351
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
352
|
Dhalla NS, Bhullar SK, Adameova A, Mota KO, de Vasconcelos CML. Status of β 1-Adrenoceptor Signal Transduction System in Cardiac Hypertrophy and Heart Failure. Rev Cardiovasc Med 2023; 24:264. [PMID: 39076390 PMCID: PMC11270071 DOI: 10.31083/j.rcm2409264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/31/2024] Open
Abstract
Although β 1-adrenoceptor ( β 1-AR) signal transduction, which maintains cardiac function, is downregulated in failing hearts, the mechanisms for such a defect in heart failure are not fully understood. Since cardiac hypertrophy is invariably associated with heart failure, it is possible that the loss of β 1-AR mechanisms in failing heart occurs due to hypertrophic process. In this regard, we have reviewed the information from a rat model of adaptive cardiac hypertrophy and maladaptive hypertrophy at 4 and 24 weeks after inducing pressure overload as well as adaptive cardiac hypertrophy and heart failure at 4 and 24 weeks after inducing volume overload, respectively. Varying degrees of alterations in β 1-AR density as well as isoproterenol-induced increases in cardiac function, intracellular Ca 2 + -concentration in cardiomyocytes and adenylyl cyclase activity in crude membranes have been reported under these hypertrophic conditions. Adaptive hypertrophy at 4 weeks of pressure or volume overload showed unaltered or augmented increases in the activities of different components of β 1-AR signaling. On the other hand, maladaptive hypertrophy due to pressure overload and heart failure due to volume overload at 24 weeks revealed depressions in the activities of β 1-AR signal transduction pathway. These observations provide evidence that β 1-AR signal system is either unaltered or upregulated in adaptive cardiac hypertrophy and downregulated in maladaptive cardiac hypertrophy or heart failure. Furthermore, the information presented in this article supports the concept that downregulation of β 1-AR mechanisms in heart failure or maladaptive cardiac hypertrophy is not due to hypertrophic process per se. It is suggested that a complex mechanism involving the autonomic imbalance may be of a critical importance in determining differential alterations in non-failing and failing hearts.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University and Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 811 03 Bratislava, Slovakia
| | - Karina Oliveira Mota
- Heart Biophysics Laboratory, Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, 73330 Sergipe, Brazil
| | - Carla Maria Lins de Vasconcelos
- Heart Biophysics Laboratory, Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, 73330 Sergipe, Brazil
| |
Collapse
|
353
|
Patel D, Murray IA, Dong F, Annalora AJ, Gowda K, Coslo DM, Krzeminski J, Koo I, Hao F, Amin SG, Marcus CB, Patterson AD, Perdew GH. Induction of AHR Signaling in Response to the Indolimine Class of Microbial Stress Metabolites. Metabolites 2023; 13:985. [PMID: 37755265 PMCID: PMC10535990 DOI: 10.3390/metabo13090985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays an important role in gastrointestinal barrier function, tumorigenesis, and is an emerging drug target. The resident microbiota is capable of metabolizing tryptophan to metabolites that are AHR ligands (e.g., indole-3-acetate). Recently, a novel set of mutagenic tryptophan metabolites named indolimines have been identified that are produced by M. morganii in the gastrointestinal tract. Here, we determined that indolimine-200, -214, and -248 are direct AHR ligands that can induce Cyp1a1 transcription and subsequent CYP1A1 enzymatic activity capable of metabolizing the carcinogen benzo(a)pyrene in microsomal assays. In addition, indolimines enhance IL6 expression in a colonic tumor cell line in combination with cytokine treatment. The concentration of indolimine-248 that induces AHR transcriptional activity failed to increase DNA damage. These observations reveal an additional aspect of how indolimines may alter colonic tumorigenesis beyond mutagenic activity.
Collapse
Affiliation(s)
- Dhwani Patel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fangcong Dong
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew J. Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Denise M. Coslo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jacek Krzeminski
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shantu G. Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Craig B. Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
354
|
Nadel G, Maik-Rachline G, Seger R. JNK Cascade-Induced Apoptosis-A Unique Role in GqPCR Signaling. Int J Mol Sci 2023; 24:13527. [PMID: 37686335 PMCID: PMC10487481 DOI: 10.3390/ijms241713527] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The response of cells to extracellular signals is mediated by a variety of intracellular signaling pathways that determine stimulus-dependent cell fates. One such pathway is the cJun-N-terminal Kinase (JNK) cascade, which is mainly involved in stress-related processes. The cascade transmits its signals via a sequential activation of protein kinases, organized into three to five tiers. Proper regulation is essential for securing a proper cell fate after stimulation, and the mechanisms that regulate this cascade may involve the following: (1) Activatory or inhibitory phosphorylations, which induce or abolish signal transmission. (2) Regulatory dephosphorylation by various phosphatases. (3) Scaffold proteins that bring distinct components of the cascade in close proximity to each other. (4) Dynamic change of subcellular localization of the cascade's components. (5) Degradation of some of the components. In this review, we cover these regulatory mechanisms and emphasize the mechanism by which the JNK cascade transmits apoptotic signals. We also describe the newly discovered PP2A switch, which is an important mechanism for JNK activation that induces apoptosis downstream of the Gq protein coupled receptors. Since the JNK cascade is involved in many cellular processes that determine cell fate, addressing its regulatory mechanisms might reveal new ways to treat JNK-dependent pathologies.
Collapse
Affiliation(s)
| | | | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (G.N.); (G.M.-R.)
| |
Collapse
|
355
|
Balapattabi K, Yavuz Y, Jiang J, Deng G, Mathieu NM, Ritter ML, Opichka MA, Reho JJ, McCorvy JD, Nakagawa P, Morselli LL, Mouradian GC, Atasoy D, Cui H, Hodges MR, Sigmund CD, Grobe JL. Angiotensin AT 1A receptor signal switching in Agouti-related peptide neurons mediates metabolic rate adaptation during obesity. Cell Rep 2023; 42:112935. [PMID: 37540598 PMCID: PMC10530419 DOI: 10.1016/j.celrep.2023.112935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Resting metabolic rate (RMR) adaptation occurs during obesity and is hypothesized to contribute to failed weight management. Angiotensin II (Ang-II) type 1 (AT1A) receptors in Agouti-related peptide (AgRP) neurons contribute to the integrative control of RMR, and deletion of AT1A from AgRP neurons causes RMR adaptation. Extracellular patch-clamp recordings identify distinct cellular responses of individual AgRP neurons from lean mice to Ang-II: no response, inhibition via AT1A and Gαi, or stimulation via Ang-II type 2 (AT2) receptors and Gαq. Following diet-induced obesity, a subset of Ang-II/AT1A-inhibited AgRP neurons undergo a spontaneous G-protein "signal switch," whereby AT1A stop inhibiting the cell via Gαi and instead begin stimulating the cell via Gαq. DREADD-mediated activation of Gαi, but not Gαq, in AT1A-expressing AgRP cells stimulates RMR in lean and obese mice. Thus, loss of AT1A-Gαi coupling within the AT1A-expressing AgRP neuron subtype represents a molecular mechanism contributing to RMR adaptation.
Collapse
Affiliation(s)
| | - Yavuz Yavuz
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Natalia M Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan A Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lisa L Morselli
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
356
|
Li X, Kuang W, Qiu Z, Zhou Z. G protein-coupled estrogen receptor: a promising therapeutic target for aldosterone-induced hypertension. Front Endocrinol (Lausanne) 2023; 14:1226458. [PMID: 37664844 PMCID: PMC10471144 DOI: 10.3389/fendo.2023.1226458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Aldosterone is one of the most essential hormones synthesized by the adrenal gland because it regulates water and electrolyte balance. G protein-coupled estrogen receptor (GPER) is a newly discovered aldosterone receptor, which is proposed to mediate the non-genomic pathways of aldosterone while the hormone simultaneously interacts with mineralocorticoid receptor. In contrast to its cardio-protective role in postmenopausal women via its interaction with estrogen, GPER seems to trigger vasoconstriction effects and can further induce water and sodium retention in the presence of aldosterone, indicating two entirely different binding sites and effects for estrogen and aldosterone. Accumulating evidence also points to a role of aldosterone in mediating hypertension and its risk factors via the interaction with GPER. Therefore, with this review, we aimed to summarize the research on these interactions to help (1) elucidate the role of GPER activated by aldosterone in the blood vessels, heart, and kidney; (2) compare the non-genomic actions between aldosterone and estrogen mediated by GPER; and (3) address the potential of GPER as a new promising therapeutic target for aldosterone-induced hypertension.
Collapse
Affiliation(s)
- Xuehan Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Kuang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
357
|
Mangmool S, Duangrat R, Parichatikanond W, Kurose H. New Therapeutics for Heart Failure: Focusing on cGMP Signaling. Int J Mol Sci 2023; 24:12866. [PMID: 37629047 PMCID: PMC10454066 DOI: 10.3390/ijms241612866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Current drugs for treating heart failure (HF), for example, angiotensin II receptor blockers and β-blockers, possess specific target molecules involved in the regulation of the cardiac circulatory system. However, most clinically approved drugs are effective in the treatment of HF with reduced ejection fraction (HFrEF). Novel drug classes, including angiotensin receptor blocker/neprilysin inhibitor (ARNI), sodium-glucose co-transporter-2 (SGLT2) inhibitor, hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, soluble guanylyl cyclase (sGC) stimulator/activator, and cardiac myosin activator, have recently been introduced for HF intervention based on their proposed novel mechanisms. SGLT2 inhibitors have been shown to be effective not only for HFrEF but also for HF with preserved ejection fraction (HFpEF). In the myocardium, excess cyclic adenosine monophosphate (cAMP) stimulation has detrimental effects on HFrEF, whereas cyclic guanosine monophosphate (cGMP) signaling inhibits cAMP-mediated responses. Thus, molecules participating in cGMP signaling are promising targets of novel drugs for HF. In this review, we summarize molecular pathways of cGMP signaling and clinical trials of emerging drug classes targeting cGMP signaling in the treatment of HF.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (R.D.)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (R.D.)
| | | | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
358
|
Farooq MA, Ajmal I, Hui X, Chen Y, Ren Y, Jiang W. β2-Adrenergic Receptor Mediated Inhibition of T Cell Function and Its Implications for CAR-T Cell Therapy. Int J Mol Sci 2023; 24:12837. [PMID: 37629018 PMCID: PMC10454818 DOI: 10.3390/ijms241612837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The microenvironment of most tumors is complex, comprising numerous aspects of immunosuppression. Several studies have indicated that the adrenergic system is vital for controlling immunological responses. In the context of the tumor microenvironment, nor-adrenaline (NA) is poured in by innervating nerves and tumor tissues itself. The receptors for nor-adrenaline are present on the surfaces of cancer and immune cells and are often involved in the activation of pro-tumoral signaling pathways. Beta2-adrenergic receptors (β2-ARs) are an emerging class of receptors that are capable of modulating the functioning of immune cells. β2-AR is reported to activate regulatory immune cells and inhibit effector immune cells. Blocking β2-AR increases activation, proliferation, and cytokine release of T lymphocytes. Moreover, β2-AR deficiency during metabolic reprogramming of T cells increases mitochondrial membrane potential and biogenesis. In the view of the available research data, the immunosuppressive role of β2-AR in T cells presents it as a targetable checkpoint in CAR-T cell therapies. In this review, we have abridged the contemporary knowledge about adrenergic-stress-mediated β2-AR activation on T lymphocytes inside tumor milieu.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; (M.A.F.); (I.A.)
| |
Collapse
|
359
|
Alnsasra H, Tsaban G, Solomon A, Khalil F, Aboalhasan E, Azab AN, Azuri J, Hammerman A, Arbel R. Dapagliflozin versus empagliflozin in patients with chronic kidney disease. Front Pharmacol 2023; 14:1227199. [PMID: 37601066 PMCID: PMC10436293 DOI: 10.3389/fphar.2023.1227199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background and Aim: Dapagliflozin and empagliflozin have demonstrated favorable clinical outcomes among patients with chronic kidney disease (CKD). However, their comparative monetary value for improving outcomes in CKD patients is unestablished. We examined the cost-per-outcome implications of utilizing dapagliflozin as compared to empagliflozin for prevention of renal and cardiovascular events in CKD patients. Methods: For calculation of preventable events we divided the allocated budget by the cost needed to treat (CNT) for preventing a single renal or cardiovascular event. CNT was derived by multiplying the annualized number needed to treat (aNNT) by the annual therapy cost. The aNNTs were determined based on data from the DAPA-CKD and EMPEROR-KIDNEY trials. The budget limit was defined based on the threshold recommended by the United States' Institute for Clinical and Economic Review. Results: The aNNT was 42 both dapagliflozin (95% confidence interval [CI]: 34-59) and empagliflozin (CI: 33-66). The CNT estimates for the prevention of one primary event for dapagliflozin and empagliflozin were comparable at $201,911 (CI: $163,452-$283,636) and $209,664 (CI: $164,736-$329,472), respectively. However, diabetic patients had a higher CNT with dapagliflozin ($201,911 [CI: $153,837-$346,133]) than empagliflozin ($134,784 [CI: $109,824-$214,656]), whereas non-diabetic patients had lower CNT for dapagliflozin ($197,103 [CI: $149,029-$346,133]) than empagliflozin ($394,368 [CI: $219,648-$7,093,632]). The CNT for preventing CKD progression was higher for dapagliflozin ($427,858 [CI: $307,673-$855,717]) than empagliflozin ($224,640 [CI: $169,728-$344,448]). For preventing cardiovascular death (CVD), the CNT was lower for dapagliflozin ($1,634,515 [CI: $740,339-∞]) than empagliflozin ($2,990,208 [CI: $1,193,088-∞]). Conclusion: Among patients with CKD, empagliflozin provides a better monetary value for preventing the composite renal and cardiovascular events in diabetic patients while dapagliflozin has a better value for non-diabetic patients. Dapagliflozin provides a better monetary value for the prevention of CVD, whereas empagliflozin has a better value for the prevention of CKD progression.
Collapse
Affiliation(s)
- Hilmi Alnsasra
- Department of Cardiology, Soroka University Medical Center, Beersheba, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Tsaban
- Department of Cardiology, Soroka University Medical Center, Beersheba, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Adam Solomon
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Fouad Khalil
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Enis Aboalhasan
- Maximizing Health Outcomes Research Lab, Sapir College, Sderot, Israel
| | - Abed N. Azab
- Department of Cardiology, Soroka University Medical Center, Beersheba, Israel
- Department of Nursing, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Azuri
- Diabetes Clinic, Maccabi Healthcare Services, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Hammerman
- Department of Pharmaceutical Technology Assessment, Clalit Health Services Headquarters, Tel Aviv, Israel
| | - Ronen Arbel
- Maximizing Health Outcomes Research Lab, Sapir College, Sderot, Israel
| |
Collapse
|
360
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
361
|
Lin R, Wang J, Wu Y, Yi Z, Zhang Y, Li L. Resolving neutrophils due to TRAM deletion renders protection against experimental sepsis. Inflamm Res 2023; 72:1733-1744. [PMID: 37563334 PMCID: PMC10727485 DOI: 10.1007/s00011-023-01779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE Proper inflammation resolution is crucial to prevent runaway inflammation during sepsis and reduce sepsis-related mortality/morbidity. Previous studies suggest that deleting TRAM, a key TLR4 signaling adaptor, can reprogram the first inflammatory responder cell-neutrophil from an inflammatory state to a resolving state. In this study, we aim to examine the therapeutic potential of TRAM-deficient neutrophils in vivo with recipient mice undergoing experimental sepsis. MATERIAL AND METHODS Wild-type or Tram-/- mice were intraperitoneally injected with cecal slurry to induce either severe or mild sepsis. Phenotypic examinations of sepsis and neutrophil characteristics were examined in vivo and ex vivo. The propagations of resolution from donor neutrophils to recipient cells such as monocytes, T cells, and endothelial cells were examined through co-culture assays in vitro. The efficacies of Tram-/- neutrophils in reducing inflammation were studied by transfusing either wild-type or Tram-/- neutrophils into septic recipient mice. RESULTS Tram-/- septic mice had improved survival and attenuated injuries within the lung and kidney tissues as compared to wild-type septic mice. Wild-type septic mice transfused with Tram-/- resolving neutrophils exhibited reduced multi-organ damages and improved cellular homeostasis. In vitro co-culture studies revealed that donor Tram-/- neutrophils can effectively propagate cellular homeostasis to co-cultured neighboring monocytes, neutrophils, T cells as well as endothelial cells. CONCLUSIONS Neutrophils with TRAM deletion render effective reprogramming into a resolving state beneficial for ameliorating experimental sepsis, with therapeutic potential in propagating cellular and tissue homeostasis as well as treating sepsis.
Collapse
Affiliation(s)
- RuiCi Lin
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA
| | - Ziyue Yi
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA.
| |
Collapse
|
362
|
Mahmoodi N, Minnow YVT, Harijan RK, Bedard GT, Schramm VL. Cell-Effective Transition-State Analogue of Phenylethanolamine N-Methyltransferase. Biochemistry 2023; 62:2257-2268. [PMID: 37467463 PMCID: PMC10646973 DOI: 10.1021/acs.biochem.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Phenylethanolamine N-methyltransferase (PNMT) catalyzes the S-adenosyl-l-methionine (SAM)-dependent methylation of norepinephrine to form epinephrine. Epinephrine is implicated in the regulation of blood pressure, respiration, Alzheimer's disease, and post-traumatic stress disorder (PTSD). Transition-state (TS) analogues bind their target enzymes orders of magnitude more tightly than their substrates. A synthetic strategy for first-generation TS analogues of human PNMT (hPNMT) permitted structural analysis of hPNMT and revealed potential for second-generation inhibitors [Mahmoodi, N.; J. Am. Chem. Soc. 2020, 142, 14222-14233]. A second-generation TS analogue inhibitor of PNMT was designed, synthesized, and characterized to yield a Ki value of 1.2 nM. PNMT isothermal titration calorimetry (ITC) measurements of inhibitor 4 indicated a negative cooperative binding mechanism driven by large favorable entropic contributions and smaller enthalpic contributions. Cell-based assays with HEK293T cells expressing PNMT revealed a cell permeable, intracellular PNMT inhibitor with an IC50 value of 81 nM. Structural analysis demonstrated inhibitor 4 filling catalytic site regions to recapitulate both norepinephrine and SAM interactions. Conformation of the second-generation inhibitor in the catalytic site of PNMT improves contacts relative to those from the first-generation inhibitors. Inhibitor 4 demonstrates up to 51,000-fold specificity for PNMT relative to DNA and protein methyltransferases. Inhibitor 4 also exhibits a 12,000-fold specificity for PNMT over the α2-adrenoceptor.
Collapse
Affiliation(s)
- Niusha Mahmoodi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Yacoba V T Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gabriel T Bedard
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
363
|
Zainab A, Gooch M, Tuazon DM. Acute Respiratory Distress Syndrome in Patients with Cardiovascular Disease. Methodist Debakey Cardiovasc J 2023; 19:58-65. [PMID: 37547902 PMCID: PMC10402823 DOI: 10.14797/mdcvj.1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 08/08/2023] Open
Abstract
Heart and lung interaction within the thoracic cavity is well known during inhalation and exhalation, both spontaneously and during mechanical ventilation. Disease and dysfunction of one organ affect the function of the other. A review of the cause-and-effect relationship between cardiovascular disease and acute respiratory distress syndrome (ARDS) is of significance, as the disease burden of both conditions has both a national and global impact on health care. This literature review examines the relationship between cardiovascular disease and ARDS over the past 25 years.
Collapse
Affiliation(s)
- Asma Zainab
- Methodist DeBakey Heart & Vascular Center, Houston Methodist, Houston, Texas, US
- Weill Cornell Medical College, New York, US
| | | | | |
Collapse
|
364
|
van Weperen VYH, Ripplinger CM, Vaseghi M. Autonomic control of ventricular function in health and disease: current state of the art. Clin Auton Res 2023; 33:491-517. [PMID: 37166736 PMCID: PMC10173946 DOI: 10.1007/s10286-023-00948-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Cardiac autonomic dysfunction is one of the main pillars of cardiovascular pathophysiology. The purpose of this review is to provide an overview of the current state of the art on the pathological remodeling that occurs within the autonomic nervous system with cardiac injury and available neuromodulatory therapies for autonomic dysfunction in heart failure. METHODS Data from peer-reviewed publications on autonomic function in health and after cardiac injury are reviewed. The role of and evidence behind various neuromodulatory therapies both in preclinical investigation and in-use in clinical practice are summarized. RESULTS A harmonic interplay between the heart and the autonomic nervous system exists at multiple levels of the neuraxis. This interplay becomes disrupted in the setting of cardiovascular disease, resulting in pathological changes at multiple levels, from subcellular cardiac signaling of neurotransmitters to extra-cardiac, extra-thoracic remodeling. The subsequent detrimental cycle of sympathovagal imbalance, characterized by sympathoexcitation and parasympathetic withdrawal, predisposes to ventricular arrhythmias, progression of heart failure, and cardiac mortality. Knowledge on the etiology and pathophysiology of this condition has increased exponentially over the past few decades, resulting in a number of different neuromodulatory approaches. However, significant knowledge gaps in both sympathetic and parasympathetic interactions and causal factors that mediate progressive sympathoexcitation and parasympathetic dysfunction remain. CONCLUSIONS Although our understanding of autonomic imbalance in cardiovascular diseases has significantly increased, specific, pivotal mediators of this imbalance and the recognition and implementation of available autonomic parameters and neuromodulatory therapies are still lagging.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA.
| |
Collapse
|
365
|
Roy S, Kloner RA, Salloum FN, Jovin IS. Cardiac Effects of Phosphodiesterase-5 Inhibitors: Efficacy and Safety. Cardiovasc Drugs Ther 2023; 37:793-806. [PMID: 34652581 PMCID: PMC9010479 DOI: 10.1007/s10557-021-07275-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/23/2023]
Abstract
The coexistence of cardiovascular disease and erectile dysfunction is widespread, possibly owing to underlying endothelial dysfunction in both diseases. Millions of patients with cardiovascular disease are prescribed phosphodiesterase-5 (PDE5) inhibitors for the management of erectile dysfunction. Although the role of PDE5 inhibitors in erectile dysfunction therapy is well established, their effects on the cardiovascular system are unclear. Preclinical studies investigating the effect of PDE5 inhibitors on ischemia-reperfusion injury, pressure overload-induced hypertrophy, and chemotoxicity suggested a possible clinical role for each of these medications; however, attempts to translate these findings to the bedside have resulted in mixed outcomes. In this review, we explore the biologic preclinical effects of PDE5 inhibitors in mediating cardioprotection. We then examine clinical trials investigating PDE5 inhibition in patients with heart failure, coronary artery disease, and ventricular arrhythmias and discuss why the studies likely have yet to show positive results and efficacy with PDE5 inhibition despite no safety concerns.
Collapse
Affiliation(s)
- Sumon Roy
- Pauley Heart Center, Virginia Commonwealth University Medical Center, McGuire VAMC, 1201 Broad Rock Boulevard, 111J, Richmond, VA, 23249, USA
| | - Robert A Kloner
- Huntington Medical Research Institute, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fadi N Salloum
- Pauley Heart Center, Virginia Commonwealth University Medical Center, McGuire VAMC, 1201 Broad Rock Boulevard, 111J, Richmond, VA, 23249, USA
| | - Ion S Jovin
- Pauley Heart Center, Virginia Commonwealth University Medical Center, McGuire VAMC, 1201 Broad Rock Boulevard, 111J, Richmond, VA, 23249, USA.
- McGuire Veterans Affairs Medical Center, Richmond, VA, USA.
| |
Collapse
|
366
|
Kmieć P, Rosenkranz S, Odenthal M, Caglayan E. Differential Role of Aldosterone and Transforming Growth Factor Beta-1 in Cardiac Remodeling. Int J Mol Sci 2023; 24:12237. [PMID: 37569619 PMCID: PMC10419155 DOI: 10.3390/ijms241512237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Angiotensin II, a major culprit in cardiovascular disease, activates mediators that are also involved in pathological cardiac remodeling. In this context, we aimed at investigating the effects of two of them: aldosterone (Ald) and transforming growth factor beta-1 (TGF-β1) in an in vivo model. Six-week-old male wild-type (WT) and TGF-β1-overexpressing transgenic (TGF-β1-TG) mice were infused with subhypertensive doses of Ald for 2 weeks and/or treated orally with eplerenone from postnatal day 21. Thehearts' ventricles were examined by morphometry, immunoblotting to assess the intracellular signaling pathways and RT qPCR to determine hypertrophy and fibrosis marker genes. The TGF-β1-TG mice spontaneously developed cardiac hypertrophy and interstitial fibrosis and exhibited a higher baseline phosphorylation of p44/42 and p38 kinases, fibronectin and ANP mRNA expression. Ald induced a comparable increase in the ventricular-heart-weight-to-body-weight ratio and cardiomyocyte diameter in both strains, but a less pronounced increase in interstitial fibrosis in the transgenic compared to the WT mice (23.6% vs. 80.9%, p < 0.005). Ald increased the phosphorylation of p44/42 and p38 in the WT but not the TGF-β1-TG mice. While the eplerenone-enriched chow partially prevented Ald-induced cardiac hypertrophy in both genotypes and interstitial fibrosis in the WT controls, it completely protected against additional fibrosis in transgenic mice. Ald appears to induce cardiac hypertrophy independently of TGF-β1, while in the case of fibrosis, the downstream signaling pathways of these two factors probably converge.
Collapse
Affiliation(s)
- Piotr Kmieć
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, 80214 Gdańsk, Poland;
| | - Stephan Rosenkranz
- Clinic for Internal Medicine III and Cologne Cardiovascular Research Center, Cologne University Heart Center, 50937 Köln, Germany;
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne and Center for Molecular Medicine, University of Cologne, 50937 Köln, Germany;
| | - Evren Caglayan
- Department of Cardiology, University-Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
367
|
Jiang S, Wang X, Yu M, Tian J, Chang P, Zhu S. Bitter Peptides in Fermented Soybean Foods - A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01077-3. [PMID: 37410257 DOI: 10.1007/s11130-023-01077-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Fermented soybean foods with a long history are popular worldwide because of rich nutrition. However, many traditional fermented soybean foods have unacceptable bitterness, which mostly comes from the bitter peptides produced from the hydrolysis of soybean proteins. In this review, the bitter peptides in fermented soybean foods is briefly reviewed. The structural properties of bitter receptors and bitter peptides were reviewed. Bitterness is perceived through the binding between bitter compounds and specific sites of bitter receptors (25 hTAS2Rs), which further activate the downstream signal pathway mediated by G-protein. And it converts chemical signals into electrical signals, and transmit them to the brain. In addition, the influencing factors of bitter peptides in fermented soybean foods were summarized. The bitterness of fermented soybean foods primarily results from the raw materials, microbial metabolism during fermentation, unique techniques, and interactions of various flavor compounds. Moreover, the structure-bitterness relationship of bitter peptides was also discussed in this review. The bitterness degree of the bitter peptide is related to the polypeptide hydrophobicity, amino acids in the peptide, peptide molecular weight and polypeptide spatial structure. Studying the bitter peptides and their bitter characteristics in fermented soybean foods is beneficial for improving the sensory quality of fermented soybean foods and prompting more consumers accept them.
Collapse
Affiliation(s)
- Shaoping Jiang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Xiaodan Wang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China.
| | - Maosong Yu
- Tianjin haigang steel coil Co.,Ltd, Tianjin, 301600, China
| | - Jiaxue Tian
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Ping Chang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Shijie Zhu
- Changchun ZhuLaoLiu Food Co., Ltd, Changchun, 130507, China
| |
Collapse
|
368
|
Balligand JL, Michel LYM. Clinical pharmacology of β-3 adrenergic receptor agonists for cardiovascular diseases. Expert Rev Clin Pharmacol 2023; 16:1073-1084. [PMID: 37728503 DOI: 10.1080/17512433.2023.2193681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/17/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Few agonists of the third isotype of beta-adrenergic receptors, the β3-adrenoreceptor, are currently used clinically, and new agonists are under development for the treatment of overactive bladder disease. As the receptor is expressed in human cardiac and vascular tissues, it is important to understand their beneficial (or adverse) effect(s) on these targets. AREAS COVERED We discuss the most recent results of clinical trials testing the benefit and safety of β3-adrenoreceptor activation on cardiovascular outcomes in light of current knowledge on the receptor biology, genetic polymorphisms, and agonist pharmacology. EXPERT OPINION While evidence from small clinical trials is limited so far, the β3-agonist, mirabegron seems to be safe in patients at high cardiovascular risk but produces benefits on selected cardiovascular outcomes only at higher than standard doses. Activation of cardiovascular β3-adrenoreceptors deserves to be tested with more potent agonists, such as vibegron.
Collapse
Affiliation(s)
- Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
369
|
Arfaras-Melainis A, Ventoulis I, Polyzogopoulou E, Boultadakis A, Parissis J. The current and future status of inotropes in heart failure management. Expert Rev Cardiovasc Ther 2023; 21:573-585. [PMID: 37458248 DOI: 10.1080/14779072.2023.2237869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Heart failure (HF) is a complex syndrome with a wide range of presentations and acuity, ranging from outpatient care to inpatient management due to acute decompensated HF, cardiogenic shock or advanced HF. Frequently, the etiology of a patient's decompensation is diminished cardiac output and peripheral hypoperfusion. Consequently, there is a need for use of inotropes, agents that increase cardiac contractility, optimize hemodynamics and ensure adequate perfusion. AREAS COVERED Inotropes are divided into 3 major classes: beta agonists, phosphodiesterase III inhibitors and calcium sensitizers. Additionally, as data from prospective studies accumulates, novel agents are emerging, including omecamtiv mecarbil and istaroxime. The aim of this review is to summarize current data on the optimal use of inotropes and to provide an expert opinion regarding their current and future use in the management of HF. EXPERT OPINION The use of inotropes has long been linked to worsening mortality, tachyarrhythmias, increased myocardial oxygen consumption and ischemia. Therefore, individualized and evidence-based treatment plans for patients who require inotropic support are necessary. Also, better quality data on the use of existing inotropes is imperative, while the development of newer and safer agents will lead to more effective management of patients with HF in the future.
Collapse
Affiliation(s)
- Angelos Arfaras-Melainis
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Ptolemaida, Greece
| | - Effie Polyzogopoulou
- Emergency Department, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Boultadakis
- Emergency Department, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - John Parissis
- Emergency Department, Heart Failure Unit, Attikon University Hospital, Athens, Greece
| |
Collapse
|
370
|
Lymperopoulos A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: too much or too little? Expert Rev Clin Pharmacol 2023; 16:623-630. [PMID: 37403791 PMCID: PMC10529896 DOI: 10.1080/17512433.2023.2233891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Cyclic 3', 5'-adenosine monophosphate (cAMP) is a major signaling hub in cardiac physiology. Although cAMP signaling has been extensively studied in cardiac cells and animal models of heart failure (HF), not much is known about its actual amount present inside human failing or non-failing cardiomyocytes. Since many drugs used in HF work via cAMP, it is crucial to determine the status of its intracellular levels in failing vs. normal human hearts. AREAS COVERED Only studies performed on explanted/excised cardiac tissues from patients were examined. Studies that contained no data from human hearts or no data on cAMP levels per se were excluded from this perspective's analysis. EXPERT OPINION Currently, there is no consensus on the status of cAMP levels in human failing vs. non-failing hearts. Several studies on animal models may suggest maladaptive (e.g. pro-apoptotic) effects of cAMP on HF, advocating for cAMP lowering for therapy, but human studies almost universally indicate that myocardial cAMP levels are deficient in human failing hearts. It is the expert opinion of this perspective that intracellular cAMP levels are too low in human failing hearts, contributing to the disease. Strategies to increase (restore), not decrease, these levels should be pursued in human HF.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
371
|
Lei C, Zhang X, Chen E, Lin L, Zhou Z, Wang Z, Liu T, Liu Z. Compositional alterations of the gut microbiota in acute myocardial infarction patients with type 2 diabetes mellitus. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:317. [PMID: 37405000 PMCID: PMC10316093 DOI: 10.21037/atm-22-3521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/18/2022] [Indexed: 07/06/2023]
Abstract
Background Type 2 diabetes mellitus (T2DM) is a risk factor for acute myocardial infarction (AMI) and a common comorbidity in patients with AMI. T2DM doubles the fatality rate of patients with AMI in the acute phase of AMI and the follow-up period. However, the mechanisms by which T2DM increases the fatality rate remain unknown. This study sought to investigate changes in the gut microbiota of patients with AMI and T2DM (AMIDM) to extend understandings of the relative mechanisms from the aspects of gut microbiota. Methods Patients were recruited and divided into 2 groups comprising 15 patients with AMIDM and 15 patients with AMI but without T2DM (AMINDM). Their stool samples and clinical information were collected. 16S ribosomal DNA sequencing was used to analyze the structure and composition of the gut microbiota based on the operational taxonomic units. Results A significant difference was observed in the gut microbiota β diversity between the 2 groups. At the phylum level, the AMIDM patients showed an increase in the abundance of Firmicutes and a decrease in the abundance of Bacteroidetes compared to the AMINDM patients. At the genus level, the AMIDM patients showed an increase in the abundance of Companilactobacillus, Defluvitaleaceae UCG-011 and UCG-009, and a decrease in the abundance of Phascolarctobacterium and CAG 56 compared to the AMINDM patients. At the species level, the AMIDM patients showed an increase in the abundance of species unclassified NK4A214 group, Bacteroides clarus, Coprococcus comes, unclassified Defluviltaleaceae UCG-011, uncultured rumen bacterium, unclassified CAG 56, Barnesiella intestinihominis, Lachnospiraceae bacterium, Bacteroides nordii, unclassified UCG-009, and the Family XIII AD3011 group compared to the AMINDM patients. The gut microbiota function predictions indicated that the nucleotide metabolism-related pathway was significantly more increase in the patients with AMIDM than those with AMINDM. Additionally, the patients with AMIDM showed an increase in gram-positive bacteria and a decrease in the proportion of gram-negative bacteria. Our correlation analysis results on the gut microbiota and clinical parameters might extend understandings of the progression of AMI. Conclusions Changes in the gut microbiota composition of patients with AMIDM affect the severity of the metabolic disturbance and may be responsible for poorer clinical outcomes and worse disease progression in patients with AMIDM compared to those with AMINDM.
Collapse
Affiliation(s)
- Chao Lei
- Department of Internal Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaoming Zhang
- Department of Internal Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Enyue Chen
- Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ludan Lin
- Department of General Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Zhou Zhou
- Department of Internal Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Zhimo Wang
- Department of Gastroenterology, Shenzhen Hospital of Huazhong University of Science and Technology Union, Shenzhen, China
| | - Ting Liu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Liu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Anorectal Surgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| |
Collapse
|
372
|
Basak D, Gamez D, Deb S. SGLT2 Inhibitors as Potential Anticancer Agents. Biomedicines 2023; 11:1867. [PMID: 37509506 PMCID: PMC10376602 DOI: 10.3390/biomedicines11071867] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) serves as a critical glucose transporter that has been reported to be overexpressed in cancer models, followed by increased glucose uptake in both mice and humans. Inhibition of its expression can robustly thwart tumor development in vitro and in vivo. SGLT2 inhibitors are a comparatively new class of antidiabetic drugs that have demonstrated anticancer effects in several malignancies, including breast, liver, pancreatic, thyroid, prostate, and lung cancers. This review aims to assess the extent of SGLT involvement in different cancer cell lines and discuss the pharmacology, mechanisms of action, and potential applications of SGLT2 inhibitors to reduce tumorigenesis and its progression. Although these agents display a common mechanism of action, they exhibit distinct affinity towards the SGLT type 2 transporter compared to the SGLT type 1 transporter and varying extents of bioavailability and half-lives. While suppression of glucose uptake has been attributed to their primary mode of antidiabetic action, SGLT2 inhibitors have demonstrated several mechanistic ways to combat cancer, including mitochondrial membrane instability, suppression of β-catenin, and PI3K-Akt pathways, increase in cell cycle arrest and apoptosis, and downregulation of oxidative phosphorylation. Growing evidence and ongoing clinical trials suggest a potential benefit of combination therapy using an SGLT2 inhibitor with the standard chemotherapeutic regimen. Nevertheless, further experimental and clinical evidence is required to characterize the expression and role of SGLTs in different cancer types, the activity of different SGLT subtypes, and their role in tumor development and progression.
Collapse
Affiliation(s)
- Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| | - David Gamez
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
373
|
Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O, Vallejos OP, Méndez C, Bueno SM, Melo-González F, Duarte Y, Opazo MC, Kalergis AM, Riedel CA. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne) 2023; 14:1192216. [PMID: 37455925 PMCID: PMC10349397 DOI: 10.3389/fendo.2023.1192216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.
Collapse
Affiliation(s)
- María José Mendoza-León
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Alejandro Regaldiz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Enrique González-Madrid
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Oscar Álvarez-Mardonez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Méndez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
374
|
Ullah K, Li Y, Lin Q, Pan K, Nguyen T, Aniruddhsingh S, Su Q, Sharp W, Wu R. Comparative Analysis of Whole Transcriptome Profiles in Septic Cardiomyopathy: Insights from CLP- and LPS-Induced Mouse Models. Genes (Basel) 2023; 14:1366. [PMID: 37510271 PMCID: PMC10379808 DOI: 10.3390/genes14071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, with septic cardiomyopathy being a common and severe complication. Despite its significant clinical impact, the molecular mechanisms underlying sepsis-induced cardiomyopathy (SICM) remain incompletely understood. In this study, we performed a comparative analysis of whole transcriptome profiles using RNA sequencing in mouse hearts in two widely used mouse models of septic cardiomyopathy. CLP-induced sepsis was achieved by surgical cecal ligation and puncture, while LPS-induced sepsis was induced using a 5 mg/kg intraperitoneal (IP) injection of lipopolysaccharide (LPS). For consistency, we utilized sham-operated mice as the control for septic models. Our aim was to identify key genes and pathways involved in the development of septic cardiomyopathy and to evaluate the similarities and differences between the two models. Our findings demonstrated that both the CLP and lipopolysaccharide LPS methods could induce septic heart dysfunction within 24 h. We identified common transcriptional regulatory regions in the septic hearts of both models, such as Nfkb1, Sp1, and Jun. Moreover, differentially expressed genes (DEGs) in comparison to control were involved in shared pathways, including regulation of inflammatory response, regulation of reactive oxygen species metabolic process, and the JAK-STAT signaling pathway. However, each model presented distinctive whole transcriptome expression profiles and potentially diverse pathways contributing to sepsis-induced heart failure. This extensive comparison enhances our understanding of the molecular basis of septic cardiomyopathy, providing invaluable insights. Accordingly, our study also contributes to the pursuit of effective and personalized treatment strategies for SICM, highlighting the importance of considering the specific causative factors.
Collapse
Affiliation(s)
- Karim Ullah
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA (T.N.)
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (Y.L.); (Q.L.)
| | - Qiaoshan Lin
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (Y.L.); (Q.L.)
| | - Kaichao Pan
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA (T.N.)
| | - Tu Nguyen
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA (T.N.)
| | | | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Willard Sharp
- Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA (T.N.)
| |
Collapse
|
375
|
Zhang D, He J, Cui J, Wang R, Tang Z, Yu H, Zhou M. Oral Microalgae-Nano Integrated System against Radiation-Induced Injury. ACS NANO 2023; 17:10560-10576. [PMID: 37253200 DOI: 10.1021/acsnano.3c01502] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increasing applications of ionizing radiation in society raise the risk of radiation-induced intestinal and whole-body injury. Astaxanthin is a powerful antioxidant to reduce the reactive oxygen generated from radiation and the subsequent damage. However, the oral administration of astaxanthin remains challenging owing to its low solubility and poor bioavailability. Herein, we facilely construct an orally used microalgae-nano integrated system (SP@ASXnano) against radiation-induced intestinal and whole-body injury, combining natural microalgae Spirulina platensis (SP) with astaxanthin nanoparticles (ASXnano). SP and ASXnano show complementation in drug delivery to improve distribution in the intestine and blood. SP displays limited gastric drug loss, prolonged intestinal retention, constant ASXnano release, and progressive degradation. ASXnano improves drug solubility, gastric stability, cell uptake, and intestinal absorption. SP and ASXnano have synergy in many aspects such as anti-inflammation, microbiota protection, and fecal short-chain fatty acid up-regulation. In addition, the system is ensured with biosafety for long-term administration. The system organically combines the properties of microalgae and nanoparticles, which was expected to expand the medical application of SP as a versatile drug delivery platform.
Collapse
Affiliation(s)
- Dongxiao Zhang
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jian He
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiarong Cui
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ruoxi Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Hongyu Yu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Min Zhou
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
376
|
Wei W, Smrcka AV. Internalized β2-Adrenergic Receptors Inhibit Subcellular Phospholipase C-Dependent Cardiac Hypertrophic Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544153. [PMID: 37333278 PMCID: PMC10274790 DOI: 10.1101/2023.06.07.544153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to β-adrenergic receptor (β-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. β1-AR and β2-ARs are the two major subtypes of β-ARs present in the human heart, however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of β1ARs drives detrimental cardiac remodeling while β2AR signaling is protective. The underlying molecular mechanisms for cardiac protection through β2ARs remain unclear. Here we show that β2-AR protects against hypertrophy through inhibition of PLCε signaling at the Golgi apparatus. The mechanism for β2AR-mediated PLC inhibition requires internalization of β2AR, activation of Gi and Gβγ subunit signaling at endosomes and ERK activation. This pathway inhibits both angiotensin II and Golgi-β1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD and HDAC5 phosphorylation and protection against cardiac hypertrophy. This reveals a mechanism for β2-AR antagonism of the PLCε pathway that may contribute to the known protective effects of β2-AR signaling on the development of heart failure.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
377
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Significance of Endothelial Dysfunction Amelioration for Sodium-Glucose Cotransporter 2 Inhibitor-Induced Improvements in Heart Failure and Chronic Kidney Disease in Diabetic Patients. Metabolites 2023; 13:736. [PMID: 37367894 DOI: 10.3390/metabo13060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Beyond lowering plasma glucose levels, sodium-glucose cotransporter 2 inhibitors (SGLT2is) significantly reduce hospitalization for heart failure (HF) and retard the progression of chronic kidney disease (CKD) in patients with type 2 diabetes. Endothelial dysfunction is not only involved in the development and progression of cardiovascular disease (CVD), but is also associated with the progression of CKD. In patients with type 2 diabetes, hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia induce the development of endothelial dysfunction. SGLT2is have been shown to improve endothelial dysfunction, as assessed by flow-mediated vasodilation, in individuals at high risk of CVD. Along with an improvement in endothelial dysfunction, SGLT2is have been shown to improve oxidative stress, inflammation, mitochondrial dysfunction, glucotoxicity, such as the advanced signaling of glycation end products, and nitric oxide bioavailability. The improvements in endothelial dysfunction and such endothelium-derived factors may play an important role in preventing the development of coronary artery disease, coronary microvascular dysfunction and diabetic cardiomyopathy, which cause HF, and play a role in retarding CKD. The suppression of the development of HF and the progression of CKD achieved by SGLT2is might have been largely induced by their capacity to improve vascular endothelial function.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| |
Collapse
|
378
|
Akbarzadeh R, Müller A, Humrich JY, Riemekasten G. When natural antibodies become pathogenic: autoantibodies targeted against G protein-coupled receptors in the pathogenesis of systemic sclerosis. Front Immunol 2023; 14:1213804. [PMID: 37359516 PMCID: PMC10285309 DOI: 10.3389/fimmu.2023.1213804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a chronic, multisystem connective tissue, and autoimmune disease with the highest case-specific mortality and complications among rheumatic diseases. It is characterized by complex and variable features such as autoimmunity and inflammation, vasculopathy, and fibrosis, which pose challenges in understanding the pathogenesis of the disease. Among the large variety of autoantibodies (Abs) present in the sera of patients suffering from SSc, functionally active Abs against G protein-coupled receptors (GPCRs), the most abundant integral membrane proteins, have drawn much attention over the last decades. These Abs play an essential role in regulating the immune system, and their functions are dysregulated in diverse pathological conditions. Emerging evidence indicates that functional Abs targeting GPCRs, such as angiotensin II type 1 receptor (AT1R) and the endothelin-1 type A receptor (ETAR), are altered in SSc. These Abs are part of a network with several GPCR Abs, such as those directed to the chemokine receptors or coagulative thrombin receptors. In this review, we summarize the effects of Abs against GPCRs in SSc pathologies. Extending the knowledge on pathophysiological roles of Abs against GPCRs could provide insights into a better understanding of GPCR contribution to SSc pathogenesis and therefore help in developing potential therapeutic strategies that intervene with pathological functions of these receptors.
Collapse
|
379
|
Li Y, Li B, Chen WD, Wang YD. Role of G-protein coupled receptors in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1130312. [PMID: 37342437 PMCID: PMC10277692 DOI: 10.3389/fcvm.2023.1130312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, with CVDs accounting for nearly 30% of deaths worldwide each year. G-protein-coupled receptors (GPCRs) are the most prominent family of receptors on the cell surface, and play an essential regulating cellular physiology and pathology. Some GPCR antagonists, such as β-blockers, are standard therapy for the treatment of CVDs. In addition, nearly one-third of the drugs used to treat CVDs target GPCRs. All the evidence demonstrates the crucial role of GPCRs in CVDs. Over the past decades, studies on the structure and function of GPCRs have identified many targets for the treatment of CVDs. In this review, we summarize and discuss the role of GPCRs in the function of the cardiovascular system from both vascular and heart perspectives, then analyze the complex ways in which multiple GPCRs exert regulatory functions in vascular and heart diseases. We hope to provide new ideas for the treatment of CVDs and the development of novel drugs.
Collapse
Affiliation(s)
- Yuanqiang Li
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Boyu Li
- Department of Gastroenterology and Hematology, The People's Hospital of Hebi, Henan, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Medicine, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
380
|
Hosseini M, Arab Z, Beheshti F, Anaeigoudari A, Shakeri F, Rajabian A. Zataria multiflora and its constituent, carvacrol, counteract sepsis-induced aortic and cardiac toxicity in rat: Involvement of nitric oxide and oxidative stress. Animal Model Exp Med 2023; 6:221-229. [PMID: 37272426 PMCID: PMC10272902 DOI: 10.1002/ame2.12323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/03/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Zataria multiflora and carvacrol showed various pharmacological properties including anti-inflammatory and anti-oxidant effects. However, up to now no studies have explored its potential benefits in ameliorating sepsis-induced aortic and cardiac injury. Thus, this study aimed to investigate the effects of Z. multiflora and carvacrol on nitric oxide (NO) and oxidative stress indicators in lipopolysaccharide (LPS)-induced aortic and cardiac injury. METHODS Adult male Wistar rats were assigned to: Control, lipopolysaccharide (LPS) (1 mg/kg, intraperitoneal (i.p.)), and Z. multiflora hydro-ethanolic extract (ZME, 50-200 mg/kg, oral)- and carvacrol (25-100 mg/kg, oral)-treated groups. LPS was injected daily for 14 days. Treatment with ZME and carvacrol started 3 days before LPS administration and treatment continued during LPS administration. At the end of the study, the levels of malondialdehyde (MDA), NO, thiols, and antioxidant enzymes were evaluated. RESULTS Our findings showed a significant reduction in the levels of superoxide dismutase (SOD), catalase (CAT), and thiols in the LPS group, which were restored by ZME and carvacrol. Furthermore, ZME and carvacrol decreased MDA and NO in cardiac and aortic tissues of LPS-injected rats. CONCLUSIONS The results suggest protective effects of ZME and carvacrol on LPS-induced cardiovascular injury via improved redox hemostasis and attenuated NO production. However, additional studies are needed to elucidate the effects of ZME and its constituents on inflammatory responses mediated by LPS.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Zohreh Arab
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Farimah Beheshti
- Neuroscience Research CenterTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
- Department of Physiology, School of Paramedical SciencesTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical SciencesBojnurdIran
- Department of Physiology and Pharmacology, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
381
|
Kolleritsch S, Pajed L, Tilp A, Hois V, Pototschnig I, Kien B, Diwoky C, Hoefler G, Schoiswohl G, Haemmerle G. Adverse cardiac remodeling augments adipose tissue ß-adrenergic signaling and lipolysis counteracting diet-induced obesity. J Biol Chem 2023; 299:104788. [PMID: 37150323 PMCID: PMC10318461 DOI: 10.1016/j.jbc.2023.104788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023] Open
Abstract
Cardiac triacylglycerol accumulation is a common characteristic of obesity and type 2 diabetes and strongly correlates with heart morbidity and mortality. We have previously shown that cardiomyocyte-specific perilipin 5 overexpression (Plin5-Tg) provokes significant cardiac steatosis via lowering cardiac lipolysis and fatty acid (FA) oxidation. In strong contrast to cardiac steatosis and lethal heart dysfunction in adipose triglyceride lipase deficiency, Plin5-Tg mice do not develop heart dysfunction and show a normal life span on chow diet. This finding prompted us to study heart function and energy metabolism in Plin5-Tg mice fed high-fat diet (HFD). Plin5-Tg mice showed adverse cardiac remodeling on HFD with heart function only being compromised in one-year-old mice, likely due to reduced cardiac FA uptake, thereby delaying deleterious cardiac lipotoxicity. Notably, Plin5-Tg mice were less obese and protected from glucose intolerance on HFD. Changes in cardiac energy catabolism in Plin5-Tg mice increased ß-adrenergic signaling, lipolytic, and thermogenic protein expression in adipose tissue ultimately counteracting HFD-induced obesity. Acute cold exposure further augmented ß-adrenergic signaling in Plin5-Tg mice, whereas housing at thermoneutrality did not protect Plin5-Tg mice from HFD-induced obesity albeit blood glucose and insulin levels remained low in transgenic mice. Overall, our data suggest that the limited capacity for myocardial FA oxidation on HFD increases cardiac stress in Plin5-Tg mice, thereby stimulating adipose tissue ß-adrenergic signaling, triacylglycerol catabolism, and thermogenesis. However, long-term HFD-mediated metabolic stress causes contractile dysfunction in Plin5-Tg mice, which emphasizes the importance of a carefully controlled dietary regime in patients with cardiac steatosis and hypertrophy.
Collapse
Affiliation(s)
| | - Laura Pajed
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anna Tilp
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Victoria Hois
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | | | - Benedikt Kien
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria; BioTechMed, Graz, Graz, Austria
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed, Graz, Graz, Austria; Department of Pharmacology and Toxicology, University of Graz, Graz, Austria.
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed, Graz, Graz, Austria.
| |
Collapse
|
382
|
Lymperopoulos A, Borges JI, Suster MS. Angiotensin II-dependent aldosterone production in the adrenal cortex. VITAMINS AND HORMONES 2023; 124:393-404. [PMID: 38408805 DOI: 10.1016/bs.vh.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal cortex is responsible for production of adrenal steroid hormones and is anatomically divided into three distinct zones: zona glomerulosa secreting mineralocorticoids (mainly aldosterone), zona fasciculata secreting glucocorticoids (cortisol), and zona reticularis producing androgens. Importantly, due to their high lipophilicity, no adrenal steroid hormone (including aldosterone) is stored in vesicles but rather gets synthesized and secreted instantly upon cell stimulation with specific stimuli. Aldosterone is the most potent mineralocorticoid hormone produced from the adrenal cortex in response to either angiotensin II (AngII) or elevated K+ levels in the blood (hyperkalemia). AngII, being a peptide, cannot cross cell membranes and thus, uses two distinct G protein-coupled receptor (GPCR) types, AngII type 1 receptor (AT1R) and AT2R to exert its effects inside cells. In zona glomerulosa cells, AT1R activation by AngII results in aldosterone synthesis and secretion via two main pathways: (a) Gq/11 proteins that activate phospholipase C ultimately raising intracellular free calcium concentration; and (b) βarrestin1 and -2 (also known as Arrestin-2 and -3, respectively) that elicit sustained extracellular signal-regulated kinase (ERK) activation. Both pathways induce upregulation and acute activation of StAR (steroidogenic acute regulatory) protein, the enzyme that catalyzes the rate-limiting step in aldosterone biosynthesis. This chapter describes these two salient pathways underlying AT1R-induced aldosterone production in zona glomerulosa cells. We also highlight some pharmacologically important notions pertaining to the efficacy of the currently available AT1R antagonists, also known as angiotensin receptor blockers (ARBs) or sartans at suppressing both pathways, i.e., their inverse agonism efficacy at G proteins and βarrestins.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Jordana I Borges
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Malka S Suster
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
383
|
Beasley HK, Wanjalla CN, Kirabo A, Hinton A. β 2ARs: double edge sword in heart function. Trends Mol Med 2023; 29:422-424. [PMID: 36990857 PMCID: PMC10499308 DOI: 10.1016/j.molmed.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Deng and colleagues highlight the importance of understanding the divergent roles of β2-adrenoceptor (β2AR) in high-fat diet-induced heart failure. β2AR signaling has beneficial and detrimental effects depending on the context and level of activation. We discuss the importance of these findings and their implications in developing effective and safe therapies.
Collapse
Affiliation(s)
- Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
384
|
Gao J, Li L, Zhou D, Sun X, Cui L, Yang D, Wang X, Du P, Yuan W. Effects of norepinephrine‑induced activation of rat vascular adventitial fibroblasts on proliferation and migration of BMSCs involved in vascular remodeling. Exp Ther Med 2023; 25:290. [PMID: 37206559 PMCID: PMC10189611 DOI: 10.3892/etm.2023.11989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Vascular remodeling caused by vascular injury such as hypertension and atherosclerosis is a complex process involving a variety of cells and factors, and the mechanism is unclear. A vascular injury model was simulated by adding norepinephrine (NE) to culture medium of vascular adventitial fibroblasts (AFs). NE induced activation and proliferation of AFs. To investigate the association between the AFs activation and bone marrow mesenchymal stem cells (BMSCs) differentiation in vascular remodeling. BMSCs were cultured with supernatant of the AFs culture medium. BMSC differentiation and migration were observed by immunostaining and Transwell assay, respectively, while cell proliferation was measured using the Cell Counting Kit-8. Expression levels of smooth muscle actin (α-SMA), TGF-β1 and SMAD3 were measured using western blot assay. The results indicated that compared with those in the control group, in which BMSCs were cultured in normal medium, expression levels of α-SMA, TGF-β1 and SMAD3 in BMSCs cultured in medium supplemented with supernatant of AFs, increased significantly (all P<0.05). Activated AFs induced the differentiation of BMSCs into vascular smooth muscle-like cells and promoted proliferation and migration. AFs activated by NE may induce BMSCs to participate in vascular remodeling. These findings may help design and develop new approaches and therapeutic strategies for vascular injury to prevent pathological remodeling.
Collapse
Affiliation(s)
- Jun Gao
- Medical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Li Li
- Pediatric Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Dongli Zhou
- Nurse's Office, Health School of Laiyang, Laiyang, Yantai, Shandong 265200, P.R. China
| | - Xuhong Sun
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Lilu Cui
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Donglin Yang
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaohui Wang
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Pengchao Du
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Correspondence to: Professor Wendan Yuan or Professor Pengchao Du, Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, P.R. China E-mail: 981713509 @qq.com
| | - Wendan Yuan
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Correspondence to: Professor Wendan Yuan or Professor Pengchao Du, Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, P.R. China E-mail: 981713509 @qq.com
| |
Collapse
|
385
|
Ding R, Ren X, Sun Q, Sun Z, Duan J. An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2023; 48:227-257. [PMID: 35998874 PMCID: PMC10248804 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
386
|
Kyle Martin W, Schladweiler MC, Oshiro W, Smoot J, Fisher A, Williams W, Valdez M, Miller CN, Jackson TW, Freeborn D, Kim YH, Davies D, Ian Gilmour M, Kodavanti U, Kodavanti P, Hazari MS, Farraj AK. Wildfire-related smoke inhalation worsens cardiovascular risk in sleep disrupted rats. FRONTIERS IN ENVIRONMENTAL HEALTH 2023; 2:1166918. [PMID: 38116203 PMCID: PMC10726696 DOI: 10.3389/fenvh.2023.1166918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Introduction As a lifestyle factor, poor sleep status is associated with increased cardiovascular morbidity and mortality and may be influenced by environmental stressors, including air pollution. Methods To determine whether exposure to air pollution modified cardiovascular effects of sleep disruption, we evaluated the effects of single or repeated (twice/wk for 4 wks) inhalation exposure to eucalyptus wood smoke (ES; 964 μg/m3 for 1 h), a key wildland fire air pollution source, on mild sleep loss in the form of gentle handling in rats. Blood pressure (BP) radiotelemetry and echocardiography were evaluated along with assessments of lung and systemic inflammation, cardiac and hypothalamic gene expression, and heart rate variability (HRV), a measure of cardiac autonomic tone. Results and Discussion GH alone disrupted sleep, as evidenced by active period-like locomotor activity, and increases in BP, heart rate (HR), and hypothalamic expression of the circadian gene Per2. A single bout of sleep disruption and ES, but neither alone, increased HR and BP as rats transitioned into their active period, a period aligned with a critical early morning window for stroke risk in humans. These responses were immediately preceded by reduced HRV, indicating increased cardiac sympathetic tone. In addition, only sleep disrupted rats exposed to ES had increased HR and BP during the final sleep disruption period. These rats also had increased cardiac output and cardiac expression of genes related to adrenergic function, and regulation of vasoconstriction and systemic blood pressure one day after final ES exposure. There was little evidence of lung or systemic inflammation, except for increases in serum LDL cholesterol and alanine aminotransferase. These results suggest that inhaled air pollution increases sleep perturbation-related cardiovascular risk, potentially in part by increased sympathetic activity.
Collapse
Affiliation(s)
- W. Kyle Martin
- Curriculum in Toxicology and Environmental Medicine, UNC, Chapel Hill, NC, United States
| | - M. C. Schladweiler
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - W. Oshiro
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - J. Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - A. Fisher
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - W. Williams
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. Valdez
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - C. N. Miller
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - T. W. Jackson
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - D. Freeborn
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - Y. H. Kim
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - D. Davies
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. Ian Gilmour
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - U. Kodavanti
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - P. Kodavanti
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. S. Hazari
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - A. K. Farraj
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| |
Collapse
|
387
|
Olson AC, Butt AM, Christie NTM, Shelar A, Koelle MR. Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gα q and Gα s Activate the Caenorhabditis elegans Egg-Laying Muscles. J Neurosci 2023; 43:3789-3806. [PMID: 37055179 PMCID: PMC10219013 DOI: 10.1523/jneurosci.2301-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Individual neurons or muscle cells express many G-protein-coupled receptors (GPCRs) for neurotransmitters and neuropeptides, yet it remains unclear how cells integrate multiple GPCR signals that all must activate the same few G-proteins. We analyzed this issue in the Caenorhabditis elegans egg-laying system, where multiple GPCRs on muscle cells promote contraction and egg laying. We genetically manipulated individual GPCRs and G-proteins specifically in these muscle cells within intact animals and then measured egg laying and muscle calcium activity. Two serotonin GPCRs on the muscle cells, Gαq-coupled SER-1 and Gαs-coupled SER-7, together promote egg laying in response to serotonin. We found that signals produced by either SER-1/Gαq or SER-7/Gαs alone have little effect, but these two subthreshold signals combine to activate egg laying. We then transgenically expressed natural or designer GPCRs in the muscle cells and found that their subthreshold signals can also combine to induce muscle activity. However, artificially inducing strong signaling through just one of these GPCRs can be sufficient to induce egg laying. Knocking down Gαq and Gαs in the egg-laying muscle cells induced egg-laying defects that were stronger than those of a SER-1/SER-7 double knockout, indicating that additional endogenous GPCRs also activate the muscle cells. These results show that in the egg-laying muscles multiple GPCRs for serotonin and other signals each produce weak effects that individually do not result in strong behavioral outcomes. However, they combine to produce sufficient levels of Gαq and Gαs signaling to promote muscle activity and egg laying.SIGNIFICANCE STATEMENT How can neurons and other cells gather multiple independent pieces of information from the soup of chemical signals in their environment and compute an appropriate response? Most cells express >20 GPCRs that each receive one signal and transmit that information through three main types of G-proteins. We analyzed how this machinery generates responses by studying the egg-laying system of C. elegans, where serotonin and multiple other signals act through GPCRs on the egg-laying muscles to promote muscle activity and egg laying. We found that individual GPCRs within an intact animal each generate effects too weak to activate egg laying. However, combined signaling from multiple GPCR types reaches a threshold capable of activating the muscle cells.
Collapse
Affiliation(s)
- Andrew C Olson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Allison M Butt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Nakeirah T M Christie
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Ashish Shelar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
388
|
Parichatikanond W, Duangrat R, Mangmool S. G αq protein-biased ligand of angiotensin II type 1 receptor mediates myofibroblast differentiation through TGF-β1/ERK axis in human cardiac fibroblasts. Eur J Pharmacol 2023; 951:175780. [PMID: 37209939 DOI: 10.1016/j.ejphar.2023.175780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Angiotensin II receptors are members of G protein-coupled receptor superfamily that manifest biased signals toward G protein- and β-arrestin-dependent pathways. However, the role of angiotensin II receptor-biased ligands and the mechanisms underlying myofibroblast differentiation in human cardiac fibroblasts have not been fully elucidated. Our results demonstrated that antagonism of angiotensin II type 1 receptor (AT1 receptor) and blockade of Gαq protein suppressed angiotensin II (Ang II)-induced fibroblast proliferation, overexpression of collagen I and α-smooth muscle actin (α-SMA), and stress fibre formation, indicating the AT1 receptor/Gαq axis is necessary for fibrogenic effects of Ang II. Stimulation of AT1 receptors by their Gαq-biased ligand (TRV120055), but not β-arrestin-biased ligand (TRV120027), substantially exerted fibrogenic effects at a level similar to that of Ang II, suggesting that AT1 receptor induced cardiac fibrosis in a Gαq-dependent and β-arrestin-independent manner. Valsartan prevents TRV120055-mediated fibroblast activation. TRV120055 mediated the upregulation of transforming growth factor-beta1 (TGF-β1) through the AT1 receptor/Gαq cascade. In addition, Gαq protein and TGF-β1 were necessary for ERK1/2 activation induced by Ang II and TRV120055. Collectively, TGF-β1 and ERK1/2 are downstream effectors of the Gαq-biased ligand of AT1 receptor for the induction of cardiac fibrosis.
Collapse
Affiliation(s)
- Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
389
|
Yoo TK, Han KD, Rhee EJ, Lee WY. Impact of mental disorders on the risk of heart failure among Korean patients with diabetes: a cohort study. Cardiovasc Diabetol 2023; 22:115. [PMID: 37208672 DOI: 10.1186/s12933-023-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/19/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Few studies have assessed the correlation between coexisting mental disorders in participants with diabetes mellitus (DM) and the risk of heart failure (HF). Herein, we conducted a cohort study to determine the association between the accumulation of mental disorders in participants with DM and the risk of HF. METHODS The Korean National Health Insurance Service records were assessed. 2,447,386 adults with DM who underwent health screening between 2009 and 2012 were analyzed. Participants with major depressive disorder, bipolar disorder, schizophrenia, insomnia, or anxiety disorders were included. In addition, participants were categorized based on the number of coexisting mental disorders. Each participant was followed until December 2018 or until the onset of HF. Cox proportional hazard modelling with confounding factors adjustment was conducted. In addition, a competing risk analysis was conducted. Subgroup analysis assessed the impact of clinical variables on the association between the accumulation of mental disorders and the risk of HF. RESULTS The median follow-up duration was 7.09 years. The accumulation of mental disorders was associated with a risk of HF (zero mental disorder (0), reference; 1 mental disorder, adjusted hazard ratio (aHR): 1.222, 95% confidence intervals (CI): 1.207-1.237; 2 mental disorders, aHR: 1.426, CI: 1.403-1.448; ≥3 mental disorders, aHR: 1.667, CI: 1.632-1.70. In the subgroup analysis, the strength of association was the strongest in the younger age group (< 40 years, 1 mental disorder, aHR 1.301, CI 1.143-1.481; ≥2 mental disorders, aHR 2.683, CI 2.257-3.190; 40-64 years, 1 mental disorder, aHR 1.289, CI 1.265-1.314; ≥2 mental disorders, aHR 1.762, CI 1.724-1.801; ≥65 years, 1 mental disorder, aHR 1.164, CI 1.145-1.183; ≥2 mental disorders, aHR 1.353, CI 1.330-1.377; Pinter<0.001). In addition, income, BMI, hypertension, chronic kidney disease, history of cardiovascular disease, insulin use, and duration of DM showed significant interactions. CONCLUSIONS Comorbid mental disorders in participants with DM are associated with an increased risk of HF. In addition, the association was stronger in a younger age group. Participants with DM and mental disorders should be monitored with increased frequency for signs of HF; for which they have a higher risk than the general population.
Collapse
Affiliation(s)
- Tae Kyung Yoo
- Department of Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
390
|
Ogawa A, Ohira S, Kato Y, Ikuta T, Yanagida S, Mi X, Ishii Y, Kanda Y, Nishida M, Inoue A, Wei FY. Activation of the urotensin-II receptor by remdesivir induces cardiomyocyte dysfunction. Commun Biol 2023; 6:511. [PMID: 37173432 PMCID: PMC10175918 DOI: 10.1038/s42003-023-04888-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Remdesivir is an antiviral drug used for COVID-19 treatment worldwide. Cardiovascular side effects have been associated with remdesivir; however, the underlying molecular mechanism remains unknown. Here, we performed a large-scale G-protein-coupled receptor screening in combination with structural modeling and found that remdesivir is a selective, partial agonist for urotensin-II receptor (UTS2R) through the Gαi/o-dependent AKT/ERK axis. Functionally, remdesivir treatment induced prolonged field potential and APD90 in human induced pluripotent stem cell (iPS)-derived cardiomyocytes and impaired contractility in both neonatal and adult cardiomyocytes, all of which mirror the clinical pathology. Importantly, remdesivir-mediated cardiac malfunctions were effectively attenuated by antagonizing UTS2R signaling. Finally, we characterized the effect of 110 single-nucleotide variants in UTS2R gene reported in genome database and found four missense variants that show gain-of-function effects in the receptor sensitivity to remdesivir. Collectively, our study illuminates a previously unknown mechanism underlying remdesivir-related cardiovascular events and that genetic variations of UTS2R gene can be a potential risk factor for cardiovascular events during remdesivir treatment, which collectively paves the way for a therapeutic opportunity to prevent such events in the future.
Collapse
Affiliation(s)
- Akiko Ogawa
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Seiya Ohira
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tatsuya Ikuta
- Laboratory of Molecular & Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Xinya Mi
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yukina Ishii
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
- National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.
| | - Asuka Inoue
- Laboratory of Molecular & Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
391
|
Yano H, Onoue K, Tokinaga S, Ioka T, Ishihara S, Hashimoto Y, Nakada Y, Nakagawa H, Ueda T, Seno A, Nishida T, Watanabe M, Saito Y. Overexpression of GRK2 in vascular smooth muscle leads to inappropriate hypertension and acute heart failure as in clinical scenario 1. Sci Rep 2023; 13:7707. [PMID: 37173348 PMCID: PMC10182096 DOI: 10.1038/s41598-023-34209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Clinical scenario 1 (CS1) is acute heart failure (HF) characterized by transient systolic blood pressure (SBP) elevation and pulmonary congestion. Although it is managed by vasodilators, the molecular mechanism remains unclear. The sympathetic nervous system plays a key role in HF, and desensitization of cardiac β-adrenergic receptor (AR) signaling due to G protein-coupled receptor kinase 2 (GRK2) upregulation is known. However, vascular β-AR signaling that regulates cardiac afterload remains unelucidated in HF. We hypothesized that upregulation of vascular GRK2 leads to pathological conditions similar to CS1. GRK2 was overexpressed in vascular smooth muscle (VSM) of normal adult male mice by peritoneally injected adeno-associated viral vectors driven by the myosin heavy chain 11 promoter. Upregulation of GRK2 in VSM of GRK2 overexpressing mice augmented the absolute increase in SBP (+ 22.5 ± 4.3 mmHg vs. + 36.0 ± 4.0 mmHg, P < 0.01) and lung wet weight (4.28 ± 0.05 mg/g vs. 4.76 ± 0.15 mg/g, P < 0.01) by epinephrine as compared to those in control mice. Additionally, the expression of brain natriuretic peptide mRNA was doubled in GRK2 overexpressing mice as compared to that in control mice (P < 0.05). These findings were similar to CS1. GRK2 overexpression in VSM may cause inappropriate hypertension and HF, as in CS1.
Collapse
Affiliation(s)
- Hiroki Yano
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Shiho Tokinaga
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Tomoko Ioka
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Satomi Ishihara
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Yukihiro Hashimoto
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Yasuki Nakada
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Hitoshi Nakagawa
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Tomoya Ueda
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Ayako Seno
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Taku Nishida
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Makoto Watanabe
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan.
| |
Collapse
|
392
|
Rebecchi M, Fanisio F, Rizzi F, Politano A, De Ruvo E, Crescenzi C, Panattoni G, Squeglia M, Martino A, Sasso S, Golia P, Pugliese G, Del Gigante S, Giamundo D, Desimone P, Grieco D, De Luca L, Giordano I, Barillà F, Perrone MA, Calò L, Iellamo F. The Autonomic Coumel Triangle: A New Way to Define the Fascinating Relationship between Atrial Fibrillation and the Autonomic Nervous System. Life (Basel) 2023; 13:life13051139. [PMID: 37240784 DOI: 10.3390/life13051139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Arrhythmogenic substrate, modulating factors, and triggering factors (the so-called Coumel's triangle concept) play a primary role in atrial fibrillation (AF) pathophysiology. Several years have elapsed since Coumel and co-workers advanced the concept of the relevance of autonomic nervous system (ANS) influences on atrial cells' electrophysiological characteristics. The ANS is not only associated with cardiac rhythm regulation but also exerts an important role in the triggering and maintenance of atrial fibrillation. This review aims to describe in detail the autonomic mechanisms involved in the pathophysiology of atrial fibrillation (AF), starting from the hypothesis of an "Autonomic Coumel Triangle" that stems from the condition of the fundamental role played by the ANS in all phases of the pathophysiology of AF. In this article, we provide updated information on the biomolecular mechanisms of the ANS role in Coumel's triangle, with the molecular pathways of cardiac autonomic neurotransmission, both adrenergic and cholinergic, and the interplay between the ANS and cardiomyocytes' action potential. The heterogeneity of the clinical spectrum of the ANS and AF, with the ANS playing a relevant role in situations that may promote the initiation and maintenance of AF, is highlighted. We also report on drug, biological, and gene therapy as well as interventional therapy. On the basis of the evidence reviewed, we propose that one should speak of an "Autonomic Coumel's Triangle" instead of simply "Coumel's Triangle".
Collapse
Affiliation(s)
- Marco Rebecchi
- Division of Cardiology, PoliclinicoCasilino, 00169 Rome, Italy
| | | | - Fabio Rizzi
- Division of Cardiology, PoliclinicoCasilino, 00169 Rome, Italy
| | | | | | | | | | | | | | - Stefano Sasso
- Department of Systems Medicine, University Tor Vergata, 00133 Rome, Italy
| | - Paolo Golia
- Division of Cardiology, PoliclinicoCasilino, 00169 Rome, Italy
| | - Giulia Pugliese
- Department of Systems Medicine, University Tor Vergata, 00133 Rome, Italy
| | - Sofia Del Gigante
- Department of Systems Medicine, University Tor Vergata, 00133 Rome, Italy
| | - Domenico Giamundo
- Department of Systems Medicine, University Tor Vergata, 00133 Rome, Italy
| | - Pietro Desimone
- Department of Systems Medicine, University Tor Vergata, 00133 Rome, Italy
| | - Domenico Grieco
- Division of Cardiology, PoliclinicoCasilino, 00169 Rome, Italy
| | - Lucia De Luca
- Division of Cardiology, PoliclinicoCasilino, 00169 Rome, Italy
| | - Ignazio Giordano
- Department of Systems Medicine, University Tor Vergata, 00133 Rome, Italy
| | - Francesco Barillà
- Department of Systems Medicine, University Tor Vergata, 00133 Rome, Italy
| | - Marco Alfonso Perrone
- Department of Clinical Science and Translational Medicine, University Tor Vergata, 00133 Rome, Italy
| | - Leonardo Calò
- Division of Cardiology, PoliclinicoCasilino, 00169 Rome, Italy
| | - Ferdinando Iellamo
- Department of Clinical Science and Translational Medicine, University Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
393
|
Zhuo X, Luo H, Lei R, Lou X, Bian J, Guo J, Luo H, Zhang X, Jiao Q, Gong W. Association between Intestinal Microecological Changes and Atherothrombosis. Microorganisms 2023; 11:1223. [PMID: 37317197 PMCID: PMC10222604 DOI: 10.3390/microorganisms11051223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large- and medium-sized arteries that causes ischemic heart disease, strokes, and peripheral vascular disease, collectively called cardiovascular disease (CVD), and is the leading cause of CVD resulting in a high rate of mortality in the population. AS is pathological by plaque development, which is caused by lipid infiltration in the vessel wall, endothelial dysfunction, and chronic low-grade inflammation. Recently, more and more scholars have paid attention to the importance of intestinal microecological disorders in the occurrence and development of AS. Intestinal G-bacterial cell wall lipopolysaccharide (LPS) and bacterial metabolites, such as oxidized trimethylamine (TMAO) and short-chain fatty acids (SCFAs), are involved in the development of AS by affecting the inflammatory response, lipid metabolism, and blood pressure regulation of the body. Additionally, intestinal microecology promotes the progression of AS by interfering with the normal bile acid metabolism of the body. In this review, we summarize the research on the correlation between maintaining a dynamic balance of intestinal microecology and AS, which may be potentially helpful for the treatment of AS.
Collapse
Affiliation(s)
- Xinyu Zhuo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Hui Luo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Rumei Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Hao Luo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| |
Collapse
|
394
|
Nong Y, Wei X, Yu D. Inflammatory mechanisms and intervention strategies for sepsis-induced myocardial dysfunction. Immun Inflamm Dis 2023; 11:e860. [PMID: 37249297 PMCID: PMC10187025 DOI: 10.1002/iid3.860] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is the leading cause of death in patients with sepsis in the intensive care units. The main manifestations of SIMD are systolic and diastolic dysfunctions of the myocardium. Despite our initial understanding of the SIMD over the past three decades, the incidence and mortality of SIMD remain high. This may be attributed to the large degree of heterogeneity among the initiating factors, disease processes, and host states involved in SIMD. Previously, organ dysfunction caused by sepsis was thought to be an impairment brought about by an excessive inflammatory response. However, many recent studies have shown that SIMD is a consequence of a combination of factors shaped by the inflammatory responses between the pathogen and the host. In this article, we review the mechanisms of the inflammatory responses and potential novel therapeutic strategies in SIMD.
Collapse
Affiliation(s)
- Yuxin Nong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xuebiao Wei
- Department of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Danqing Yu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
395
|
Zheng H, Peri L, Ward GK, Sanders KM, Ward SM. Cardiac PDGFRα + interstitial cells generate spontaneous inward currents that contribute to excitability in the heart. FASEB J 2023; 37:e22929. [PMID: 37086093 PMCID: PMC10402933 DOI: 10.1096/fj.202201712r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
The cell types and conductance that contribute to normal cardiac functions remain under investigation. We used mice that express an enhanced green fluorescent protein (eGFP)-histone 2B fusion protein driven off the cell-specific endogenous promoter for Pdgfra to investigate the distribution and functional role of PDGFRα+ cells in the heart. Cardiac PDGFRα+ cells were widely distributed within the endomysium of atria, ventricle, and sino-atrial node (SAN) tissues. PDGFRα+ cells formed a discrete network of cells, lying in close apposition to neighboring cardiac myocytes in mouse and Cynomolgus monkey (Macaca fascicularis) hearts. Expression of eGFP in nuclei allowed unequivocal identification of these cells following enzymatic dispersion of muscle tissues. FACS purification of PDGFRα+ cells from the SAN and analysis of gene transcripts by qPCR revealed that they were a distinct population of cells that expressed gap junction transcripts, Gja1 and Gjc1. Cardiac PDGFRα+ cells generated spontaneous transient inward currents (STICs) and spontaneous transient depolarizations (STDs) that reversed at 0 mV. Reversal potential was maintained when ECl = -40 mV. [Na+ ]o replacement and FTY720 abolished STICs, suggesting they were due to a non-selective cation conductance (NSCC) carried by TRPM7. PDGFRα+ cells also express β2 -adrenoceptor gene transcripts, Adrb2. Zinterol, a selective β2 -receptor agonist, increased the amplitude and frequency of STICs, suggesting these cells could contribute to adrenergic regulation of cardiac excitability. PDGFRα+ cells in cardiac muscles generate inward currents via an NSCC. STICs generated by these cells may contribute to the integrated membrane potentials of cardiac muscles, possibly affecting the frequency of pacemaker activity.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Lauren Peri
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Grace K. Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Kenton M. Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Sean M. Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
396
|
Lin Z, Liao HH, Zhou ZY, Zhang N, Li WJ, Tang QZ. RIP2 inhibition alleviates lipopolysaccharide-induced septic cardiomyopathy via regulating TAK1 signaling. Eur J Pharmacol 2023; 947:175679. [PMID: 36967078 DOI: 10.1016/j.ejphar.2023.175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE RIP2 is a member of the receptor-interacting protein family that has been associated with various pathophysiological processes, including immunity, apoptosis, and autophagy. However, no studies have hitherto reported the role of RIP2 in lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM). This study was designed to illustrate the role of RIP2 in LPS-induced SCM. METHODS C57 and RIP2 knockout mice received intraperitoneal injections of LPS to establish models of SCM. Echocardiography was used to assess the cardiac function of the mice. Real-time-PCR, cytometric bead array and immunohistochemical staining were used to detect the inflammatory response. Immunoblotting was used to determine the protein expression of relevant signaling pathways. Our findings were validated by treatment with a RIP2 inhibitor. Neonatal rats cardiomyocytes (NRCMs) and cardiac fibroblasts (CFs) were transfected with Ad-RIP2 to further explore the role of RIP2 in vitro. RESULTS RIP2 expression was upregulated in our mice models of septic cardiomyopathy and LPS-stimulated cardiomyocytes and fibroblasts. RIP2 knockout or RIP2 inhibitors attenuated LPS-induced cardiac dysfunction and reduced the inflammatory response in mice. Overexpression of RIP2 in vitro enhanced the inflammatory response, and TAK1 inhibitors attenuated the inflammatory response caused by overexpression of RIP2. CONCLUSION Our findings substantiate that RIP2 induces an inflammatory response by regulating the TAK1/IκBα/NF-κB signaling pathway. RIP2 inhibition by genetic or pharmacological approaches has huge prospects for application as a potential treatment strategy for inhibiting inflammation, alleviating cardiac dysfunction, and improving survival.
Collapse
|
397
|
de Man FS, Vonk Noordegraaf A. The right ventricle tamed. Eur Respir J 2023; 61:61/5/2300509. [PMID: 37208035 DOI: 10.1183/13993003.00509-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/21/2023]
Affiliation(s)
- Frances S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Anton Vonk Noordegraaf
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| |
Collapse
|
398
|
Xie W, Zhang A, Huang X, Zhou H, Ying H, Ye C, Ren M, Qian M, Liu X, Mo Y. SILENCING M 6 A READER YTHDC1 REDUCES INFLAMMATORY RESPONSE IN SEPSIS-INDUCED CARDIOMYOPATHY BY INHIBITING SERPINA3N EXPRESSION. Shock 2023; 59:791-802. [PMID: 36877222 DOI: 10.1097/shk.0000000000002106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
ABSTRACT Sepsis-induced cardiomyopathy (SIC) is one of the most common complications of infection-induced sepsis. An imbalance in inflammatory mediators is the main factor leading to SIC . N 6 -methyladenosine (m 6 A) is closely related to the occurrence and development of sepsis. N 6 -methyladenosine reader YTH domain containing 1 (YTHDC1) is an m 6 A N 6 -methyladenosine recognition protein. However, the role of YTHDC1 in SIC remains unclear. Herein, we demonstrated that YTHDC1-shRNA inhibits inflammation, reduces inflammatory mediators, and improves cardiac function in a LPS-induced SIC mouse model. Based on the Gene Expression Omnibus database analysis, serine protease inhibitor A3N is a differential gene of SIC. Furthermore, RNA immunoprecipitation indicated that serine protease inhibitor A3N (SERPINA3N) mRNA can bind to YTHDC1, which regulates the expression of SERPINA3N. Serine protease inhibitor A3N-siRNA reduced LPS-induced inflammation of cardiac myocytes. In conclusion, the m 6 A reader YTHDC1 regulates SERPINA3N mRNA expression to mediate the levels of inflammation in SIC. Such findings add to the relationship between m 6 A reader YTHDC1 and SIC, providing a new research avenue for the therapeutic mechanism of SIC.
Collapse
Affiliation(s)
- Wenjing Xie
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
400
|
Twine CP, Kakkos SK, Aboyans V, Baumgartner I, Behrendt CA, Bellmunt-Montoya S, Jilma B, Nordanstig J, Saratzis A, Reekers JA, Zlatanovic P, Antoniou GA, de Borst GJ, Bastos Gonçalves F, Chakfé N, Coscas R, Dias NV, Hinchliffe RJ, Kolh P, Lindholt JS, Mees BME, Resch TA, Trimarchi S, Tulamo R, Vermassen FEG, Wanhainen A, Koncar I, Fitridge R, Matsagkas M, Valgimigli M. Editor's Choice - European Society for Vascular Surgery (ESVS) 2023 Clinical Practice Guidelines on Antithrombotic Therapy for Vascular Diseases. Eur J Vasc Endovasc Surg 2023; 65:627-689. [PMID: 37019274 DOI: 10.1016/j.ejvs.2023.03.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023]
|