351
|
Abstract
The multiple cell types of brain and blood arise from pluripotent stem cells via progressively more committed downstream progenitors. In this issue of Cancer Cell, Alcantara Llaguno and colleagues show that identical genetic drivers give rise to distinct glioma subtypes within differentially committed neural progenitors-a paradigm well established for leukemias.
Collapse
Affiliation(s)
- Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Charles D Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
352
|
Cellular Mechanisms Underlying Intertumoral Heterogeneity. Trends Cancer 2015; 1:15-23. [PMID: 28741558 DOI: 10.1016/j.trecan.2015.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/11/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022]
Abstract
Intertumoral heterogeneity is driven by a combination of intrinsic and extrinsic mechanisms. Intrinsic mechanisms include the genetic/epigenetic mutational profile of cells and the nature of the 'cell of origin'. There is accumulating evidence that distinct 'cells of origin' within an organ can give rise to different subtypes of cancer. Tissue-specific stem and progenitor cells are the predominant targets exploited for tumor initiation. Extrinsic factors imposed by the microenvironment may also directly influence the cell of origin by eliciting dedifferentiation. Identification of these target cell populations is important for earlier diagnosis, the detection of premalignant clones during relapse, and the design of prevention therapies for high-risk cancer families. Here we review recent developments in deciphering the cellular origins of solid cancers.
Collapse
|
353
|
A Dorsal SHH-Dependent Domain in the V-SVZ Produces Large Numbers of Oligodendroglial Lineage Cells in the Postnatal Brain. Stem Cell Reports 2015; 5:461-70. [PMID: 26411905 PMCID: PMC4624995 DOI: 10.1016/j.stemcr.2015.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022] Open
Abstract
Neural stem cells in different locations of the postnatal mouse ventricular-subventricular zone (V-SVZ) generate different subtypes of olfactory bulb (OB) interneurons. High Sonic hedgehog (SHH) signaling in the ventral V-SVZ regulates the production of specific subtypes of neurons destined for the OB. Here we found a transient territory of high SHH signaling in the dorsal V-SVZ beneath the corpus callosum (CC). Using intersectional lineage tracing in neonates to label dorsal radial glial cells (RGCs) expressing the SHH target gene Gli1, we demonstrate that this region produces many CC cells in the oligodendroglial lineage and specific subtypes of neurons in the OB. The number of oligodendroglial cells generated correlated with the levels of SHH signaling. This work identifies a dorsal domain of SHH signaling, which is an important source of oligodendroglial cells for the postnatal mammalian forebrain.
Collapse
|
354
|
Zhou B, Osinski JM, Mateo JL, Martynoga B, Sim FJ, Campbell CE, Guillemot F, Piper M, Gronostajski RM. Loss of NFIX Transcription Factor Biases Postnatal Neural Stem/Progenitor Cells Toward Oligodendrogenesis. Stem Cells Dev 2015; 24:2114-26. [DOI: 10.1089/scd.2015.0136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Bo Zhou
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Jason M. Osinski
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Juan L. Mateo
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ben Martynoga
- Division of Molecular Neurobiology, MRC, London, United Kingdom
| | - Fraser J. Sim
- Department of Genetics, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - Christine E. Campbell
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | | | - Michael Piper
- School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Richard M. Gronostajski
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Genetics, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
355
|
Filbin MG, Segal RA. How neuronal activity regulates glioma cell proliferation. Neuro Oncol 2015; 17:1543-4. [PMID: 26359210 DOI: 10.1093/neuonc/nov188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mariella G Filbin
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (M.G.F., R.A.S.)
| | - Rosalind A Segal
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (M.G.F., R.A.S.)
| |
Collapse
|
356
|
Maus F, Sakry D, Binamé F, Karram K, Rajalingam K, Watts C, Heywood R, Krüger R, Stegmüller J, Werner HB, Nave KA, Krämer-Albers EM, Trotter J. The NG2 Proteoglycan Protects Oligodendrocyte Precursor Cells against Oxidative Stress via Interaction with OMI/HtrA2. PLoS One 2015; 10:e0137311. [PMID: 26340347 PMCID: PMC4560422 DOI: 10.1371/journal.pone.0137311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023] Open
Abstract
The NG2 proteoglycan is characteristically expressed by oligodendrocyte progenitor cells (OPC) and also by aggressive brain tumours highly resistant to chemo- and radiation therapy. Oligodendrocyte-lineage cells are particularly sensitive to stress resulting in cell death in white matter after hypoxic or ischemic insults of premature infants and destruction of OPC in some types of Multiple Sclerosis lesions. Here we show that the NG2 proteoglycan binds OMI/HtrA2, a mitochondrial serine protease which is released from damaged mitochondria into the cytosol in response to stress. In the cytosol, OMI/HtrA2 initiates apoptosis by proteolytic degradation of anti-apoptotic factors. OPC in which NG2 has been downregulated by siRNA, or OPC from the NG2-knockout mouse show an increased sensitivity to oxidative stress evidenced by increased cell death. The proapoptotic protease activity of OMI/HtrA2 in the cytosol can be reduced by the interaction with NG2. Human glioma expressing high levels of NG2 are less sensitive to oxidative stress than those with lower NG2 expression and reducing NG2 expression by siRNA increases cell death in response to oxidative stress. Binding of NG2 to OMI/HtrA2 may thus help protect cells against oxidative stress-induced cell death. This interaction is likely to contribute to the high chemo- and radioresistance of glioma.
Collapse
Affiliation(s)
- Frank Maus
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg University, Mainz, Germany
| | - Dominik Sakry
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg University, Mainz, Germany
| | - Fabien Binamé
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg University, Mainz, Germany
| | - Khalad Karram
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg University, Mainz, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Krishnaraj Rajalingam
- Research Center for Immune Therapy, Institute for Immunology, Johannes Gutenberg University of Mainz, Medical Center Mainz, Mainz, Germany
| | - Colin Watts
- Cambridge University, Dept. Clinical Neurosciences, Division of Neurosurgery, Cambridge, United Kingdom
| | - Richard Heywood
- Cambridge University, Dept. Clinical Neurosciences, Division of Neurosurgery, Cambridge, United Kingdom
| | - Rejko Krüger
- Clinical and Experimental Neuroscience, Luxembourg Center for Systems Biomedicine, University of Luxembourg and Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Judith Stegmüller
- Cellular and Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B. Werner
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Eva-Maria Krämer-Albers
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg University, Mainz, Germany
| | - Jacqueline Trotter
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
357
|
Abstract
Oligodendrocyte precursor cells (OPCs) originate in the ventricular zones (VZs) of the brain and spinal cord and migrate throughout the developing central nervous system (CNS) before differentiating into myelinating oligodendrocytes (OLs). It is not known whether OPCs or OLs from different parts of the VZ are functionally distinct. OPCs persist in the postnatal CNS, where they continue to divide and generate myelinating OLs at a decreasing rate throughout adult life in rodents. Adult OPCs respond to injury or disease by accelerating their cell cycle and increasing production of OLs to replace lost myelin. They also form synapses with unmyelinated axons and respond to electrical activity in those axons by generating more OLs and myelin locally. This experience-dependent "adaptive" myelination is important in some forms of plasticity and learning, for example, motor learning. We review the control of OL lineage development, including OL population dynamics and adaptive myelination in the adult CNS.
Collapse
Affiliation(s)
- Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, WBSB 1001, Baltimore, Maryland 21205
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
358
|
Kusne Y, Sanai N. The SVZ and Its Relationship to Stem Cell Based Neuro-oncogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:23-32. [PMID: 25895705 DOI: 10.1007/978-3-319-16537-0_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gliomas are primary cancers of the brain and the most lethal cancers known to man. In recent years the discovery of germinal regions in the postnatal brain containing neuronal stem and progenitor cell populations has led to the hypothesis that these cells may themselves serve as an origin of brain tumors. Stem cells that reside within the glioma tumor have been shown to display nonneoplastic stem-like characteristics, including expression of various stem cell markers, as well as capacity for self-renewal and multipotency. Furthermore, glioma tumors display marked similarities to the germinal regions of the brain. Investigations of human neural stem cells and their potential for malignancy may finally identify a cell-of-origin for human gliomas. This, in turn, may facilitate better therapeutic targeting leading to improved prognosis for glioma patients.
Collapse
Affiliation(s)
- Yael Kusne
- Barrow Brain Tumor Research Center, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | | |
Collapse
|
359
|
Breunig JJ, Levy R, Antonuk CD, Molina J, Dutra-Clarke M, Park H, Akhtar AA, Kim GB, Hu X, Bannykh SI, Verhaak RGW, Danielpour M. Ets Factors Regulate Neural Stem Cell Depletion and Gliogenesis in Ras Pathway Glioma. Cell Rep 2015; 12:258-71. [PMID: 26146073 DOI: 10.1016/j.celrep.2015.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/27/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023] Open
Abstract
As the list of putative driver mutations in glioma grows, we are just beginning to elucidate the effects of dysregulated developmental signaling pathways on the transformation of neural cells. We have employed a postnatal, mosaic, autochthonous glioma model that captures the first hours and days of gliomagenesis in more resolution than conventional genetically engineered mouse models of cancer. We provide evidence that disruption of the Nf1-Ras pathway in the ventricular zone at multiple signaling nodes uniformly results in rapid neural stem cell depletion, progenitor hyperproliferation, and gliogenic lineage restriction. Abolishing Ets subfamily activity, which is upregulated downstream of Ras, rescues these phenotypes and blocks glioma initiation. Thus, the Nf1-Ras-Ets axis might be one of the select molecular pathways that are perturbed for initiation and maintenance in glioma.
Collapse
Affiliation(s)
- Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Rachelle Levy
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - C Danielle Antonuk
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Molina
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marina Dutra-Clarke
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hannah Park
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aslam Abbasi Akhtar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gi Bum Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xin Hu
- Department of Genomic Medicine, Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Serguei I Bannykh
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roel G W Verhaak
- Department of Genomic Medicine, Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Moise Danielpour
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
360
|
Tao L, van Bragt MPA, Li Z. A Long-Lived Luminal Subpopulation Enriched with Alveolar Progenitors Serves as Cellular Origin of Heterogeneous Mammary Tumors. Stem Cell Reports 2015; 5:60-74. [PMID: 26120057 PMCID: PMC4618443 DOI: 10.1016/j.stemcr.2015.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 12/26/2022] Open
Abstract
It has been shown that the mammary luminal lineage could be maintained by luminal stem cells or long-lived progenitors, but their identity and role in breast cancer remain largely elusive. By lineage analysis using Wap-Cre mice, we found that, in nulliparous females, mammary epithelial cells (MECs) genetically marked by Wap-Cre represented a subpopulation of CD61+ luminal progenitors independent of ovarian hormones for their maintenance. Using a pulse-chase lineage-tracing approach based on Wap-Cre adenovirus (Ad-Wap-Cre), we found that Ad-Wap-Cre-marked nulliparous MECs were enriched with CD61+ alveolar progenitors (APs) that gave rise to CD61- alveolar luminal cells during pregnancy/lactation and could maintain themselves long term. When transformed by different oncogenes, they could serve as cells of origin of heterogeneous mammary tumors. Thus, our study revealed a type of long-lived AP within the luminal lineage that may serve as the cellular origin of multiple breast cancer subtypes.
Collapse
Affiliation(s)
- Luwei Tao
- Division of Genetics, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Maaike P A van Bragt
- Division of Genetics, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
361
|
Sakry D, Trotter J. The role of the NG2 proteoglycan in OPC and CNS network function. Brain Res 2015; 1638:161-166. [PMID: 26100334 DOI: 10.1016/j.brainres.2015.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 01/13/2023]
Abstract
In the normal mammalian CNS, the NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPC) but not by any other neural cell-type. NG2 is a type-1 membrane protein, exerting multiple roles in the CNS including intracellular signaling within the OPC, with effects on migration, cytoskeleton interaction and target gene regulation. It has been recently shown that the extracellular region of NG2, in addition to an adhesive function, acts as a soluble ECM component with the capacity to alter defined neuronal network properties. This region of NG2 is thus endowed with neuromodulatory properties. In order to generate biologically active fragments yielding these properties, the sequential cleavage of the NG2 protein by α- and γ-secretases occurs. The basal level of constitutive cleavage is stimulated by neuronal network activity. This processing leads to 4 major NG2 fragments which all have been associated with distinct biological functions. Here we summarize these functions, focusing on recent discoveries and their implications for the CNS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Dominik Sakry
- Institute of Molecular Cell Biology; Johannes Gutenberg University of Mainz, Mainz, Germany.
| | - Jacqueline Trotter
- Institute of Molecular Cell Biology; Johannes Gutenberg University of Mainz, Mainz, Germany.
| |
Collapse
|
362
|
Thompson EG, Sontheimer H. A frightening thought: Neuronal activity enhances tumor growth. Cell Res 2015; 25:891-2. [PMID: 26032268 DOI: 10.1038/cr.2015.65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Stem cells present in the adult brain are regulated by neuronal activity; malignant gliomas, which most likely originate from this population of cells, could also be regulated in this manner. A recent study by Venkatesh et al. published in Cell has identified Neuroligin-3 (NLGN3) as a mitogen promoting high-grade glioma growth.
Collapse
Affiliation(s)
- Emily G Thompson
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL 35209, USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL 35209, USA
| |
Collapse
|
363
|
MicroRNA Regulation of Brain Tumour Initiating Cells in Central Nervous System Tumours. Stem Cells Int 2015; 2015:141793. [PMID: 26064134 PMCID: PMC4433683 DOI: 10.1155/2015/141793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/19/2015] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
CNS tumours occur in both pediatric and adult patients and many of these tumours are associated with poor clinical outcome. Due to a paradigm shift in thinking for the last several years, these tumours are now considered to originate from a small population of stem-like cells within the bulk tumour tissue. These cells, termed as brain tumour initiating cells (BTICs), are perceived to be regulated by microRNAs at the posttranscriptional/translational levels. Proliferation, stemness, differentiation, invasion, angiogenesis, metastasis, apoptosis, and cell cycle constitute some of the significant processes modulated by microRNAs in cancer initiation and progression. Characterization and functional studies on oncogenic or tumour suppressive microRNAs are made possible because of developments in sequencing and microarray techniques. In the current review, we bring recent knowledge of the role of microRNAs in BTIC formation and therapy. Special attention is paid to two highly aggressive and well-characterized brain tumours: gliomas and medulloblastoma. As microRNA seems to be altered in the pathogenesis of many human diseases, “microRNA therapy” may now have potential to improve outcomes for brain tumour patients. In this rapidly evolving field, further understanding of miRNA biology and its contribution towards cancer can be mined for new therapeutic tools.
Collapse
|
364
|
Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152:63-82. [PMID: 25944528 DOI: 10.1016/j.pharmthera.2015.05.005] [Citation(s) in RCA: 501] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Each year, about 5-6 cases out of 100,000 people are diagnosed with primary malignant brain tumors, of which about 80% are malignant gliomas (MGs). Glioblastoma multiforme (GBM) accounts for more than half of MG cases. They are associated with high morbidity and mortality. Despite current multimodality treatment efforts including maximal surgical resection if feasible, followed by a combination of radiotherapy and/or chemotherapy, the median survival is short: only about 15months. A deeper understanding of the pathogenesis of these tumors has presented opportunities for newer therapies to evolve and an expectation of better control of this disease. Lately, efforts have been made to investigate tumor resistance, which results from complex alternate signaling pathways, the existence of glioma stem-cells, the influence of the blood-brain barrier as well as the expression of 0(6)-methylguanine-DNA methyltransferase. In this paper, we review up-to-date information on MGs treatment including current approaches, novel drug-delivering strategies, molecular targeted agents and immunomodulative treatments, and discuss future treatment perspectives.
Collapse
Affiliation(s)
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, University of Athens, Athens, Greece.
| |
Collapse
|
365
|
Panditharatna E, Yaeger K, Kilburn LB, Packer RJ, Nazarian J. Clinicopathology of diffuse intrinsic pontine glioma and its redefined genomic and epigenomic landscape. Cancer Genet 2015. [PMID: 26206682 DOI: 10.1016/j.cancergen.2015.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is one of the most lethal pediatric central nervous system (CNS) cancers. Recently, a surge in molecular studies of DIPG has occurred, in large part due to the increased availability of tumor tissue through donation of post-mortem specimens. These new discoveries have established DIPGs as biologically distinct from adult gliomas, harboring unique genomic aberrations. Mutations in histone encoding genes are shown to be associated with >70% of DIPG cases. However, the exact molecular mechanisms of the tumorigenicity of these mutations remain elusive. Understanding the driving mutations and genomic landscape of DIPGs can now guide the development of targeted therapies for this incurable childhood cancer.
Collapse
Affiliation(s)
- Eshini Panditharatna
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC, USA; Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Kurt Yaeger
- Department of Neurosurgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Lindsay B Kilburn
- Division of Oncology, Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA; Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
366
|
Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS, Woo PJ, Malenka RC, Vogel H, Bredel M, Mallick P, Monje M. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion. Cell 2015; 161:803-16. [PMID: 25913192 DOI: 10.1016/j.cell.2015.04.012] [Citation(s) in RCA: 522] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/24/2015] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.
Collapse
Affiliation(s)
- Humsa S Venkatesh
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tessa B Johung
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Viola Caretti
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alyssa Noll
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yujie Tang
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Surya Nagaraja
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erin M Gibson
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher W Mount
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jai Polepalli
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Siddhartha S Mitra
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pamelyn J Woo
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannes Vogel
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Parag Mallick
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
367
|
Kraft AD. The use of glial data in human health assessments of environmental contaminants. Toxicology 2015; 333:127-136. [PMID: 25912087 DOI: 10.1016/j.tox.2015.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 11/27/2022]
Abstract
Central nervous system (CNS) glia (i.e., astrocytes, microglia, and oligodendrocytes) are essential for maintaining neuronal homeostasis, and they orchestrate an organized cellular response to CNS injury. In addition to their beneficial roles, studies have demonstrated that disrupted glial function can have disastrous consequences on neuronal health. While effects on neuron-supportive glia are important to consider when evaluating neurotoxicity risk, interpreting glial changes is not always straightforward, particularly when attempting to discern pro-neurotoxic phenotypes from homeostatic processes or adaptive responses. To better understand how glia have been characterized and used in human health assessments of environmental contaminants (e.g., chemicals), an evaluation of all finalized assessments conducted by the U.S. Environmental Protection Agency's influential Integrated Risk Information System (IRIS) program between 1987 and 2013 was performed. Human health assessments to date have placed a clear emphasis on the neuronal cell response to potential toxicants, although more recent assessments increasingly include descriptions of glial changes. However, these descriptions are generally brief and non-specific, and they primarily consist of documenting gliosis following overt neuronal injury. As research interest in this topic continues to increase, methods for evaluating changes in glia continue to be expanded and refined, and assessors' confidence in the reliability of these data is likely to rise. Thus, glial data are anticipated to have an increasingly influential impact on the interpretation of neurotoxicity risk and underlying mechanisms. As our understanding of the complex roles these cells play grows, this knowledge is expected to support the inclusion of more extensive and specific descriptions of glial changes, including informed interpretations of the potential impact on CNS health, in future human health assessments.
Collapse
Affiliation(s)
- Andrew D Kraft
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., N.W., Mail Code 8623P, Washington, D.C. 20460, United States.
| |
Collapse
|
368
|
Kegelman TP, Hu B, Emdad L, Das SK, Sarkar D, Fisher PB. In vivo modeling of malignant glioma: the road to effective therapy. Adv Cancer Res 2015; 121:261-330. [PMID: 24889534 DOI: 10.1016/b978-0-12-800249-0.00007-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite an increased emphasis on developing new therapies for malignant gliomas, they remain among the most intractable tumors faced today as they demonstrate a remarkable ability to evade current treatment strategies. Numerous candidate treatments fail at late stages, often after showing promising preclinical results. This disconnect highlights the continued need for improved animal models of glioma, which can be used to both screen potential targets and authentically recapitulate the human condition. This review examines recent developments in the animal modeling of glioma, from more established rat models to intriguing new systems using Drosophila and zebrafish that set the stage for higher throughput studies of potentially useful targets. It also addresses the versatility of mouse modeling using newly developed techniques recreating human protocols and sophisticated genetically engineered approaches that aim to characterize the biology of gliomagenesis. The use of these and future models will elucidate both new targets and effective combination therapies that will impact on disease management.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Bin Hu
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
369
|
Ilkhanizadeh S, Lau J, Huang M, Foster DJ, Wong R, Frantz A, Wang S, Weiss WA, Persson AI. Glial progenitors as targets for transformation in glioma. Adv Cancer Res 2015; 121:1-65. [PMID: 24889528 DOI: 10.1016/b978-0-12-800249-0.00001-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system. Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomagenesis. OPCs can give rise to gliomas, with signaling pathways associated with NSCs also playing key roles during OPC lineage development. Gliomas can also undergo a switch from progenitor- to stem-like phenotype after therapy, consistent with an OPC-origin even for stem-like gliomas. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues.
Collapse
Affiliation(s)
- Shirin Ilkhanizadeh
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Jasmine Lau
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Miller Huang
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Daniel J Foster
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - Robyn Wong
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Aaron Frantz
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - Susan Wang
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Neurology, University of California, San Francisco, California, USA
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA.
| |
Collapse
|
370
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|
371
|
Abstract
Genetic mosaics describe organisms that contain cells with distinct genotypes related to somatic transposition, mitotic recombination, or genomic aberrations. Most, if not all, human cancers are genetic mosaics because cancer cells bear mutations that are absent in normal cells within the same body. While naturally occurring mutant cells in genetic mosaic animals are difficult to track down, a genetically engineered mosaic mouse model termed MADM (Mosaic Analysis with Double Markers) enables one to perform phenotypic analysis of mutant cells at single-cell resolution in vivo. While cancer modeling is the most obvious application, MADM is also highly suitable for studying developmental biology, neuroscience, and regenerative biology problems to investigate clonal contributions. Here we describe the construction of the MADM model on a specific chromosome through ES cell-based targeting of MADM cassettes into a pair of homologous chromosomes. We also detail procedures to verify the labeling efficiency of the newly established MADM model. Finally, we explain the breeding schemes and analytical principles that enable using MADM for in vivo phenotypic analysis at single-cell resolution.
Collapse
Affiliation(s)
- Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Signaling, University of Virginia, West Complex, 7th Floor, 1400 JPA, Charlottesville, VA, USA,
| |
Collapse
|
372
|
Gao KM, Chen XC, Zhang JX, Wang Y, Yan W, You YP. A pseudogene-signature in glioma predicts survival. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:23. [PMID: 25880120 PMCID: PMC4364677 DOI: 10.1186/s13046-015-0137-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/16/2015] [Indexed: 11/10/2022]
Abstract
Pseudogene was recognized as a potential tumor suppressor or oncogene in varies of diseases, however its roles in glioma have not been investigated. Our study was to identify the pseudogene-signature that predicted glioma survival. Using a pseudogene-mining approach, we performed pseudogene expression profiling in 183 glioma samples from the Chinese Glioma Genome Atlas (CGGA) and set it as the training set. We found a six-pseudogene signature correlated with patients' clinical outcome via bioinformatics analyses (P ≤ 0.01), and validated it in the Repository of Molecular Brain Neoplasia Data (REMBRANDT) containing 350 cases. A formula calculating the risk score based on the six-pseudogene signature was introduced and the patients of CGGA set were classified into high-risk group and low-risk group with remarkably different survival (P < 0.001) based on their scores. The prognostic value of the signature was confirmed in the REMBRANDT set. Though the function of these pseudogenes is not clear, the identification of the prognostic pseudogenes indicated the potential roles of pseudogenes in glioma pathogenesis and they may have clinical implications in treating glioma.
Collapse
Affiliation(s)
- Kai-Ming Gao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xin-Cheng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jun-Xia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yong-Ping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
373
|
Calinescu AA, Núñez FJ, Koschmann C, Kolb BL, Lowenstein PR, Castro MG. Transposon mediated integration of plasmid DNA into the subventricular zone of neonatal mice to generate novel models of glioblastoma. J Vis Exp 2015. [PMID: 25741859 DOI: 10.3791/52443] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An urgent need exists to test the contribution of new genes to the pathogenesis and progression of human glioblastomas (GBM), the most common primary brain tumor in adults with dismal prognosis. New potential therapies are rapidly emerging from the bench and require systematic testing in experimental models which closely reproduce the salient features of the human disease. Herein we describe in detail a method to induce new models of GBM with transposon-mediated integration of plasmid DNA into cells of the subventricular zone of neonatal mice. We present a simple way to clone new transposons amenable for genomic integration using the Sleeping Beauty transposon system and illustrate how to monitor plasmid uptake and disease progression using bioluminescence, histology and immuno-histochemistry. We also describe a method to create new primary GBM cell lines. Ideally, this report will allow further dissemination of the Sleeping Beauty transposon system among brain tumor researchers, leading to an in depth understanding of GBM pathogenesis and progression and to the timely design and testing of effective therapies for patients.
Collapse
Affiliation(s)
| | | | - Carl Koschmann
- Department of Pediatrics, Division of Hematology-Oncology, University of Michigan School of Medicine
| | - Bradley L Kolb
- Department of Neurosurgery, University of Michigan School of Medicine
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan School of Medicine; Department of Cell and Developmental Biology, University of Michigan
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan School of Medicine; Department of Cell and Developmental Biology, University of Michigan;
| |
Collapse
|
374
|
Double minute amplification of mutant PDGF receptor α in a mouse glioma model. Sci Rep 2015; 5:8468. [PMID: 25683249 PMCID: PMC4329559 DOI: 10.1038/srep08468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/21/2015] [Indexed: 01/24/2023] Open
Abstract
In primary brain tumors, oncogenes are frequently amplified and maintained on extrachromosomal DNA as double minutes (DM), but the underlying mechanisms remain poorly understood. We have generated a mouse model of malignant glioma based on knock-in of a mutant PDGF receptor α (PDGFRα) that is expressed in oligodendrocyte precursor cells (OPCs) after activation by a Cre recombinase. In the tumor suppressor INK4/Arf−/− background, mutant animals frequently developed brain tumors resembling anaplastic human gliomas (WHO grade III). Besides brain tumors, most animals also developed aggressive fibrosarcomas, likely triggered by Cre activation of mutant PDGFRα in fibroblastic cell lineages. Importantly, in the brain tumors and cell lines derived from brain tumor tissues, we identified a high prevalence of DM Pdgfra gene amplification, suggesting its occurrence as an early mutational event contributing to the malignant transformation of OPCs. Amplicons extended beyond the Pdgfra locus and included in some cases neighboring genes Kit and Kdr. Our genetically defined mouse brain tumor model therefore supports OPC as a cell of origin for malignant glioma and offers an example of a defined temporal sequence of mutational events, thus providing an entry point for a mechanistic understanding of DM gene amplification and its functionality in gliomagenesis.
Collapse
|
375
|
Abstract
Personalized medicine for cancer entails tailoring therapy for each patient based on unique features of the patient's tumor; physiologic, molecular, genetic and epigenetic. Our ability to molecularly characterize tumor cells has increased dramatically and shown that there are significant differences between samples from patients with the same tumor type. Given this extensive variability in mutations and pathways driving tumors in patients, seeking a single bullet is an unrealistic approach for achieving a cure. In glioblastoma multiforme (GBM), the most common adult brain tumor, this inter-tumoral heterogeneity is further complicated by intra-tumoral heterogeneity within the tumor. This suggests that for personalized therapy to work for GBMs, pharmacologic agents would not only be tailored to target the differences from patient to patient but also the clonal diversity within each patient's tumor. In this review, we provide a historical perspective on clinical trials for cancer. We also discuss the current state of molecular biology and immunology based strategies for personalized therapies for glioblastoma multiforme.
Collapse
Affiliation(s)
- Chibawanye I Ene
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Eric C Holland
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A ; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, U.S.A ; Alvord Brain Tumor Center, University of Washington, Seattle, Washington, U.S.A
| |
Collapse
|
376
|
Zong H, Parada LF, Baker SJ. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a020610. [PMID: 25635044 DOI: 10.1101/cshperspect.a020610] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Malignant glioma remains incurable despite tremendous advancement in basic research and clinical practice. The identification of the cell(s) of origin should provide deep insights into leverage points for one to halt disease progression. Here we summarize recent studies that support the notion that neural stem cell (NSC), astrocyte, and oligodendrocyte precursor cell (OPC) can all serve as the cell of origin. We also lay out important considerations on technical rigor for further exploring this subject. Finally, we share perspectives on how one could apply the knowledge of cell of origin to develop effective treatment methods. Although it will be a difficult battle, victory should be within reach as along as we continue to assimilate new information and facilitate the collaboration among basic scientists, translational researchers, and clinicians.
Collapse
Affiliation(s)
- Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Luis F Parada
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
377
|
Santos Franco S, Raveh-Amit H, Kobolák J, Alqahtani MH, Mobasheri A, Dinnyes A. The crossroads between cancer stem cells and aging. BMC Cancer 2015; 15 Suppl 1:S1. [PMID: 25708542 PMCID: PMC4331724 DOI: 10.1186/1471-2407-15-s1-s1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.
Collapse
|
378
|
Oncogenic signaling is dominant to cell of origin and dictates astrocytic or oligodendroglial tumor development from oligodendrocyte precursor cells. J Neurosci 2015; 34:14644-51. [PMID: 25355217 DOI: 10.1523/jneurosci.2977-14.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem cells, believed to be the cellular origin of glioma, are able to generate gliomas, according to experimental studies. Here we investigated the potential and circumstances of more differentiated cells to generate glioma development. We and others have shown that oligodendrocyte precursor cells (OPCs) can also be the cell of origin for experimental oligodendroglial tumors. However, the question of whether OPCs have the capacity to initiate astrocytic gliomas remains unanswered. Astrocytic and oligodendroglial tumors represent the two most common groups of glioma and have been considered as distinct disease groups with putatively different origins. Here we show that mouse OPCs can give rise to both types of glioma given the right circumstances. We analyzed tumors induced by K-RAS and AKT and compared them to oligodendroglial platelet-derived growth factor B-induced tumors in Ctv-a mice with targeted deletions of Cdkn2a (p16(Ink4a-/-), p19(Arf-/-), Cdkn2a(-/-)). Our results showed that glioma can originate from OPCs through overexpression of K-RAS and AKT when combined with p19(Arf) loss, and these tumors displayed an astrocytic histology and high expression of astrocytic markers. We argue that OPCs have the potential to develop both astrocytic and oligodendroglial tumors given loss of p19(Arf), and that oncogenic signaling is dominant to cell of origin in determining glioma phenotype. Our mouse data are supported by the fact that human astrocytoma and oligodendroglioma display a high degree of overlap in global gene expression with no clear distinctions between the two diagnoses.
Collapse
|
379
|
Teodorczyk M, Schmidt MHH. Notching on Cancer's Door: Notch Signaling in Brain Tumors. Front Oncol 2015; 4:341. [PMID: 25601901 PMCID: PMC4283135 DOI: 10.3389/fonc.2014.00341] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 12/20/2022] Open
Abstract
Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1–4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like (Jagged1/2) ligands. Further, non-canonical Notch ligands such as epidermal growth factor like protein 7 (EGFL7) have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion, and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ-secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.
Collapse
Affiliation(s)
- Marcin Teodorczyk
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), Johannes Gutenberg University of Mainz School of Medicine , Mainz , Germany
| | - Mirko H H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), Johannes Gutenberg University of Mainz School of Medicine , Mainz , Germany
| |
Collapse
|
380
|
Abstract
The tumors classified as gliomas include a wide variety of histologies including the more common (astrocytoma, glioblastoma), as well as the less common histologies (oligodendroglioma, mixed oligoastrocytoma, pilocytic astrocytoma). Recent efforts at comprehensive genetic characterization of various primary brain tumor types have identified a number of common alterations and pathways common to multiple tumor types. Common pathways in glioma biology include growth factor receptor tyrosine kinases and their downstream signaling via the MAP kinase cascade or PI3K signaling, loss of apoptosis through p53, cell cycle regulation, angiogenesis via VEGF signaling, and invasion. However, in addition to these common general pathway alterations, a number of specific alterations have been identified in particular tumor types, and a number of these have direct therapeutic implications. These include mutations or fusions in the BRAF gene seen in pilocytic astrocytomas (and gangliogliomas). In oligodendrogliomas, mutations in IDH1 and codeletion of chromosomes 1p and 19q are associated with improved survival with upfront use of combined chemotherapy and radiation, and these tumors also have unique mutations of CIC and FUBP1 genes. Low grade gliomas are increasingly seen to be divided into two groups based on IDH mutation status, with astrocytomas developing through IDH mutation followed by p53 mutation, while poor prognosis low grade gliomas and primary glioblastomas (GBMs) are characterized by EGFR amplification, loss of PTEN, and loss of cyclin-dependent kinase inhibitors. GBMs can be further characterized based on gene expression and gene methylation patterns into three or four distinct subgroups. Prognostic markers in diffuse gliomas include IDH mutation, 1p/19q codeletion, and MGMT methylation, and MGMT is also a predictive marker in elderly patients with glioblastoma treated with temozolomide monotherapy.
Collapse
Affiliation(s)
- Adam L Cohen
- Huntsman Cancer Institute, 2000 Circle of Hope, 84112, Salt Lake City, UT,
| | | |
Collapse
|
381
|
Swartling FJ, Čančer M, Frantz A, Weishaupt H, Persson AI. Deregulated proliferation and differentiation in brain tumors. Cell Tissue Res 2015; 359:225-54. [PMID: 25416506 PMCID: PMC4286433 DOI: 10.1007/s00441-014-2046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Aaron Frantz
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders I Persson
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
382
|
Hayes J, Thygesen H, Droop A, Hughes TA, Westhead D, Lawler SE, Wurdak H, Short SC. Prognostic microRNAs in high-grade glioma reveal a link to oligodendrocyte precursor differentiation. Oncoscience 2014; 2:252-62. [PMID: 25897422 PMCID: PMC4394131 DOI: 10.18632/oncoscience.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
MicroRNA expression can be exploited to define tumor prognosis and stratification for precision medicine. It remains unclear whether prognostic microRNA signatures are exclusively tumor grade and/or molecular subtype-specific, or whether common signatures of aggressive clinical behavior can be identified. Here, we defined microRNAs that are associated with good and poor prognosis in grade III and IV gliomas using data from The Cancer Genome Atlas. Pathway analysis of microRNA targets that are differentially expressed in good and poor prognosis glioma identified a link to oligodendrocyte development. Notably, a microRNA expression profile that is characteristic of a specific oligodendrocyte precursor cell type (OP1) correlates with microRNA expression from 597 of these tumors and is consistently associated with poor patient outcome in grade III and IV gliomas. Our study reveals grade-independent and subtype-independent prognostic molecular signatures in high-grade glioma and provides a framework for investigating the mechanisms of brain tumor aggressiveness.
Collapse
Affiliation(s)
- Josie Hayes
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Helene Thygesen
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Alastair Droop
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Thomas A Hughes
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, UK
| | - David Westhead
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heiko Wurdak
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Susan C Short
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| |
Collapse
|
383
|
Abstract
Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5'-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation.
Collapse
|
384
|
Abstract
Analysis of the mechanisms underlying cell fates requires the molecular quantification of cellular features. Classical techniques use population average readouts at single time points. However, these approaches mask cellular heterogeneity and dynamics and are limited for studying rare and heterogeneous cell populations like stem cells. Techniques for single-cell analyses, ideally allowing non-invasive quantification of molecular dynamics and cellular behaviour over time, are required for studying stem cells. Here, we review the development and application of these techniques to stem cell research.
Collapse
|
385
|
Involvement of the neural stem cell compartment by pediatric and adult gliomas: a retrospective review of 377 cases. J Neurooncol 2014; 122:105-10. [DOI: 10.1007/s11060-014-1682-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 12/02/2014] [Indexed: 12/22/2022]
|
386
|
Jackson M, Hassiotou F, Nowak A. Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis 2014; 36:177-85. [PMID: 25504149 DOI: 10.1093/carcin/bgu243] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common and most aggressive primary brain malignancy. The current initial standard of care consists of maximal safe surgical resection followed by radical radiotherapy and adjuvant temozolomide. Despite optimal therapy, median survival is ~15 months from diagnosis in molecularly unselected patients, and <6 months for patients with recurrent disease. Therefore, clinical treatments are currently palliative, not curative. Collectively, current knowledge suggests that the continued tumor growth and recurrence is in part due to the presence of glioma stem-like cells, which display self-renewal and tumorigenic potential. They differ from their more differentiated progeny, as they are more resistant to current treatments. Recurrent disease may be a consequence of the enhancement and/or gain of stem cell-like characteristics during disease progression, together with preferential death of more differentiated tumor cells during treatment, signifying that the cancer stem cell phenotype is a crucial therapeutic target. The limited knowledge of the characteristics of these cells and their response to current clinical treatments warrants intensive investigation with the aim to improve patient survival and/or develop a cure for this disease.
Collapse
Affiliation(s)
- Melanie Jackson
- Faculty of Science, School of Chemistry and Biochemistry and
| | | | - Anna Nowak
- Faculty of Medicine, School of Medicine and Pharmacology, Dentistry and Health Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
387
|
Sundar SJ, Hsieh JK, Manjila S, Lathia JD, Sloan A. The role of cancer stem cells in glioblastoma. Neurosurg Focus 2014; 37:E6. [DOI: 10.3171/2014.9.focus14494] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recurrence in glioblastoma is nearly universal, and its prognosis remains dismal despite significant advances in treatment over the past decade. Glioblastoma demonstrates considerable intratumoral phenotypic and molecular heterogeneity and contains a population of cancer stem cells that contributes to tumor propagation, maintenance, and treatment resistance. Cancer stem cells are functionally defined by their ability to self-renew and to differentiate, and they constitute the diverse hierarchy of cells composing a tumor. When xenografted into an appropriate host, they are capable of tumorigenesis. Given the critical role of cancer stem cells in the pathogenesis of glioblastoma, research into their molecular and phenotypic characteristics is a therapeutic priority. In this review, the authors discuss the evolution of the cancer stem cell model of tumorigenesis and describe the specific role of cancer stem cells in the pathogenesis of glioblastoma and their molecular and microenvironmental characteristics. They also discuss recent clinical investigations into targeted therapies against cancer stem cells in the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Jason K. Hsieh
- 1Case Western Reserve University School of Medicine
- 2Cleveland Clinic Lerner College of Medicine
| | - Sunil Manjila
- 3Department of Neurological Surgery, University Hospitals Case Medical Center
| | - Justin D. Lathia
- 2Cleveland Clinic Lerner College of Medicine
- 4Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic; and
- 5Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew Sloan
- 1Case Western Reserve University School of Medicine
- 3Department of Neurological Surgery, University Hospitals Case Medical Center
- 5Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
388
|
Affiliation(s)
- Sandra R. Richardson
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
| | - Santiago Morell
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
| | - Geoffrey J. Faulkner
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
389
|
Munch TN, Gørtz S, Wohlfahrt J, Melbye M. The long-term risk of malignant astrocytic tumors after structural brain injury--a nationwide cohort study. Neuro Oncol 2014; 17:718-24. [PMID: 25416827 DOI: 10.1093/neuonc/nou312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/16/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Neoplastic transformation of damaged astrocytes has been proposed as a possible pathological mechanism behind malignant astrocytic tumors. This study investigated the association between structural brain injuries causing reactive astrogliosis and long-term risk for malignant astrocytic tumors. METHODS The cohort consisted of all individuals living in Denmark between 1978 and 2011. The personal identification number assigned to all individuals allowed retrieval of diagnoses of traumatic brain injury, cerebral ischemic infarction, and intracerebral hemorrhage from the National Patient Discharge Register. Diagnoses of anaplastic astrocytoma and glioblastoma multiforme (World Health Organization grades III and IV) were retrieved from the Danish Cancer Registry. Rate ratios (RR's) were estimated using log-linear Poisson regression. RESULTS In a cohort of 8.2 million individuals, 404 812 experienced a structural brain injury and 6152 developed a malignant astrocytic tumor. No significant association was observed 1-4 years after a structural brain injury (RR = 1.14; 95% CI: 0.87-1.46), whereas the long-term (5+ y) risk for malignant astrocytic tumors was significantly reduced (RR = 0.68; 95% CI: 0.49-0.90) compared with no injury. The specific long-term risks by type of injury were: traumatic brain injury RR = 0.32 (95% CI: 0.10-0.75); cerebral ischemic infarction RR = 0.69 (95% CI: 0.47-0.96); and intracerebral hemorrhage RR = 1.39 (95% CI: 0.64-2.60). CONCLUSION We found no evidence for an association between structural brain injury and malignant astrocytic tumors within the first 5 years of follow-up. However, our study indicated a protective effect of astrogliosis-causing injuries 5 or more years after structural brain injury.
Collapse
Affiliation(s)
- Tina Noergaard Munch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark (T.N.M., S.G., J.W., M.M.); Department of Neurosurgery, Copenhagen University Hospital, Denmark (T.N.M.)
| | - Sanne Gørtz
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark (T.N.M., S.G., J.W., M.M.); Department of Neurosurgery, Copenhagen University Hospital, Denmark (T.N.M.)
| | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark (T.N.M., S.G., J.W., M.M.); Department of Neurosurgery, Copenhagen University Hospital, Denmark (T.N.M.)
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark (T.N.M., S.G., J.W., M.M.); Department of Neurosurgery, Copenhagen University Hospital, Denmark (T.N.M.)
| |
Collapse
|
390
|
Bauer R, Kaiser M, Stoll E. A computational model incorporating neural stem cell dynamics reproduces glioma incidence across the lifespan in the human population. PLoS One 2014; 9:e111219. [PMID: 25409511 PMCID: PMC4237327 DOI: 10.1371/journal.pone.0111219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023] Open
Abstract
Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated) decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.
Collapse
Affiliation(s)
- Roman Bauer
- Interdisciplinary Computing and Complex BioSystems Research Group (ICOS), School of Computing Science, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems Research Group (ICOS), School of Computing Science, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Elizabeth Stoll
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| |
Collapse
|
391
|
Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 2014; 141:3445-57. [PMID: 25183867 DOI: 10.1242/dev.083691] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner.
Collapse
Affiliation(s)
- Ralitsa Petrova
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
392
|
Swartling FJ, Bolin S, Phillips JJ, Persson AI. Signals that regulate the oncogenic fate of neural stem cells and progenitors. Exp Neurol 2014; 260:56-68. [PMID: 23376224 PMCID: PMC3758390 DOI: 10.1016/j.expneurol.2013.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/19/2013] [Accepted: 01/24/2013] [Indexed: 12/16/2022]
Abstract
Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Bolin
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, USA; Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - Anders I Persson
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, USA; Department of Neurology, Sandler Neurosciences Center, University of California, San Francisco, USA.
| |
Collapse
|
393
|
Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proc Natl Acad Sci U S A 2014; 111:E4214-23. [PMID: 25246577 DOI: 10.1073/pnas.1414389111] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.
Collapse
|
394
|
McNeill RS, Vitucci M, Wu J, Miller CR. Contemporary murine models in preclinical astrocytoma drug development. Neuro Oncol 2014; 17:12-28. [PMID: 25246428 DOI: 10.1093/neuonc/nou288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite 6 decades of research, only 3 drugs have been approved for astrocytomas, the most common malignant primary brain tumors. However, clinical drug development is accelerating with the transition from empirical, cytotoxic therapy to precision, targeted medicine. Preclinical animal model studies are critical for prioritizing drug candidates for clinical development and, ultimately, for their regulatory approval. For decades, only murine models with established tumor cell lines were available for such studies. However, these poorly represent the genomic and biological properties of human astrocytomas, and their preclinical use fails to accurately predict efficacy in clinical trials. Newer models developed over the last 2 decades, including patient-derived xenografts, genetically engineered mice, and genetically engineered cells purified from human brains, more faithfully phenocopy the genomics and biology of human astrocytomas. Harnessing the unique benefits of these models will be required to identify drug targets, define combination therapies that circumvent inherent and acquired resistance mechanisms, and develop molecular biomarkers predictive of drug response and resistance. With increasing recognition of the molecular heterogeneity of astrocytomas, employing multiple, contemporary models in preclinical drug studies promises to increase the efficiency of drug development for specific, molecularly defined subsets of tumors.
Collapse
Affiliation(s)
- Robert S McNeill
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.M., M.V., C.R.M.); Departments of Neurosurgery and Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.W.); Department of Neurology, Lineberger Comprehensive Cancer Center, and Neurosciences Center University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Mark Vitucci
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.M., M.V., C.R.M.); Departments of Neurosurgery and Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.W.); Department of Neurology, Lineberger Comprehensive Cancer Center, and Neurosciences Center University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Jing Wu
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.M., M.V., C.R.M.); Departments of Neurosurgery and Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.W.); Department of Neurology, Lineberger Comprehensive Cancer Center, and Neurosciences Center University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - C Ryan Miller
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.M., M.V., C.R.M.); Departments of Neurosurgery and Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.W.); Department of Neurology, Lineberger Comprehensive Cancer Center, and Neurosciences Center University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| |
Collapse
|
395
|
Wang ZA, Toivanen R, Bergren SK, Chambon P, Shen MM. Luminal cells are favored as the cell of origin for prostate cancer. Cell Rep 2014; 8:1339-46. [PMID: 25176651 DOI: 10.1016/j.celrep.2014.08.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/21/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022] Open
Abstract
The identification of cell types of origin for cancer has important implications for tumor stratification and personalized treatment. For prostate cancer, the cell of origin has been intensively studied, but it has remained unclear whether basal or luminal epithelial cells, or both, represent cells of origin under physiological conditions in vivo. Here, we use a novel lineage-tracing strategy to assess the cell of origin in a diverse range of mouse models, including Nkx3.1(+/-); Pten(+/-), Pten(+/-), Hi-Myc, and TRAMP mice, as well as a hormonal carcinogenesis model. Our results show that luminal cells are consistently the observed cell of origin for each model in situ; however, explanted basal cells from these mice can generate tumors in grafts. Consequently, we propose that luminal cells are favored as cells of origin in many contexts, whereas basal cells only give rise to tumors after differentiation into luminal cells.
Collapse
Affiliation(s)
- Zhu A Wang
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Roxanne Toivanen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sarah K Bergren
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, 67400 Illkirch, France
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
396
|
Yamada Y, Haga H, Yamada Y. Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer. Stem Cells Transl Med 2014; 3:1182-7. [PMID: 25122691 DOI: 10.5966/sctm.2014-0090] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The technology for generation of induced pluripotent stem cells (iPSCs) has made significant contributions to various scientific fields, and the field of cancer biology is no exception. Although cancer is generally believed to develop through accumulation of multiple genetic mutations, there is increasing evidence that cancer cells also acquire epigenetic abnormalities during development, maintenance, and progression. Because the epigenetic status of somatic cells changes dynamically through reprogramming, iPSC technology can be utilized to actively and globally alter the epigenetic status of differentiated cells. Using this technology, a recent study has revealed that some types of cancer can develop mainly through disruption of the epigenetic status triggered by dedifferentiation. In this paper, we outline the reprograming process and the epigenetic mechanism associated with the maintenance or conversion of cell identity. We then describe several observations suggesting that dedifferentiation can play an important role in cancer development. Finally, we introduce the system responsible for in vivo reprogramming to demonstrate the involvement of dedifferentiation-driven epigenetic disruption in cancer development, and propose that particular types of cancer can develop predominantly through epigenetic alterations.
Collapse
Affiliation(s)
- Yosuke Yamada
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yasuhiro Yamada
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
397
|
Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K, Charles N, Michor F, Holland EC. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 2014; 26:288-300. [PMID: 25117714 PMCID: PMC4143139 DOI: 10.1016/j.ccr.2014.06.005] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/20/2014] [Accepted: 06/11/2014] [Indexed: 01/16/2023]
Abstract
To understand the relationships between the non-GCIMP glioblastoma (GBM) subgroups, we performed mathematical modeling to predict the temporal sequence of driver events during tumorigenesis. The most common order of evolutionary events is 1) chromosome (chr) 7 gain and chr10 loss, followed by 2) CDKN2A loss and/or TP53 mutation, and 3) alterations canonical for specific subtypes. We then developed a computational methodology to identify drivers of broad copy number changes, identifying PDGFA (chr7) and PTEN (chr10) as driving initial nondisjunction events. These predictions were validated using mouse modeling, showing that PDGFA is sufficient to induce proneural-like gliomas and that additional NF1 loss converts proneural to the mesenchymal subtype. Our findings suggest that most non-GCIMP mesenchymal GBMs arise as, and evolve from, a proneural-like precursor.
Collapse
Affiliation(s)
- Tatsuya Ozawa
- Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Department of Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA 98109, USA
| | - Markus Riester
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Yu-Kang Cheng
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Jason T Huse
- Department of Pathology and Human Oncology, Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Massimo Squatrito
- Cancer Cell Biology Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| | - Karim Helmy
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Nikki Charles
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA.
| | - Eric C Holland
- Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Department of Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
398
|
Goffart N, Kroonen J, Di Valentin E, Dedobbeleer M, Denne A, Martinive P, Rogister B. Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling. Neuro Oncol 2014; 17:81-94. [PMID: 25085362 DOI: 10.1093/neuonc/nou144] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Patients with glioblastoma multiforme (GBM) have an overall median survival of 15 months. This catastrophic survival rate is the consequence of systematic relapses that could arise from remaining glioblastoma stem cells (GSCs) left behind after surgery. We previously demonstrated that GSCs are able to escape the tumor mass and specifically colonize the adult subventricular zones (SVZs) after transplantation. This specific localization, away from the initial injection site, therefore represents a high-quality model of a clinical obstacle to therapy and relapses because GSCs notably retain the ability to form secondary tumors. METHOD In this work, we questioned the role of the CXCL12/CXCR4 signaling in the GSC-specific invasion of the SVZs. RESULTS We demonstrated that both receptor and ligand are respectively expressed by different GBM cell populations and by the SVZ itself. In vitro migration bio-assays highlighted that human U87MG GSCs isolated from the SVZs (U87MG-SVZ) display stronger migratory abilities in response to recombinant CXCL12 and/or SVZ-conditioned medium (SVZ-CM) compared with cancer cells isolated from the tumor mass (U87MG-TM). Moreover, in vitro inhibition of the CXCR4 signaling significantly decreased the U87MG-SVZ cell migration in response to the SVZ-CM. Very interestingly, treating U87MG-xenografted mice with daily doses of AMD3100, a specific CXCR4 antagonist, prevented the specific invasion of the SVZ. Another in vivo experiment, using CXCR4-invalidated GBM cells, displayed similar results. CONCLUSION Taken together, these data demonstrate the significant role of the CXCL12/CXCR4 signaling in this original model of brain cancer invasion.
Collapse
Affiliation(s)
- Nicolas Goffart
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.D., M.D., B.R.); Human Genetics, CHU and University of Liège, Liège, Belgium (J.K.); The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands (J.K.); GIGA-Viral Vector Platform, University of Liège, Liège, Belgium (E.D.V.); Unit of Radiology and Radiotherapy, CHU and University of Liège, Liège, Belgium (P.M.); Department of Neurology, CHU and University of Liège, Liège, Belgium (B.R.); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège, Belgium (B.R.)
| | - Jérôme Kroonen
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.D., M.D., B.R.); Human Genetics, CHU and University of Liège, Liège, Belgium (J.K.); The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands (J.K.); GIGA-Viral Vector Platform, University of Liège, Liège, Belgium (E.D.V.); Unit of Radiology and Radiotherapy, CHU and University of Liège, Liège, Belgium (P.M.); Department of Neurology, CHU and University of Liège, Liège, Belgium (B.R.); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège, Belgium (B.R.)
| | - Emmanuel Di Valentin
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.D., M.D., B.R.); Human Genetics, CHU and University of Liège, Liège, Belgium (J.K.); The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands (J.K.); GIGA-Viral Vector Platform, University of Liège, Liège, Belgium (E.D.V.); Unit of Radiology and Radiotherapy, CHU and University of Liège, Liège, Belgium (P.M.); Department of Neurology, CHU and University of Liège, Liège, Belgium (B.R.); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège, Belgium (B.R.)
| | - Matthias Dedobbeleer
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.D., M.D., B.R.); Human Genetics, CHU and University of Liège, Liège, Belgium (J.K.); The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands (J.K.); GIGA-Viral Vector Platform, University of Liège, Liège, Belgium (E.D.V.); Unit of Radiology and Radiotherapy, CHU and University of Liège, Liège, Belgium (P.M.); Department of Neurology, CHU and University of Liège, Liège, Belgium (B.R.); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège, Belgium (B.R.)
| | - Alexandre Denne
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.D., M.D., B.R.); Human Genetics, CHU and University of Liège, Liège, Belgium (J.K.); The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands (J.K.); GIGA-Viral Vector Platform, University of Liège, Liège, Belgium (E.D.V.); Unit of Radiology and Radiotherapy, CHU and University of Liège, Liège, Belgium (P.M.); Department of Neurology, CHU and University of Liège, Liège, Belgium (B.R.); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège, Belgium (B.R.)
| | - Philippe Martinive
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.D., M.D., B.R.); Human Genetics, CHU and University of Liège, Liège, Belgium (J.K.); The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands (J.K.); GIGA-Viral Vector Platform, University of Liège, Liège, Belgium (E.D.V.); Unit of Radiology and Radiotherapy, CHU and University of Liège, Liège, Belgium (P.M.); Department of Neurology, CHU and University of Liège, Liège, Belgium (B.R.); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège, Belgium (B.R.)
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.D., M.D., B.R.); Human Genetics, CHU and University of Liège, Liège, Belgium (J.K.); The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands (J.K.); GIGA-Viral Vector Platform, University of Liège, Liège, Belgium (E.D.V.); Unit of Radiology and Radiotherapy, CHU and University of Liège, Liège, Belgium (P.M.); Department of Neurology, CHU and University of Liège, Liège, Belgium (B.R.); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège, Belgium (B.R.)
| |
Collapse
|
399
|
Sun T, Warrington NM, Luo J, Brooks MD, Dahiya S, Snyder SC, Sengupta R, Rubin JB. Sexually dimorphic RB inactivation underlies mesenchymal glioblastoma prevalence in males. J Clin Invest 2014; 124:4123-33. [PMID: 25083989 DOI: 10.1172/jci71048] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/19/2014] [Indexed: 12/26/2022] Open
Abstract
The prevalence of brain tumors in males is common but unexplained. While sex differences in disease are typically mediated through acute sex hormone actions, sex-specific differences in brain tumor rates are comparable at all ages, suggesting that factors other than sex hormones underlie this discrepancy. We found that mesenchymal glioblastoma (Mes-GBM) affects more males as the result of cell-intrinsic sexual dimorphism in astrocyte transformation. We used astrocytes from neurofibromin-deficient (Nf1(-/-)) mice expressing a dominant-negative form of the tumor suppressor p53 (DNp53) and treated them with EGF as a Mes-GBM model. Male Mes-GBM astrocytes exhibited greater growth and colony formation compared with female Mes-GBM astrocytes. Moreover, male Mes-GBM astrocytes underwent greater tumorigenesis in vivo, regardless of recipient mouse sex. Male Mes-GBM astrocytes exhibited greater inactivation of the tumor suppressor RB, higher proliferation rates, and greater induction of a clonogenic, stem-like cell population compared with female Mes-GBM astrocytes. Furthermore, complete inactivation of RB and p53 in Mes-GBM astrocytes resulted in equivalent male and female tumorigenic transformation, indicating that intrinsic differences in RB activation are responsible for the predominance of tumorigenic transformation in male astrocytes. Together, these results indicate that cell-intrinsic sex differences in RB regulation and stem-like cell function may underlie the predominance of GBM in males.
Collapse
|
400
|
Stem cells and gliomas: past, present, and future. J Neurooncol 2014; 119:547-55. [DOI: 10.1007/s11060-014-1498-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/02/2014] [Indexed: 01/14/2023]
|