351
|
Brunt SA, Silver JC. Molecular cloning and characterization of two different cDNAs encoding the molecular chaperone Hsp90 in the Oomycete Achlya ambisexualis. Fungal Genet Biol 2004; 41:239-52. [PMID: 14732269 DOI: 10.1016/j.fgb.2003.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The chaperone Hsp90 plays a key role in the maturation and activation of many 'client' proteins in eukaryotic cells. In the oomycete Achlya ambisexualis two populations of hsp90 transcripts that differ slightly in size (2.8 and 2.9 kb) are present in heat-shocked mycelia. Only the 2.8 kb transcripts are seen in vegetative mycelia and in mycelia undergoing antheridiol-induced differentiation. Two different hsp90 cDNAs were isolated and characterized. Although nearly identical, an additional eight nucleotide sequence was present at the end of the 3'UTR of one of the two cDNAs. RT-PCR analyses indicated that hsp90 transcripts containing the eight nucleotide extension, were present only in heat-shocked mycelia. Hsp90 transcripts lacking this sequence were present in vegetative mycelia and the levels of these transcripts increased in both heat-shocked and hormone-treated mycelia. Each hsp90 cDNA encoded a nearly identical Hsp90 protein. However, two Hsp90 proteins (86 and 84 kDa) were observed on immunoblots of mycelial proteins. Only one of these, i.e., the 86 kDa protein was detected by an anti-phosphoserine antibody, suggesting that the difference in mass of the two Hsp90 isoforms, was due at least in part, to different levels of phosphoserine residues.
Collapse
Affiliation(s)
- Shelley A Brunt
- Department of Medical Genetics and Microbiology and Department of Life Sciences, University of Toronto at Scarborough, Toronto, Ont., Canada M1C 1A4
| | | |
Collapse
|
352
|
Abstract
Molecular chaperones are a functionally defined set of proteins which assist the structure formation of proteins in vivo. Without certain protective mechanisms, such as binding nascent polypeptide chains by molecular chaperones, cellular protein concentrations would lead to misfolding and aggregation. In the mammalian system, the molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins, like steroid hormone receptors, transcription factors, and kinases, some of which are involved in cancer progression. Hsp70 and Hsp90 form a multichaperone complex, in which both are connected by a third protein called Hop. The connection of and the interplay between the two chaperone machineries is of crucial importance for cell viability. This review provides a detailed view of the Hsp70 and Hsp90 machineries, their cofactors and their mode of regulation. It summarizes the current knowledge in the field, including the ATP-dependent regulation of the Hsp70/Hsp90 multichaperone cycle and elucidates the complex interplay and their synergistic interaction.
Collapse
Affiliation(s)
- H Wegele
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
353
|
Paul SAM, Simons JW, Mabjeesh NJ. HIF at the crossroads between ischemia and carcinogenesis. J Cell Physiol 2004; 200:20-30. [PMID: 15137054 DOI: 10.1002/jcp.10479] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tissue hypoxia occurs where there is an imbalance between oxygen supply and consumption in both, solid tumors as a result of exponential cellular proliferation and in atherosclerotic diseases as a result of inefficient blood supply. Hypoxia-inducible factor 1 (HIF-1) is central in normal angiogenesis and cancer angiogenesis. HIF-1 is a transcriptional activator composed of an O(2)- and growth factor-regulated HIF-1alpha subunit and a constitutively expressed HIF-1beta subunit. Upon activation, HIF-1 drives the expression of genes controlling cell survival and governing the formation of new blood vessels. A better understanding of the regulation of HIF-1alpha levels by the receptor tyrosine kinases/phosphatidylinositol 3-kinase signaling pathway and by the HIF prolyl hydoxylases has provided new insights into the development of anticancer and revascularization therapeutics. We will focus on the potential of a new pharmacology for regulating HIF pathways in both, cancer and ischemic cardiac diseases. The consequences of the switch of HIF activation in these two disease states and the signaling pathway overlap that atherosclerosis and cancer angiogenesis share are discussed.
Collapse
Affiliation(s)
- Stefan A M Paul
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | | |
Collapse
|
354
|
Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 2004; 279:2101-8. [PMID: 14583611 DOI: 10.1074/jbc.m310029200] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SGT1 and Rar1 are important signaling components of resistance (R) gene-mediated plant innate immune responses. Here we report that SGT1 and Rar1 associate with the molecular chaperone Hsp90. In addition, we show that Hsp90 associates with the resistance protein N that confers resistance to tobacco mosaic virus. This suggests that Hsp90-SGT1-Rar1 and R proteins might exist in one complex. Suppression of Hsp90 in Nicotiana benthamiana plants shows that it plays an important role in plant growth and development. In addition, Hsp90 suppression in NN plants compromises N-mediated resistance to tobacco mosaic virus. Our results reveal a new role for SGT1- and Rar1-associated chaperone machinery in R gene-mediated defense signaling.
Collapse
Affiliation(s)
- Yule Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
355
|
Cox MB, Miller CA. Pharmacological and genetic analysis of 90-kDa heat shock isoprotein-aryl hydrocarbon receptor complexes. Mol Pharmacol 2004; 64:1549-56. [PMID: 14645686 DOI: 10.1124/mol.64.6.1549] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 90-kDa heat shock protein (Hsp90) is an abundant chaperone that regulates a diverse set of intracellular signaling proteins. Drugs that inhibit Hsp90 activity have been useful in the identification of novel Hsp90-dependent signaling pathways. One class of inhibitory compounds disrupts Hsp90-dependent processes by binding to the N-terminal ATPase/p23-binding domain of Hsp90, whereas a second inhibitor class binds within the C-terminal domain. We used signaling by aryl hydrocarbon receptor (AhR), an Hsp90-dependent transcription factor, as a functional probe to study the effects of Hsp90 inhibitors in yeast strains with deletion mutations of individual Hsp90 and p23 cochaperone genes. The more abundant and constitutively expressed Hsp90 isoform, Hsc82, functioned best in supporting AhR signaling. Deletion of the more inducible isoform, Hsp82, had no effect on signaling. AhR complexes containing Hsc82 were preferentially sensitive to the effects of low concentrations of the N-terminal inhibitors radicicol and herbimycin A. However, both Hsp90 isoforms were equally sensitive to the AhR-specific effects of novobiocin, which binds to the C terminus. Hsp90 inhibitors had no preferential effects on AhR signaling in strains that lacked p23, suggesting that the inhibitors exert their effects through a p23-independent mechanism. In contrast, overexpression of p23 buffered the effects of radicicol and herbimycin A, but not novobiocin, on AhR signaling. The data collectively suggest preferential use or function of the Hsc82 isoprotein in AhR signaling and provide new insight into the effects of three structurally unrelated Hsp90 inhibitors.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, 1430 Tulane Ave. Box SL-29, New Orleans, LA 70112, USA
| | | |
Collapse
|
356
|
Schroda M. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. PHOTOSYNTHESIS RESEARCH 2004; 82:221-40. [PMID: 16143837 DOI: 10.1007/s11120-004-2216-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 06/11/2004] [Indexed: 05/04/2023]
Abstract
The first draft of the Chlamydomonas nuclear genome was searched for genes potentially encoding members of the five major chaperone families, Hsp100/Clp, Hsp90, Hsp70, Hsp60, the small heat shock proteins, and the Hsp70 and Cpn60 co-chaperones GrpE and Cpn10/20, respectively. This search yielded 34 potential (co-)chaperone genes, among them those 8 that have been reported earlier inChlamydomonas. These 34 genes encode all the (co-)chaperones that have been expected for the different compartments and organelles from genome searches in Arabidopsis, where 74 genes have been described to encode basically the same set of (co-)chaperones. Genome data from Arabidopsis and Chlamydomonas on the five major chaperone families are compared and discussed, with particular emphasis on chloroplast chaperones.
Collapse
Affiliation(s)
- Michael Schroda
- Institut für Biologie II/Biochemie, Universität Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany,
| |
Collapse
|
357
|
Pérez-Pérez JM, Ponce MR, Micol JL. The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. PLANT PHYSIOLOGY 2004; 134:101-17. [PMID: 14730066 PMCID: PMC316291 DOI: 10.1104/pp.103.032524] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 09/29/2003] [Accepted: 09/29/2003] [Indexed: 05/17/2023]
Abstract
The dwarf ucu (ultracurvata) mutants of Arabidopsis display vegetative leaves that are spirally rolled downwards and show reduced expansion along the longitudinal axis. We have previously determined that the UCU1 gene encodes a SHAGGY/GSK3-like kinase that participates in the signaling pathways of auxins and brassinosteroids. Here, we describe four recessive alleles of the UCU2 gene, whose homozygotes display helical rotation of several organs in addition to other phenotypic traits shared with ucu1 mutants. Following a map-based strategy, we identified the UCU2 gene, which was found to encode a peptidyl-prolyl cis/trans-isomerase of the FK506-binding protein family, whose homologs in metazoans are involved in cell signaling and protein trafficking. Physiological and double mutant analyses suggest that UCU2 is required for growth and development and participates in auxin and brassinosteroid signaling.
Collapse
Affiliation(s)
- José Manuel Pérez-Pérez
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
358
|
Park JW, Chun YS, Kim MS. Hypoxia-Inducible Factor 1-Related Diseases and Prospective Therapeutic Tools. J Pharmacol Sci 2004; 94:221-32. [PMID: 15037806 DOI: 10.1254/jphs.94.221] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis. HIF-1 regulates the expressions of the proteins that increase oxygen delivery, which enables cells to survive in oxygen-deficient conditions. Based on information as to which types of genes are controlled by HIF-1, it appears that HIF-1 provides pathological tissues with survival in hypoxic regions or angiogenic activity. Therefore, HIF-1 inhibitors could be useful as therapeutic agents for various diseases associated with the over-activation of HIF-1, such as cancers, cardiovascular remodeling, preeclampsia, and other angiogenesis-related diseases. In this review, we summarize the oxygen-dependent and -independent regulation of HIF-1 and introduce prospective HIF-1 inhibitors that might be useful in the treatment of HIF-1-related diseases.
Collapse
Affiliation(s)
- Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Korea
| | | | | |
Collapse
|
359
|
|
360
|
Shao J, Irwin A, Hartson SD, Matts RL. Functional dissection of cdc37: characterization of domain structure and amino acid residues critical for protein kinase binding. Biochemistry 2003; 42:12577-88. [PMID: 14580204 DOI: 10.1021/bi035138j] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hsp90 and its co-chaperone Cdc37 facilitate the folding and activation of numerous protein kinases. In this report, we examine the structure-function relationships that regulate the interaction of Cdc37 with Hsp90 and with an Hsp90-dependent kinase, the heme-regulated eIF2alpha kinase (HRI). Limited proteolysis of native and recombinant Cdc37, in conjunction with MALDI-TOF mass spectrometry analysis of peptide fragments and peptide microsequencing, indicates that Cdc37 is comprised of three discrete domains. The N-terminal domain (residues 1-126) interacts with client HRI molecules. Cdc37's middle domain (residues 128-282) interacts with Hsp90, but does not bind to HRI. The C-terminal domain of Cdc37 (residues 283-378) does not bind Hsp90 or kinase, and no functions were ascribable to this domain. Functional assays did, however, suggest that residues S127-G163 of Cdc37 serve as an interdomain switch that modulates the ability of Cdc37 to sense Hsp90's conformation and thereby mediate Hsp90's regulation of Cdc37's kinase-binding activity. Additionally, scanning alanine mutagenesis identified four amino acid residues at the N-terminus of Cdc37 that are critical for high-affinity binding of Cdc37 to client HRI molecules. One mutation, Cdc37/W7A, also implicated this region as an interpreter of Hsp90's conformation. Results illuminate the specific Cdc37 motifs underlying the allosteric interactions that regulate binding of Hsp90-Cdc37 to immature kinase molecules.
Collapse
Affiliation(s)
- Jieya Shao
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | | | |
Collapse
|
361
|
Ecroyd H, Jones RC, Aitken RJ. Tyrosine phosphorylation of HSP-90 during mammalian sperm capacitation. Biol Reprod 2003; 69:1801-7. [PMID: 12890735 DOI: 10.1095/biolreprod.103.017350] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The process of sperm capacitation is correlated with activation of a signal transduction pathway leading to protein tyrosine phosphorylation. Whereas phosphotyrosine expression is an essential prerequisite for fertilization, the proteins that are phosphorylated during capacitation have not yet been identified. In the present study, we observed that a major target of this signaling pathway is the molecular chaperone protein, heat shock protein (HSP)-86, a member of the HSP-90 family of HSPs. We used cross-immunoprecipitation experiments to confirm the tyrosine phosphorylation of HSP-86, a process that is not inhibited by the ansamycin antibiotic, geldanamycin. The general significance of these findings was confirmed by studies in which HSP-90 was also found to be tyrosine phosphorylated in human and rat spermatozoa when incubated under conditions that support capacitation. To our knowledge, these results represent the first report of a protein that undergoes tyrosine phosphorylation during mouse sperm capacitation and the first study implicating molecular chaperones in the processes by which mammalian spermatozoa gain the ability to fertilize the oocyte.
Collapse
Affiliation(s)
- Heath Ecroyd
- Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | |
Collapse
|
362
|
Barzilay E, Ben-Califa N, Supino-Rosin L, Kashman Y, Hirschberg K, Elazar Z, Neumann D. Geldanamycin-associated inhibition of intracellular trafficking is attributed to a co-purified activity. J Biol Chem 2003; 279:6847-52. [PMID: 14660597 DOI: 10.1074/jbc.m312799200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geldanamycin, an ansamycin antibiotic that specifically inhibits heat-shock protein-90 (HSP90) and its endoplasmic reticulum homologue, glucose-regulated protein-94 (GRP94), accelerates the degradation of selected cellular proteins. We showed previously that geldanamycin inhibits maturation and transport of the epidermal growth factor receptor in addition to accelerating its degradation (Supino-Rosin, L., Yoshimura, A., Yarden, Y., Elazar, Z., and Neumann, D. (2000) J. Biol. Chem. 275, 21850-21855). Here we demonstrate that the additional activities of geldanamycin on intracellular transport and protein maturation are related to its supply source. By combining chemical separation of Streptomyces hygroscopicus var. geldanus extracts and biological screens, we show that the geldanamycin-associated effects on intracellular transport and protein maturation are not mediated by geldanamycin itself but are due to the presence of an additional component(s). Chromatography of S. hygroscopicus var. geldanus extracts on a silica-gel column allowed separation between the inhibition of intracellular trafficking and geldanamycin-mediated degradation. One fraction that was devoid of geldanamycin blocked secretion of a soluble form of the erythropoietin receptor, retarded maturation of the epidermal growth factor receptor without enhancing its degradation, and blocked anterograde transport of a temperature-sensitive mutant of the vesicular stomatitis virus G protein (VSVGtsO45) from the early Golgi cisternae. This fraction was enriched (>95%) in 17-demethylgeldanamycin. However, as synthetically derived 17-demethylgeldanamycin did not inhibit intracellular trafficking, we concluded that 17-demethylgeldanamycin is not the active component. We thus propose that a compound(s) that co-purifies with benzoquinone ansamycins inhibits intracellular transport. Taken together, our data demonstrate that the inhibitory effects on protein maturation and intracellular trafficking, previously attributed to geldanamycin, are mediated by another distinct moiety.
Collapse
Affiliation(s)
- Eran Barzilay
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
363
|
Milton CC, Huynh B, Batterham P, Rutherford SL, Hoffmann AA. Quantitative trait symmetry independent of Hsp90 buffering: distinct modes of genetic canalization and developmental stability. Proc Natl Acad Sci U S A 2003; 100:13396-401. [PMID: 14595030 PMCID: PMC263825 DOI: 10.1073/pnas.1835613100] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2003] [Indexed: 11/18/2022] Open
Abstract
The Hsp90 chaperone buffers development against a wide range of morphological changes in many organisms and in Drosophila masks the effects of hidden genetic variation. Theory predicts that genetic and nongenetic buffering will share common mechanisms. For example, it is argued that Hsp90 genetic buffering evolved solely as a by-product of environmental buffering, and that Hsp90 should mask morphological deviations from any source. To test this idea, we examined the effect of Hsp90 on purely nongenetic variation in phenotype, measured as differences between the left and right sides of several bilaterally symmetrical bristle and wing traits in individual flies. Consistent with previous reports, Hsp90 buffered the expression of rare morphogenic variants specific to particular genetic backgrounds. However, neither trait-by-trait nor global asymmetry was affected in outbred flies treated with an Hsp90 inhibitor or across a series of inbred genetic backgrounds from a wild population tested in isogenic F1 heterozygotes carrying either (i) a dominant negative Hsp90 allele on a mutant 3rd chromosome or (ii) a null P-insertion mutation, which was introgressed into the control genetic background on all chromosomes. By contrast, Hsp90-regulated trait means and significant effects of sex, temperature, and genetic background on trait symmetry were clearly detected. We conclude that, by maintaining the function of signaling proteins, Hsp90 masks variation affecting target pathways and traits in populations independent of purely nongenetic sources of variation, refuting the idea that a single Hsp90-dependent process generally controls genetic canalization and developmental stability.
Collapse
Affiliation(s)
- Claire C Milton
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
364
|
Kim HH, Chung WJ, Lee SW, Chung PJ, You JW, Kwon HJ, Tanaka S, Lee ZH. Association of sustained ERK activity with integrin beta3 induction during receptor activator of nuclear factor kappaB ligand (RANKL)-directed osteoclast differentiation. Exp Cell Res 2003; 289:368-77. [PMID: 14499638 DOI: 10.1016/s0014-4827(03)00288-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Osteoclast differentiation is a multi-step process that involves cell proliferation, commitment, and fusion. Some adhesion molecules, including integrin alphavbeta3, have been shown to have roles in osteoclast fusion. In the course of studying with pharmacologic agents known to inhibit protein tyrosine kinases of the Src family, we found that radicicol increased cell fusion during receptor activator of nuclear factor kappaB ligand (RANKL)-driven differentiation of osteoclasts at concentrations far below the ones shown to inhibit its targets in previous studies. Treatments of low doses of radicicol to RAW 264.7 cells that undergo osteoclastic differentiation in the presence of RANKL enhanced the RANKL-induced gene expression of integrin beta3 without any effect on the expression of integrin alphav, which was constitutively high. The cell surface level of integrin alphavbeta3 complexes was consequently augmented by radicicol. In addition, sustained ERK and MEK activation was observed in cells treated with both radicicol and RANKL. More importantly, modulation of ERK activity by the MEK inhibitor U0126 or the gene transduction of a constitutively active form of MEK resulted in a suppression and increment, respectively, of integrin beta3 induction by RANKL. Our data indicate that sustained ERK activity is associated with integrin beta3 induction and subsequent cell surface expression of the alphavbeta3 integrin complex, which may contribute to cell fusion during RANKL-directed osteoclastogenesis.
Collapse
Affiliation(s)
- Hong-Hee Kim
- National Research Laboratory for Bone Metabolism, Department of Microbiology and Immunology, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | | | | | | | | | | | | | | |
Collapse
|
365
|
Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003; 425:407-10. [PMID: 14508491 DOI: 10.1038/nature01913] [Citation(s) in RCA: 1049] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 07/11/2003] [Indexed: 12/16/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a key role in the conformational maturation of oncogenic signalling proteins, including HER-2/ErbB2, Akt, Raf-1, Bcr-Abl and mutated p53. Hsp90 inhibitors bind to Hsp90, and induce the proteasomal degradation of Hsp90 client proteins. Although Hsp90 is highly expressed in most cells, Hsp90 inhibitors selectively kill cancer cells compared to normal cells, and the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) is currently in phase I clinical trials. However, the molecular basis of the tumour selectivity of Hsp90 inhibitors is unknown. Here we report that Hsp90 derived from tumour cells has a 100-fold higher binding affinity for 17-AAG than does Hsp90 from normal cells. Tumour Hsp90 is present entirely in multi-chaperone complexes with high ATPase activity, whereas Hsp90 from normal tissues is in a latent, uncomplexed state. In vitro reconstitution of chaperone complexes with Hsp90 resulted in increased binding affinity to 17-AAG, and increased ATPase activity. These results suggest that tumour cells contain Hsp90 complexes in an activated, high-affinity conformation that facilitates malignant progression, and that may represent a unique target for cancer therapeutics.
Collapse
Affiliation(s)
- Adeela Kamal
- Conforma Therapeutics Corporation, 9393 Towne Centre Drive, Suite 240, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
366
|
Scroggins BT, Prince T, Shao J, Uma S, Huang W, Guo Y, Yun BG, Hedman K, Matts RL, Hartson SD. High Affinity Binding of Hsp90 Is Triggered by Multiple Discrete Segments of Its Kinase Clients. Biochemistry 2003; 42:12550-61. [PMID: 14580201 DOI: 10.1021/bi035001t] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 90 kDa heat shock protein (Hsp90) cooperates with its co-chaperone Cdc37 to provide obligatory support to numerous protein kinases involved in the regulation of cellular signal transduction pathways. In this report, crystal structures of protein kinases were used to guide the dissection of two kinases [the Src-family tyrosine kinase, Lck, and the heme-regulated eIF2alpha kinase (HRI)], and the association of Hsp90 and Cdc37 with these constructs was assessed. Hsp90 interacted with both the N-terminal (NL) and C-terminal (CL) lobes of the kinases' catalytic domains. In contrast, Cdc37 interacted only with the NL. The Hsp90 antagonist molybdate was necessary to stabilize the interactions between isolated subdomains and Hsp90 or Cdc37, but the presence of both lobes of the kinases' catalytic domain generated a stable salt-resistant chaperone-client heterocomplex. The Hsp90 co-chaperones FKBP52 and p23 interacted with the catalytic domain and the NL of Lck, whereas protein phosphatase 5 demonstrated unique modes of kinase binding. Cyp40 was a salt labile component of Hsp90 complexes formed with the full-length, catalytic domains, and N-terminal catalytic lobes of Lck and HRI. Additionally, dissections identify a specific kinase motif that triggers Hsp90's conformational switching to a high-affinity client binding state. Results indicate that the Hsp90 machine acts as a versatile chaperone that recognizes multiple regions of non-native proteins, while Cdc37 binds to a more specific kinase segment, and that concomitant recognition of multiple client segments is communicated to generate or stabilize high-affinity chaperone-client heterocomplexes.
Collapse
Affiliation(s)
- Bradley T Scroggins
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Ou J, Fontana JT, Ou Z, Jones DW, Ackerman AW, Oldham KT, Yu J, Sessa WC, Pritchard KA. Heat shock protein 90 and tyrosine kinase regulate eNOS NO* generation but not NO* bioactivity. Am J Physiol Heart Circ Physiol 2003; 286:H561-9. [PMID: 14551044 DOI: 10.1152/ajpheart.00736.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increase in the association of heat shock protein 90 (HSP90) with endothelial nitric oxide (NO) synthase (eNOS) is well recognized for increasing NO (NO*) production. Despite the progress in this field, the mechanisms by which HSP90 modulates eNOS remain unclear due, in part, to the fact that geldanamycin (GA) redox cycles to generate superoxide anion (O(2)(-*) and the fact that inhibiting HSP90 with GA or radicicol (RAD) destabilizes tyrosine kinases that rely on the chaperone for maturation. In this report, we determine the extent to which these side effects alter vascular and endothelial cell function in physiologically relevant systems and in cultured endothelial cells. Vascular endothelial growth factor (VEGF)-stimulated vascular permeability, as measured by Evans blue leakage in the ears of male Swiss mice in vivo, and acetylcholine-induced vasodilation of isolated, pressurized mandibular arterioles from male C57BL6 mice ex vivo were attenuated by N(omega)-nitro-L-arginine methyl ester (L-NAME), GA, and RAD. Z-1[N-(2-aminoethyl)-N-(2-ammonoethyl)amino]diazen-1-ium-1,2-dioate (DETA-NONOate), a slow releasing NO. donor, increased vasodilation of arterioles pretreated with GA, RAD, and L-NAME equally well except at 10(-5) M, the highest concentration used, where vasodilation was greater in pressurized arterioles treated with L-NAME than in arterioles pretreated with GA or RAD alone. Both GA and RAD reduced NO* release from stimulated endothelial cell cultures and increased O(2)(-*) production in the endothelium of isolated aortas by an L-NAME-inhibitable mechanism. Pretreatment with RAD increased stimulated O(2)(-*) production from eNOS, whereas pretreatment with genistein (GE), a broad-spectrum tyrosine kinase inhibitor, did not; however, pretreatment with GE + RAD resulted in a super-induced state of uncoupled eNOS activity upon stimulation. These data suggest that the tyrosine kinases, either directly or indirectly, and HSP90-dependent signaling pathways act in concert to suppress uncoupled eNOS activity.
Collapse
Affiliation(s)
- Jingsong Ou
- Division of Pediatric Surgery, Department of Surgery, Cardiovascular Center, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Shao J, Prince T, Hartson SD, Matts RL. Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37. J Biol Chem 2003; 278:38117-20. [PMID: 12930845 DOI: 10.1074/jbc.c300330200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hsp90 co-chaperone Cdc37 provides an essential function for the biogenesis and support of numerous protein kinases. In this report, we demonstrate that mammalian Cdc37 is phosphorylated on Ser13 in situ in rabbit reticulocyte lysate and in cultured K562 cells and that casein kinase II is capable of quantitatively phosphorylating recombinant Cdc37 at this site. Mutation of Ser13 to either Ala or Glu compromises the recruitment of Cdc37 to Hsp90-kinase complexes but has only modest effects on its basal (client-free) binding to Hsp90. Furthermore, Cdc37 containing the complementing Ser to Glu mutation showed altered interactions with Hsp90-kinase complexes consistent with compromised Cdc37 modulation of the Hsp90 ATP-driven reaction cycle. Thus, the data indicate that phosphorylation of Cdc37 on Ser13 is critical for its ability to coordinate Hsp90 nucleotide-mediated conformational switching and kinase binding.
Collapse
Affiliation(s)
- Jieya Shao
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | | | |
Collapse
|
369
|
Adinolfi E, Kim M, Young MT, Di Virgilio F, Surprenant A. Tyrosine phosphorylation of HSP90 within the P2X7 receptor complex negatively regulates P2X7 receptors. J Biol Chem 2003; 278:37344-51. [PMID: 12869560 DOI: 10.1074/jbc.m301508200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purinergic P2X7 receptor not only gates the opening of a cationic channel, but also couples to several downstream signaling events such as rapid membrane blebbing, microvesicle shedding, and interleukin-1beta release. Protein-protein interactions are likely to be involved in most of these signaling cascades; and recently, a P2X7 receptor-protein complex comprising at least 11 distinct proteins has been identified. We have studied one of these interacting proteins, HSP90, in human embryonic kidney cells expressing either human or rat P2X7 receptors as well as in rat peritoneal macrophages using biochemical (immunoprecipitation and Western blotting) and functional (membrane blebbing and currents) assays. We found that HSP90 was tyrosine-phosphorylated in association with the P2X7 receptor complex, but not in the cytosolic compartment. The HSP90 inhibitor geldanamycin decreased tyrosine phosphorylation of HSP90 and produced a 2-fold increase in the sensitivity of P2X7 receptors to agonist. Protein expression and tyrosine phosphorylation of a mutant P2X7 receptor in which a tyrosine in the C-terminal domain was substituted with phenylalanine (Y550F) were not changed, but tyrosine phosphorylation of HSP90 associated with this mutant P2X7 receptor complex was significantly greater than that associated with the wild-type complex. P2X7-Y550F receptors showed a 15-fold lower sensitivity to agonist, which was reversed by geldanamycin. We conclude that selective tyrosine phosphorylation of P2X7 receptor-associated HSP90 may act as a negative regulator of P2X7 receptor complex formation and function.
Collapse
Affiliation(s)
- Elena Adinolfi
- Institute of Molecular Physiology, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
370
|
Jiang J, Cyr D, Babbitt RW, Sessa WC, Patterson C. Chaperone-dependent regulation of endothelial nitric-oxide synthase intracellular trafficking by the co-chaperone/ubiquitin ligase CHIP. J Biol Chem 2003; 278:49332-41. [PMID: 14507928 DOI: 10.1074/jbc.m304738200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial nitric-oxide synthase (eNOS), the enzyme responsible for production of endothelial NO, is under tight and complex regulation. Proper cellular localization of eNOS is critical for optimal coupling of extracellular stimulation with NO production. In addition, the molecular chaperone Hsp90 interacts with eNOS and positively regulates eNOS activity. Hsp90 is modulated by physical interaction with its co-chaperones. CHIP (carboxyl terminus of Hsp70-interacting protein) is such a co-chaperone that remodels the Hsp90 heterocomplex and causes protein degradation of some Hsp90 substrates through the ubiquitin-protein isopeptide ligase activity of CHIP. Here we show that CHIP incorporated into the eNOS.Hsp90 complex and specifically decreased soluble eNOS levels in transiently transfected COS cells. Surprisingly, in contrast to the effects of the Hsp90 inhibitor geldanamycin, which induces eNOS ubiquitylation and its subsequent protein degradation, CHIP did not target eNOS for ubiquitylation and proteasome-dependent degradation. Instead, CHIP partitioned soluble eNOS into an insoluble and inactive cellular compartment, presumably through its co-chaperone activity. This effect seems to be due to displacement of eNOS from the Golgi apparatus, which is otherwise required for trafficking of eNOS to the plasmalemma and subsequent activation. Consistent with observations from overexpression studies, eNOS localization to the membrane and activity were increased in mouse lung endothelial cells lacking CHIP. Taken together, these results demonstrate a novel co-chaperone-dependent mechanism through which eNOS trafficking is regulated and suggest a potentially generalized role for CHIP in protein trafficking through the Golgi compartment.
Collapse
Affiliation(s)
- Jihong Jiang
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, North Carolina 27599-7075, USA
| | | | | | | | | |
Collapse
|
371
|
Beck J, Nassal M. Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein. J Biol Chem 2003; 278:36128-38. [PMID: 12851401 DOI: 10.1074/jbc.m301069200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hsp90 is a specialized chaperone that controls the activity of many key regulator proteins such as steroid hormone receptors (SHRs). Hormone binding, and therefore SHR activation, requires Hsp90, which is loaded onto the receptors by a series of events involving Hsp70, Hsp40, Hop, and p23. The reverse transcriptase (RT) of hepatitis B viruses, small DNA-containing viruses that replicate via an RNA intermediate, has been reported to depend similarly on Hsp90 for enzymatic activity. Using an in vitro reconstitution system consisting of recombinant duck hepatitis B virus RT, purified chaperones, and the authentic RNA template Depsilon, we demonstrate here that this RT can be activated efficiently by just Hsp40 and Hsc70 plus energy, without the need for Hsp90 or other cofactors. The reaction appears to proceed selectively with the Hdj1 variant of Hsp40 but not Hdj2 or its yeast homolog Ydj1. The primary reaction product is a metastable, RNA binding-competent intermediate that decays quickly in the absence of its cognate RNA but, in its presence, accumulates in an initiation-competent form over several hours. Because deletion of the RNase H domain rendered the protein partly chaperone-independent, the chaperones may be needed indirectly to relieve occlusion of the RNA binding site by this domain. Our results do not exclude that other factors contribute to RT activation in vivo, but they challenge a fundamental SHR-like dependence on Hsp90. Thus Hsc70, mostly known for its role in general protein folding, is able to effect activation of a highly specialized target protein.
Collapse
Affiliation(s)
- Jürgen Beck
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Strasse 55, Freiburg D-79106, Germany
| | | |
Collapse
|
372
|
Bali M, Zhang B, Morano KA, Michels CA. The Hsp90 molecular chaperone complex regulates maltose induction and stability of the Saccharomyces MAL gene transcription activator Mal63p. J Biol Chem 2003; 278:47441-8. [PMID: 14500708 DOI: 10.1074/jbc.m309536200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of the Saccharomyces MAL structural genes encoding maltose permease and maltase requires the MAL activator, a DNA-binding transcription activator. Genetic analysis of MAL activator mutations suggested that protein folding and stability play an important role in MAL activator regulation and led us to explore the role of the Hsp90 molecular chaperone complex in the regulation of the MAL activator. Strains carrying mutations in genes encoding components of the Hsp90 chaperone complex, hsc82 Delta hsp82-T101I and hsc82 Delta cpr7 Delta, are defective for maltase induction and exhibit significantly reduced growth rates on media containing a limiting concentration of maltose (0.05%). This growth defect is suppressed by providing maltose in excess. Using epitope-tagged alleles of the MAL63 MAL activator, we showed that Mal63p levels are drastically reduced following depletion of cellular Hsp90. Overexpression ( approximately 3-fold) of Mal63p in the hsc82 Delta hsp82-T101I and hsc82 Delta cpr7 Delta strains suppresses their Mal- growth phenotype, suggesting that Mal63p levels are limiting for maltose utilization in strains with abrogated Hsp90 activity. Consistent with this, the half-life of Mal63p is significantly shorter in the hsc82 Delta cpr7 Delta strain (reduced about 6-fold) and modestly affected in the Hsp90-ts strain (reduced about 2-fold). Most importantly, triple hemagglutinin-tagged Mal63p protein is found in association with Hsp90 as demonstrated by co-immunoprecipitation. Taken together, these results identify the inducible MAL activator as a client protein of the Hsp90 molecular chaperone complex and point to a critical role for chaperone function in alternate carbon source utilization in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Mehtap Bali
- Biology Department, Queens College and the Graduate School of the City University of New York, Flushing, New York 11367, USA
| | | | | | | |
Collapse
|
373
|
Kumar R, Musiyenko A, Barik S. The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malar J 2003; 2:30. [PMID: 14514358 PMCID: PMC201030 DOI: 10.1186/1475-2875-2-30] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/15/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The naturally occurring benzoquinone ansamycin compound, geldanamycin (GA), is a specific inhibitor of heat shock protein 90 (Hsp90) and is a potential anticancer agent. Since Plasmodium falciparum has been reported to have an Hsp90 ortholog, we tested the possibility that GA might inhibit it and thereby display antiparasitic activity. RESULTS We provide direct recombinant DNA evidence for the Hsp90 protein of Plasmodium falciparum, the causative agent of fatal malaria. While the mRNA of Hsp90 was mainly expressed in ring and trophozoite stages, the protein was found in all stages, although schizonts contained relatively lower amounts. In vitro the parasitic Hsp90 exhibited an ATP-binding activity that could be specifically inhibited by GA. Plasmodium growth in human erythrocyte culture was strongly inhibited by GA with an IC50 of 20 nM, compared to the IC50 of 15 nM for chloroquine (CQ) under identical conditions. When used in combination, the two drugs acted synergistically. GA was equally effective against CQ-sensitive and CQ-resistant strains (3D7 and W2, respectively) and on all erythrocytic stages of the parasite. CONCLUSIONS Together, these results suggest that an active and essential Hsp90 chaperone cycle exists in Plasmodium and that the ansamycin antibiotics will be an important tool to dissect its role in the parasite. Additionally, the favorable pharmacology of GA, reported in human trials, makes it a promising antimalarial drug.
Collapse
Affiliation(s)
- Rajinder Kumar
- Department of Biochemistry and Molecular Biology (MSB 2370), University of South Alabama, College of Medicine, 307 University Blvd, Mobile, AL 36688-0002, USA.
| | | | | |
Collapse
|
374
|
Dehner A, Furrer J, Richter K, Schuster I, Buchner J, Kessler H. NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADP, AMP-PNP, geldanamycin, and radicicol. Chembiochem 2003; 4:870-7. [PMID: 12964162 DOI: 10.1002/cbic.200300658] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hsp90 is one of the most abundant chaperone proteins in the cytosol. In an ATP-dependent manner it plays an essential role in the folding and activation of a range of client proteins involved in signal transduction and cell cycle regulation. We used NMR shift perturbation experiments to obtain information on the structural implications of the binding of AMP-PNP (adenylyl-imidodiphosphate-a non-hydrolysable ATP analogue), ADP and the inhibitors radicicol and geldanamycin. Analysis of (1)H,(15)N correlation spectra showed a specific pattern of chemical shift perturbations at N210 (ATP binding domain of Hsp90, residues 1-210) upon ligand binding. This can be interpreted qualitatively either as a consequence of direct ligand interactions or of ligand-induced conformational changes within the protein. All ligands show specific interactions in the binding site, which is known from the crystal structure of the N-terminal domain of Hsp90. For AMP-PNP and ADP, additional shift perturbations of residues outside the binding pocket were observed and can be regarded as a result of conformational rearrangement upon binding. According to the crystal structures, these regions are the first alpha-helix and the "ATP-lid" ranging from amino acids 85 to 110. The N-terminal domain is therefore not a passive nucleotide-binding site, as suggested by X-ray crystallography, but responds to the binding of ATP in a dynamic way with specific structural changes required for the progression of the ATPase cycle.
Collapse
Affiliation(s)
- Alexander Dehner
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | |
Collapse
|
375
|
Tesic M, Marsh JA, Cullinan SB, Gaber RF. Functional interactions between Hsp90 and the co-chaperones Cns1 and Cpr7 in Saccharomyces cerevisiae. J Biol Chem 2003; 278:32692-701. [PMID: 12788914 DOI: 10.1074/jbc.m304315200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp90 complexes contain a class of co-chaperones characterized by a tetratricopeptide repeat (TPR) domain, which mediates binding to a carboxyl-terminal EEVD region in Hsp90. Among Hsp90 TPR co-chaperones in Saccharomyces cerevisiae, only Cns1 is essential. The amino terminus of Cns1, which harbors the TPR domain, is sufficient for viability when overexpressed. In a screen for temperature-sensitive alleles of CNS1, we identified mutations resulting in substitutions of conserved residues in the TPR domain. Mutations in CNS1 disrupt in vitro and in vivo interaction with Hsp90 and reduce Hsp90 function, indicating that Cns1 is a bona fide co-chaperone. Genetic interactions between CNS1 and another Hsp90 co-chaperone, CPR7, suggest that the two co-chaperones share an essential role in the cell. Although both the TPR and the isomerase domains of the cyclophilin Cpr7 are required for viability of cns1 mutant cells, this requirement does not depend on the catalytic function of the isomerase domain. Instead, hydrophilic residues on the surface of this domain appear to be important for the common Cns1.Cpr7 function. Although both co-chaperones interact with Hsp90 primarily through the carboxyl terminus (EEVD), Cns1 and Cpr7 are mostly found in complexes distinct from Hsp90. EEVD is required for normal growth in cns1 mutant cells, demonstrating for the first time in vivo requirement for this conserved region of Hsp90. Overall, our findings reveal a considerable degree of complexity in the interactions not only between Hsp90 and its co-chaperones, but also among the co-chaperones themselves.
Collapse
Affiliation(s)
- Marija Tesic
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
376
|
Goetz MP, Toft DO, Ames MM, Erlichman C. The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 2003; 14:1169-76. [PMID: 12881371 DOI: 10.1093/annonc/mdg316] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Heat shock protein 90 (Hsp90) is responsible for chaperoning proteins involved in cell signaling, proliferation and survival. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is an anticancer agent currently in phase I trials in the USA and UK. It represents a class of drugs, the benzoquinone ansamycin antibiotics, capable of binding and disrupting the function of Hsp90, leading to the depletion of multiple oncogenic client proteins. MATERIALS AND METHODS Studies were identified through a PubMed search, review of bibliographies of relevant articles and review of abstracts from national meetings. RESULTS Preclinical studies have demonstrated that disruption of many client proteins chaperoned by Hsp90 is achievable and associated with significant growth inhibition, both in vitro and in tumor xenografts. Following an overview of the mechanism of action of ansamycin antibiotics and the pathways they disrupt, we review the current clinical status of 17-AAG, and discuss future directions for combinations of traditional antineoplastics with 17-AAG. CONCLUSIONS 17-AAG represents a class of drugs capable of affecting multiple targets in the signal transduction pathway involved in tumor cell proliferation and survival. Early results from phase I studies indicate that 17-AAG administration results in an acceptable toxicity profile while achieving in vivo disruption of client proteins.
Collapse
Affiliation(s)
- M P Goetz
- Division Medical Oncology, Department of Biochemistry, Mayo Graduate School, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
377
|
Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J 2003; 22:3557-67. [PMID: 12853471 PMCID: PMC165619 DOI: 10.1093/emboj/cdg349] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hsp90 has a diverse array of cellular roles including protein folding, stress response and signal transduction. Herein we report a novel function for Hsp90 in the ATP-dependent assembly of the 26S proteasome. Functional loss of Hsp90 using a temperature-sensitive mutant in yeast caused dissociation of the 26S proteasome. Conversely, these dissociated constituents reassembled in Hsp90-dependent fashion both in vivo and in vitro; the process required ATP-hydrolysis and was suppressed by the Hsp90 inhibitor geldanamycin. We also found genetic interactions between Hsp90 and several proteasomal Rpn (Regulatory particle non-ATPase subunit) genes, emphasizing the importance of Hsp90 to the integrity of the 26S proteasome. Our results indicate that Hsp90 interacts with the 26S proteasome and plays a principal role in the assembly and maintenance of the 26S proteasome.
Collapse
Affiliation(s)
- Jun Imai
- Department of Molecular Oncology and Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-8613, CREST, Japan
| | | | | | | | | |
Collapse
|
378
|
Wegele H, Haslbeck M, Reinstein J, Buchner J. Sti1 is a novel activator of the Ssa proteins. J Biol Chem 2003; 278:25970-6. [PMID: 12716905 DOI: 10.1074/jbc.m301548200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins in eukaryotes. Of specific importance in this context is a ternary multichaperone complex in which Hsp70 and Hsp90 are connected by Hop. In Saccharomyces cerevisiae two components of the complex, yeast Hsp90 (yHsp90) and Sti1, the yeast homologue of Hop, had already been identified, but it remained to be shown which of the 14 different yeast Hsp70s are part of the Sti1 complex and what were the functional consequences resulting from this interaction. With a two-hybrid approach and co-immunoprecipitations, we show here that Sti1 specifically interacts with the Ssa group of the cytosolic yeast Hsp70 proteins. Using purified components, we reconstituted the dimeric Ssa1-Sti1 complex and the ternary Ssa1-Sti1-yHsp90 complex in vitro. The dissociation constant between Sti1 and Ssa1 was determined to be 2 orders of magnitude weaker than the affinity of Sti1 for yHsp90. Surprisingly, binding of Sti1 activates the ATPase of Ssa1 by a factor of about 200, which is in contrast to the behavior of Hop in the mammalian Hsp70 system. Analysis of the underlying activation mechanism revealed that ATP hydrolysis is rate-limiting in the Ssa1 ATPase cycle and that this step is accelerated by Sti1. Thus, Sti1 is a potent novel effector for the Hsp70 ATPase.
Collapse
Affiliation(s)
- Harald Wegele
- Institut für Organische Chemie & Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | |
Collapse
|
379
|
Soti C, Vermes A, Haystead TAJ, Csermely P. Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2421-8. [PMID: 12755697 DOI: 10.1046/j.1432-1033.2003.03610.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 90-kDa heat shock protein (Hsp90) is a molecular chaperone that assists both in ATP-independent sequestration of damaged proteins, and in ATP-dependent folding of numerous targets, such as nuclear hormone receptors and protein kinases. Recent work from our lab and others has established the existence of a second, C-terminal nucleotide binding site besides the well characterized N-terminal, geldanamycin-sensitive ATP-binding site. The cryptic C-terminal site becomes open only after the occupancy of the N-terminal site. Our present work demonstrates the applicability of the oxidative nucleotide affinity cleavage in the site-specific characterization of nucleotide binding proteins. We performed a systematic analysis of the nucleotide binding specificity of the Hsp90 nucleotide binding sites. N-terminal binding is specific to adenosine nucleotides with an intact adenine ring. Nicotinamide adenine dinucleotides and diadenosine polyphosphate alarmones are specific N-terminal nucleotides. The C-terminal binding site is much more unspecific-it interacts with both purine and pirimidine nucleotides. Efficient binding to the C-terminal site requires both charged residues and a larger hydrophobic moiety. GTP and UTP are specific C-terminal nucleotides. 2',3'-O-(2,4,6-trinitrophenyl)-nucleotides (TNP-ATP, TNP-GTP) and pyrophosphate access the C-terminal binding site without the need for an occupied N-terminal site. Our data provide additional evidence for the dynamic domain-domain interactions of Hsp90, give hints for the design of novel types of specific Hsp90 inhibitors, and raise the possibility that besides ATP, other small molecules might also interact with the C-terminal nucleotide binding site in vivo.
Collapse
Affiliation(s)
- Csaba Soti
- Department of Medical Chemistry, Semmelweis University School of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
380
|
Abstract
Heat shock proteins (HSPs) are cytoprotective molecules that help to maintain the metabolic and structural integrity of cells. In this review, we briefly discuss the regulation and function of HSPs. The review focuses on the current knowledge of pancreatic HSP induction, the HSP level changes during acute pancreatitis, the potential effects of the pre- and co-induction of HSPs in experimental acute pancreatitis, and the mechanisms by which HSPs might mediate cellular protection.
Collapse
|
381
|
Wiser MF. A Plasmodium homologue of cochaperone p23 and its differential expression during the replicative cycle of the malaria parasite. Parasitol Res 2003; 90:166-70. [PMID: 12756555 DOI: 10.1007/s00436-003-0835-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 01/17/2003] [Indexed: 10/25/2022]
Abstract
The complete gene sequence of a major phosphoprotein from the malaria parasite reveals that it is a homologue to cochaperone p23. This p23 homologue is highly conserved between Plasmodium falciparum and other malaria parasites and exhibits 44% sequence identity with the Schizosaccharomyces pombe p23 homologue. The Plasmodium p23 is a relatively abundant cytoplasmic protein with a molecular mass of 34-36 kDa depending on species. Expression of this 34 kDa protein and its mRNA commences in the early ring stage and continues throughout the trophozoite stage. At the beginning of schizogony there is a decrease in the transcription and translation rates and a decline in the amount of the 34 kDa protein. The exact role of the 34 kDa phosphoprotein in parasite replication and differentiation is not known, but the Plasmodium p23 homologue may play a role in parasite proliferation and differentiation through its interactions with protein kinases and other chaperones.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, SL17, New Orleans, LA 70112, USA.
| |
Collapse
|
382
|
Cheung-Flynn J, Roberts PJ, Riggs DL, Smith DF. C-terminal sequences outside the tetratricopeptide repeat domain of FKBP51 and FKBP52 cause differential binding to Hsp90. J Biol Chem 2003; 278:17388-94. [PMID: 12611898 DOI: 10.1074/jbc.m300955200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp90 assembles with steroid receptors and other client proteins in association with one or more Hsp90-binding cochaperones, some of which contain a common tetratricopeptide repeat (TPR) domain. Included in the TPR cochaperones are the Hsp70-Hsp90-organizing protein Hop, the FK506-binding immunophilins FKBP52 and FKBP51, the cyclosporin A-binding immunophilin CyP40, and protein phosphatase PP5. The TPR domains from these proteins have similar x-ray crystallographic structures and target cochaperone binding to the MEEVD sequence that terminates Hsp90. However, despite these similarities, the TPR cochaperones have distinctive properties for binding Hsp90 and assembling with Hsp90.steroid receptor complexes. To identify structural features that differentiate binding of FKBP51 and FKBP52 to Hsp90, we generated an assortment of truncation mutants and chimeras that were compared for coimmunoprecipitation with Hsp90. Although the core TPR domain (approximately amino acids 260-400) of FKBP51 and FKBP52 is required for Hsp90 binding, the C-terminal 60 amino acids (approximately 400-end) also influence Hsp90 binding. More specifically, we find that amino acids 400-420 play a critical role for Hsp90 binding by either FKBP. Within this 20-amino acid region, we have identified a consensus sequence motif that is also present in some other TPR cochaperones. Additionally, the final 30 amino acids of FKBP51 enhance binding to Hsp90, whereas the corresponding region of FKBP52 moderates binding to Hsp90. Taking into account the x-ray crystal structure for FKBP51, we conclude that the C-terminal regions of FKBP51 and FKBP52 outside the core TPR domains are likely to assume alternative conformations that significantly impact Hsp90 binding.
Collapse
Affiliation(s)
- Joyce Cheung-Flynn
- S C Johnson Research Center, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
383
|
Oglesbee MJ, Pratt M, Carsillo T. Role for heat shock proteins in the immune response to measles virus infection. Viral Immunol 2003; 15:399-416. [PMID: 12479391 DOI: 10.1089/088282402760312296] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heat shock proteins (HSPs) are recognized for their support of protein metabolism. Interaction with viral proteins also enhances the development of innate and adaptive immune responses against the infecting agent. At the level of the infected cell, HSPs are uniquely expressed on the cell surface, where they represent targets of lymphokine activated killer cells. Necrosis of the infected cell releases complexes of HSP and viral protein, which, in turn, binds antigen-presenting cells (APCs). One effect of binding is to stimulate APC maturation and the release of proinflammatory cytokines, an adjuvant effect that prepares the way for adaptive immune responses. A second effect of binding is to direct the antigenic cargo of the HSP into endogenous MHC presentation pathways for priming of naive cytotoxic T cells (CTL) or activation of antigen-specific CTLs. This alternate pathway of antigen presentation is essential to CTL priming following primary brain infection. Using heat shock to elevate brain levels of HSP in a mouse model of measles virus (MV) persistent infection, we provide evidence supporting a role for HSPs in promoting cell-mediated viral clearance from brain. The findings highlight the probable relevance of HSPs to anti-MV immunity, suggesting novel routes of both therapeutic intervention and preventative measures.
Collapse
Affiliation(s)
- Michael J Oglesbee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
384
|
Thom SR, Fisher D, Zhang J, Bhopale VM, Ohnishi ST, Kotake Y, Ohnishi T, Buerk DG. Stimulation of perivascular nitric oxide synthesis by oxygen. Am J Physiol Heart Circ Physiol 2003; 284:H1230-9. [PMID: 12505879 DOI: 10.1152/ajpheart.01043.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that elevated partial pressures of O(2) would increase perivascular nitric oxide (*NO) synthesis. Rodents with O(2)- and.NO-specific microelectrodes implanted adjacent to the abdominal aorta were exposed to O(2) at partial pressures from 0.2 to 2.8 atmospheres absolute (ATA). Exposures to 2.0 and 2.8 ATA O(2) stimulated neuronal (type I) NO synthase (nNOS) and significantly increased steady-state.NO concentration, but the mechanism for enzyme activation differed at each partial pressure. At both pressures, elevations in.NO concentration were inhibited by the nNOS inhibitor 7-nitroindazole and the calcium channel blocker nimodipine. Enzyme activation at 2.0 ATA O(2) appeared to be due to an altered cellular redox state. Exposure to 2.8 ATA O(2), but not 2.0 ATA O(2), increased nNOS activity by enhancing nNOS association with calmodulin, and an inhibitory effect of geldanamycin indicated that the association was facilitated by heat shock protein 90. Infusion of superoxide dismutase inhibited.NO elevation at 2.8 but not 2.0 ATA O(2). Hyperoxia increased the concentration of.NO associated with hemoglobin. These findings highlight the complexity of oxidative stress responses and may help explain some of the dose responses associated with therapeutic applications of hyperbaric oxygen.
Collapse
Affiliation(s)
- Stephen R Thom
- Department of Emergency Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
385
|
Abstract
Protein chaperones direct the folding of polypeptides into functional proteins, facilitate developmental signalling and, as heat-shock proteins (HSPs), can be indispensable for survival in unpredictable environments. Recent work shows that the main HSP chaperone families also buffer phenotypic variation. Chaperones can do this either directly through masking the phenotypic effects of mutant polypeptides by allowing their correct folding, or indirectly through buffering the expression of morphogenic variation in threshold traits by regulating signal transduction. Environmentally sensitive chaperone functions in protein folding and signal transduction have different potential consequences for the evolution of populations and lineages under selection in changing environments.
Collapse
Affiliation(s)
- Suzanne L Rutherford
- Division of Basic Sciences, Fred Hutchinson Cancer Research Centre, Mailstop A2-168, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA.
| |
Collapse
|
386
|
Yada T, Nakanishi T. Interaction between endocrine and immune systems in fish. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 220:35-92. [PMID: 12224552 DOI: 10.1016/s0074-7696(02)20003-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diseases in fish are serious problems for the development of aquaculture. The outbreak of fish disease is largely dependent on environmental and endogenous factors resulting in opportunistic infection. Recent studies, particularly on stress response, have revealed that bidirectional communication between the endocrine and immune systems via hormones and cytokines exists at the level of teleost fish. Recently information on such messengers and receptors has accumulated in fish research particularly at the molecular level. Furthermore, it has become apparent in fish that cells of the immune system produce or express hormones and their receptors and vice versa to exchange information between the two systems. This review summarizes and updates the knowledge on endocrine-immune interactions in fish with special emphasis on the roles of such mediators or receptors for their interactions.
Collapse
Affiliation(s)
- Takashi Yada
- Nikko Branch, National Research Institute of Aquaculture, Tochigi, Japan
| | | |
Collapse
|
387
|
Richter K, Muschler P, Hainzl O, Reinstein J, Buchner J. Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J Biol Chem 2003; 278:10328-33. [PMID: 12525481 DOI: 10.1074/jbc.m213094200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone Hsp90 is known to be involved in the activation of key regulatory proteins such as kinases, steroid hormone receptors, and transcription factors in an ATP-dependent manner. During the chaperone cycle, Hsp90 has been found associated with the partner protein Hop/Sti1, which seems to be required for the progression of the cycle. However, little is known about its specific function. Here we have investigated the interaction of Sti1 from Saccharomyces cerevisiae with Hsp90 and its influence on the ATPase activity. We show that the inhibitory mechanism of Sti1 on the ATPase activity of Hsp90 is non-competitive. Sti1 binds to the N- and C-terminal part of Hsp90 and prevents the N-terminal dimerization reaction that is required for efficient ATP hydrolysis. The first 24 amino acids of Hsp90, a region shown previously to be important for the association of the N-terminal domains and stimulation of ATP hydrolysis, seems to be important for this interaction.
Collapse
Affiliation(s)
- Klaus Richter
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr.4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
388
|
Newton AC. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 2003; 370:361-71. [PMID: 12495431 PMCID: PMC1223206 DOI: 10.1042/bj20021626] [Citation(s) in RCA: 596] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Revised: 12/13/2002] [Accepted: 12/20/2002] [Indexed: 01/02/2023]
Abstract
Phosphorylation plays a central role in regulating the activation and signalling lifetime of protein kinases A, B (also known as Akt) and C. These kinases share three conserved phosphorylation motifs: the activation loop segment, the turn motif and the hydrophobic motif. This review focuses on how phosphorylation at each of these sites regulates the maturation, signalling and down-regulation of PKC as a paradigm for how these sites control the function of the ABC kinases.
Collapse
Affiliation(s)
- Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0640, USA.
| |
Collapse
|
389
|
Vanden Berghe T, Kalai M, van Loo G, Declercq W, Vandenabeele P. Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J Biol Chem 2003; 278:5622-9. [PMID: 12441346 DOI: 10.1074/jbc.m208925200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triggering tumor necrosis factor receptor-1 (TNFR1) induces apoptosis in various cell lines. In contrast, stimulation of TNFR1 in L929sA leads to necrosis. Inhibition of HSP90, a chaperone for many kinases, by geldanamycin or radicicol shifted the response of L929sA cells to TNF from necrosis to apoptosis. This shift was blocked by CrmA but not by BCL-2 overexpression, suggesting that it occurred through activation of procaspase-8. Geldanamycin pretreatment led to a proteasome-dependent decrease in the levels of several TNFR1-interacting proteins including the kinases receptor-interacting protein, inhibitor of kappa B kinase-alpha, inhibitor of kappa B kinase-beta, and to a lesser extent the adaptors NF-kappaB essential modulator and tumor necrosis factor receptor-associated factor 2. As a consequence, NF-kappa B, p38MAPK, and JNK activation were abolished. No significant decrease in the levels of mitogen-activated protein kinases, adaptor proteins TNFR-associated death domain and Fas-associated death domain, or caspase-3, -8, and -9 could be detected. These results suggest that HSP90 client proteins play a crucial role in necrotic signaling. We conclude that inhibition of HSP90 may alter the composition of the TNFR1 complex, favoring the caspase-8-dependent apoptotic pathway. In the absence of geldanamycin, certain HSP90 client proteins may be preferentially recruited to the TNFR1 complex, promoting necrosis. Thus, the availability of proteins such as receptor-interacting protein, Fas-associated death domain, and caspase-8 can determine whether TNFR1 activation will lead to apoptosis or to necrosis.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antigens, CD/drug effects
- Antigens, CD/genetics
- Antigens, CD/physiology
- Apoptosis/drug effects
- Apoptosis/physiology
- Benzoquinones
- Enzyme Inhibitors/pharmacology
- Fibrosarcoma
- Flow Cytometry
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/physiology
- Humans
- Kinetics
- Lactams, Macrocyclic
- Mice
- Mutagenesis, Site-Directed
- Necrosis
- Quinones/pharmacology
- Receptors, Tumor Necrosis Factor/drug effects
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Recombinant Proteins/pharmacology
- T-Lymphocytes/physiology
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Tom Vanden Berghe
- Molecular Signaling and Cell Death Unit, Department of Molecular Biomedical Research, VIB, Gent University, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
390
|
Ross JW, Ashworth MD, Hurst AG, Malayer JR, Geisert RD. Analysis and characterization of differential gene expression during rapid trophoblastic elongation in the pig using suppression subtractive hybridization. Reprod Biol Endocrinol 2003; 1:23. [PMID: 12646053 PMCID: PMC151795 DOI: 10.1186/1477-7827-1-23] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 02/14/2003] [Indexed: 12/14/2022] Open
Abstract
During late peri-implantation development, porcine conceptuses undergo a rapid (2-3 hrs) morphological transformation from a 10 mm sphere to a thin filamentous form greater than 150 mm in length. Elongation of the conceptus is important for establishing adequate placental surface area needed for embryo and fetal survival throughout gestation. Genes involved with triggering this unique transition in conceptus development are not well defined. Objective of the present study was to utilize suppression subtractive hybridization (SSH) to characterize the change in gene expression during conceptus transformation from spherical (8-9 mm) to tubular (15-40 mm) to early filamentous (>150 mm) morphology. Spherical, tubular, and filamentous conceptuses were collected from pregnant gilts and subjected to SSH. Forward and reverse subtractions were performed to identify candidate genes differentially expressed during spherical to tubular and tubular to filamentous transition. A total of 384 transcripts were differentially screened to ensure unique expression. Of the transcripts screened, sequences were obtained for 142 that were confirmed to be differentially expressed among the various morphologies. Gene expression profiles during rapid trophoblastic elongation were generated for selected mRNAs using quantitative real-time PCR. During the transition from tubular to early filamentous conceptuses, s-adenosylhomocysteine hydrolase and heat shock cognate 70 kDa expression were significantly enhanced. A novel unknown gene was isolated and shown to be significantly up-regulated at the onset of rapid trophoblastic elongation and further enhanced in filamentous conceptuses.
Collapse
Affiliation(s)
- Jason W Ross
- Department of Animal Science, Oklahoma Agriculture Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Morgan D Ashworth
- Department of Animal Science, Oklahoma Agriculture Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Amy G Hurst
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Jerry R Malayer
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Rodney D Geisert
- Department of Animal Science, Oklahoma Agriculture Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, USA
- Department of Animal Science, Animal Science Building, Rm 114, Oklahoma State University, Stillwater, OK 75078-6051, USA
| |
Collapse
|
391
|
Prosdocimi F, Faria-Campos AC, Peixoto FC, Pena SDJ, Ortega JM, Franco GR. Clustering of Schistosoma mansoni mRNA sequences and analysis of the most transcribed genes: implications in metabolism and biology of different developmental stages. Mem Inst Oswaldo Cruz 2003; 97 Suppl 1:61-9. [PMID: 12426597 DOI: 10.1590/s0074-02762002000900014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study of the Schistosoma mansoni genome, one of the etiologic agents of human schistosomiasis, is essential for a better understanding of the biology and development of this parasite. In order to get an overview of all S. mansoni catalogued gene sequences, we performed a clustering analysis of the parasite mRNA sequences available in public databases. This was made using softwares PHRAP and CAP3. The consensus sequences, generated after the alignment of cluster constituent sequences, allowed the identification by database homology searches of the most expressed genes in the worm. We analyzed these genes and looked for a correlation between their high expression and parasite metabolism and biology. We observed that the majority of these genes is related to the maintenance of basic cell functions, encoding genes whose products are related to the cytoskeleton, intracellular transport and energy metabolism. Evidences are presented here that genes for aerobic energy metabolism are expressed in all the developmental stages analyzed. Some of the most expressed genes could not be identified by homology searches and may have some specific functions in the parasite.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brasil
| | | | | | | | | | | |
Collapse
|
392
|
Sumanasekera WK, Tien ES, Turpey R, Vanden Heuvel JP, Perdew GH. Evidence that peroxisome proliferator-activated receptor alpha is complexed with the 90-kDa heat shock protein and the hepatitis virus B X-associated protein 2. J Biol Chem 2003; 278:4467-73. [PMID: 12482853 DOI: 10.1074/jbc.m211261200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-inducible transcription factor, which belongs to the nuclear receptor superfamily. PPARalpha mediates the carcinogenic effects of peroxisome proliferators in rodents. In humans, PPARalpha plays a fundamental role in regulating energy homeostasis via control of lipid metabolism. To study the possible role of chaperone proteins in the regulation of PPARalpha activity, a monoclonal antibody (mAb) was made against PPARalpha and designated as 3B6/PPAR. The specificity of mAb 3B6/PPAR in recognizing PPARalpha was tested in immunoprecipitations using in vitro translated PPAR subtypes. The mAb 3B6/PPAR recognized PPARalpha, failed to bind to PPARbeta or PPARgamma, and is efficient in both immunoprecipitating and visualizing the receptor on protein blots. The immunoprecipitation of PPARalpha in mouse liver cytosol using mAb 3B6/PPAR has resulted in the detection of two co-immunoprecipitated proteins, which are heat shock protein 90 (hsp90) and the hepatitis B virus X-associated protein 2 (XAP2). The concomitant depletion of PPARalpha in hsp90-depleted mouse liver cytosol was also detected. Complex formation between XAP2 and PPARalpha/FLAG was also demonstrated in an in vitro translation binding assay. hsp90 interacts with PPARalpha in a mammalian two-hybrid assay and binds to the E/F domain. Transient expression of XAP2 co-expressed with PPARalpha resulted in down-regulation of a peroxisome proliferator response element-driven reporter gene activity. Taken together, these results indicate that PPARalpha is in a complex with hsp90 and XAP2, and XAP2 appears to function as a repressor. This is the first demonstration that PPARalpha is stably associated with other proteins in tissue extracts and the first nuclear receptor shown to functionally interact with XAP2.
Collapse
Affiliation(s)
- Wasana K Sumanasekera
- Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
393
|
Lavictoire SJ, Parolin DAE, Klimowicz AC, Kelly JF, Lorimer IAJ. Interaction of Hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII. J Biol Chem 2003; 278:5292-9. [PMID: 12471035 DOI: 10.1074/jbc.m209494200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EGFRvIII is a mutant epidermal growth factor that promotes aggressive growth of glioblastomas. We made a plasmid that directed the expression of an EGFRvIII with three copies of the Flag epitope at its amino terminus. Flag-tagged EGFRvIII was expressed at the same levels as unmodified EGFRvIII, and showed the same subcellular localization. However, the Flag epitope could only be detected on EGFRvIII present in the endoplasmic reticulum; the epitope was covalently modified during trafficking of the receptor through the Golgi so that it was no longer recognized by anti-Flag antibody. This property was exploited to selectively purify nascent EGFRvIII from glioblastoma cells. Nascent EGFRvIII was found to copurify with a set of other proteins, identified by mass spectrometry as the two endoplasmic reticulum chaperones Grp94 and BiP, and the two cytosolic chaperones Hsc70 and Hsp90. The Hsp90-associated chaperone Cdc37 also co-purified with EGFRvIII, suggesting that Hsp90 binds EGFRvIII as a complex with this protein. Geldanamycin and radicicol, two chemically unrelated inhibitors of Hsp90, decreased the expression of EGFRvIII in glioblastoma cells. These studies show that nascent EGFRvIII in the endoplasmic reticulum associates with Hsp90 and Cdc37, and that the Hsp90 association is necessary to maintain expression of EGFRvIII.
Collapse
Affiliation(s)
- Sylvie J Lavictoire
- Ottawa Regional Cancer Centre, Centre for Cancer Therapeutics, Ottawa, Ontario K1H 1C4, Canada
| | | | | | | | | |
Collapse
|
394
|
Kotlo KU, Yehiely F, Efimova E, Harasty H, Hesabi B, Shchors K, Einat P, Rozen A, Berent E, Deiss LP. Nrf2 is an inhibitor of the Fas pathway as identified by Achilles' Heel Method, a new function-based approach to gene identification in human cells. Oncogene 2003; 22:797-806. [PMID: 12584558 DOI: 10.1038/sj.onc.1206077] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here we describe the Achilles' Heel Method (AHM), a new function-based approach for identification of inhibitors of signaling pathways, optimized for human cells. The principle of AHM is the identification of 'sensitizing' cDNAs based on their decreased abundance following selection. As a proof of principle, we have employed AHM for the identification of Fas/CD95/APO-1 pathway inhibitors. HeLa cells were transfected with an antisense cDNA expression library in an episomal vector followed by selection with a suboptimal dose of the apoptotic inducer. Antisense inactivation of Fas inhibitors rendered the cells more sensitive to apoptosis resulting in their preferential death and consequent loss of their sensitizing episomes that were identified by subtraction. We show that the resulting products were enriched for sensitizing cDNAs as seven out of eight candidates tested were confirmed as inhibitors of Fas-induced killing either by transfection or by pharmacological inhibition. Furthermore, we demonstrate by multiple approaches that one candidate, NF-E2 related factor 2 (Nrf2), is an inhibitor of Fas-induced apoptosis. Inactivation of Nrf2 by antisense or by a membrane permeable dominant-negative polypeptide sensitized cells while overexpression of Nrf2 protected cells from Fas-induced apoptosis. In addition, dicumarol, an inhibitor of the phase II detoxifying enzyme NQO1, a downstream target of Nrf2, sensitized cells. Nrf2 induces the production of Glutathione (GSH) and we demonstrated that N-acetyl L-cysteine (NAC), a precursor to GSH, protected cells from Fas-mediated killing. Taken together, AHM is a powerful approach for the identification of inhibitors of a signaling pathway with a low rate of false positives that opens new avenues for function profiling of human genes and discovery of new drug targets.
Collapse
Affiliation(s)
- Kumar U Kotlo
- Department of Molecular Genetics (M/C 669), University of Illinois at Chicago, 60607, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Haendeler J, Hoffmann J, Rahman S, Zeiher AM, Dimmeler S. Regulation of telomerase activity and anti-apoptotic function by protein-protein interaction and phosphorylation. FEBS Lett 2003; 536:180-6. [PMID: 12586360 DOI: 10.1016/s0014-5793(03)00058-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The enzyme telomerase is necessary for the synthesis and maintenance of telomere length. The catalytic subunit, telomerase reverse transcriptase (TERT), is regulated by interaction with the 90 kDa heat shock protein (HSP90) and by Akt-dependent phosphorylation. Here, we demonstrate that HSP90 and Akt physically interact with TERT. Treatment of cells with novobiocin, which blocks C-terminal interaction of HSP90, disrupted HSP90 binding to Akt, induced Akt dephosphorylation and significantly reduced telomerase activity. The reduction of TERT activity by novobiocin was associated with an increase in apoptosis. Likewise, the induction of Akt dephosphorylation by protein phosphatase 2A (PP2A) reduced telomerase activity. HSP90 is known to prevent PP2A-mediated dephosphorylation of Akt. To investigate whether the effect of novobiocin is due to the reduction of Akt or TERT phosphorylation, we overexpressed a phospho-mimetic, active Akt (T308D/S473D). Akt (T308D/S473D) prevented novobiocin-induced reduction of telomerase activity and the stimulation of apoptosis. Moreover, overexpression of a dominant negative PP2A construct (PP2A(L199P)) as well as incubation with the PP2A inhibitor okadaic acid blocked the inhibition of telomerase activity by novobiocin. These data suggest that the association between HSP90, Akt and TERT in concert with the phosphorylation of TERT is necessary for maintaining telomerase activity and inhibition of apoptosis.
Collapse
Affiliation(s)
- Judith Haendeler
- Molecular Cardiology, Department of Internal Medicine IV, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
396
|
Sõti C, Sreedhar AS, Csermely P. Apoptosis, necrosis and cellular senescence: chaperone occupancy as a potential switch. Aging Cell 2003; 2:39-45. [PMID: 12882333 DOI: 10.1046/j.1474-9728.2003.00031.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chaperone function plays a key role in repairing proteotoxic damage and in the maintenance of cell survival. Here we compare the regulatory role of molecular chaperones (heat shock proteins, stress proteins) in cellular senescence, apoptosis and necrosis. We also review the current data on chaperone level and function in aging cells, and list some possible therapeutic interventions. Finally, we postulate a hypothesis, that increasing chaperone occupancy might be an important event which forces cells out of the normal cell cycle towards senescence. In the case of severe stress, this may lead to apoptosis or, following lethal stress, to cell necrosis.
Collapse
Affiliation(s)
- Csaba Sõti
- Department of Medical Chemistry, Semmelweis University, PO Box 260, H-1444 Budapest, Hungary
| | | | | |
Collapse
|
397
|
Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228:111-33. [PMID: 12563018 DOI: 10.1177/153537020322800201] [Citation(s) in RCA: 1070] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nearly 100 proteins are known to be regulated by hsp90. Most of these substrates or "client proteins" are involved in signal transduction, and they are brought into complex with hsp90 by a multiprotein hsp90/hsp70-based chaperone machinery. In addition to binding substrate proteins at the chaperone site(s), hsp90 binds cofactors at other sites that are part of the heterocomplex assembly machinery as well as immunophilins that connect assembled substrate*hsp90 complexes to protein-trafficking systems. In the 5 years since we last reviewed this subject, much has been learned about hsp90 structure, nucleotide-binding, and cochaperone interactions; the most important concept is that ATP hydrolysis by an intrinsic ATPase activity results in a conformational change in hsp90 that is required to induce conformational change in a substrate protein. The conformational change induced in steroid receptors is an opening of the steroid-binding cleft so that it can be accessed by steroid. We have now developed a minimal system of five purified proteins-hsp90, hsp70, Hop, hsp40, and p23- that assembles stable receptor*hsp90 heterocomplexes. An hsp90*Hop*hsp70*hsp40 complex opens the cleft in an ATP-dependent process to produce a receptor*hsp90 heterocomplex with hsp90 in its ATP-bound conformation, and p23 then interacts with the hsp90 to stabilize the complex. Stepwise assembly experiments have shown that hsp70 and hsp40 first interact with the receptor in an ATP-dependent reaction to produce a receptor*hsp70*hsp40 complex that is "primed" to be activated to the steroid-binding state in a second ATP-dependent step with hsp90, Hop, and p23. Successful use of the five-protein system with other substrates indicates that it can assemble signal protein*hsp90 heterocomplexes whether the substrate is a receptor, a protein kinase, or a transcription factor. This purified system should facilitate understanding of how eukaryotic hsp70 and hsp90 work together as essential components of a process that alters the conformations of substrate proteins to states that respond in signal transduction.
Collapse
Affiliation(s)
- William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA
| | | |
Collapse
|
398
|
Holt BF, Hubert DA, Dangl JL. Resistance gene signaling in plants--complex similarities to animal innate immunity. Curr Opin Immunol 2003; 15:20-5. [PMID: 12495728 DOI: 10.1016/s0952-7915(02)00014-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Ben F Holt
- Department of Biology, Coker Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
399
|
Wax S, Piecyk M, Maritim B, Anderson P. Geldanamycin inhibits the production of inflammatory cytokines in activated macrophages by reducing the stability and translation of cytokine transcripts. ARTHRITIS AND RHEUMATISM 2003; 48:541-50. [PMID: 12571865 DOI: 10.1002/art.10780] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Heat-shock protein 90 (Hsp90) is critical in the intracellular signaling pathways that promote inflammatory cytokine production. Geldanamycin (GD) is a benzoquinone ansamycin that inhibits the function of Hsp90. GD inhibits the production of tumor necrosis factor alpha (TNFalpha) in activated macrophages and suppresses the progression of adjuvant-induced arthritis and experimental allergic encephalomyelitis in rodents. GD has been used to investigate the mechanisms by which Hsp90 regulates inflammatory cytokine production. METHODS The macrophage cell line RAW264.7 (or primary peritoneal macrophages) was activated with lipopolysaccharide in the absence or presence of GD. The effect of GD on the transcription, stability, and translation of inflammatory cytokine messenger RNA (mRNA) was determined using nuclear run-on assays, mRNA decay assays, and sucrose gradient polysome profiles, respectively. RESULTS Our data revealed that GD potently inhibits the production of TNFalpha, interleukin-6 (IL-6), and IL-1beta in activated macrophages. Although GD did not significantly reduce the transcription of inflammatory cytokine mRNA, it significantly decreased the stability of these transcripts. Polysome profiles indicated that GD also inhibited the translation of TNFalpha and IL-6 transcripts. These effects may be due, in part, to inhibition of p38 mitogen-activated protein kinase, a kinase known to regulate the stability and translation of inflammatory cytokine transcripts. CONCLUSION These results indicate that the function of Hsp90 is important in the posttranscriptional control of inflammatory cytokine production.
Collapse
Affiliation(s)
- Stephen Wax
- Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
400
|
Rascher A, Hu Z, Viswanathan N, Schirmer A, Reid R, Nierman WC, Lewis M, Hutchinson CR. Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Lett 2003; 218:223-30. [PMID: 12586396 DOI: 10.1016/s0378-1097(02)01148-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We illustrate the use of a PCR-based method by which the genomic DNA of a microorganism can be rapidly queried for the presence of type I modular polyketide synthase genes to clone and characterize, by sequence analysis and gene disruption, a major portion of the geldanamycin production gene cluster from Streptomyces hygroscopicus var. geldanus NRRL 3602.
Collapse
Affiliation(s)
- Andreas Rascher
- Kosan Biosciences, 3832 Bay Center Place, 94545, Hayward, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|