impact on the health, social, and economic systems, triggering lasting damage and exposing the complexity of the problem beyond just being a health emergency. This crisis has highlighted the need for a comprehensive and collaborative strategy to successfully counter infectious diseases and other global challenges. With the COVID-19 pandemic pushing One Health to the forefront of global health and sustainable development agendas, this concept has emerged as a potential approach for addressing these challenges. In the context of COVID-19, this study investigates global knowledge about One Health by examining its state, significant contributions, and future directions. It seeks to offer an integrated framework of insights guiding the development of well-informed decisions. A comprehensive search using the Scopus database was conducted, employing specific terms related to One Health and COVID-19. VOSviewer 1.6.19 software was used to generate network visualization maps. Countries' research output was adjusted based on their gross domestic product (GDP) and population size. The study identified a total of 527 publications. The United States led with 134 documents (25.4%), but India topped the adjusted ranking. One Health journal stood as the most common outlet for disseminating knowledge (49 documents; 9.3%), while Centers for Disease Control and Prevention (CDC), the United States emerged as the most prolific institution (13 documents; 2.5%). Key topics were related to the virus transmission mechanisms, climate change impacts, antimicrobial resistance, ecosystem health, preparedness, collaboration, community engagement, and developing of efficient surveillance systems. The study emphasizes how critical it is to capitalize on the present momentum of COVID-19 to advance One Health concepts. Integrating social and environmental sciences, and a variety of professions for better interaction and collaboration is crucial. Additionally, increased funding for developing countries, and legislative empowerment are vital to advance One Health and boost disease prevention.
Collapse
Affiliation(s)
- Shaher Zyoud
- Department of Building Engineering & Environment,Palestine Technical University (Kadoorie), Tulkarem, Palestine
- Department of Civil Engineering & Sustainable Structures,Palestine Technical University (Kadoorie), Tulkarem, Palestine
| |
Collapse
|
371
|
Moses IB, Ribeiro ÁCDS, Valiatti TB, Santos FF, Cayô R, Gales AC. First Detection of International High-Risk bla KPC-2-Harbouring Escherichia coli Pandemic Lineage ST648 in Pet Food Packages. Transbound Emerg Dis 2024; 2024:9995914. [PMID: 40303173 PMCID: PMC12017175 DOI: 10.1155/2024/9995914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 01/05/2025]
Abstract
The continued worldwide increase in pet ownership has significantly boosted the growth of the pet food industry accompanied by new food safety risks and challenges. This study was designed to determine the occurrence and molecularly characterize multidrug-resistant (MDR) Enterobacterales in pet food. Eighty-six (86) packages of dry and wet pet food purchased in different retail stores were screened for carbapenem-resistant Enterobacterales (CRE). Antimicrobial susceptibility testing was performed by agar dilution technique using EUCAST/BrCAST recommendations. Blue-Carba test was further used to screen for carbapenemase-producing isolates. Isolated CRE strains were identified at the species level using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Detection of carbapenemase-encoding genes was carried out by PCR, Sanger sequencing, and whole genome sequencing (WGS). A total of 15 (17.4%) MDR-CRE (Escherichia coli (n = 2), Enterobacter cloacae (n = 10), Leclercia adecarboxylata (n = 2), and Cronobacter spp. (n = 1)) were isolated from 86 pet food samples. In addition to being resistant to beta-lactams, the Gram-negative bacterial isolates were also resistant to aminoglycosides, fluoroquinolones, and tigecycline. Interestingly, two carbapenem-resistant E. coli isolates harboured bla KPC-2 gene. WGS analysis of the two bla KPC-2-producing E. coli isolates revealed that they both belong to ST648 and serotype O153:H2 group. The genetic context of the bla KPC-2 showed that they were carried by an IncN plasmid on a Tn4401b transposon element. To the best of our knowledge, this is the first description of bla KPC-2-harbouring E. coli ST648 pathogens in pet food. The detection of bla KPC-2-harbouring E. coli ST648 pandemic high-risk lineage in pet food is worrisome and a serious "One Health" issue. Therefore, pet food should be considered as a potential vehicle for the transmission of MDR pathogens to companion animals, and a risk factor for the dissemination of these bacterial pathogens to pet animals and their human guardians.
Collapse
Affiliation(s)
- Ikechukwu Benjamin Moses
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, Rua Pedro de Toledo, 781, São Paulo-SP, Brazil
- Department of Applied Microbiology, Faculty of Sciences, Ebonyi State University, P.M.B. 053, Abakaliki, Nigeria
| | - Ághata Cardoso da Silva Ribeiro
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, Rua Pedro de Toledo, 781, São Paulo-SP, Brazil
| | - Tiago Barcelos Valiatti
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, Rua Pedro de Toledo, 781, São Paulo-SP, Brazil
| | - Fernanda Fernandes Santos
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, Rua Pedro de Toledo, 781, São Paulo-SP, Brazil
| | - Rodrigo Cayô
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, Rua Pedro de Toledo, 781, São Paulo-SP, Brazil
- Laboratory of Immunology and Microbiology (LIB), Division of Molecular Biology, Microbiology and Immunology, Department of Biological Sciences (DCB), Institute of Environmental, Chemical and Pharmaceutical Sciences (ICAQF), Universidade Federal de São Paulo (UNIFESP), Diadema-SP, Brazil
| | - Ana Cristina Gales
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, Rua Pedro de Toledo, 781, São Paulo-SP, Brazil
| |
Collapse
|
372
|
Middleton C, Larremore DB. Modeling the Transmission Mitigation Impact of Testing for Infectious Diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.22.23295983. [PMID: 37808825 PMCID: PMC10557819 DOI: 10.1101/2023.09.22.23295983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A fundamental question of any program focused on the testing and timely diagnosis of a communicable disease is its effectiveness in reducing transmission. Here, we introduce testing effectiveness (TE)-the fraction by which testing and post-diagnosis isolation reduce transmission at the population scale-and a model that incorporates test specifications and usage, within-host pathogen dynamics, and human behaviors to estimate TE. Using TE to guide recommendations, we show that today's rapid diagnostics should be used immediately upon symptom onset to control influenza A and respiratory syncytial virus (RSV), but delayed by up to 2d to control omicron-era SARS-CoV-2. Furthermore, while rapid tests are superior to RT-qPCR for control of founder-strain SARS-CoV-2, omicron-era changes in viral kinetics and rapid test sensitivity cause a reversal, with higher TE for RT-qPCR despite longer turnaround times. Finally, we illustrate the model's flexibility by quantifying tradeoffs in the use of post-diagnosis testing to shorten isolation times.
Collapse
Affiliation(s)
- Casey Middleton
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel B Larremore
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
373
|
Wang X, Fei Y, Shao Y, Liao Q, Meng Q, Chen R, Deng L. Transcriptome analysis reveals immune function-related mRNA expression in donkey mammary glands during four developmental stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101169. [PMID: 38096640 DOI: 10.1016/j.cbd.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
The low susceptibility to mastitis of female donkey (jenny) mammary glands and the strong immune properties of donkey milk are acknowledged, but little is known about the genes involved in mammary gland immunity in jennies. Herein, we used RNA-sequencing and bioinformatics analyses to explore jenny mammary gland transcriptomes and detect potential functional differentially expressed (DE) mRNAs related to immunity during four specific developmental stages: foetal (F), pubertal (P), adult parous nonlactation (N) and lactation (L). A total of 2497, 583 and 1820 DE mRNAs were identified in jenny mammary glands at F vs. P, P vs. N, and N vs. L, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) analyses revealed numerous GO terms related to immune function, especially between F and P. Seven significantly enriched profiles were identified, among which 497 and 1261 DE mRNAs were upregulated in profiles 19 and 17. Eleven mRNAs were enriched in over 10 KEGG pathways. β-2-microglobulin (B2M), immunoglobulin heavy constant mu (IGHM), toll like receptor 2 (TLR2), toll like receptor 4 (TLR4) and myeloid differentiation factor 88 (MYD88) were mainly involved in phosphoinositide 3-kinase (PI3K)-Akt signalling, phagosome and nuclear factor kappa-B (NF-kappa B) signalling pathways. The findings provide insight into the molecular features underpinning the low prevalence of intramammary infections (i.e., mastitis) in donkeys.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yaqi Fei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Shao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingchao Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingze Meng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ran Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Liang Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
374
|
Van Poelvoorde LAE, Gobbo A, Nauwelaerts SJD, Verhaegen B, Lesenfants M, Janssens R, Hutse V, Fraiture MA, De Keersmaecker S, Herman P, Van Hoorde K, Roosens N. Development of a reverse transcriptase digital droplet polymerase chain reaction-based approach for SARS-CoV-2 variant surveillance in wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10999. [PMID: 38414298 DOI: 10.1002/wer.10999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/29/2024]
Abstract
An urgent need for effective surveillance strategies arose due to the global emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although vaccines and antivirals are available, concerns persist about the evolution of new variants with potentially increased infectivity, transmissibility, and immune evasion. Therefore, variant monitoring is crucial for public health decision-making. Wastewater-based surveillance has proven to be an effective tool to monitor SARS-CoV-2 variants within populations. Specific SARS-CoV-2 variants are detected and quantified in wastewater in this study using a reverse transcriptase digital droplet polymerase chain reaction (RT-ddPCR) approach. The 11 designed assays were first validated in silico using a substantial dataset of high-quality SARS-CoV-2 genomes to ensure comprehensive variant coverage. The assessment of the sensitivity and specificity with reference material showed the capability of the developed assays to reliably identify target mutations while minimizing false positives and false negatives. The applicability of the assays was evaluated using wastewater samples from a wastewater treatment plant in Ghent, Belgium. The quantification of the specific mutations linked to the variants of concern present in these samples was calculated using these assays based on the detection of single mutations, which confirms their use for real-world variant surveillance. In conclusion, this study provides an adaptable protocol to monitor SARS-CoV-2 variants in wastewater with high sensitivity and specificity. Its potential for broader application in other viral surveillance contexts highlights its added value for rapid response to emerging infectious diseases. PRACTITIONER POINTS: Robust RT-ddPCR methodology for specific SARS-CoV-2 variants of concern detection in wastewater. Rigorous validation that demonstrates high sensitivity and specificity. Demonstration of real-world applicability using wastewater samples. Valuable tool for rapid response to emerging infectious diseases.
Collapse
Affiliation(s)
| | - Andrea Gobbo
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | - Marie Lesenfants
- Epidemiology of infectious diseases, Sciensano, Brussels, Belgium
| | - Raphael Janssens
- Epidemiology of infectious diseases, Sciensano, Brussels, Belgium
| | - Veronik Hutse
- Epidemiology of infectious diseases, Sciensano, Brussels, Belgium
| | | | | | | | | | - Nancy Roosens
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
375
|
Song J, Guo Y, Wang D, Quan R, Wang J, Liu J. Seneca Valley virus 3C protease cleaves OPTN (optineurin) to Impair selective autophagy and type I interferon signaling. Autophagy 2024; 20:614-628. [PMID: 37930946 PMCID: PMC10936645 DOI: 10.1080/15548627.2023.2277108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Seneca Valley virus (SVV) causes vesicular disease in pigs, posing a threat to global pork production. OPTN (optineurin) is a macroautophagy/autophagy receptor that restricts microbial propagation by targeting specific viral or bacterial proteins for degradation. OPTN is degraded and cleaved at glutamine 513 following SVV infection via the activity of viral 3C protease (3C[pro]), resulting in N-terminal and a C-terminal OPTN fragments. Moreover, OPTN interacts with VP1 and targets VP1 for degradation to inhibit viral replication. The N-terminal cleaved OPTN sustained its interaction with VP1, whereas the degradation capacity targeting VP1 decreased. The inhibitory effect of N-terminal OPTN against SVV infection was significantly reduced, C-terminal OPTN failed to inhibit viral replication, and degradation of VP1 was blocked. The knockdown of OPTN resulted in reduced TBK1 activation and phosphorylation of IRF3, whereas overexpression of OPTN led to increased TBK1-IRF3 signaling. Additionally, the N-terminal OPTN diminished the activation of the type I IFN (interferon) pathway. These results show that SVV 3C[pro] targets OPTN because its cleavage impairs its function in selective autophagy and type I IFN production, revealing a novel model in which the virus develops diverse strategies for evading host autophagic machinery and type I IFN response for survival.Abbreviations: Co-IP: co-immunoprecipitation; GFP-green fluorescent protein; hpi: hours post-infection; HRP: horseradish peroxidase; IFN: interferon; IFNB/IFN-β: interferon beta; IRF3: interferon regulatory factor 3; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; OPTN: optineurin; PBS: phosphate-buffered saline; SVV: Seneca Valley virus; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; UBAN: ubiquitin binding in TNIP/ABIN (TNFAIP3/A20 and inhibitor of NFKB/NF-kB) and IKBKG/NEMO; UBD: ubiquitin-binding domain; ZnF: zinc finger.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yitong Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
376
|
Lim J, Zhou S, Baek J, Kim AY, Valera E, Sweedler J, Bashir R. A Blood Drying Process for DNA Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307959. [PMID: 37888793 DOI: 10.1002/smll.202307959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 10/28/2023]
Abstract
The presence of numerous inhibitors in blood makes their use in nucleic acid amplification techniques difficult. Current methods for extracting and purifying pathogenic DNA from blood involve removal of inhibitors, resulting in low and inconsistent DNA recovery rates. To address this issue, a biphasic method is developed that simultaneously achieves inhibitor inactivation and DNA amplification without the need for a purification step. Inhibitors are physically trapped in the solid-phase dried blood matrix by blood drying, while amplification reagents can move into the solid nano-porous dried blood and initiate the amplification. It is demonstrated that the biphasic method has significant improvement in detection limits for bacteria such as Escherichia coli, Methicillin-resistant Staphylococcus aureus, Methicillin-Sensitive Staphylococcus aureus using loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA). Several factors, such as drying time, sample volume, and material properties are characterized to increase sensitivity and expand the application of the biphasic assay to blood diagnostics. With further automation, this biphasic technique has the potential to be used as a diagnostic platform for the detection of pathogens eliminating lengthy culture steps.
Collapse
Affiliation(s)
- Jongwon Lim
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shuaizhen Zhou
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Janice Baek
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alicia Yeaeun Kim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Enrique Valera
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jonathan Sweedler
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rashid Bashir
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Science, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
377
|
Han G, Deng W, Lyu Q, Ma Q, Qiao L. Multiplexed discrimination of SARS-CoV-2 variants via duplex-specific nuclease combined MALDI-TOF MS. Anal Bioanal Chem 2024; 416:1833-1842. [PMID: 38367041 DOI: 10.1007/s00216-024-05202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
The frequent mutations in SARS-CoV-2 significantly increase the virus's pathogenicity and transmissibility while also diminishing the effectiveness of vaccines. Consequently, assays capable of rapidly and simultaneously identifying multiple SARS-CoV-2 variants are essential for large-scale applications that aim to monitor the evolution of the virus. In this work, we propose a method combining duplex-specific nuclease (DSN)-assisted cyclic amplification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) detection, enabling the simultaneous identification of multiple SARS-CoV-2 variants at high-throughput. Due to the high specificity of DSN, single-base mutations can be resolved by the method. With ultra-sensitive detection by MALDI-TOF MS, a limit of detection of 100 pM viral RNA fragment was demonstrated. The assay was used for simultaneous identification and typing of SARS-CoV-2 Alpha, Beta, and Delta variants. The whole assay can be accomplished within 3 h, and the amplification is performed under constant temperature, making the technique simple in operation and efficient. It is also feasible to extend the technique to the detection of many other variants of the virus. We expect that the method can add value to the rapid screening of viral variants and can play an important role in pandemic control.
Collapse
Affiliation(s)
- Guobin Han
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Wenchan Deng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qian Lyu
- Bioyong Technologics Inc, Beijing, 100176, China
| | - Qingwei Ma
- Bioyong Technologics Inc, Beijing, 100176, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
378
|
Liu Q, Wu J, Gao N, Zhang X, Gao M, Zhang X, Guo L, Wu Y, Shi D, Shi H, Chen J, Feng L. A novel antigenic epitope identified on the accessory protein NS6 of porcine deltacoronavirus. Virus Res 2024; 341:199329. [PMID: 38262568 PMCID: PMC10840108 DOI: 10.1016/j.virusres.2024.199329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel enteric coronavirus that can cause vomiting, watery diarrhea in pigs and the death of piglets. The open reading frame (ORF) 5 is one of the accessory genes in PDCoV genome and encodes an accessory protein NS6. To date, the function of NS6 is still unclear. In this study, the recombinant NS6 was successfully expressed in prokaryotic expression system and purified. To prepare monoclonal antibody (mAb), six-week-old female BALB/c mice were primed subcutaneously with purified NS6. A novel mouse mAb against NS6 was obtained and designated as 3D5. The isotype of 3D5 is IgG2b with kappa (κ) light chain. 3D5 can specifically recognizes the natural NS6 in swine testis (ST) cells infected with PDCoV and expressed NS6 in human embryonic kidney 293T (HEK 293T) cells transfected with mammalian vector. The minimal linear B cell epitope recognised by 3D5 on NS6 was 25VPELIDPLVK34 determined by peptide scanning and named EP-3D5. The sequence of EP-3D5 is completely conserved among PDCoV strains. Moreover, six to nine residues of EP-3D5 were identified to be conserved in non-PDCoV strains. These results provide valuable insights into the antigenic structure and function of NS6 in virus pathogenesis, and aid for the development of PDCoV epitope-associated diagnostics and vaccine design.
Collapse
Affiliation(s)
- Qiuge Liu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianxiao Wu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Na Gao
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaorong Zhang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingze Gao
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Longjun Guo
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yang Wu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Da Shi
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Li Feng
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
379
|
Bajire SK, Shastry RP. Synergistic effects of COVID-19 and Pseudomonas aeruginosa in chronic obstructive pulmonary disease: a polymicrobial perspective. Mol Cell Biochem 2024; 479:591-601. [PMID: 37129767 PMCID: PMC10152025 DOI: 10.1007/s11010-023-04744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
This article discusses the connection between the novel coronavirus disease 2019 (COVID-19) caused by the coronavirus-2 (SARS-CoV-2) and chronic obstructive pulmonary disease (COPD). COPD is a multifaceted respiratory illness that is typically observed in individuals with chronic exposure to chemical irritants or severe lung damage caused by various pathogens, including SARS-CoV-2 and Pseudomonas aeruginosa. The pathogenesis of COPD is complex, involving a variety of genotypes and phenotypic characteristics that result in severe co-infections and a poor prognosis if not properly managed. We focus on the role of SARS-CoV-2 infection in severe COPD exacerbations in connection to P. aeruginosa infection, covering pathogenesis, diagnosis, and therapy. This review also includes a thorough structural overview of COPD and recent developments in understanding its complicated and chronic nature. While COVID-19 is clearly linked to emphysema and chronic bronchitis at different stages of the disease, our understanding of the precise interaction between microbial infections during COPD, particularly with SARS-CoV-2 in the lungs, remains inadequate. Therefore, it is crucial to understand the host-pathogen relationship from the clinician's perspective in order to effectively manage COPD. This article aims to provide a comprehensive overview of the subject matter to assist clinicians in their efforts to improve the treatment and management of COPD, especially in light of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
380
|
Winiger RR, Perez L. Therapeutic antibodies and alternative formats against SARS-CoV-2. Antiviral Res 2024; 223:105820. [PMID: 38307147 DOI: 10.1016/j.antiviral.2024.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) heavily burdened the entire world. Despite a prompt generation of vaccines and therapeutics to confront infection, the virus remains a threat. The ancestor viral strain has evolved into several variants of concern, with the Omicron variant now having many distinct sublineages. Consequently, most available antibodies targeting the spike went obsolete and thus new therapies or therapeutic formats are needed. In this review we focus on antibody targets, provide an overview of the therapeutic progress made so far, describe novel formats being explored, and lessons learned from therapeutic antibodies that can enhance pandemic preparedness.
Collapse
Affiliation(s)
- Rahel R Winiger
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Switzerland.
| | - Laurent Perez
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Switzerland.
| |
Collapse
|
381
|
Suzuki Y, Kimura H, Katayama K. Classification of sapoviruses based on comparison of phylogenetic trees for structural and non-structural proteins. GENE REPORTS 2024; 34:101875. [DOI: 10.1016/j.genrep.2023.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
382
|
Fang R, Yang X, Guo Y, Peng B, Dong R, Li S, Xu S. SARS-CoV-2 infection in animals: Patterns, transmission routes, and drivers. ECO-ENVIRONMENT & HEALTH 2024; 3:45-54. [PMID: 38169914 PMCID: PMC10758742 DOI: 10.1016/j.eehl.2023.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 01/05/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more widespread in animals than previously thought, and it may be able to infect a wider range of domestic and wild species. To effectively control the spread of the virus and protect animal health, it is crucial to understand the cross-species transmission mechanisms and risk factors of SARS-CoV-2. This article collects published literature on SARS-CoV-2 in animals and examines the distribution, transmission routes, biophysical, and anthropogenic drivers of infected animals. The reported cases of infection in animals are mainly concentrated in South America, North America, and Europe, and species affected include lions, white-tailed deer, pangolins, minks, and cats. Biophysical factors influencing infection of animals with SARS-CoV-2 include environmental determinants, high-risk landscapes, air quality, and susceptibility of different animal species, while anthropogenic factors comprise human behavior, intensive livestock farming, animal markets, and land management. Due to current research gaps and surveillance capacity shortcomings, future mitigation strategies need to be designed from a One Health perspective, with research focused on key regions with significant data gaps in Asia and Africa to understand the drivers, pathways, and spatiotemporal dynamics of interspecies transmission.
Collapse
Affiliation(s)
- Ruying Fang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiyang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingjie Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruixuan Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
383
|
Colston JM, Fang B, Houpt E, Chernyavskiy P, Swarup S, Gardner LM, Nong MK, Badr HS, Zaitchik BF, Lakshmi V, Kosek MN. The Planetary Child Health & Enterics Observatory (Plan-EO): A protocol for an interdisciplinary research initiative and web-based dashboard for mapping enteric infectious diseases and their risk factors and interventions in LMICs. PLoS One 2024; 19:e0297775. [PMID: 38412156 PMCID: PMC10898779 DOI: 10.1371/journal.pone.0297775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Diarrhea remains a leading cause of childhood illness throughout the world that is increasing due to climate change and is caused by various species of ecologically sensitive pathogens. The emerging Planetary Health movement emphasizes the interdependence of human health with natural systems, and much of its focus has been on infectious diseases and their interactions with environmental and human processes. Meanwhile, the era of big data has engendered a public appetite for interactive web-based dashboards for infectious diseases. However, enteric infectious diseases have been largely overlooked by these developments. METHODS The Planetary Child Health & Enterics Observatory (Plan-EO) is a new initiative that builds on existing partnerships between epidemiologists, climatologists, bioinformaticians, and hydrologists as well as investigators in numerous low- and middle-income countries. Its objective is to provide the research and stakeholder community with an evidence base for the geographical targeting of enteropathogen-specific child health interventions such as novel vaccines. The initiative will produce, curate, and disseminate spatial data products relating to the distribution of enteric pathogens and their environmental and sociodemographic determinants. DISCUSSION As climate change accelerates there is an urgent need for etiology-specific estimates of diarrheal disease burden at high spatiotemporal resolution. Plan-EO aims to address key challenges and knowledge gaps by making and disseminating rigorously obtained, generalizable disease burden estimates. Pre-processed environmental and EO-derived spatial data products will be housed, continually updated, and made publicly available for download to the research and stakeholder communities. These can then be used as inputs to identify and target priority populations living in transmission hotspots and for decision-making, scenario-planning, and disease burden projection. STUDY REGISTRATION PROSPERO protocol #CRD42023384709.
Collapse
Affiliation(s)
- Josh M. Colston
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Bin Fang
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eric Houpt
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Pavel Chernyavskiy
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Samarth Swarup
- Biocomplexity Institute, University of Virginia, Charlottesville, Virginia, United States of America
| | - Lauren M. Gardner
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Malena K. Nong
- University of Virginia College of Arts & Sciences, Charlottesville, Virginia, United States of America
| | - Hamada S. Badr
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Benjamin F. Zaitchik
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Venkataraman Lakshmi
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
384
|
Tavera Gonzales A, Bazalar Gonzales J, Silvestre Espejo T, Leiva Galarza M, Rodríguez Cueva C, Carhuaricra Huamán D, Luna Espinoza L, Maturrano Hernández A. Possible Spreading of SARS-CoV-2 from Humans to Captive Non-Human Primates in the Peruvian Amazon. Animals (Basel) 2024; 14:732. [PMID: 38473117 DOI: 10.3390/ani14050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Human-to-animal transmission events of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) have been reported in both domestic and wild species worldwide. Despite the high rates of contagion and mortality during the COVID-19 (Coronavirus Diseases 2019) pandemic in Peru, no instances of natural virus infection have been documented in wild animals, particularly in the Amazonian regions where human-wildlife interactions are prevalent. In this study, we conducted a surveillance investigation using viral RNA sequencing of fecal samples collected from 76 captive and semi-captive non-human primates (NHPs) in the Loreto, Ucayali, and Madre de Dios regions between August 2022 and February 2023. We detected a segment of the RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2 by metagenomic sequencing in a pooled fecal sample from captive white-fronted capuchins (Cebus unicolor) at a rescue center in Bello Horizonte, Ucayali. Phylogenetic analysis further confirmed that the retrieved partial sequence of the RdRp gene matched the SARS-CoV-2 genome. This study represents the first documented instance of molecular SARS-CoV-2 detection in NHPs in the Peruvian Amazon, underscoring the adverse impact of anthropic activities on the human-NHP interface and emphasizing the importance of ongoing surveillance for early detection and prediction of future emergence of new SARS-CoV-2 variants in animals.
Collapse
Affiliation(s)
- Andrea Tavera Gonzales
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Jhonathan Bazalar Gonzales
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
- Asociación Equipo Primatológico del Perú, Iquitos 16008, Peru
| | - Thalía Silvestre Espejo
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Milagros Leiva Galarza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Carmen Rodríguez Cueva
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Dennis Carhuaricra Huamán
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
- Programa de Pós-Graduação Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, Brazil
| | - Luis Luna Espinoza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Abelardo Maturrano Hernández
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| |
Collapse
|
385
|
Xia M, Huang P, Vago F, Kawagishi T, Ding S, Greenberg HB, Jiang W, Tan M. A Viral Protein 4-Based Trivalent Nanoparticle Vaccine Elicited High and Broad Immune Responses and Protective Immunity against the Predominant Rotaviruses. ACS NANO 2024; 18:6673-6689. [PMID: 38353701 DOI: 10.1021/acsnano.4c00544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The current live rotavirus (RV) vaccines show reduced effectiveness in developing countries, calling for vaccine strategies with improved efficacy and safety. We generated pseudovirus nanoparticles (PVNPs) that display multiple ectodomains of RV viral protein 4 (VP4), named S-VP4e, as a nonreplicating RV vaccine candidate. The RV spike protein VP4s that bind host receptors and facilitate viral entry are excellent targets for vaccination. In this study, we developed scalable methods to produce three S-VP4e PVNPs, each displaying the VP4e antigens from one of the three predominant P[8], P[4], and P[6] human RVs (HRVs). These PVNPs were recognized by selected neutralizing VP4-specific monoclonal antibodies, bound glycan receptors, attached to permissive HT-29 cells, and underwent cleavage by trypsin between VP8* and VP5*. 3D PVNP models were constructed to understand their structural features. A trivalent PVNP vaccine containing the three S-VP4e PVNPs elicited high and well-balanced VP4e-specific antibody titers in mice directed against the three predominant HRV P types. The resulting antisera neutralized the three HRV prototypes at high titers; greater than 4-fold higher than the neutralizing responses induced by a trivalent vaccine consisting of the S60-VP8* PVNPs. Finally, the trivalent S-VP4e PVNP vaccine provided 90-100% protection against diarrhea caused by HRV challenge. Our data supports the trivalent S-VP4e PVNPs as a promising nonreplicating HRV vaccine candidate for parenteral delivery to circumvent the suboptimal immunization issues of all present live HRV vaccines. The established PVNP-permissive cell and PVNP-glycan binding assays will be instrumental for further investigating HRV-host cell interactions and neutralizing effects of VP4-specific antibodies and antivirals.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Frank Vago
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Takahiro Kawagishi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Harry B Greenberg
- Departments of Medicine and Microbiology and Immunology Emeritus, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, United States
| |
Collapse
|
386
|
Dehghan Banadaki M, Torabi S, Rockward A, Strike WD, Noble A, Keck JW, Berry SM. Simple SARS-CoV-2 concentration methods for wastewater surveillance in low resource settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168782. [PMID: 38000737 PMCID: PMC10842712 DOI: 10.1016/j.scitotenv.2023.168782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Wastewater-based epidemiology (WBE) measures pathogens in wastewater to monitor infectious disease prevalence in communities. Due to the high dilution of pathogens in sewage, a concentration method is often required to achieve reliable biomarker signals. However, most of the current concentration methods rely on expensive equipment and labor-intensive processes, which limits the application of WBE in low-resource settings. Here, we compared the performance of four inexpensive and simple concentration methods to detect SARS-CoV-2 in wastewater samples: Solid Fraction, Porcine Gastric Mucin-conjugated Magnetic Beads, Calcium Flocculation-Citrate Dissolution (CFCD), and Nanotrap® Magnetic Beads (NMBs). The NMBs and CFCD methods yielded the highest concentration performance for SARS-CoV-2 (∼16-fold concentration and ∼ 41 % recovery) and require <45 min processing time. CFCD has a relatively low consumable cost (<$2 per four sample replicates). All methods can be performed with basic laboratory equipment and minimal electricity usage which enables further application of WBE in remote areas and low resource settings.
Collapse
Affiliation(s)
| | - Soroosh Torabi
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States
| | - Alexus Rockward
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States
| | - William D Strike
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States
| | - Ann Noble
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States
| | - James W Keck
- WWAMI School of Medicine, University of Alaska Anchorage, United States
| | - Scott M Berry
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States; Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States.
| |
Collapse
|
387
|
Yin L, Liu X, Yao Y, Yuan M, Luo Y, Zhang G, Pu J, Liu P. Gut microbiota-derived butyrate promotes coronavirus TGEV infection through impairing RIG-I-triggered local type I interferon responses via class I HDAC inhibition. J Virol 2024; 98:e0137723. [PMID: 38197629 PMCID: PMC10878070 DOI: 10.1128/jvi.01377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Gut microbiota-derived metabolites are important for the replication and pathogenesis of many viruses. However, the roles of bacterial metabolites in swine enteric coronavirus (SECoV) infection remain poorly understood. Recent studies show that SECoVs infection in vivo significantly alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota. This prompted us to investigate whether and how SCFAs impact SECoV infection. Employing alphacoronavirus transmissible gastroenteritis virus (TGEV), a major cause of diarrhea in piglets, as a model, we found that SCFAs, particularly butyrate, enhanced TGEV infection both in porcine intestinal epithelial cells and swine testicular (ST) cells at the late stage of viral infection. This effect depended on the inhibited productions of virus-induced type I interferon (IFN) and downstream antiviral IFN-stimulated genes (ISGs) by butyrate. Mechanistically, butyrate suppressed the expression of retinoic acid-inducible gene I (RIG-I), a key viral RNA sensor, and downstream mitochondrial antiviral-signaling (MAVS) aggregation, thereby impairing type I IFN responses and increasing TGEV replication. Using pharmacological and genetic approaches, we showed that butyrate inhibited RIG-I-induced type I IFN signaling by suppressing class I histone deacetylase (HDAC). In summary, we identified a novel mechanism where butyrate enhances TGEV infection by suppressing RIG-I-mediated type I IFN responses. Our findings highlight that gut microbiota-derived metabolites like butyrate can be exploited by SECoV to dampen innate antiviral immunity and establish infection in the intestine.IMPORTANCESwine enteric coronaviruses (SECoVs) infection in vivo alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota, but whether microbiota-derived SCFAs impact coronavirus gastrointestinal infection is largely unknown. Here, we demonstrated that SCFAs, particularly butyrate, substantially increased alphacoronavirus TGEV infection at the late stage of infection, without affecting viral attachment or internalization. Furthermore, enhancement of TGEV by butyrate depended on impeding virus-induced type I interferon (IFN) responses. Mechanistically, butyrate suppressed the cytoplasmic viral RNA sensor RIG-I expression and downstream type I IFN signaling activation by inhibiting class I HDAC, thereby promoting TGEV infection. Our work reveals novel functions of gut microbiota-derived SCFAs in enhancing enteric coronavirus infection by impairing RIG-I-dependent type I IFN responses. This implies that bacterial metabolites could be therapeutic targets against SECoV infection by modulating antiviral immunity in the intestine.
Collapse
Affiliation(s)
- Lingdan Yin
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiang Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao Yao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengqi Yuan
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Luo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pinghuang Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
388
|
Oh C, Xun G, Lane ST, Petrov VA, Zhao H, Nguyen TH. Portable, single nucleotide polymorphism-specific duplex assay for virus surveillance in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168701. [PMID: 37992833 DOI: 10.1016/j.scitotenv.2023.168701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Argonaute protein from the archaeon Pyrococcus furiosus (PfAgo) is a DNA-guided nuclease that targets DNA with any sequence. We designed a virus detection assay in which the PfAgo enzyme cleaves the reporter probe, thus generating fluorescent signals when amplicons from a reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assay contain target sequences. We confirmed that the RT-LAMP-PfAgo assay for the SARS-CoV-2 Delta variant produced significantly higher fluorescent signals (p < 0.001) when a single nucleotide polymorphism (SNP), exclusive to the Delta variant, was present, compared to the samples without the SNP. Additionally, the duplex assay for Pepper mild mottle virus (PMMOV) and SARS-CoV-2 detection produced specific fluorescent signals (FAM or ROX) only when the corresponding sequences were present. Furthermore, the RT-LAMP-PfAgo assay does not require dilution to reduce the impact of environmental inhibitors. The limit of detection of the PMMOV assay, determined with 30 wastewater samples, was 28 gc/μL, with a 95 % confidence interval of [11,103]. Finally, using a point-of-use device, the RT-LAMP-PfAgo assay successfully detected PMMOV in wastewater samples. Based on our findings, we conclude that the RT-LAMP-PfAgo assay can be used as a portable, SNP-specific duplex assay, which will significantly improve virus surveillance in wastewater.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA.
| | - Guanhua Xun
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephan Thomas Lane
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| | - Vassily Andrew Petrov
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| | - Huimin Zhao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States; Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
389
|
Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front Immunol 2024; 14:1259879. [PMID: 38439942 PMCID: PMC10910434 DOI: 10.3389/fimmu.2023.1259879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 03/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1β, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
390
|
Rivera-Benítez JF, Martínez-Bautista R, González-Martínez R, De la Luz-Armendáriz J, Herrera-Camacho I, Rosas-Murrieta N, Márquez-Valdelamar L, Lara R. Phylogenetic and Molecular Analysis of the Porcine Epidemic Diarrhea Virus in Mexico during the First Reported Outbreaks (2013-2017). Viruses 2024; 16:309. [PMID: 38400084 PMCID: PMC10891996 DOI: 10.3390/v16020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The characteristics of the whole PEDV genome that has circulated in Mexico from the first outbreak to the present are unknown. We chose samples obtained from 2013 to 2017 and sequenced them, which enabled us to identify the genetic variation and phylogeny in the virus during the first four years that it circulated in Mexico. A 99% identity was found among the analyzed pandemic strains; however, the 1% difference affected the structure of the S glycoprotein, which is essential for the binding of the virus to the cellular receptor. The S protein induces the most efficacious antibodies; hence, these changes in structure could be implicated in the clinical antecedents of the outbreaks. Antigenic changes could also help PEDV avoid neutralization, even in the presence of previous immunity. The characterization of the complete genome enabled the identification of three circulating strains that have a deletion in ORF1a, which is present in attenuated Asian vaccine strains. The phylogenetic analysis of the complete genome indicates that the first PEDV outbreaks in Mexico were caused by INDEL strains and pandemic strains related to USA strains; however, the possibility of the entry of European strains exists, which may have caused the 2015 and 2016 outbreaks.
Collapse
Affiliation(s)
- José Francisco Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City 04010, Mexico
| | | | | | - Jazmín De la Luz-Armendáriz
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (I.H.-C.); (N.R.-M.)
| | - Nora Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (I.H.-C.); (N.R.-M.)
| | - Laura Márquez-Valdelamar
- Laboratorio de Secuenciación Genómica de la Biodiversidad y de la Salud, UNAM, Mexico City 04510, Mexico;
| | - Rocio Lara
- Programa de Maestría en Ciencias de la Producción y de la Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
391
|
Park JE. Porcine Epidemic Diarrhea: Insights and Progress on Vaccines. Vaccines (Basel) 2024; 12:212. [PMID: 38400195 PMCID: PMC10892315 DOI: 10.3390/vaccines12020212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) is a swine-wasting disease caused by coronavirus infection. It causes great economic damage to the swine industry worldwide. Despite the continued use of vaccines, PED outbreaks continue, highlighting the need to review the effectiveness of current vaccines and develop additional vaccines based on new platforms. Here, we review existing vaccine technologies for preventing PED and highlight promising technologies that may help control PED virus in the future.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
392
|
Savard C, Wang L. Identification and Genomic Characterization of Bovine Boosepivirus A in the United States and Canada. Viruses 2024; 16:307. [PMID: 38400082 PMCID: PMC10893527 DOI: 10.3390/v16020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Boosepivirus is a new genus in the Picornaviridae family. Boosepiviruses (BooVs) are genetically classified into three species: A, B, and C. Initially, Boosepivirus A and B were identified in cattle, whereas Boosepivirus C was detected in sheep. Recent evidence showed that Boosepivirus B was detected in sheep and Boosepivirus C was identified in goats, suggesting that Boosepvirus might cross the species barrier to infect different hosts. Different from BooV B, BooV A is less studied. In the present study, we reported identification of two North American BooV A strains from cattle. Genomic characterization revealed that US IL33712 (GenBank accession #PP035161) and Canada 1087562 (GenBank accession #PP035162) BooV A strains are distantly related to each other, and US IL33712 is more closely correlated to two Asian BooV A strains. US-strain-specific insertions, NorthAmerican-strain-specific insertions, and species A-specific insertions are observed and could contribute to viral pathogenicity and host adaptation. Our findings highlight the importance of continued surveillance of BooV A in animals.
Collapse
Affiliation(s)
- Christian Savard
- Biovet Inc., 4375, Avenue Beaudry, Saint-Hyacinthe, QC J2S 8W2, Canada;
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| |
Collapse
|
393
|
Savard C, Wang L. Identification and Genomic Characterization of Bovine Boosepivirus A in the United States and Canada. Viruses 2024; 16:307. [DOI: https:/doi.org/10.3390/v16020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Boosepivirus is a new genus in the Picornaviridae family. Boosepiviruses (BooVs) are genetically classified into three species: A, B, and C. Initially, Boosepivirus A and B were identified in cattle, whereas Boosepivirus C was detected in sheep. Recent evidence showed that Boosepivirus B was detected in sheep and Boosepivirus C was identified in goats, suggesting that Boosepvirus might cross the species barrier to infect different hosts. Different from BooV B, BooV A is less studied. In the present study, we reported identification of two North American BooV A strains from cattle. Genomic characterization revealed that US IL33712 (GenBank accession #PP035161) and Canada 1087562 (GenBank accession #PP035162) BooV A strains are distantly related to each other, and US IL33712 is more closely correlated to two Asian BooV A strains. US-strain-specific insertions, NorthAmerican-strain-specific insertions, and species A-specific insertions are observed and could contribute to viral pathogenicity and host adaptation. Our findings highlight the importance of continued surveillance of BooV A in animals.
Collapse
Affiliation(s)
- Christian Savard
- Biovet Inc., 4375, Avenue Beaudry, Saint-Hyacinthe, QC J2S 8W2, Canada
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| |
Collapse
|
394
|
Turcinovic J, Kuhfeldt K, Sullivan M, Landaverde L, Platt JT, Alekseyev YO, Doucette-Stamm L, Hamer DH, Klapperich C, Landsberg HE, Connor JH. Transmission Dynamics and Rare Clustered Transmission Within an Urban University Population Before Widespread Vaccination. J Infect Dis 2024; 229:485-492. [PMID: 37856283 DOI: 10.1093/infdis/jiad397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Universities returned to in-person learning in 2021 while SARS-CoV-2 spread remained high. At the time, it was not clear whether in-person learning would be a source of disease spread. METHODS We combined surveillance testing, universal contact tracing, and viral genome sequencing to quantify introductions and identify likely on-campus spread. RESULTS Ninety-one percent of viral genotypes occurred once, indicating no follow-on transmission. Less than 5% of introductions resulted in >3 cases, with 2 notable exceptions of 40 and 47 cases. Both partially overlapped with outbreaks defined by contact tracing. In both cases, viral genomics eliminated over half the epidemiologically linked cases but added an equivalent or greater number of individuals to the transmission cluster. CONCLUSIONS Public health interventions prevented within-university transmission for most SARS-CoV-2 introductions, with only 2 major outbreaks being identified January to May 2021. The genetically linked cases overlap with outbreaks identified by contact tracing; however, they persisted in the university population for fewer days and rounds of transmission than estimated via contact tracing. This underscores the effectiveness of test-trace-isolate strategies in controlling undetected spread of emerging respiratory infectious diseases. These approaches limit follow-on transmission in both outside-in and internal transmission conditions.
Collapse
Affiliation(s)
- Jacquelyn Turcinovic
- Department of Virology, Immunology, and Microbiology, Chobanian & Avedisian School of Medicine
- National Emerging Infectious Diseases Laboratories
- Program in Bioinformatics
| | | | | | - Lena Landaverde
- Department of Biomedical Engineering
- Precision Diagnostics Center
- BU Clinical Testing Laboratory, Research Department
| | | | | | | | - Davidson H Hamer
- National Emerging Infectious Diseases Laboratories
- Precision Diagnostics Center
- Department of Global Health, School of Public Health
- Section of Infectious Disease, Department of Medicine, Chobanian & Avedisian School of Medicine
- Center for Emerging Infectious Disease Policy and Research, Boston University, Massachusetts
| | - Catherine Klapperich
- Department of Biomedical Engineering
- Precision Diagnostics Center
- BU Clinical Testing Laboratory, Research Department
| | | | - John H Connor
- Department of Virology, Immunology, and Microbiology, Chobanian & Avedisian School of Medicine
- National Emerging Infectious Diseases Laboratories
- Program in Bioinformatics
- Center for Emerging Infectious Disease Policy and Research, Boston University, Massachusetts
| |
Collapse
|
395
|
Sherik M, Eves R, Guo S, Lloyd CJ, Klose KE, Davies PL. Sugar-binding and split domain combinations in repeats-in-toxin adhesins from Vibrio cholerae and Aeromonas veronii mediate cell-surface recognition and hemolytic activities. mBio 2024; 15:e0229123. [PMID: 38171003 PMCID: PMC10865825 DOI: 10.1128/mbio.02291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Many pathogenic Gram-negative bacteria use repeats-in-toxin adhesins for colonization and biofilm formation. In the cholera agent Vibrio cholerae, flagellar-regulated hemagglutinin A (FrhA) enables these functions. Using bioinformatic analysis, a sugar-binding domain was identified in FrhA adjacent to a domain of unknown function. AlphaFold2 indicated the boundaries of both domains to be slightly shorter than previously predicted and assisted in the recognition of the unknown domain as a split immunoglobulin-like fold that can assist in projecting the sugar-binding domain toward its target. The AlphaFold2-predicted structure is in excellent agreement with the molecular envelope obtained from small-angle X-ray scattering analysis of a recombinant construct spanning the sugar-binding and unknown domains. This two-domain construct was probed by glycan micro-array screening and showed binding to mammalian fucosylated glycans, some of which are characteristic erythrocyte markers and intestinal cell epitopes. Isothermal titration calorimetry further showed the construct-bound l-fucose with a Kd of 21 µM. Strikingly, this recombinant protein construct bound and lysed erythrocytes in a concentration-dependent manner, and its hemolytic activity was blocked by the addition of l-fucose. A protein ortholog construct from Aeromonas veronii was also produced and showed a similar glycan-binding pattern, binding affinity, erythrocyte-binding, and hemolytic activities. As demonstrated here with Hep-2 cells, fucose-based inhibitors of this sugar-binding domain can potentially be developed to block colonization by V. cholerae and other pathogenic bacteria that share this adhesin domain.IMPORTANCEThe bacterium, Vibrio cholerae, which causes cholera, uses an adhesion protein to stick to human cells and begin the infection process. One part of this adhesin protein binds to a particular sugar, fucose, on the surface of the target cells. This binding can lead to colonization and killing of the cells by the bacteria. Adding l-fucose to the bacteria before they bind to the human cells can prevent attachment and has promise as a preventative drug to protect against cholera.
Collapse
Affiliation(s)
- Mustafa Sherik
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Cameron J. Lloyd
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
396
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
397
|
Ng WJ, Kwok G, Hill E, Chua FJD, Leifels M, Kim SY, Afri Affandi SA, Ramasamy SG, Nainani D, Cheng D, Tay M, Wong JCC, Ng LC, Wuertz S, Thompson JR. Longitudinal Wastewater-Based Surveillance for SARS-CoV-2 in High-Density Student Dormitories in Singapore. ACS ES&T WATER 2024; 4:355-367. [DOI: 10.1021/acsestwater.3c00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Wei Jie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Germaine Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Eric Hill
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 637551, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Siti Aisyah Afri Affandi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Shobana Gayathri Ramasamy
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Dhiraj Nainani
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Martin Tay
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore
| | - Judith Chui Ching Wong
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Janelle R. Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
398
|
Wu Z, Chang T, Wang D, Zhang H, Liu H, Huang X, Tian Z, Tian X, Liu D, An T, Yan Y. Genomic surveillance and evolutionary dynamics of type 2 porcine reproductive and respiratory syndrome virus in China spanning the African swine fever outbreak. Virus Evol 2024; 10:veae016. [PMID: 38404965 PMCID: PMC10890815 DOI: 10.1093/ve/veae016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a serious threat to the pig industry in China. Our previous study demonstrated that PRRSV persists with local circulations and overseas imports in China and has formed a relatively stable epidemic pattern. However, the sudden African swine fever (ASF) outbreak in 2018 caused serious damage to China's pig industry structure, which resulted in about 40 per cent of pigs being slaughtered. The pig yields recovered by the end of 2019. Thus, whether the ASF outbreak reframed PRRSV evolution with changes in pig populations and further posed new threats to the pig industry becomes a matter of concern. For this purpose, we conducted genomic surveillance and recombination, NSP2 polymorphism, population dynamics, and geographical spread analysis of PRRSV-2, which is dominant in China. The results showed that the prevalence of ASF had no significant effects on genetic diversities like lineage composition, recombination patterns, and NSP2 insertion and deletion patterns but was likely to lead to changes in PRRSV-2 recombination frequency. As for circulation of the two major sub-lineages of Lineage 1, there was no apparent transmission of NADC30-like among provinces, while NADC34-like had obvious signs of inter-provincial transmission and foreign importation during the ASF epidemic. In addition, two suspected vaccine recombinant epidemic strains suggest a slight safety issue of vaccine use. Herein, the interference of ASF to the PRRSV-2 evolutionary pattern was evaluated and vaccine safety was analyzed, in order to monitor the potential threat of PRRSV-2 to China's pig industry in the post-epidemic era of ASF.
Collapse
Affiliation(s)
- Zhiyong Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Shijingshan District, Beijing 100049, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Tong Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Xinyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| |
Collapse
|
399
|
Nederlof RA, de la Garza MA, Bakker J. Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Vet Sci 2024; 11:78. [PMID: 38393096 PMCID: PMC10893009 DOI: 10.3390/vetsci11020078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a zoological institution were initially reported in March 2020. Since then, at least 94 peer-reviewed cases have been reported in zoos worldwide. Among the affected animals, nonhuman primates, carnivores, and artiodactyls appear to be most susceptible to infection, with the Felidae family accounting for the largest number of reported cases. Clinical symptoms tend to be mild across taxa; although, certain species exhibit increased susceptibility to disease. A variety of diagnostic tools are available, allowing for initial diagnostics and for the monitoring of infectious risk. Whilst supportive therapy proves sufficient in most cases, monoclonal antibody therapy has emerged as a promising additional treatment option. Effective transmission of SARS-CoV-2 in some species raises concerns over potential spillover and the formation of reservoirs. The occurrence of SARS-CoV-2 in a variety of animal species may contribute to the emergence of variants of concern due to altered viral evolutionary constraints. Consequently, this review emphasizes the need for effective biosecurity measures and surveillance strategies to prevent and control SARS-CoV-2 infections in zoological institutions.
Collapse
Affiliation(s)
| | - Melissa A. de la Garza
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
400
|
Owens K, Esmaeili-Wellman S, Schiffer JT. Heterogeneous SARS-CoV-2 kinetics due to variable timing and intensity of immune responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.20.23294350. [PMID: 37662228 PMCID: PMC10473815 DOI: 10.1101/2023.08.20.23294350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The viral kinetics of documented SARS-CoV-2 infections exhibit a high degree of inter-individual variability. We identified six distinct viral shedding patterns, which differed according to peak viral load, duration, expansion rate and clearance rate, by clustering data from 768 infections in the National Basketball Association cohort. Omicron variant infections in previously vaccinated individuals generally led to lower cumulative shedding levels of SARS-CoV-2 than other scenarios. We then developed a mechanistic mathematical model that recapitulated 1510 observed viral trajectories, including viral rebound and cases of reinfection. Lower peak viral loads were explained by a more rapid and sustained transition of susceptible cells to a refractory state during infection, as well as an earlier and more potent late, cytolytic immune response. Our results suggest that viral elimination occurs more rapidly during omicron infection, following vaccination, and following re-infection due to enhanced innate and acquired immune responses. Because viral load has been linked with COVID-19 severity and transmission risk, our model provides a framework for understanding the wide range of observed SARS-CoV-2 infection outcomes.
Collapse
Affiliation(s)
- Katherine Owens
- Fred Hutchinson Cancer Center, Vaccine and Infectious Diseases Division
| | | | - Joshua T Schiffer
- Fred Hutchinson Cancer Center, Vaccine and Infectious Diseases Division
- University of Washington, Department of Medicine
| |
Collapse
|