351
|
Is multiple sclerosis an autoimmune disease? Autoimmune Dis 2012; 2012:969657. [PMID: 22666554 PMCID: PMC3361990 DOI: 10.1155/2012/969657] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/05/2012] [Accepted: 03/15/2012] [Indexed: 01/26/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) with varied clinical presentations and heterogeneous histopathological features. The underlying immunological abnormalities in MS lead to various neurological and autoimmune manifestations. There is strong evidence that MS is, at least in part, an immune-mediated disease. There is less evidence that MS is a classical autoimmune disease, even though many authors state this in the description of the disease. We show the evidence that both supports and refutes the autoimmune hypothesis. In addition, we present an alternate hypothesis based on virus infection to explain the pathogenesis of MS.
Collapse
|
352
|
Shimizu J, Takai K, Fujiwara N, Arimitsu N, Ueda Y, Wakisaka S, Yoshikawa H, Kaneko F, Suzuki T, Suzuki N. Excessive CD4+ T cells co-expressing interleukin-17 and interferon-γ in patients with Behçet's disease. Clin Exp Immunol 2012; 168:68-74. [PMID: 22385240 DOI: 10.1111/j.1365-2249.2011.04543.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Excessive T helper type 1 (Th1) cell activity has been reported in Behçet's disease (BD). Recently, association of Th17 cells with certain autoimmune diseases was reported, and we thus investigated circulating Th17 cells in BD. CD4(+) CD45RO(-) (naive) T cells were cultured with Th0-, Th1-, Th2- and Th17-related cytokines and antibodies, and their mRNA was studied by real-time polymerase chain reaction (PCR). When naive CD4(+) T cells were cultured with Th1- and Th17-related cytokines, interferon (IFN)-γ mRNA and interleukin (IL)-17 mRNA were up-regulated, respectively, in BD patients. Naive CD4(+) T cells cultured in a Th17 cell-inducing condition expressed IL-23 receptor (IL-23R) mRNA excessively. IL-17 mRNA expression was induced only when naive CD4(+) T cells were cultured in the presence of IL-23. CD4(+) T cells cultured with Th17 cytokines expressed excessive RAR-related orphan receptor C (RORC) mRNA. Using intracellular cytokine staining, we found that CD45RO(+) (memory) CD4(+) T cells producing IL-17 and IFN-γ simultaneously were increased significantly. Memory CD4(+) T cells producing IFN-γ but not IL-17 decreased profoundly in BD patients. CD4(+) T cells producing IL-17 and IFN-γ simultaneously were found in BD skin lesions. Collectively, we found excessive CD4(+) T cells producing IL-17 and IFN-γ (Th1/Th17) cells in patients with BD, and possible involvement of IL-23/IL-23R pathway for the appearance of excessive Th1/Th17 cells.
Collapse
Affiliation(s)
- J Shimizu
- Department of Immunology and Medicine, St Marianna University School of Medicine, Sugao 2-16-1, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci (Lond) 2012; 122:487-511. [PMID: 22324470 DOI: 10.1042/cs20110496] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IL-17 (interleukin-17), a hallmark cytokine of Th17 (T-helper 17) cells, plays critical roles in host defence against bacterial and fungal infections, as well as in the pathogenesis of autoimmune diseases. The present review focuses on current knowledge of the regulation, functional mechanisms and targeting strategies of IL-17 in the context of inflammatory autoimmune diseases. Evidence shows that IL-17 is highly up-regulated at sites of inflammatory tissues of autoimmune diseases and amplifies the inflammation through synergy with other cytokines, such as TNF (tumour necrosis factor) α. Although IL-17 was originally thought to be produced mainly by Th17 cells, a newly defined T-cell subset with a specific differentiation programme and tight regulation, several other cell types (especially innate immune cells) are also found as important sources for IL-17 production. Although IL-17 activates common downstream signalling, including NF-κB (nuclear factor κB), MAPKs (mitogen-activated protein kinases), C/EBPs (CCAAT/enhancer-binding proteins) and mRNA stability, the immediate receptor signalling has been shown to be quite unique and tightly regulated. Mouse genetic studies have demonstrated a critical role for IL-17 in the pathogenesis of variety of inflammatory autoimmune diseases, such as RA (rheumatoid arthritis) and MS (multiple sclerosis). Importantly, promising results have been shown in initial clinical trials of monoclonal antibodies against IL-17 or its receptor (IL-17R) to block IL-17-mediated function in treating autoimmune patients with psoriasis, RA and MS. Therefore targeting IL-17/IL-17R, IL-17-producing pathways or IL-17-mediated signalling pathways can be considered for future therapy in autoimmune diseases.
Collapse
|
354
|
Raϊch-Regué D, Grau-López L, Naranjo-Gómez M, Ramo-Tello C, Pujol-Borrell R, Martínez-Cáceres E, Borràs FE. Stable antigen-specific T-cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients. Eur J Immunol 2012; 42:771-82. [DOI: 10.1002/eji.201141835] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
355
|
Kuijk LM, Klaver EJ, Kooij G, van der Pol SMA, Heijnen P, Bruijns SCM, Kringel H, Pinelli E, Kraal G, de Vries HE, Dijkstra CD, Bouma G, van Die I. Soluble helminth products suppress clinical signs in murine experimental autoimmune encephalomyelitis and differentially modulate human dendritic cell activation. Mol Immunol 2012; 51:210-8. [PMID: 22482518 DOI: 10.1016/j.molimm.2012.03.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/09/2012] [Accepted: 03/06/2012] [Indexed: 12/26/2022]
Abstract
The increased incidence of auto-inflammatory and autoimmune diseases in the developed countries seems to be caused by an imbalance of the immune system due to the lack of proper regulation. Helminth parasites are well known modulators of the immune system and as such are of great interest for the treatment of these disorders. Clinical studies showed that administration of eggs of the pig nematode Trichuris suis to patients with inflammatory bowel disease reduces the disease severity. Here we demonstrate that treatment with soluble products from the nematodes T. suis and Trichinella spiralis induces significant suppression of symptoms in murine experimental autoimmune encephalomyelitis, a validated animal model for multiple sclerosis. These data show that infection with live nematodes is not a prerequisite for suppression of inflammation. To translate these results to the human system, the effects of soluble products of T. suis, T. spiralis and Schistosoma mansoni on the phenotype and function of human dendritic cells (DCs) were compared. Our data show that soluble products of T. suis, S. mansoni and T. spiralis suppress TNF-α and IL-12 secretion by TLR-activated human DCs, and that T. suis and S. mansoni, but not T. spiralis, strongly enhance expression of OX40L. Furthermore, helminth-primed human DCs differentially suppress the development of Th1 and/or Th17 cells. In conclusion, our data demonstrate that soluble helminth products have strong immunomodulatory capacities, but might exert their effects through different mechanisms. The suppressed secretion of pro-inflammatory cytokines together with an upregulation of OX40L expression on human DCs might contribute to achieve this modulation.
Collapse
Affiliation(s)
- Loes M Kuijk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Comi C, Fleetwood T, Dianzani U. The role of T cell apoptosis in nervous system autoimmunity. Autoimmun Rev 2012; 12:150-6. [PMID: 22504460 DOI: 10.1016/j.autrev.2011.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 12/20/2022]
Abstract
Fas is a transmembrane receptor involved in the death program of several cell lines, including T lymphocytes. Deleterious mutations hitting genes involved in the Fas pathway cause the autoimmune lymphoprolipherative syndrome (ALPS). Moreover, defective Fas function is involved in the development of common autoimmune diseases, including autoimmune syndromes hitting the nervous system, such as multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). In this review, we first explore some peculiar aspects of Fas mediated apoptosis in the central versus peripheral nervous system (CNS, PNS); thereafter, we analyze what is currently known on the role of T cell apoptosis in both MS and CIDP, which, in this regard, may be seen as two faces of the same coin. In fact, we show that, in both diseases, defective Fas mediated apoptosis plays a crucial role favoring disease development and its chronic evolution.
Collapse
Affiliation(s)
- C Comi
- Department of Clinical and Experimental Medicine, Section of Neurology, Amedeo Avogadro University, Novara, Italy.
| | | | | |
Collapse
|
357
|
Jurado JO, Pasquinelli V, Alvarez IB, Peña D, Rovetta AI, Tateosian NL, Romeo HE, Musella RM, Palmero D, Chuluyán HE, García VE. IL-17 and IFN-γ expression in lymphocytes from patients with active tuberculosis correlates with the severity of the disease. J Leukoc Biol 2012; 91:991-1002. [PMID: 22416258 DOI: 10.1189/jlb.1211619] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Th1 lymphocytes are crucial in the immune response against Mycobacterium tuberculosis. Nevertheless, IFN-γ alone is not sufficient in the complete eradication of the bacteria, suggesting that other cytokines might be required for pathogen removal. Th17 cells have been associated with M. tuberculosis infection, but the role of IL-17-producing cells in human TB remains to be understood. Therefore, we investigated the induction and regulation of IFN-γ and IL-17 during the active disease. TB patients were classified as High and Low Responder individuals according to their T cell responses against the antigen, and cytokine expression upon M. tuberculosis stimulation was investigated in peripheral blood and pleural fluid. Afterwards, the potential correlation among the proportions of cytokine-producing cells and clinical parameters was analyzed. In TB patients, M. tuberculosis induced IFN-γ and IL-17, but in comparison with BCG-vaccinated healthy donors, IFN-γ results were reduced significantly, and IL-17 was markedly augmented. Moreover, the main source of IL-17 was represented by CD4(+)IFN-γ(+)IL-17(+) lymphocytes, a Th1/Th17 subset regulated by IFN-γ. Interestingly, the ratio of antigen-expanded CD4(+)IFN-γ(+)IL-17(+) lymphocytes, in peripheral blood and pleural fluid from TB patients, was correlated directly with clinical parameters associated with disease severity. Indeed, the highest proportion of CD4(+)IFN-γ(+)IL-17(+) cells was detected in Low Responder TB patients, individuals displaying severe pulmonary lesions, and longest length of disease evolution. Taken together, the present findings suggest that analysis of the expansion of CD4(+)IFN-γ(+)IL-17(+) T lymphocytes in peripheral blood of TB patients might be used as an indicator of the clinical outcome in active TB.
Collapse
Affiliation(s)
- Javier O Jurado
- Department of Biological Chemistry, University of Buenos Aires, School of Sciences, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Lukens JR, Barr MJ, Chaplin DD, Chi H, Kanneganti TD. Inflammasome-derived IL-1β regulates the production of GM-CSF by CD4(+) T cells and γδ T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:3107-15. [PMID: 22345669 DOI: 10.4049/jimmunol.1103308] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent findings have demonstrated an indispensable role for GM-CSF in the pathogenesis of experimental autoimmune encephalomyelitis. However, the signaling pathways and cell populations that regulate GM-CSF production in vivo remain to be elucidated. Our work demonstrates that IL-1R is required for GM-CSF production after both TCR- and cytokine-induced stimulation of immune cells in vitro. Conventional αβ and γδ T cells were both identified to be potent producers of GM-CSF. Moreover, secretion of GM-CSF was dependent on IL-1R under both IL-12- and IL-23-induced stimulatory conditions. Deficiency in IL-1R conferred significant protection from experimental autoimmune encephalomyelitis, and this correlated with reduced production of GM-CSF and attenuated infiltration of inflammatory cells into the CNS. We also find that GM-CSF production in vivo is not restricted to a defined CD4(+) T cell lineage but is rather heterogeneously expressed in the effector CD4(+) T cell population. In addition, inflammasome-derived IL-1β upstream of IL-1R is a critical regulator of GM-CSF production by T cells during priming, and the adapter protein, MyD88, promotes GM-CSF production in both αβ and γδ T cells. These findings highlight the importance of inflammasome-derived IL-1β and the IL-1R/MyD88 signaling axis in the regulation of GM-CSF production.
Collapse
Affiliation(s)
- John R Lukens
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
359
|
Ifergan I, Kebir H, Terouz S, Alvarez JI, Lécuyer MA, Gendron S, Bourbonnière L, Dunay IR, Bouthillier A, Moumdjian R, Fontana A, Haqqani A, Klopstein A, Prinz M, López-Vales R, Birchler T, Prat A. Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann Neurol 2012; 70:751-63. [PMID: 22162058 DOI: 10.1002/ana.22519] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Blood-derived myeloid antigen-presenting cells (APCs) account for a significant proportion of the leukocytes found within lesions of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). These APCs along with activated microglia are thought to be pivotal in the initiation of the central nervous system (CNS)-targeted immune response in MS and EAE. However, the exact molecules that direct the migration of myeloid cells from the periphery across the blood-brain barrier (BBB) remain largely unknown. METHODS We identified Ninjurin-1 in a proteomic screen of human BBB endothelial cells (ECs). We assessed the expression of Ninjurin-1 by BBB-ECs and immune cells, and we determined the role of Ninjurin-1 in immune cell migration to the CNS in vivo in EAE mice. RESULTS Ninjurin-1 was found to be weakly expressed in the healthy human and mouse CNS but upregulated on BBB-ECs and on infiltrating APCs during the course of EAE and in active MS lesions. In human peripheral blood, Ninjurin-1 was predominantly expressed by monocytes, whereas it was barely detectable on T and B lymphocytes. Moreover, Ninjurin-1 neutralization specifically abrogated the adhesion and migration of human monocytes across BBB-ECs, without affecting lymphocyte recruitment. Finally, Ninjurin-1 blockade reduced clinical disease activity and histopathological indices of EAE and decreased infiltration of macrophages, dendritic cells, and APCs into the CNS. INTERPRETATION Our study uncovers an important cell-specific role for Ninjurin-1 in the transmigration of inflammatory APCs across the BBB and further emphasizes the importance of myeloid cell recruitment during the development of neuroinflammatory lesions.
Collapse
Affiliation(s)
- Igal Ifergan
- Neuroimmunology Research Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Upregulation of IL-17, but not of IL-9, in circulating cells of CIS and relapsing MS patients. Impact of corticosteroid therapy on the cytokine network. J Neuroimmunol 2012; 243:73-80. [DOI: 10.1016/j.jneuroim.2011.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 12/18/2022]
|
361
|
Wu D, Wang J, Pae M, Meydani SN. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases. Mol Aspects Med 2012; 33:107-18. [DOI: 10.1016/j.mam.2011.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
|
362
|
Middleton GW, Annels NE, Pandha HS. Are we ready to start studies of Th17 cell manipulation as a therapy for cancer? Cancer Immunol Immunother 2012; 61:1-7. [PMID: 22086162 PMCID: PMC11029090 DOI: 10.1007/s00262-011-1151-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/29/2011] [Indexed: 02/04/2023]
Abstract
From a therapeutic perspective, the bourgeoning literature on Th17 cells should allow us to decide whether to rationally pursue the manipulation of Th17 cells in cancer. The purpose of this review is to attempt a synthesis of a number of contradictory conclusions as to the role that these cells are playing in the process of tumourigenesis in order to provide guidance as to whether our current understanding is sufficient to safely pursue Th17-targeted therapy in cancer at this time. Th17 cells are a highly plastic population and the cytokine drivers for Th17 cell generation and skewing will vary between various cancers and importantly between different sites of tumour involvement in any individual patient. The net impact of the pro-angiogenic IL-17 produced not only by Th17 cells but by other cells particularly macrophages and the anti-tumour effects of Th1/Th17 cells will in turn be determined by the complex interplay of diverse chemokines and cytokines in any tumour microenvironment. Th17 cells that fail to home to tumours may be immunosuppressive. The complexity of IL-17 and Th17 dynamics makes easy prediction of the effects of either enhancing or suppressing Th17 cell differentiation in cancer problematic.
Collapse
Affiliation(s)
- Gary W Middleton
- Royal Surrey County Hospital, Egerton Road, Guildford, Surrey, GU2 7XX, UK.
| | | | | |
Collapse
|
363
|
[Th1, Th17 and Th1+17 cells]. Z Rheumatol 2011; 70:862-5. [PMID: 22139205 DOI: 10.1007/s00393-011-0779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
T helper cells contribute to the induction and maintenance of rheumatic inflammation through the secretion of cytokines. The analysis of Th1 cells expressing interferon-γ, Th17 cells expressing interleukin-17 and the newly described Th1+17 cells could give insight into the pathophysiological mechanisms of rheumatic diseases. This could lead to the development of novel, targeted therapeutic strategies.
Collapse
|
364
|
Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 2011; 334:1727-31. [PMID: 22144466 DOI: 10.1126/science.1206936] [Citation(s) in RCA: 573] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The blood-brain barrier (BBB) is composed of tightly bound endothelial cells (ECs) and perivascular astrocytes that regulate central nervous system (CNS) homeostasis. We showed that astrocytes secrete Sonic hedgehog and that BBB ECs express Hedgehog (Hh) receptors, which together promote BBB formation and integrity during embryonic development and adulthood. Using pharmacological inhibition and genetic inactivation of the Hh signaling pathway in ECs, we also demonstrated a critical role of the Hh pathway in promoting the immune quiescence of BBB ECs by decreasing the expression of proinflammatory mediators and the adhesion and migration of leukocytes, in vivo and in vitro. Overall, the Hh pathway provides a barrier-promoting effect and an endogenous anti-inflammatory balance to CNS-directed immune attacks, as occurs in multiple sclerosis.
Collapse
Affiliation(s)
- Jorge Ivan Alvarez
- Neuroimmunology Unit, Center of Excellence in Neuromics, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Th17 response and inflammatory autoimmune diseases. Int J Inflam 2011; 2012:819467. [PMID: 22229105 PMCID: PMC3249891 DOI: 10.1155/2012/819467] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/27/2011] [Indexed: 01/07/2023] Open
Abstract
The proinflammatory activity of T helper 17 (Th17) cells can be beneficial to the host during infection. However, uncontrolled or inappropriate Th17 activation has been linked to several autoimmune and autoinflammatory pathologies. Indeed, preclinical and clinical data show that Th17 cells are associated with several autoimmune diseases such as arthritis, multiple sclerosis, psoriasis, and lupus. Furthermore, targeting the interleukin-17 (IL-17) pathway has attenuated disease severity in preclinical models of autoimmune diseases. Interestingly, a recent report brings to light a potential role for Th17 cells in the autoinflammatory disorder adult-onset Still's disease (AOSD). Whether Th17 cells are the cause or are directly involved in AOSD remains to be shown. In this paper, we discuss the biology of Th17 cells, their role in autoimmune disease development, and in AOSD in particular, as well as the growing interest of the pharmaceutical industry in their use as therapeutic targets.
Collapse
|
366
|
Ifergan I, Kebir H, Alvarez JI, Marceau G, Bernard M, Bourbonnière L, Poirier J, Duquette P, Talbot PJ, Arbour N, Prat A. Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on α4 integrin. Brain 2011; 134:3560-77. [PMID: 22058139 PMCID: PMC7110084 DOI: 10.1093/brain/awr268] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clonally expanded CD8+ T lymphocytes are present in multiple sclerosis lesions, as well as in the cerebrospinal fluid of patients with multiple sclerosis. In experimental autoimmune encephalomyelitis, CD8+ T lymphocytes are found in spinal cord and brainstem lesions. However, the exact phenotype of central nervous system-infiltrating CD8+ T lymphocytes and the mechanism by which these cells cross the blood–brain barrier remain largely unknown. Using cerebrospinal fluid from patients with multiple sclerosis, spinal cord from experimental autoimmune encephalomyelitis and coronavirus-induced encephalitis, we demonstrate that central nervous system-infiltrating CD8+ T lymphocytes are mostly of the effector memory phenotype (CD62L− CCR7− granzymeBhi). We further show that purified human effector memory CD8+ T lymphocytes transmigrate more readily across blood-brain barrier-endothelial cells than non-effector memory CD8+ T lymphocytes, and that blood-brain barrier endothelium promotes the selective recruitment of effector memory CD8+ T lymphocytes. Furthermore, we provide evidence for the recruitment of interferon-γ- and interleukin-17-secreting CD8+ T lymphocytes by human and mouse blood-brain barrier endothelium. Finally, we show that in vitro migration of CD8+ T lymphocytes across blood-brain barrier-endothelial cells is dependent on α4 integrin, but independent of intercellular adhesion molecule-1/leucocyte function-associated antigen-1, activated leucocyte cell adhesion molecule/CD6 and the chemokine monocyte chemotactic protein-1/CCL2. We also demonstrate that in vivo neutralization of very late antigen-4 restricts central nervous system infiltration of CD8+ T lymphocytes in active immunization and adoptive transfer experimental autoimmune encephalomyelitis, and in coronavirus-induced encephalitis. Our study thus demonstrates an active role of the blood-brain barrier in the recruitment of effector memory CD8+ T lymphocytes to the CNS compartment and defines α4 integrin as a major contributor of CD8+ T lymphocyte entry into the brain.
Collapse
Affiliation(s)
- Igal Ifergan
- Neuroimmunology Research Unit, Centre for Excellence in Neuromics, CRCHUM-Notre-Dame Hospital, Université de Montréal, Montréal, QC, H2L 4M1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Wang J, Ren Z, Xu Y, Xiao S, Meydani SN, Wu D. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T-cell subsets. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:221-34. [PMID: 22056360 DOI: 10.1016/j.ajpath.2011.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/19/2011] [Accepted: 09/14/2011] [Indexed: 12/01/2022]
Abstract
The green tea component epigallocatechin-3-gallate (EGCG) may be beneficial in autoimmune diseases; however, the underlying mechanisms are not well understood. In this study, we determined the effect of EGCG on the development of experimental autoimmune encephalomyelitis, an animal model for human multiple sclerosis, and the underlying mechanisms. Female C57BL/6 mice were fed EGCG (0%, 0.15%, 0.3%, and 0.6% in diet) for 30 days and then immunized with specific antigen myelin oligodendrocyte glycoprotein 35-55. EGCG dose dependently attenuated clinical symptoms and pathological features (leukocyte infiltration and demyelination) in the central nervous system and inhibited antigen-specific T-cell proliferation and delayed-type hypersensitivity skin response. We further showed that EGCG reduced production of interferon-γ, IL-17, IL-6, IL-1β, and tumor necrosis factor-α; decreased types 1 and 17 helper T cells (Th1 and Th17, respectively); and increased regulatory T-cell populations in lymph nodes, the spleen, and the central nervous system. Moreover, EGCG inhibited expression of transcription factors T-box expressed in T cells and retinoid-related orphan receptor-γt, the specific transcription factor for Th1 and Th17 differentiation, respectively; the plasma levels of intercellular adhesion molecule 1; and CCR6 expression in CD4(+) T cells. These results indicate that EGCG may attenuate experimental autoimmune encephalomyelitis autoimmune response by inhibiting immune cell infiltration and modulating the balance among pro- and anti-autoimmune CD4(+) T-cell subsets. Thus, we identified a novel mechanism that underlies EGCG's beneficial effect in autoimmune disease.
Collapse
Affiliation(s)
- Junpeng Wang
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Sackler Graduate School of Biochemical Sciences, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
368
|
Rothhammer V, Heink S, Petermann F, Srivastava R, Claussen MC, Hemmer B, Korn T. Th17 lymphocytes traffic to the central nervous system independently of α4 integrin expression during EAE. ACTA ACUST UNITED AC 2011; 208:2465-76. [PMID: 22025301 PMCID: PMC3256959 DOI: 10.1084/jem.20110434] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Th1 lymphocytes preferentially infiltrate into the spinal cord during EAE via a VLA-4–mediated mechanism while Th17 lymphocyte infiltration is dependent on LFA-1 expression. The integrin α4β1 (VLA-4) is used by encephalitogenic T cells to enter the central nervous system (CNS). However, both Th1 and Th17 cells are capable of inducing experimental autoimmune encephalomyelitis (EAE), and the molecular cues mediating the infiltration of Th1 versus Th17 cells into the CNS have not yet been defined. We investigated how blocking of α4 integrins affected trafficking of Th1 and Th17 cells into the CNS during EAE. Although antibody-mediated inhibition of α4 integrins prevented EAE when MOG35-55-specific Th1 cells were adoptively transferred, Th17 cells entered the brain, but not the spinal cord parenchyma, irrespective of α4 blockade. Accordingly, T cell–conditional α4-deficient mice were not resistant to actively induced EAE but showed an ataxic syndrome with predominantly supraspinal infiltrates of IL-23R+CCR6+CD4+ T cells. The entry of α4-deficient Th17 cells into the CNS was abolished by blockade of LFA-1 (αLβ2 integrin). Thus, Th1 cells preferentially infiltrate the spinal cord via an α4 integrin–mediated mechanism, whereas the entry of Th17 cells into the brain parenchyma occurs in the absence of α4 integrins but is dependent on the expression of αLβ2. These observations have implications for the understanding of lesion localization, immunosurveillance, and drug design in multiple sclerosis.
Collapse
Affiliation(s)
- Veit Rothhammer
- Klinikum rechts der Isar, Department of Neurology, Technical University Munich, 81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
369
|
Schneider R, Mohebiany AN, Ifergan I, Beauseigle D, Duquette P, Prat A, Arbour N. B cell-derived IL-15 enhances CD8 T cell cytotoxicity and is increased in multiple sclerosis patients. THE JOURNAL OF IMMUNOLOGY 2011; 187:4119-28. [PMID: 21911607 DOI: 10.4049/jimmunol.1100885] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Multiple lines of evidence suggest that CD8 T cells contribute to the pathogenesis of multiple sclerosis (MS). However, the sources and involvement of cytokines such as IL-15 in activating these cells is still unresolved. To investigate the role of IL-15 in enhancing the activation of CD8 T cells in the context of MS, we determined cell types expressing the bioactive surface IL-15 in the peripheral blood of patients and evaluated the impact of this cytokine on CD8 T cell cytotoxicity and migration. Flow cytometric analysis showed a significantly greater proportion of B cells and monocytes from MS patients expressing IL-15 relative to controls. We established that CD40L activation of B cells from healthy donors increased their IL-15 levels, reaching those of MS patients. We also demonstrated an enhanced cytotoxic profile in CD8 T cells from MS patients upon stimulation with IL-15. Furthermore, we showed that IL-15 expressed by B cells and monocytes is sufficient and functional, enhancing granzyme B production by CD8 T cells upon coculture. Exposure of CD8 T cells to this cytokine enhanced their ability to kill glial cells as well as to migrate across an in vitro inflamed human blood-brain barrier. The elevated levels of IL-15 in patients relative to controls, the greater susceptibility of CD8 T cells from patients to IL-15, in addition to the enhanced cytotoxic responses by IL-15-exposed CD8 T cells, stresses the potential of therapeutic strategies to reduce peripheral sources of IL-15 in MS.
Collapse
Affiliation(s)
- Raphael Schneider
- Département de Médecine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2L 4M1, Canada
| | | | | | | | | | | | | |
Collapse
|
370
|
Becher B, Segal BM. T(H)17 cytokines in autoimmune neuro-inflammation. Curr Opin Immunol 2011; 23:707-12. [PMID: 21907555 DOI: 10.1016/j.coi.2011.08.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/15/2011] [Indexed: 12/17/2022]
Abstract
It has been firmly established that IL-23 polarized T(H)17 cells are potent effectors in the pathogenesis of experimental autoimmune encephalitomyelitis (EAE). However, the relative importance of these cells in comparison to other encephalitogenic T(H) subsets, and the mechanisms that they employ to effect inflammatory demyelination, are topics of continuing investigation. Interestingly, deletion of individual 'T(H)17 cytokines', such as IL-17A, IL-17F, IL-22 and IL-21, does not phenocopy the complete EAE-resistance of IL-23-deficient mice. The instability of T(H)17 cells in vivo introduces an additional layer of complexity to their role in the context of relapsing or chronic disease. Recent data indicate that IL-23 drives the production of myeloid activating factors, such as GM-CSF, by myelin-reactive T cells and facilitates their accumulation in the CNS. This review discusses the above issues in relation to the use of T(H)17 cells and related factors as potential therapeutic targets and biomarkers in CNS autoimmune diseases such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
371
|
Abstract
It has been firmly established that IL-23 polarized T(H)17 cells are potent effectors in the pathogenesis of experimental autoimmune encephalitomyelitis (EAE). However, the relative importance of these cells in comparison to other encephalitogenic T(H) subsets, and the mechanisms that they employ to effect inflammatory demyelination, are topics of continuing investigation. Interestingly, deletion of individual 'T(H)17 cytokines', such as IL-17A, IL-17F, IL-22 and IL-21, does not phenocopy the complete EAE-resistance of IL-23-deficient mice. The instability of T(H)17 cells in vivo introduces an additional layer of complexity to their role in the context of relapsing or chronic disease. Recent data indicate that IL-23 drives the production of myeloid activating factors, such as GM-CSF, by myelin-reactive T cells and facilitates their accumulation in the CNS. This review discusses the above issues in relation to the use of T(H)17 cells and related factors as potential therapeutic targets and biomarkers in CNS autoimmune diseases such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
372
|
Sweeney CM, Lonergan R, Basdeo SA, Kinsella K, Dungan LS, Higgins SC, Kelly PJ, Costelloe L, Tubridy N, Mills KHG, Fletcher JM. IL-27 mediates the response to IFN-β therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 2011; 25:1170-81. [PMID: 21420486 DOI: 10.1016/j.bbi.2011.03.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/01/2011] [Accepted: 03/12/2011] [Indexed: 11/29/2022] Open
Abstract
Interferon (IFN)-β is a commonly used therapy for relapsing remitting multiple sclerosis (RRMS). However its protective mechanism is still unclear and the failure of many patients to respond has not been explained. We have found that IFN-β suppressed IL-23 and IL-1β production and increased IL-10 production by human dendritic cells (DC) activated with the TLR2 and dectin-1 agonist zymosan. Furthermore, IFN-β impaired the ability of DC to promote IL-17 production by CD4(+) T cells, but did not affect IFN-γ production. IFN-β induced IL-27 expression by DC, and neutralisation of IL-27 abrogated the suppressive effects of IFN-β on zymosan-induced IL-1 and IL-23 production and the generation of Th17 cells in vitro. Complementary in vivo studies in a mouse model showed that treatment with IFN-β enhanced expression of IL-27, and reduced IL-17 in the CNS and periphery and attenuated the clinical signs of experimental autoimmune encephalomyelitis (EAE). In addition, the significant suppressive effect of IFN-β on the ability of DC to promote Th17 cells was lost in cells from IL-27 receptor deficient mice. Finally, we showed that PBMC from non-responder RRMS patients produced significantly less IL-27 in response to IFN-β than patients who responded to IFN-β therapy. Our findings suggest that IFN-β mediates its therapeutic effects in MS at least in part via the induction of IL-27, and that IL-27 may represent an alternative therapy for MS patients that do not respond to IFN-β.
Collapse
Affiliation(s)
- Cheryl M Sweeney
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 2011; 138:169-78. [DOI: 10.1016/j.imlet.2011.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 04/10/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022]
|
374
|
Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2011; 187:2213-21. [PMID: 21788439 DOI: 10.4049/jimmunol.1003952] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IFN-γ-producing Th1 and IL-17-producing Th17 cells are the key participants in various autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Although both of these T cell subsets are known to be regulated by specific transcription factors and cytokines, the role of microRNAs that control these two inflammatory T cell subsets and whether targeting microRNAs can have therapeutic effects are not known. In this study, we show that microRNA-155 (Mir-155) expression is elevated in CD4(+) T cells during EAE, and Mir-155(-/-) mice had a delayed course and reduced severity of disease and less inflammation in the CNS. The attenuation of EAE in Mir-155(-/-) mice was associated with a decrease in Th1 and Th17 responses in the CNS and peripheral lymphoid organs. The T cell-intrinsic function of Mir-155(-/-) was demonstrated by the resistance of Mir-155(-/-) CD4(+) T cell-repleted Rag-1(-/-) mice to EAE. Finally, we found that anti-Mir-155 treatment reduced clinical severity of EAE when given before and after the appearance of clinical symptoms. These findings demonstrate that Mir-155 confers susceptibility to EAE by affecting inflammatory T cell responses and identify Mir-155 as a new target for therapeutic intervention in multiple sclerosis.
Collapse
Affiliation(s)
- Gopal Murugaiyan
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
375
|
Ghoreschi K, Laurence A, Yang XP, Hirahara K, O'Shea JJ. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol 2011; 32:395-401. [PMID: 21782512 DOI: 10.1016/j.it.2011.06.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 02/08/2023]
Abstract
T helper (Th)17 cells have been proposed to represent a new CD4(+) T cell lineage that is important for host defense against fungi and extracellular bacteria, and the development of autoimmune diseases. Precisely how these cells arise has been the subject of some debate, with apparent species-specific differences in mice and humans. Here, we describe evolving views of Th17 specification, highlighting the contribution of transforming growth factor-β and the opposing roles of signal transducer and activator of transcription (STAT)3 and STAT5. Increasing evidence points to heterogeneity and inherent phenotypic instability in this subset. Ideally, better understanding of expression and action of key transcription factors and the epigenetic landscape of Th17 can help explain the flexibility and diversity of interleukin-17-producing cells.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
376
|
Strzępa A, Szczepanik M. IL-17-expressing cells as a potential therapeutic target for treatment of immunological disorders. Pharmacol Rep 2011; 63:30-44. [PMID: 21441609 DOI: 10.1016/s1734-1140(11)70396-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/30/2010] [Indexed: 12/16/2022]
Abstract
IL-17 is a multifunctional cytokine produced by activated CD4+ and CD8+ lymphocytes as well as stimulated unconventional Tγδ and natural killer T cells. IL-17 induces expression of chemokines, proinflammatory cytokines and metalloproteinases, thereby stimulating the inflammation and chemotaxis of neutrophils. Elevation of proinflammatory cytokines is associated with asthma and autoimmune disorders, such as multiple sclerosis, rheumatoid arthritis and psoriasis. Although the role of IL-17 in these disorders is not always easy to define, extensive research has demonstrated an aggravating influence of IL-17 in some animal models. Thus, the development of therapeutics to reduce IL-17 levels is a promising strategy for ameliorating inflammatory diseases. This review briefly summarizes recent knowledge about stimulants and intracellular signaling pathways that induce development and maturation of IL-17-expressing cells. Its positive and negative roles on disease progression and its importance in vaccine-induced memory are also discussed. Finally, recent literature describing potential therapeutic approaches for targeting IL-17 is presented.
Collapse
Affiliation(s)
- Anna Strzępa
- Department of Human Developmental Biology, Jagiellonian University, College of Medicine, Kopernika 7, PL 31-034 Kraków, Poland
| | | |
Collapse
|
377
|
Vande Velde C, McDonald KK, Boukhedimi Y, McAlonis-Downes M, Lobsiger CS, Bel Hadj S, Zandona A, Julien JP, Shah SB, Cleveland DW. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS One 2011; 6:e22031. [PMID: 21779368 PMCID: PMC3136936 DOI: 10.1371/journal.pone.0022031] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/13/2011] [Indexed: 11/19/2022] Open
Abstract
Mutations in superoxide dismutase (SOD1) are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.
Collapse
Affiliation(s)
- Christine Vande Velde
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (CVV); (DC)
| | - Karli K. McDonald
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Yasmin Boukhedimi
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Christian S. Lobsiger
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S975, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, Hôpital de la Salpêtrière, Paris, France
| | - Samar Bel Hadj
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Andre Zandona
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jean-Pierre Julien
- Centre de recherche du Centre hospitalier de l'Université Laval (CHUL), Université Laval, Québec, Québec, Canada
| | - Sameer B. Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (CVV); (DC)
| |
Collapse
|
378
|
Li H, Nourbakhsh B, Cullimore M, Zhang GX, Rostami A. IL-9 is important for T-cell activation and differentiation in autoimmune inflammation of the central nervous system. Eur J Immunol 2011; 41:2197-206. [PMID: 21674475 DOI: 10.1002/eji.201041125] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 04/15/2011] [Accepted: 05/13/2011] [Indexed: 12/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is generally believed to be an autoimmune disease of the central nervous system (CNS) caused by myelin-specific Th1 and/or Th17 effector cells. The underlying cellular and molecular mechanisms, however, are not fully understood. Using mice deficient in IL-9 (IL-9(-/-) ), we showed that IL-9 plays a critical role in EAE. Specifically, IL-9(-/-) mice developed significantly less severe EAE than their WT counterparts following both immunization with myelin proteolipid protein (PLP)(180-199) peptide in the presence of Complete Freund's Adjuvant (CFA), and adoptive transfer of PLP(180-199) peptide-specific effector T cells from WT littermates. EAE-resistant IL-9(-/-) mice exhibited considerably fewer infiltrating immune cells in the CNS, with lower levels of IL-17 and IFN-γ expression, than their WT littermates. Further studies revealed that null mutation of the IL-9 gene resulted in significantly lower levels of PLP(180-199) peptide-specific IL-17 and IFN-γ production. Moreover, IL-9(-/-) memory/activated T cells exhibited decreased C-C chemokine receptors (CCR)2, CCR5, and CCR6 expression. Interestingly, IL-10 was significantly increased in IL-9(-/-) mice compared with WT littermates. Importantly, we found that IL-9-mediated Th17-cell differentiation triggers complex STAT signaling pathways.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
379
|
Lack of the T cell-specific alternative p38 activation pathway reduces autoimmunity and inflammation. Blood 2011; 118:3280-9. [PMID: 21715315 DOI: 10.1182/blood-2011-01-333039] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Stimulation via the T-cell receptor (TCR) activates p38α and p38β by phosphorylation of p38 Tyr-323 (p38(Y323)). Here we characterize knockin mice in which p38α and/or β Tyr-323 has been replaced with Phe. We find that p38α accounts for two-thirds and p38β the remainder of TCR-induced p38 activation. T cells from double knockin mice (p38αβ(Y323F)) had defects in TCR-mediated proliferation and Th1 and Th17 skewing, the former corresponding with an inability to sustain T-bet expression. Introduction of p38α(Y323F) into Gadd45α-deficient mice, in which the alternative p38 pathway is constitutively active, reversed T-cell hyperproliferation and autoimmunity. Furthermore, p38αβ(Y323F) mice had delayed onset and reduced severity of the inflammatory autoimmune diseases collagen-induced arthritis and experimental autoimmune encephalomyelitis. Thus, T cell-specific alternative activation of p38 is an important pathway in T-cell proliferation, Th skewing, and inflammatory autoimmunity, and may be an attractive tissue-specific target for intervention in these processes.
Collapse
|
380
|
Abstract
The activation of immune-defense mechanisms in response to a microbial attack must be robust and appropriately tailored to fight particular types of pathogens. Infection with intracellular microorganisms elicits a type 1 inflammatory response characterized by mobilization of T helper type 1 (T(H)1) cells to the site of infection, where they are responsible for the recruitment and activation of macrophages. At the center of the type 1 inflammatory response is the transcription factor T-bet, a critical regulator of the T(H)1 differentiation program. T-bet induces the production of interferon-γ (IFN-γ) and orchestrates the T(H)1 cell-migratory program by regulating the expression of chemokines and chemokine receptors. However, tight regulation of the type 1 inflammatory response is essential for the prevention of immunopathology and the development of organ-specific autoimmunity. In this review, we discuss how T-bet expression drives autoaggressive and inflammatory processes and how its function in vivo must be delicately balanced to avoid disease.
Collapse
|
381
|
Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B. Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 2011; 37:24-39. [PMID: 20946472 DOI: 10.1111/j.1365-2990.2010.01140.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leucocyte migration into the central nervous system is a key stage in the development of multiple sclerosis. While much has been learnt regarding the sequential steps of leucocyte capture, adhesion and migration across the vasculature, the molecular basis of leucocyte extravasation is only just being unravelled. It is now recognized that bidirectional crosstalk between the immune cell and endothelium is an essential element in mediating diapedesis during both normal immune surveillance and under inflammatory conditions. The induction of various signalling networks, through engagement of cell surface molecules such as integrins on the leucocyte and immunoglobulin superfamily cell adhesion molecules on the endothelial cell, play a major role in determining the pattern and route of leucocyte emigration. In this review we discuss the extent of our knowledge regarding leucocyte migration across the blood-brain barrier and in particular the endothelial cell signalling pathways contributing to this process.
Collapse
Affiliation(s)
- J Greenwood
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
382
|
Boppana S, Huang H, Ito K, Dhib-Jalbut S. Immunologic Aspects of Multiple Sclerosis. ACTA ACUST UNITED AC 2011; 78:207-20. [DOI: 10.1002/msj.20249] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
383
|
Sato K, Miyoshi F, Yokota K, Araki Y, Asanuma Y, Akiyama Y, Yoh K, Takahashi S, Aburatani H, Mimura T. Marked induction of c-Maf protein during Th17 cell differentiation and its implication in memory Th cell development. J Biol Chem 2011; 286:14963-71. [PMID: 21402704 DOI: 10.1074/jbc.m111.218867] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Until recently, effector T helper (Th) cells have been classified into two subsets, Th1 and Th2 cells. Since the discovery of Th17 cells, which produce IL-17, much attention has been given to Th17 cells, mainly because they have been implicated in the pathogenesis of various inflammatory diseases. We have performed transcriptome analysis combined with factor analysis and revealed that the expression level of c-Maf, which is considered to be important for Th2 differentiation, increases significantly during the course of Th17 differentiation. The IL-23 receptor (IL-23R), which is important for Th17 cells, is among putative transcriptional targets of c-Maf. Interestingly, the analysis of c-Maf transgenic Th cells revealed that the overexpression of c-Maf did not lead to the acceleration of the early stage of Th17 differentiation but rather to the expansion of memory phenotype cells, particularly with Th1 and Th17 traits. Consistently, mouse wild-type memory Th cells expressed higher mRNA levels of c-Maf, IL-23R, IL-17, and IFN-γ than control cells; in contrast, Maf(-/-) memory Th cells expressed lower mRNA levels of those molecules. Thus, we propose that c-Maf is important for the development of memory Th cells, particularly memory Th17 cells and Th1 cells.
Collapse
Affiliation(s)
- Kojiro Sato
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Comabella M, Khoury SJ. Immunopathogenesis of multiple sclerosis. Clin Immunol 2011; 142:2-8. [PMID: 21458377 DOI: 10.1016/j.clim.2011.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 01/10/2023]
Abstract
Multiple sclerosis (MS) is a chronic disorder of the central nervous system characterized by autoimmune inflammation, demyelination, and axonal damage. MS etiology remains unknown, but disease phenotype is most likely the result of an interaction between complex genetic factors and environmental influences. The better understanding of the mechanisms involved in the immunopathogenesis of MS has led to the development of promising new therapeutic strategies for the disease. This review will discuss the key pathogenic steps implicated in the disease and the role of the main cellular populations that drive the immune responses in MS.
Collapse
Affiliation(s)
- Manuel Comabella
- Centre d'Esclerosi Múltiple de Catalunya, CEM-Cat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain.
| | | |
Collapse
|
385
|
Central inflammation versus peripheral regulation in multiple sclerosis. J Neurol 2011; 258:1518-27. [DOI: 10.1007/s00415-011-5973-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/08/2011] [Accepted: 02/22/2011] [Indexed: 01/22/2023]
|
386
|
Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, Warner JD, Tanaka M, Steward-Tharp SM, Gadina M, Thomas CJ, Minnerly JC, Storer CE, LaBranche TP, Radi ZA, Dowty ME, Head RD, Meyer DM, Kishore N, O'Shea JJ. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). THE JOURNAL OF IMMUNOLOGY 2011; 186:4234-43. [PMID: 21383241 DOI: 10.4049/jimmunol.1003668] [Citation(s) in RCA: 468] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibitors of the JAK family of nonreceptor tyrosine kinases have demonstrated clinical efficacy in rheumatoid arthritis and other inflammatory disorders; however, the precise mechanisms by which JAK inhibition improves inflammatory immune responses remain unclear. In this study, we examined the mode of action of tofacitinib (CP-690,550) on JAK/STAT signaling pathways involved in adaptive and innate immune responses. To determine the extent of inhibition of specific JAK/STAT-dependent pathways, we analyzed cytokine stimulation of mouse and human T cells in vitro. We also investigated the consequences of CP-690,550 treatment on Th cell differentiation of naive murine CD4(+) T cells. CP-690,550 inhibited IL-4-dependent Th2 cell differentiation and interestingly also interfered with Th17 cell differentiation. Expression of IL-23 receptor and the Th17 cytokines IL-17A, IL-17F, and IL-22 were blocked when naive Th cells were stimulated with IL-6 and IL-23. In contrast, IL-17A production was enhanced when Th17 cells were differentiated in the presence of TGF-β. Moreover, CP-690,550 also prevented the activation of STAT1, induction of T-bet, and subsequent generation of Th1 cells. In a model of established arthritis, CP-690,550 rapidly improved disease by inhibiting the production of inflammatory mediators and suppressing STAT1-dependent genes in joint tissue. Furthermore, efficacy in this disease model correlated with the inhibition of both JAK1 and JAK3 signaling pathways. CP-690,550 also modulated innate responses to LPS in vivo through a mechanism likely involving the inhibition of STAT1 signaling. Thus, CP-690,550 may improve autoimmune diseases and prevent transplant rejection by suppressing the differentiation of pathogenic Th1 and Th17 cells as well as innate immune cell signaling.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity 2011; 34:149-62. [PMID: 21349428 DOI: 10.1016/j.immuni.2011.02.012] [Citation(s) in RCA: 951] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Indexed: 12/17/2022]
Abstract
Interleukin-17A (IL-17A) is the signature cytokine of the recently identified T helper 17 (Th17) cell subset. IL-17 has six family members (IL-17A to IL-17F). Although IL-17A and IL-17F share the highest amino acid sequence homology, they perform distinct functions; IL-17A is involved in the development of autoimmunity, inflammation, and tumors, and also plays important roles in the host defenses against bacterial and fungal infections, whereas IL-17F is mainly involved in mucosal host defense mechanisms. IL-17E (IL-25) is an amplifier of Th2 immune responses. The functions of IL-17B, IL-17C, and IL-17D remain largely elusive. In this review, we describe the identified functions of each IL-17 family member and discuss the potential of these molecules as therapeutic targets.
Collapse
Affiliation(s)
- Yoichiro Iwakura
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
388
|
Baecher-Allan CM, Costantino CM, Cvetanovich GL, Ashley CW, Beriou G, Dominguez-Villar M, Hafler DA. CD2 costimulation reveals defective activity by human CD4+CD25(hi) regulatory cells in patients with multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3317-26. [PMID: 21300823 DOI: 10.4049/jimmunol.1002502] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studying the activity of homogeneous regulatory T cell (Treg) populations will advance our understanding of their mechanisms of action and their role in human disease. Although isolating human Tregs exhibiting low expression of CD127 markedly increases purity, the resulting Treg populations are still heterogeneous. To examine the complexity of the Tregs defined by the CD127 phenotype in comparison with the previously described CD4(+)CD25(hi) subpopulations, we subdivided the CD25(hi) population of memory Tregs into subsets based on expression of CD127 and HLA-DR. These subsets exhibited differences in suppressive capacity, ability to secrete IL-10 and IL-17, Foxp3 gene methylation, cellular senescence, and frequency in neonatal and adult blood. The mature, short telomere, effector CD127(lo)HLA-DR(+) cells most strongly suppressed effector T cells within 48 h, whereas the less mature CD127(lo)HLA-DR(-) cells required 96 h to reach full suppressive capacity. In contrast, whereas the CD127(+)HLA-DR(-) cells also suppressed proliferation of effector cells, they could alternate between suppression or secretion of IL-17 depending upon the stimulation signals. When isolated from patients with multiple sclerosis, both the nonmature and the effector subsets of memory CD127(lo) Tregs exhibited kinetically distinct defects in suppression that were evident with CD2 costimulation. These data demonstrate that natural and not induced Tregs are less suppressive in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Clare M Baecher-Allan
- Division of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
389
|
Bonney KM, Taylor JM, Daniels MD, Epting CL, Engman DM. Heat-killed Trypanosoma cruzi induces acute cardiac damage and polyantigenic autoimmunity. PLoS One 2011; 6:e14571. [PMID: 21283741 PMCID: PMC3024973 DOI: 10.1371/journal.pone.0014571] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/18/2010] [Indexed: 12/12/2022] Open
Abstract
Chagas heart disease, caused by the protozoan parasite Trypanosoma cruzi, is a potentially fatal cardiomyopathy often associated with cardiac autoimmunity. T. cruzi infection induces the development of autoimmunity to a number of antigens via molecular mimicry and other mechanisms, but the genesis and pathogenic potential of this autoimmune response has not been fully elucidated. To determine whether exposure to T. cruzi antigens alone in the absence of active infection is sufficient to induce autoimmunity, we immunized A/J mice with heat-killed T. cruzi (HKTC) emulsified in complete Freund's adjuvant, and compared the resulting immune response to that induced by infection with live T. cruzi. We found that HKTC immunization is capable of inducing acute cardiac damage, as evidenced by elevated serum cardiac troponin I, and that this damage is associated with the generation of polyantigenic humoral and cell-mediated autoimmunity with similar antigen specificity to that induced by infection with T. cruzi. However, while significant and preferential production of Th1 and Th17-associated cytokines, accompanied by myocarditis, develops in T. cruzi-infected mice, HKTC-immunized mice produce lower levels of these cytokines, do not develop Th1-skewed immunity, and lack tissue inflammation. These results demonstrate that exposure to parasite antigen alone is sufficient to induce autoimmunity and cardiac damage, yet additional immune factors, including a dominant Th1/Th17 immune response, are likely required to induce cardiac inflammation.
Collapse
Affiliation(s)
- Kevin M Bonney
- Department of Pathology, Northwestern University, Chicago, Illinois, United States of America.
| | | | | | | | | |
Collapse
|
390
|
Annibali V, Ristori G, Angelini DF, Serafini B, Mechelli R, Cannoni S, Romano S, Paolillo A, Abderrahim H, Diamantini A, Borsellino G, Aloisi F, Battistini L, Salvetti M. CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis. ACTA ACUST UNITED AC 2011; 134:542-54. [PMID: 21216829 DOI: 10.1093/brain/awq354] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To identify differentially expressed genes in multiple sclerosis, microarrays were used in a stringent experimental setting-leukapheresis from disease-discordant monozygotic twins and gene expression profiling in CD4(+) and CD8(+) T-cell subsets. Disease-related differences emerged only in the CD8(+) T-cell subset. The five differentially expressed genes identified included killer cell lectin-like receptor subfamily B, member 1, also known as natural killer receptor protein 1a/CD161, presented by the International Multiple Sclerosis Genetics Consortium as one of the non-MHC candidate loci. Flow cytometric analysis on peripheral blood of healthy donors and patients with multiple sclerosis and rheumatoid arthritis confirmed an upregulation of CD161 at the protein level, showing also a significant excess of CD161(high)CD8(+) T cells in multiple sclerosis. This subset prevalently included chemokine (C-C motif) receptor 6(+), cytokine-producing, effector-memory T cells with proinflammatory profiles. It also included all circulating interleukin-17(+)CD8(+) T cells. In the CD161(high)CD8(+) subset, interleukin-12 facilitated proliferation and interferon-γ production, with CD161 acting as a co-stimulatory receptor. CD161(+)CD8(+)CD3(+) T cells producing interferon-γ were part of intralesional immune infiltrates and ectopic B cell follicles in autopsy multiple sclerosis brains. Variations of CD161 expression on CD8(+) T cells identify a subset of lymphocytes with proinflammatory characteristics that have not been previously reported in multiple sclerosis and are likely to contribute to disease immunopathology.
Collapse
Affiliation(s)
- Viviana Annibali
- Neurology and Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University of Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
391
|
|
392
|
Lee-Chang C, Zéphir H, Top I, Dubucquoi S, Trauet J, Prin L, Vermersch P. B-cell subsets up-regulate α4 integrin and accumulate in the cerebrospinal fluid in clinically isolated syndrome suggestive of multiple sclerosis onset. Neurosci Lett 2011; 487:273-7. [DOI: 10.1016/j.neulet.2010.10.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/27/2010] [Accepted: 10/14/2010] [Indexed: 12/22/2022]
|
393
|
Lexberg MH, Taubner A, Albrecht I, Lepenies I, Richter A, Kamradt T, Radbruch A, Chang HD. IFN-γ and IL-12 synergize to convert in vivo generated Th17 into Th1/Th17 cells. Eur J Immunol 2010; 40:3017-27. [PMID: 21061434 DOI: 10.1002/eji.201040539] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Th1 and Th17 cells are distinct lineages of effector/memory cells, imprinted for re-expression of IFN-γ and IL-17, by upregulated expression of T-bet and retinoic acid-related orphan receptor γt (RORγt), respectively. Apparently, Th1 and Th17 cells share tasks in the control of inflammatory immune responses. Th cells coexpressing IFN-γ and IL-17 have been observed in vivo, but it remained elusive, how these cells had been generated and whether they represent a distinct lineage of Th differentiation. It has been shown that ex vivo isolated Th1 and Th17 cells are not interconvertable by TGF-β/IL-6 and IL-12, respectively. Here, we show that ex vivo isolated Th17 cells can be converted into Th1/Th17 cells by combined IFN-γ and IL-12 signaling. IFN-γ is required to upregulate expression of the IL-12Rβ2 chain, and IL-12 for Th1 polarization. These Th1/Th17 cells stably coexpress RORγt and T-bet at the single-cell level. Our results suggest a molecular pathway for the generation of Th1/Th17 cells in vivo, which combine the pro-inflammatory potential of Th1 and Th17 cells.
Collapse
Affiliation(s)
- Maria H Lexberg
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
394
|
Boisvert M, Chetoui N, Gendron S, Aoudjit F. Alpha2beta1 integrin is the major collagen-binding integrin expressed on human Th17 cells. Eur J Immunol 2010; 40:2710-9. [PMID: 20806289 DOI: 10.1002/eji.201040307] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Growing evidence indicates that collagen-binding integrins are important costimulatory molecules of effector T cells. In this study, we demonstrate that the major collagen-binding integrin expressed by human Th17 cells is alpha2beta1 (α2β1) or VLA-2, also known as the receptor for collagen I on T cells. Our results show that human naïve CD4(+) T cells cultured under Th17 polarization conditions preferentially upregulate α2β1 integrin rather than α1β1 integrin, which is the receptor for collagen IV on T cells. Double staining analysis for integrin receptors and intracellular IL-17 showed that α2 integrin but not α1 integrin is associated with Th17 cells. Cell adhesion experiments demonstrated that Th17 cells attach to collagen I and collagen II using α2β1 integrin but did not attach to collagen IV. Functional studies revealed that collagens I and II but not collagen IV costimulate the production of IL-17A, IL-17F and IFN-γ by human Th17 cells activated with anti-CD3. These results identify α2β1 integrin as the major collagen receptor expressed on human Th17 cells and suggest that it can be an important costimulatory molecule of Th17 cell responses.
Collapse
Affiliation(s)
- Marc Boisvert
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
395
|
The kinase inhibitory region of SOCS-1 is sufficient to inhibit T-helper 17 and other immune functions in experimental allergic encephalomyelitis. J Neuroimmunol 2010; 232:108-18. [PMID: 21131060 DOI: 10.1016/j.jneuroim.2010.10.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/23/2022]
Abstract
Suppressors of cytokine signaling (SOCS) negatively regulate the immune response, primarily by interfering with the JAK/STAT pathway. We have developed a small peptide corresponding to the kinase inhibitory region (KIR) sequence of SOCS-1, SOCS1-KIR, which inhibits kinase activity by binding to the activation loop of tyrosine kinases such as JAK2 and TYK2. Treatment of SJL/J mice with SOCS1-KIR beginning 12 days post-immunization with myelin basic protein (MBP) resulted in minimal symptoms of EAE, while most control treated mice developed paraplegia. SOCS1-KIR treatment suppressed interleukin-17A (IL-17A) production by MBP-specific lymphocytes, as well as MBP-induced lymphocyte proliferation. When treated with IL-23, a key cytokine in the terminal differentiation of IL-17-producing cells, MBP-sensitized cells produced IL-17A and IFNγ; SOCS1-KIR was able to inhibit the production of these cytokines. SOCS1-KIR also blocked IL-23 and IL-17A activation of STAT3. There is a deficiency of SOCS-1 and SOCS-3 mRNA expression in CD4(+) T cells that infiltrate the CNS, reflecting a deficiency in regulation. Consistent with therapeutic efficacy, SOCS1-KIR reversed the cellular infiltration of the CNS that is associated with EAE. We have shown here that a SOCS-1 like effect can be obtained with a small functional region of the SOCS-1 protein that is easily produced.
Collapse
|
396
|
Darlington PJ, Boivin MN, Renoux C, François M, Galipeau J, Freedman MS, Atkins HL, Cohen JA, Solchaga L, Bar-Or A. Reciprocal Th1 and Th17 regulation by mesenchymal stem cells: Implication for multiple sclerosis. Ann Neurol 2010; 68:540-5. [PMID: 20661924 DOI: 10.1002/ana.22065] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are being considered for clinical trials of multiple sclerosis (MS). We examined the effects of adult bone marrow-derived hMSCs on responses of primary human Th1, Th17, and Th1/17 double-expressing T-cell subsets, all implicated in MS. As expected, soluble products from hMSCs inhibited Th1 responses; however, Th17 responses were increased. Secretion of interleukin (IL)-10, considered anti-inflammatory, was decreased. Pretreating hMSCs with the proinflammatory cytokine IL-1β accentuated these effects, and caused decreases in the Th1/17 subset. These findings underscore the importance of further preclinical work and immune-monitoring to define hMSC effects on disease-relevant immune responses under variable conditions.
Collapse
Affiliation(s)
- Peter J Darlington
- Neuroimmunology Unit, Montreal Neurological Institute, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
397
|
Nordberg M, Forsberg P, Johansson A, Nyman D, Jansson C, Ernerudh J, Ekerfelt C. Cytotoxic mechanisms may play a role in the local immune response in the central nervous system in neuroborreliosis. J Neuroimmunol 2010; 232:186-93. [PMID: 21056912 DOI: 10.1016/j.jneuroim.2010.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/06/2010] [Accepted: 09/28/2010] [Indexed: 11/26/2022]
Abstract
Aiming to investigate the role of cytotoxic mechanisms in neuroborreliosis (NB), the cytokines IL-2, IL-7, IL-10, IL-12p70, IL-15, GM-CSF and the Th17-cytokine IL-17 were analyzed in cerebrospinal fluid (CSF) and plasma from NB-patients. NB-patients showed increased levels in CSF compared to controls of all analyzed cytokines except IL-15 but not in plasma. Blood lymphocytes from three NB-patients showed functional cytotoxicity in response to autologous Borrelia-infected macrophages. The findings support a role for cytotoxic mechanisms in the local immune response in NB and in addition suggest an increase of IL-17.
Collapse
Affiliation(s)
- Marika Nordberg
- Linköping University, Dept. of Clinical and Experimental Medicine, Division of Infectious Medicine, Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
398
|
Hu WT, Chen-Plotkin A, Grossman M, Arnold SE, Clark CM, Shaw LM, McCluskey L, Elman L, Hurtig HI, Siderowf A, Lee VMY, Soares H, Trojanowski JQ. Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 2010; 75:2079-86. [PMID: 21048198 DOI: 10.1212/wnl.0b013e318200d78d] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To identify antemortem CSF diagnostic biomarkers that can potentially distinguish between the 2 main causes of frontotemporal lobar degeneration (FTLD), i.e., FTLD with TDP-43 pathology (FTLD-TDP) and FTLD with tau pathology (FTLD-tau). METHODS CSF samples were collected antemortem from 23 patients with FTLD with known pathology to form a autopsy cohort as part of a comparative biomarker study that additionally included 33 living cognitively normal subjects and 66 patients with autopsy-confirmed Alzheimer disease (AD). CSF samples were also collected from 80 living patients clinically diagnosed with frontotemporal dementia (FTD). Levels of 151 novel analytes were measured via a targeted multiplex panel enriched in neuropeptides, cytokines, and growth factors, along with levels of CSF biomarkers for AD. RESULTS CSF levels of multiple analytes differed between FTLD-TDP and FTLD-tau, including Fas, neuropeptides (agouti-related peptide and adrenocorticotropic hormone), and chemokines (IL-23, IL-17). Classification by random forest analysis achieved high sensitivity for FTLD-TDP (86%) with modest specificity (78%) in the autopsy cohort. When the classification algorithm was applied to a living FTD cohort, semantic dementia was the phenotype with the highest predicted proportion of FTLD-TDP. When living patients with behavioral variant FTD were examined in detail, those predicted to have FTLD-TDP demonstrated neuropsychological differences vs those predicted to have FTLD-tau in a pattern consistent with previously reported trends in autopsy-confirmed cases. CONCLUSIONS Clinical cases with FTLD-TDP and FTLD-tau pathology can be potentially identified antemortem by assaying levels of specific analytes that are well-known and readily measurable in CSF.
Collapse
Affiliation(s)
- W T Hu
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia 19104-4283, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KHG. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 2010; 162:1-11. [PMID: 20682002 DOI: 10.1111/j.1365-2249.2010.04143.x] [Citation(s) in RCA: 692] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS), which involves autoimmune responses to myelin antigens. Studies in experimental autoimmune encephalomyelitis (EAE), an animal model for MS, have provided convincing evidence that T cells specific for self-antigens mediate pathology in these diseases. Until recently, T helper type 1 (Th1) cells were thought to be the main effector T cells responsible for the autoimmune inflammation. However more recent studies have highlighted an important pathogenic role for CD4(+) T cells that secrete interleukin (IL)-17, termed Th17, but also IL-17-secreting γδ T cells in EAE as well as other autoimmune and chronic inflammatory conditions. This has prompted intensive study of the induction, function and regulation of IL-17-producing T cells in MS and EAE. In this paper, we review the contribution of Th1, Th17, γδ, CD8(+) and regulatory T cells as well as the possible development of new therapeutic approaches for MS based on manipulating these T cell subtypes.
Collapse
Affiliation(s)
- J M Fletcher
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity College, St Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
400
|
Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel J, Ramos HL, Wei L, Davidson T, Bouladoux N, Grainger J, Chen Q, Kanno Y, Watford WT, Sun HW, Eberl G, Shevach E, Belkaid Y, Cua DJ, Chen W, O’Shea JJ. Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature 2010; 467:967-71. [PMID: 20962846 PMCID: PMC3108066 DOI: 10.1038/nature09447] [Citation(s) in RCA: 1146] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 08/23/2010] [Indexed: 02/07/2023]
Abstract
CD4(+) T-helper cells that selectively produce interleukin (IL)-17 (T(H)17), are critical for host defence and autoimmunity. Although crucial for T(H)17 cells in vivo, IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-β1 have been proposed to be the factors responsible for initiating specification. Here we show that T(H)17 differentiation can occur in the absence of TGF-β signalling. Neither IL-6 nor IL-23 alone efficiently generated T(H)17 cells; however, these cytokines in combination with IL-1β effectively induced IL-17 production in naive precursors, independently of TGF-β. Epigenetic modification of the Il17a, Il17f and Rorc promoters proceeded without TGF-β1, allowing the generation of cells that co-expressed RORγt (encoded by Rorc) and T-bet. T-bet(+)RORγt(+) T(H)17 cells are generated in vivo during experimental allergic encephalomyelitis, and adoptively transferred T(H)17 cells generated with IL-23 without TGF-β1 were pathogenic in this disease model. These data indicate an alternative mode for T(H)17 differentiation. Consistent with genetic data linking IL23R with autoimmunity, our findings re-emphasize the importance of IL-23 and therefore may have therapeutic implications.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiang-Ping Yang
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cristina M. Tato
- Merck Research Laboratories (Schering-Plough Biopharma), Palo Alto, CA 94304, USA
| | - Mandy J. McGeachy
- Merck Research Laboratories (Schering-Plough Biopharma), Palo Alto, CA 94304, USA
| | - Joanne Konkel
- Mucosal Immunology Unit, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haydeé L. Ramos
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lai Wei
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Todd Davidson
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Grainger
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qian Chen
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wendy T. Watford
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gérard Eberl
- Institut Pasteur, Lymphoid Tissue Development Unit, Paris 75724, France
| | - Ethan Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel J. Cua
- Merck Research Laboratories (Schering-Plough Biopharma), Palo Alto, CA 94304, USA
| | - Wanjun Chen
- Mucosal Immunology Unit, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|