351
|
Development and Clinical Application of a Rapid and Sensitive Loop-Mediated Isothermal Amplification Test for SARS-CoV-2 Infection. mSphere 2020; 5:5/4/e00808-20. [PMID: 32848011 PMCID: PMC7449630 DOI: 10.1128/msphere.00808-20] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We developed a visual and rapid reverse transcription–loop-mediated isothermal amplification (RT-LAMP) assay targeting the S gene for SARS-CoV-2 infection. The strength of our study was that we validated the RT-LAMP assay using 481 clinical respiratory samples from two prospective cohorts of suspected COVID-19 patients and on the serial samples from an asymptomatic carrier. The developed RT-LAMP approach showed an increased sensitivity (88.89%) and high consistency (kappa, 0.92) compared with those of reverse transcription-quantitative PCR (RT-qPCR) for SARS-CoV-2 screening while requiring only constant-temperature heating and visual inspection, facilitating SARS-CoV-2 screening in well-equipped labs as well as in the field. The time required for RT-LAMP was less than 1 h from sample preparation to the result (more than 2 h for RT-qPCR). This study showed that the RT-LAMP assay was a simple, rapid, and sensitive approach for SARS-CoV-2 infection and can facilitate COVID-19 diagnosis, especially in resource-poor settings. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak urgently necessitates sensitive and convenient COVID-19 diagnostics for the containment and timely treatment of patients. We aimed to develop and validate a novel reverse transcription–loop-mediated isothermal amplification (RT-LAMP) assay to detect SARS-CoV-2. Patients with suspected COVID-19 and close contacts were recruited from two hospitals between 26 January and 8 April 2020. Respiratory samples were collected and tested using RT-LAMP, and the results were compared with those obtained by reverse transcription-quantitative PCR (RT-qPCR). Samples yielding inconsistent results between these two methods were subjected to next-generation sequencing for confirmation. RT-LAMP was also applied to an asymptomatic COVID-19 carrier and patients with other respiratory viral infections. Samples were collected from a cohort of 129 cases (329 nasopharyngeal swabs) and an independent cohort of 76 patients (152 nasopharyngeal swabs and sputum samples). The RT-LAMP assay was validated to be accurate (overall sensitivity and specificity of 88.89% and 99.00%, respectively) and diagnostically useful (positive and negative likelihood ratios of 88.89 and 0.11, respectively). RT-LAMP showed increased sensitivity (88.89% versus 81.48%) and high consistency (kappa, 0.92) compared to those of RT-qPCR for SARS-CoV-2 screening while requiring only constant-temperature heating and visual inspection. The time required for RT-LAMP was less than 1 h from sample preparation to the result. In addition, RT-LAMP was feasible for use with asymptomatic patients and did not cross-react with other respiratory pathogens. The developed RT-LAMP assay offers rapid, sensitive, and straightforward detection of SARS-CoV-2 infection and may aid the expansion of COVID-19 testing in the public domain and hospitals. IMPORTANCE We developed a visual and rapid reverse transcription–loop-mediated isothermal amplification (RT-LAMP) assay targeting the S gene for SARS-CoV-2 infection. The strength of our study was that we validated the RT-LAMP assay using 481 clinical respiratory samples from two prospective cohorts of suspected COVID-19 patients and on the serial samples from an asymptomatic carrier. The developed RT-LAMP approach showed an increased sensitivity (88.89%) and high consistency (kappa, 0.92) compared with those of reverse transcription-quantitative PCR (RT-qPCR) for SARS-CoV-2 screening while requiring only constant-temperature heating and visual inspection, facilitating SARS-CoV-2 screening in well-equipped labs as well as in the field. The time required for RT-LAMP was less than 1 h from sample preparation to the result (more than 2 h for RT-qPCR). This study showed that the RT-LAMP assay was a simple, rapid, and sensitive approach for SARS-CoV-2 infection and can facilitate COVID-19 diagnosis, especially in resource-poor settings.
Collapse
|
352
|
Pizzol JLD, Hora VPD, Reis AJ, Vianna J, Ramis I, Groll AV, Silva PAD. Laboratory diagnosis for Covid-19: A mini-review. Rev Soc Bras Med Trop 2020; 53:e20200451. [PMID: 32876316 PMCID: PMC7451498 DOI: 10.1590/0037-8682-0451-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease (COVID-19) is a pandemic caused by a new coronavirus, called SARS-CoV-2. This disease was first identified in December 2019 and rapidly developed into a challenge to the public health systems around the world. In the absence of a vaccine and specific therapies, disease control and promotion of patient health are strongly dependent on a rapid and accurate diagnosis. This review describes the main laboratory approaches to making a diagnosis of COVID-19 and identifying those previously infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Juliana Lemos Dal Pizzol
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Vanusa Pousada da Hora
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Ana Júlia Reis
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Júlia Vianna
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Ivy Ramis
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Andrea von Groll
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Pedro Almeida da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
353
|
Nagura-Ikeda M, Imai K, Tabata S, Miyoshi K, Murahara N, Mizuno T, Horiuchi M, Kato K, Imoto Y, Iwata M, Mimura S, Ito T, Tamura K, Kato Y. Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription-Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test To Diagnose COVID-19. J Clin Microbiol 2020; 58:e01438-20. [PMID: 32636214 PMCID: PMC7448663 DOI: 10.1128/jcm.01438-20] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
The clinical performances of six molecular diagnostic tests and a rapid antigen test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were clinically evaluated for the diagnosis of coronavirus disease 2019 (COVID-19) in self-collected saliva. Saliva samples from 103 patients with laboratory-confirmed COVID-19 (15 asymptomatic and 88 symptomatic) were collected on the day of hospital admission. SARS-CoV-2 RNA in saliva was detected using a quantitative reverse transcription-PCR (RT-qPCR) laboratory-developed test (LDT), a cobas SARS-CoV-2 high-throughput system, three direct RT-qPCR kits, and reverse transcription-loop-mediated isothermal amplification (RT-LAMP). The viral antigen was detected by a rapid antigen immunochromatographic assay. Of the 103 samples, viral RNA was detected in 50.5 to 81.6% of the specimens by molecular diagnostic tests, and an antigen was detected in 11.7% of the specimens by the rapid antigen test. Viral RNA was detected at significantly higher percentages (65.6 to 93.4%) in specimens collected within 9 days of symptom onset than in specimens collected after at least 10 days of symptoms (22.2 to 66.7%) and in specimens collected from asymptomatic patients (40.0 to 66.7%). Self-collected saliva is an alternative specimen option for diagnosing COVID-19. The RT-qPCR LDT, a cobas SARS-CoV-2 high-throughput system, direct RT-qPCR kits (except for one commercial kit), and RT-LAMP showed sufficient sensitivities in clinical use to be selectively used in clinical settings and facilities. The rapid antigen test alone is not recommended for an initial COVID-19 diagnosis because of its low sensitivity.
Collapse
Affiliation(s)
| | - Kazuo Imai
- Self-Defense Forces Central Hospital, Tokyo, Japan
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
| | | | | | | | | | | | - Kento Kato
- Self-Defense Forces Central Hospital, Tokyo, Japan
| | | | - Maki Iwata
- Self-Defense Forces Central Hospital, Tokyo, Japan
| | | | | | - Kaku Tamura
- Self-Defense Forces Central Hospital, Tokyo, Japan
| | - Yasuyuki Kato
- Department of Infectious Diseases, International University of Health and Welfare Narita Hospital, Chiba, Japan
| |
Collapse
|
354
|
Kilic T, Weissleder R, Lee H. Molecular and Immunological Diagnostic Tests of COVID-19: Current Status and Challenges. iScience 2020; 23:101406. [PMID: 32771976 PMCID: PMC7381402 DOI: 10.1016/j.isci.2020.101406] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Rapid spread of coronavirus disease 2019 (COVID-19) is ravaging the globe. Since its first report in December 2019, COVID-19 cases have exploded to over 14 million as of July 2020, claiming more than 600,000 lives. Implementing fast and widespread diagnostic tests is paramount to contain COVID-19, given the current lack of an effective therapeutic or vaccine. This review focuses on a broad description of currently available diagnostic tests to detect either the virus (SARS-CoV-2) or virus-induced immune responses. We specifically explain the working mechanisms of these tests and compare their analytical performance. These analyses will assist in selecting most effective tests for a given application, for example, epidemiology or global pandemic research, population screening, hospital-based testing, home-based and point-of-care testing, and therapeutic trials. Finally, we lay out the shortcomings of certain tests and future needs.
Collapse
Affiliation(s)
- Tugba Kilic
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114 USA
| | - Ralph Weissleder
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114 USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hakho Lee
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114 USA.
| |
Collapse
|
355
|
Ahmed W, Bertsch PM, Angel N, Bibby K, Bivins A, Dierens L, Edson J, Ehret J, Gyawali P, Hamilton KA, Hosegood I, Hugenholtz P, Jiang G, Kitajima M, Sichani HT, Shi J, Shimko KM, Simpson SL, Smith WJM, Symonds EM, Thomas KV, Verhagen R, Zaugg J, Mueller JF. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. J Travel Med 2020; 27:taaa116. [PMID: 32662867 PMCID: PMC7454825 DOI: 10.1093/jtm/taaa116] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. METHODS Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption-extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. RESULTS SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. CONCLUSIONS The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Paul M Bertsch
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Nicola Angel
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Leanne Dierens
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Janette Edson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - John Ehret
- Qantas Airways Limited, 10 Bourke Rd Mascot, 2020, NSW, Australia
| | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Temple, AZ 85287, USA
| | - Ian Hosegood
- Qantas Airways Limited, 10 Bourke Rd Mascot, 2020, NSW, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522, Australia
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Homa T Sichani
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Jiahua Shi
- School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522, Australia
| | - Katja M Shimko
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | | | - Wendy J M Smith
- CSIRO Agriculture and Food, Bioscience Precinct, St Lucia QLD 4067, Australia
| | - Erin M Symonds
- College of Marine Science, University of South Florida, 140 Seventh Avenue South, St. Petersburg, Florida 33701 USA
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| |
Collapse
|
356
|
Zhang S, Su X, Wang J, Chen M, Li C, Li T, Ge S, Xia N. Nucleic Acid Testing for Coronavirus Disease 2019: Demand, Research Progression, and Perspective. Crit Rev Anal Chem 2020; 52:413-424. [PMID: 32813575 DOI: 10.1080/10408347.2020.1805294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) outbreak, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a public health emergency of international concern. There has been a surge in demand for COVID-19 diagnostic reagents, as timely detection of virus carriers is one of the most important components of disease prevention and control. Nucleic acid testing (NAT), with high sensitivity and specificity, is considered the "gold standard" for the diagnosis of COVID-19. Therefore, more than 700 research units and companies have been devoted to developing NAT reagents. To date, nearly 600 research units and companies have claimed to have completed the development of NAT reagents. The use of these products has a positive effect on disease prevention and control; however, exaggerated claims and inadequate understanding of the products have led to improper access to reagents and equipment in clinics. This has resulted in chaos in the clinical diagnosis of COVID-19. Herein, we have overviewed the COVID-19 NAT products, including their principles, corresponding advantages and disadvantages, relevant circumstances for application, and respective roles in epidemic containment. Our comments may provide some references for assay developers and aid clinical staff in choosing the appropriate class of test from the different tests available.
Collapse
Affiliation(s)
- Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaosong Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Jin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.,School of Life Sciences, Xiamen University, Xiamen, China
| | - Mengyuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Caiyu Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.,School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
357
|
Lübke N, Senff T, Scherger S, Hauka S, Andrée M, Adams O, Timm J, Walker A. Extraction-free SARS-CoV-2 detection by rapid RT-qPCR universal for all primary respiratory materials. J Clin Virol 2020; 130:104579. [PMID: 32795959 PMCID: PMC7405857 DOI: 10.1016/j.jcv.2020.104579] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
Rapid SARS-CoV-2 detection without RNA extraction. Universal direct RT-qPCR protocol suitable for all respiratory materials. Significant correlation of Ct values between direct and RNA RT-qPCR. High SARS-CoV-2 detection rate by direct RT-qPCR of 95.8 % for Ct values <35.
Background Fast and reliable detection of SARS-CoV-2 is crucial for efficient control of the COVID-19 pandemic. Due to the high demand for SARS-CoV-2 testing there is a worldwide shortage of RNA extraction reagents. Therefore, extraction-free RT-qPCR protocols are urgently needed. Objectives To establish a rapid RT-qPCR protocol for the detection of SARS-CoV-2 without the need of RNA extraction suitable for all respiratory materials. Material and methods Different SARS-CoV-2 positive respiratory materials from our routine laboratory were used as crude material after heat inactivation in direct RT-qPCR with the PrimeDirect™ Probe RT-qPCR Mix (TaKaRa). SARS-CoV-2 was detected using novel primers targeted to the E-gene. Results The protocol for the detection of SARS-CoV-2 in crude material used a prepared frozen-PCR mix with optimized primers and 5 μl of fresh, undiluted and pre-analytically heat inactivated respiratory material. For validation, 91 respiratory samples were analyzed in direct comparison to classical RNA-based RT-qPCR. Overall 81.3 % of the samples were detected in both assays with a strong correlation between both Ct values (r = 0.8492, p < 0.0001). The SARS-CoV-2 detection rate by direct RT-qPCR was 95.8 % for Ct values <35. All negative samples were characterized by low viral loads (Ct >35) and/or long storage times before sample processing. Conclusion Direct RT-qPCR is a suitable alternative to classical RNA RT-qPCR, provided that only fresh samples (storage <1 week) are used. RNA extraction should be considered if samples have longer storage times or if PCR inhibition is observed. In summary, this protocol is fast, inexpensive and suitable for all respiratory materials.
Collapse
Affiliation(s)
- Nadine Lübke
- Institute of Virology, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany.
| | - Tina Senff
- Institute of Virology, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Sara Scherger
- Institute of Virology, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Sandra Hauka
- Institute of Virology, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Marcel Andrée
- Institute of Virology, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Jörg Timm
- Institute of Virology, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Andreas Walker
- Institute of Virology, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| |
Collapse
|
358
|
Feng W, Newbigging AM, Le C, Pang B, Peng H, Cao Y, Wu J, Abbas G, Song J, Wang DB, Cui M, Tao J, Tyrrell DL, Zhang XE, Zhang H, Le XC. Molecular Diagnosis of COVID-19: Challenges and Research Needs. Anal Chem 2020; 92:10196-10209. [PMID: 32573207 PMCID: PMC7346719 DOI: 10.1021/acs.analchem.0c02060] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Molecular diagnosis of COVID-19 primarily relies on the detection of RNA of the SARS-CoV-2 virus, the causative infectious agent of the pandemic. Reverse transcription polymerase chain reaction (RT-PCR) enables sensitive detection of specific sequences of genes that encode the RNA dependent RNA polymerase (RdRP), nucleocapsid (N), envelope (E), and spike (S) proteins of the virus. Although RT-PCR tests have been widely used and many alternative assays have been developed, the current testing capacity and availability cannot meet the unprecedented global demands for rapid, reliable, and widely accessible molecular diagnosis. Challenges remain throughout the entire analytical process, from the collection and treatment of specimens to the amplification and detection of viral RNA and the validation of clinical sensitivity and specificity. We highlight the main issues surrounding molecular diagnosis of COVID-19, including false negatives from the detection of viral RNA, temporal variations of viral loads, selection and treatment of specimens, and limiting factors in detecting viral proteins. We discuss critical research needs, such as improvements in RT-PCR, development of alternative nucleic acid amplification techniques, incorporating CRISPR technology for point-of-care (POC) applications, validation of POC tests, and sequencing of viral RNA and its mutations. Improved assays are also needed for environmental surveillance or wastewater-based epidemiology, which gauges infection on the community level through analyses of viral components in the community's wastewater. Public health surveillance benefits from large-scale analyses of antibodies in serum, although the current serological tests do not quantify neutralizing antibodies. Further advances in analytical technology and research through multidisciplinary collaboration will contribute to the development of mitigation strategies, therapeutics, and vaccines. Lessons learned from molecular diagnosis of COVID-19 are valuable for better preparedness in response to other infectious diseases.
Collapse
Affiliation(s)
- Wei Feng
- Division of Analytical and Environmental Toxicology,
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2G3
| | - Ashley M. Newbigging
- Division of Analytical and Environmental Toxicology,
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2G3
| | - Connie Le
- Li Ka Shing Institute of Virology, Department of
Medical Microbiology and Immunology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2E1
| | - Bo Pang
- Division of Analytical and Environmental Toxicology,
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2G3
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology,
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2G3
| | - Yiren Cao
- Division of Analytical and Environmental Toxicology,
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2G3
| | - Jinjun Wu
- Division of Analytical and Environmental Toxicology,
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2G3
| | - Ghulam Abbas
- National Laboratory of Biomacromolecules, Institute of
Biophysics, Chinese Academy of Sciences, No. 15 Datun Road,
Beijing, China 100101
| | - Jin Song
- National Laboratory of Biomacromolecules, Institute of
Biophysics, Chinese Academy of Sciences, No. 15 Datun Road,
Beijing, China 100101
| | - Dian-Bing Wang
- National Laboratory of Biomacromolecules, Institute of
Biophysics, Chinese Academy of Sciences, No. 15 Datun Road,
Beijing, China 100101
| | - Mengmeng Cui
- National Laboratory of Biomacromolecules, Institute of
Biophysics, Chinese Academy of Sciences, No. 15 Datun Road,
Beijing, China 100101
| | - Jeffrey Tao
- Division of Analytical and Environmental Toxicology,
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2G3
| | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology, Department of
Medical Microbiology and Immunology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2E1
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of
Biophysics, Chinese Academy of Sciences, No. 15 Datun Road,
Beijing, China 100101
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology,
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2G3
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology,
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta,
Canada T6G 2G3
| |
Collapse
|
359
|
Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online 2020; 22:19. [PMID: 32774178 PMCID: PMC7402395 DOI: 10.1186/s12575-020-00128-2] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
In December 2019, a novel coronavirus, named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or (2019-nCoV) with unknown origin spread in Hubei province of China. The epidemic disease caused by SARS-CoV-2 called coronavirus disease-19 (COVID-19). The presence of COVID-19 was manifested by several symptoms, ranging from asymptomatic/mild symptoms to severe illness and death. The viral infection expanded internationally and WHO announced a Public Health Emergency of International Concern. To quickly diagnose and control such a highly infectious disease, suspicious individuals were isolated and diagnostic/treatment procedures were developed through patients' epidemiological and clinical data. Early in the COVID-19 outbreak, WHO invited hundreds of researchers from around the world to develop a rapid quality diagnosis, treatment and vaccines, but so far no specific antiviral treatment or vaccine has been approved by the FDA. At present, COVID-19 is managed by available antiviral drugs to improve the symptoms, and in severe cases, supportive care including oxygen and mechanical ventilation is used for infected patients. However, due to the worldwide spread of the virus, COVID-19 has become a serious concern in the medical community. According to the current data of WHO, the number of infected and dead cases has increased to 8,708,008 and 461,715, respectively (Dec 2019 -June 2020). Given the high mortality rate and economic damage to various communities to date, great efforts must be made to produce successful drugs and vaccines against 2019-nCoV infection. For this reason, first of all, the characteristics of the virus, its pathogenicity, and its infectious pathways must be well known. Thus, the main purpose of this review is to provide an overview of this epidemic disease based on the current evidence.
Collapse
Affiliation(s)
- Hanie Esakandari
- Department of Biology, Science and research branch, Islamic Azad University of Tehran, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of biological science, Tarbiat Modares University, Tehran, Iran
| | - Javad Fakkari-Afjadi
- Department of biology, Ashkezar branch, Islamic Azad University of Yazd, Ashkezar, Yazd Iran
| | - Navid Farahmandian
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | | | - Elham Bahreini
- Department of biology, Ashkezar branch, Islamic Azad University of Yazd, Ashkezar, Yazd Iran
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| |
Collapse
|
360
|
Shih HI, Wu CJ, Tu YF, Chi CY. Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines. Biomed J 2020; 43:341-354. [PMID: 32532623 PMCID: PMC7260535 DOI: 10.1016/j.bj.2020.05.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by a novel coronavirus, SARS-CoV-2, has infected more than 22 million individuals and resulted in over 780,000 deaths globally. The rapid spread of the virus and the precipitously increasing numbers of cases necessitate the urgent development of accurate diagnostic methods, effective treatments, and vaccines. Here, we review the progress of developing diagnostic methods, therapies, and vaccines for SARS-CoV-2 with a focus on current clinical trials and their challenges. For diagnosis, nucleic acid amplification tests remain the mainstay diagnostics for laboratory confirmation of SARS-CoV-2 infection, while serological antibody tests are used to aid contact tracing, epidemiological, and vaccine evaluation studies. Viral isolation is not recommended for routine diagnostic procedures due to safety concerns. Currently, no single effective drug or specific vaccine is available against SARS-CoV-2. Some candidate drugs targeting different levels and stages of human responses against COVID-19 such as cell membrane fusion, RNA-dependent RNA polymerase, viral protease inhibitor, interleukin 6 blocker, and convalescent plasma may improve the clinical outcomes of critical COVID-19 patients. Other supportive care measures for critical patients are still necessary. Advances in genetic sequencing and other technological developments have sped up the establishment of a variety of vaccine platforms. Accordingly, numerous vaccines are under development. Vaccine candidates against SARS-CoV-2 are mainly based upon the viral spike protein due to its vital role in viral infectivity, and most of these candidates have recently moved into clinical trials. Before the efficacy of such vaccines in humans is demonstrated, strong international coordination and collaboration among studies, pharmaceutical companies, regulators, and governments are needed to limit further damage due the emerging SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hsin-I Shih
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Jung Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Fang Tu
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Chi
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Doctoral Degree Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
361
|
Yip CCY, Sridhar S, Cheng AKW, Leung KH, Choi GKY, Chen JHK, Poon RWS, Chan KH, Wu AKL, Chan HSY, Chau SKY, Chung TWH, To KKW, Tsang OTY, Hung IFN, Cheng VCC, Yuen KY, Chan JFW. Evaluation of the commercially available LightMix® Modular E-gene kit using clinical and proficiency testing specimens for SARS-CoV-2 detection. J Clin Virol 2020; 129:104476. [PMID: 32516739 PMCID: PMC7255195 DOI: 10.1016/j.jcv.2020.104476] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Rapid and sensitive diagnostic assays for SARS-CoV-2 detection are required for prompt patient management and infection control. The analytical and clinical performances of LightMix® Modular SARS and Wuhan CoV E-gene kit, a widely used commercial assay for SARS-CoV-2 detection, have not been well studied. OBJECTIVE To evaluate the performance characteristics of the LightMix® E-gene kit in comparison with well-validated in-house developed COVID-19 RT-PCR assays. STUDY DESIGN Serial dilutions of SARS-CoV-2 culture isolate extracts were used for analytical sensitivity evaluation. A total of 289 clinical specimens from 186 patients with suspected COVID-19 and 8 proficiency testing (PT) samples were used to evaluate the diagnostic performance of the LightMix® E-gene kit against in-house developed COVID-19-RdRp/Hel and COVID-19-N RT-PCR assays. RESULTS The LightMix® E-gene kit had a limit of detection of 1.8 × 10-1 TCID50/mL, which was one log10 lower than those of the two in-house RT-PCR assays. The LightMix® E-gene kit (149/289 [51.6%]) had similar sensitivity as the in-house assays (144/289 [49.8%] for RdRp/Hel and 146/289 [50.5%] for N). All three assays gave correct results for all the PT samples. Cycle threshold (Cp) values of the LightMix® E-gene kit and in-house assays showed excellent correlation. Reproducibility of the Cp values was satisfactory with intra- and inter-assay coefficient of variation values <5%. Importantly, the LightMix® E-gene kit, when used as a stand-alone assay, was equally sensitive as testing algorithms using multiple COVID-19 RT-PCR assays. CONCLUSIONS The LightMix® E-gene kit is a rapid and sensitive assay for SARS-CoV-2 detection. It has fewer verification requirements compared to laboratory-developed tests.
Collapse
Affiliation(s)
- Cyril Chik-Yan Yip
- Department of Microbiology, Queen Mary Hospital, Pokulam, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Andrew Kim-Wai Cheng
- Department of Microbiology, Queen Mary Hospital, Pokulam, Hong Kong Special Administrative Region, China
| | - Kit-Hang Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Garnet Kwan-Yue Choi
- Department of Microbiology, Queen Mary Hospital, Pokulam, Hong Kong Special Administrative Region, China
| | - Jonathan Hon-Kwan Chen
- Department of Microbiology, Queen Mary Hospital, Pokulam, Hong Kong Special Administrative Region, China
| | - Rosana Wing-Shan Poon
- Department of Microbiology, Queen Mary Hospital, Pokulam, Hong Kong Special Administrative Region, China
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Alan Ka-Lun Wu
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong Special Administrative Region, China
| | - Helen Shuk-Ying Chan
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Sandy Ka-Yee Chau
- Department of Pathology, United Christian Hospital, Hong Kong Special Administrative Region, China
| | - Tom Wai-Hin Chung
- Department of Microbiology, Queen Mary Hospital, Pokulam, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Owen Tak-Yin Tsang
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, Queen Mary Hospital, Pokulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
362
|
Altman E, Mounir I, Najid FZ, Perlaza SM. On the True Number of COVID-19 Infections: Effect of Sensitivity, Specificity and Number of Tests on Prevalence Ratio Estimation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5328. [PMID: 32722110 PMCID: PMC7432803 DOI: 10.3390/ijerph17155328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
In this paper, a formula for estimating the prevalence ratio of a disease in a population that is tested with imperfect tests is given. The formula is in terms of the fraction of positive test results and test parameters, i.e., probability of true positives (sensitivity) and the probability of true negatives (specificity). The motivation of this work arises in the context of the COVID-19 pandemic in which estimating the number of infected individuals depends on the sensitivity and specificity of the tests. In this context, it is shown that approximating the prevalence ratio by the ratio between the number of positive tests and the total number of tested individuals leads to dramatically high estimation errors, and thus, unadapted public health policies. The relevance of estimating the prevalence ratio using the formula presented in this work is that precision increases with the number of tests. Two conclusions are drawn from this work. First, in order to ensure that a reliable estimation is achieved with a finite number of tests, testing campaigns must be implemented with tests for which the sum of the sensitivity and the specificity is sufficiently different than one. Second, the key parameter for reducing the estimation error is the number of tests. For a large number of tests, as long as the sum of the sensitivity and specificity is different than one, the exact values of these parameters have very little impact on the estimation error.
Collapse
Affiliation(s)
- Eitan Altman
- INRIA, Centre de Recherche de Sophia Antipolis-Mediterranee, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis CEDEX, France;
- Laboratoire Informatique d’Avignon, Campus Jean-Henri Fabre, Avignon Universite, 84 911 Avignon, France
- Laboratory of Information, Network and Communication Sciences, Avignon Universite, 75013 Paris, France
| | - Izza Mounir
- Centre Hospitalier Universitaire de Nice, School of Medicine, Université Côte D’Azur, 30 Voie Romaine, 06000 Nice, France;
| | - Fatim-Zahra Najid
- Centre Hospitalier Universitaire Amiens Picardie, School of Medicine, Université de Picardie Jules Verne, 1 Rue du Professeur Christian Cabrol, 80054 Amiens, France;
| | - Samir M. Perlaza
- INRIA, Centre de Recherche de Sophia Antipolis-Mediterranee, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis CEDEX, France;
| |
Collapse
|
363
|
Romano C, Chebabo A, Levi J. Past, present, and future of COVID-19: a review. Braz J Med Biol Res 2020; 53:e10475. [PMID: 32725080 PMCID: PMC7405018 DOI: 10.1590/1414-431x202010475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 has recently emerged, becoming a global threat, affecting directly all human beings owing to its morbidity and mortality and indirectly, due to the enormous economic and psychological impact produced by social isolation, the most effective measure so far, but unsustainable for a long period. The scientific effort to understand and control SARS-CoV-2 transmission and clinical impact has been huge, and important achievements are highlighted in this review. Diagnosis is central and is the first step in recognizing and fighting any infectious agent. Instrumental to that is the quality of the data, relying on serological and molecular surveys in addition to trustworthy clinical records. However, the fast spread of a virus adapted for human-to-human respiratory transmission raised a demand for millions of molecular tests that are simply not available. Several candidate drugs are under evaluation in clinical trials. Those with an already recognized safety profile are more auspicious, since, if proven effective, can cut several steps of production and phase 2 and 3 trials. More than one hundred vaccine prototypes are in different stages of development, however, safety and efficacy evaluations cannot be obviated, implicating, most optimistically, in at least months for us to have an effective immunization, the definite measure to allow a safe return to the pre-pandemic lifestyle. Science has never been more necessary and present in daily life. Relying on the best of human wit is the only way out to this pandemic, saving as many lives as possible.
Collapse
Affiliation(s)
- C.M. Romano
- Hospital das Clinicas HCFMUSP (LIM52), Faculdade de Medicina,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - A. Chebabo
- Hospital Universitário Clementino Fraga Filho, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Laboratórios Dasa, São Paulo, SP, Brasil
| | - J.E. Levi
- Laboratórios Dasa, São Paulo, SP, Brasil
- Laboratório de Virologia, Instituto de Medicina Tropical,
Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
364
|
Augustine R, Hasan A, Das S, Ahmed R, Mori Y, Notomi T, Kevadiya BD, S. Thakor A. Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. BIOLOGY 2020; 9:E182. [PMID: 32707972 PMCID: PMC7464797 DOI: 10.3390/biology9080182] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
The rampant spread of COVID-19 and the worldwide prevalence of infected cases demand a rapid, simple, and cost-effective Point of Care Test (PoCT) for the accurate diagnosis of this pandemic. The most common molecular tests approved by regulatory bodies across the world for COVID-19 diagnosis are based on Polymerase Chain Reaction (PCR). While PCR-based tests are highly sensitive, specific, and remarkably reliable, they have many limitations ranging from the requirement of sophisticated laboratories, need of skilled personnel, use of complex protocol, long wait times for results, and an overall high cost per test. These limitations have inspired researchers to search for alternative diagnostic methods that are fast, economical, and executable in low-resource laboratory settings. The discovery of Loop-mediated isothermal Amplification (LAMP) has provided a reliable substitute platform for the accurate detection of low copy number nucleic acids in the diagnosis of several viral diseases, including epidemics like Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). At present, a cocktail of LAMP assay reagents along with reverse transcriptase enzyme (Reverse Transcription LAMP, RT-LAMP) can be a robust solution for the rapid and cost-effective diagnosis for COVID-19, particularly in developing, and low-income countries. In summary, the development of RT-LAMP based diagnostic tools in a paper/strip format or the integration of this method into a microfluidic platform such as a Lab-on-a-chip may revolutionize the concept of PoCT for COVID-19 diagnosis. This review discusses the principle, technology and past research underpinning the success for using this method for diagnosing MERS and SARS, in addition to ongoing research, and the prominent prospect of RT-LAMP in the context of COVID-19 diagnosis.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar
| | - Suvarthi Das
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA 94304, USA;
| | - Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar
| | - Yasuyoshi Mori
- Eiken Chemical Co., Ltd., Research and Development Division, Taito-ku 110-8408, Japan; (Y.M.); (T.N.)
| | - Tsugunori Notomi
- Eiken Chemical Co., Ltd., Research and Development Division, Taito-ku 110-8408, Japan; (Y.M.); (T.N.)
| | - Bhavesh D. Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (B.D.K.); (A.S.T.)
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (B.D.K.); (A.S.T.)
| |
Collapse
|
365
|
Abduljalil J. Laboratory diagnosis of SARS-CoV-2: available approaches and limitations. New Microbes New Infect 2020; 36:100713. [PMID: 32607246 PMCID: PMC7293839 DOI: 10.1016/j.nmni.2020.100713] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
The ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the most devastating outbreaks witnessed in the last 100 years. The outbreak started in China and spread rapidly to almost every country, culminating in woefully overwhelmed health-care systems in most countries. The only approved diagnostic test to accompany radiographic evaluation is reverse transcription PCR. However, the applicability of this test in diagnosis and surveillance is challenged by a global shortage of reagents and the lack of well-equipped laboratories with specialized staff in several low- and middle-income countries. Loop-mediated isothermal amplification and CRISPR-based diagnostic assays have developed and expected to play a role however, their accuracy is still inferior to the recommended PCR approach. The need for the development of accurate and rapid diagnostic assays became apparent. Immunodiagnostic tests and other molecular approaches were developed and tested. Other recently developed point-of-care molecular tests are expected to be helpful in pandemic management as no particular skills are required from the operator. Fortunately, a number of serological tests have been granted authorization for use under the emergency situation by the US FDA for the diagnosis of SARS-CoV-2. The majority of recently authorized serological tests detect IgG and IgM in blood of infected individuals by on ELISA, chemiluminescence platforms or lateral flow cassettes.
Collapse
Affiliation(s)
- J.M. Abduljalil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, Yemen
| |
Collapse
|
366
|
Esbin MN, Whitney ON, Chong S, Maurer A, Darzacq X, Tjian R. Overcoming the bottleneck to widespread testing: a rapid review of nucleic acid testing approaches for COVID-19 detection. RNA (NEW YORK, N.Y.) 2020; 26:771-783. [PMID: 32358057 PMCID: PMC7297120 DOI: 10.1261/rna.076232.120] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The current COVID-19 pandemic presents a serious public health crisis, and a better understanding of the scope and spread of the virus would be aided by more widespread testing. Nucleic-acid-based tests currently offer the most sensitive and early detection of COVID-19. However, the "gold standard" test pioneered by the U.S. Centers for Disease Control and Prevention takes several hours to complete and requires extensive human labor, materials such as RNA extraction kits that could become in short supply, and relatively scarce qPCR machines. It is clear that a huge effort needs to be made to scale up current COVID-19 testing by orders of magnitude. There is thus a pressing need to evaluate alternative protocols, reagents, and approaches to allow nucleic-acid testing to continue in the face of these potential shortages. There has been a tremendous explosion in the number of papers written within the first weeks of the pandemic evaluating potential advances, comparable reagents, and alternatives to the "gold-standard" CDC RT-PCR test. Here we present a collection of these recent advances in COVID-19 nucleic acid testing, including both peer-reviewed and preprint articles. Due to the rapid developments during this crisis, we have included as many publications as possible, but many of the cited sources have not yet been peer-reviewed, so we urge researchers to further validate results in their own laboratories. We hope that this review can urgently consolidate and disseminate information to aid researchers in designing and implementing optimized COVID-19 testing protocols to increase the availability, accuracy, and speed of widespread COVID-19 testing.
Collapse
Affiliation(s)
- Meagan N Esbin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Oscar N Whitney
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Shasha Chong
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
- The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Anna Maurer
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
- The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
367
|
Li C, Ren L. Recent progress on the diagnosis of 2019 Novel Coronavirus. Transbound Emerg Dis 2020; 67:1485-1491. [PMID: 32395897 PMCID: PMC7272792 DOI: 10.1111/tbed.13620] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Therefore, convenient, timely and accurate detection of SARS-CoV-2 is urgently needed. Here, we review the types, characteristics and shortcomings of various detection methods, as well as perspectives for the SARS-CoV-2 diagnosis. Clinically, nucleic acid-based methods are sensitive but prone to false-positive. The antibody-based method has slightly lower sensitivity but higher accuracy. Therefore, it is suggested to combine the two methods to improve the detection accuracy of COVID-19.
Collapse
Affiliation(s)
- Chun Li
- The Chinese Peoples’ Liberation Army 964 HospitalChangchunChina
| | - Linzhu Ren
- College of Animal SciencesJilin UniversityChangchunChina
| |
Collapse
|
368
|
Dharavath B, Yadav N, Desai S, Sunder R, Mishra R, Ketkar M, Bhanshe P, Gupta A, Redhu AK, Patkar N, Dutt S, Gupta S, Dutt A. A one-step, one-tube real-time RT-PCR based assay with an automated analysis for detection of SARS-CoV-2. Heliyon 2020; 6:e04405. [PMID: 32665985 PMCID: PMC7341355 DOI: 10.1016/j.heliyon.2020.e04405] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023] Open
Abstract
Early diagnosis of SARS-CoV-2 infected patients is essential to control the dynamics of the COVID-19 pandemic. We develop a rapid and accurate one-step multiplex TaqMan probe-based real-time RT-PCR assay, along with a computational tool to systematically analyse the data. Our assay could detect to a limit of 15 copies of SARS-CoV-2 transcripts-based on experiments performed by spiking total human RNA with in vitro synthesized viral transcripts. The assay was evaluated by performing 184 validations for the SARS-CoV-2 Nucleocapsid gene and human RNase P as an internal control reference gene with dilutions ranging from 1-100 ng for human RNA on a cohort of 26 clinical samples. 5 of 26 patients were confirmed to be infected with SARS-CoV-2, while 21 tested negative, consistent with the standards. The accuracy of the assay was found to be 100% sensitive and 100% specific based on the 26 clinical samples that need to be further verified using a large number of clinical samples. In summary, we present a rapid, easy to implement real-time PCR based assay with automated analysis using a novel COVID qPCR Analyzer tool with graphical user interface (GUI) to analyze the raw qRT-PCR data in an unbiased manner at a cost of under $3 per reaction and turnaround time of less than 2h, to enable in-house SARS-CoV-2 testing across laboratories.
Collapse
Affiliation(s)
- Bhasker Dharavath
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Neelima Yadav
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Roma Sunder
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Rohit Mishra
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Prasanna Bhanshe
- Haematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Anurodh Gupta
- Haematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Archana Kumari Redhu
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Nikhil Patkar
- Haematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Sudeep Gupta
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Adjunct Faculty, Institute of Advanced Virology, Kerala State Council for Science, Technology and Environment, Govt of Kerala, Thonnakkal, Kerala, 695317, India
| |
Collapse
|
369
|
D'Cruz RJ, Currier AW, Sampson VB. Laboratory Testing Methods for Novel Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Front Cell Dev Biol 2020; 8:468. [PMID: 32582718 PMCID: PMC7287038 DOI: 10.3389/fcell.2020.00468] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 12/28/2022] Open
Abstract
Following the first reports of coronavirus disease-19 (COVID-19) by China to the World Health Organization (WHO) on 31st December 2019, more than 4,302,774 novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) cases have been reported by authorities in 212 countries and territories by 12th May 2020. The outbreak and spread of COVID-19 worldwide, highlights the critical need for developing rapid and accurate diagnostic testing methods for emerging human coronavirus (CoV) infections. Testing is crucial to track the spread of disease during a pandemic, and to swiftly permit public health interventions including isolation, quarantine, and appropriate clinical management of afflicted individuals. The key components of viral diagnostic tests are (1) collection of the appropriate sample (blood, nasal swab, and throat swab), (2) availability of the genetic and proteomic sequences of the novel virus for analysis, and (3) rapid and accurate laboratory testing methods. The current gold standard for the molecular diagnosis of SARS-CoV-2 infection is the real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for the qualitative and quantitative detection of viral nucleic acids. Other relevant laboratory methods include enzyme-linked immunoassays (EIA) for viral antibody and antigen detection, and serum viral neutralization (SVN) assays for antibody neutralization determination. The challenges faced in developing a diagnostic test for a novel pathogen are the ability to measure low viral loads for early detection, to provide low or no cross-reactivity with other viral strains and to deliver results rapidly. Several point-of-care molecular devices are currently being integrated for fast and accurate diagnosis of SARS-CoV-2 infections. This review discusses the current laboratory methods available to test for coronaviruses by focusing on the present COVID-19 outbreak.
Collapse
Affiliation(s)
- Roshan J D'Cruz
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Arthur W Currier
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Valerie B Sampson
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
370
|
Wei S, Kohl E, Djandji A, Morgan S, Whittier S, Mansukhani M, Hod E, D'Alton M, Suh Y, Williams Z. Direct diagnostic testing of SARS-CoV-2 without the need for prior RNA extraction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.28.20115220. [PMID: 32577685 PMCID: PMC7302291 DOI: 10.1101/2020.05.28.20115220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The COVID-19 pandemic has resulted in an urgent global need for rapid, point-of-care diagnostic testing. Existing methods for nucleic acid amplification testing (NAAT) require an RNA extraction step prior to amplification of the viral RNA. This step necessitates the use of a centralized laboratory or complex and costly proprietary cartridges and equipment, and thereby prevents low-cost, scalable, point-of-care testing. We report the development of a highly sensitive and robust, easy-to-implement, SARS-CoV-2 test that utilizes isothermal amplification and can be run directly on viral transport media following a nasopharyngeal swab without the need for prior RNA extraction. Our assay provides visual results in 30 min with 85% sensitivity, 100% specificity, and a limit of detection (LoD) of 2.5 copies/μl, and can be run using a simple heat block.
Collapse
|
371
|
Motley MP, Bennett-Guerrero E, Fries BC, Spitzer ED. Review of Viral Testing (Polymerase Chain Reaction) and Antibody/Serology Testing for Severe Acute Respiratory Syndrome-Coronavirus-2 for the Intensivist. Crit Care Explor 2020; 2:e0154. [PMID: 32696013 PMCID: PMC7314351 DOI: 10.1097/cce.0000000000000154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE As the severe acute respiratory syndrome-coronavirus-2 pandemic develops, assays to detect the virus and infection caused by it are needed for diagnosis and management. To describe to clinicians how each assay is performed, what each assay detects, and the benefits and limitations of each assay. DATA SOURCES Published literature and internet. STUDY SELECTION As well done, relevant and recent as possible. DATA EXTRACTION Sources were read to extract data from them. DATA SYNTHESIS Was synthesized by all coauthors. CONCLUSIONS Available assays test for current or previous severe acute respiratory syndrome-coronavirus-2 infection. Nucleic acid assays such as quantitative, or real-time, polymerase chain reaction and loop-mediated isothermal amplification are ideal for acute diagnosis with polymerase chain reaction testing remaining the "gold standard" to diagnose acute infection by severe acute respiratory syndrome-coronavirus-2, specifically the presence of viral RNA. Assays that detect serum antibodies can theoretically diagnose both acute and remote infection but require time for the patient to develop immunity and may detect nonspecific antibodies. Antibody assays that quantitatively measure neutralizing antibodies are needed to test efficacy of convalescent plasma therapy but are more specialized.
Collapse
Affiliation(s)
- Michael P Motley
- Departments of Medicine, Infectious Disease Division, Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY
| | | | - Bettina C Fries
- Division of Infectious Diseases, Department of Veterans Affairs, Northport VA Medical Center, Northport, NY
| | - Eric D Spitzer
- Department of Pathology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
372
|
Kitagawa Y, Orihara Y, Kawamura R, Imai K, Sakai J, Tarumoto N, Matsuoka M, Takeuchi S, Maesaki S, Maeda T. Evaluation of rapid diagnosis of novel coronavirus disease (COVID-19) using loop-mediated isothermal amplification. J Clin Virol 2020; 129:104446. [PMID: 32512376 PMCID: PMC7241399 DOI: 10.1016/j.jcv.2020.104446] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022]
Abstract
With the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for more rapid and simple detection technologies at the forefront of medical care worldwide. In this study, we evaluated the effectiveness of the Loopamp® 2019-SARSCoV-2 Detection Reagent Kit, which uses loop-mediated isothermal amplification (LAMP) technology. In this protocol, cDNA is synthesized from SARS-CoV-2 RNA using reverse transcriptase, followed by DNA amplification under isothermal conditions in one step. The RT-LAMP test kit amplified the targeted RNA of a SARS-CoV-2 isolate with a detection limit of 1.0 × 101 copies/μL, which was comparable to the detection sensitivity of quantitative reverse transcription PCR (RT-qPCR). Comparison with the results of RT-qPCR for 76 nasopharyngeal swab samples from patients with suspected COVID-19 showed a sensitivity of 100 % and a specificity of 97.6 %. In the 24 RNA specimens derived from febrile Japanese patients with or without influenza A, no amplification was observed using RT-LAMP. RT-LAMP could be a simple and easy-to-use diagnostic tool for the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Yutaro Kitagawa
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Yuta Orihara
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Rieko Kawamura
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Kazuo Imai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
| | - Jun Sakai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
| | - Masaru Matsuoka
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Shinichi Takeuchi
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
| | - Takuya Maeda
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan; Department of Laboratory Medicine, Saitama Medical University, Saitama, Japan.
| |
Collapse
|
373
|
Sharma S, Kumar V, Chawla A, Logani A. Rapid detection of SARS-CoV-2 in saliva: can an endodontist take the lead in point-of-care COVID-19 testing? Int Endod J 2020; 53:1017-1019. [PMID: 32344452 PMCID: PMC7267301 DOI: 10.1111/iej.13317] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- S Sharma
- Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - V Kumar
- Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - A Chawla
- Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - A Logani
- Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
374
|
Wang J, Cai K, He X, Shen X, Wang J, Liu J, Xu J, Qiu F, Lei W, Cui L, Ge Y, Wu T, Zhang Y, Yan H, Chen Y, Yu J, Ma X, Shi H, Zhang R, Li X, Gao Y, Niu P, Tan W, Wu G, Jiang Y, Xu W, Ma X. Multiple-centre clinical evaluation of an ultrafast single-tube assay for SARS-CoV-2 RNA. Clin Microbiol Infect 2020; 26:1076-1081. [PMID: 32422410 PMCID: PMC7227500 DOI: 10.1016/j.cmi.2020.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the performance of an ultrafast single-tube nucleic acid isothermal amplification detection assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA using clinical samples from multiple centres. METHODS A reverse transcription recombinase-aided amplification (RT-RAA) assay for SARS-CoV-2 was conducted within 15 minutes at 39°C with portable instruments after addition of extracted RNA. The clinical performance of RT-RAA assay was evaluated using 947 clinical samples from five institutions in four regions of China; approved commercial fluorescence quantitative real-time PCR (qRT-PCR) kits were used for parallel detection. The sensitivity and specificity of RT-RAA were compared and analysed. RESULTS The RT-RAA test results of 926 samples were consistent with those of qRT-PCR (330 were positive, 596 negative); 21 results were inconsistent. The sensitivity and specificity of RT-RAA was 97.63% (330/338, 95% confidence interval (CI) 95.21 to 98.90) and 97.87% (596/609, 95% CI 96.28 to 98.81) respectively. The positive and negative predictive values were 96.21% (330/343, 95% CI 93.45 to 97.88) and 98.68% (596/604, 95% CI 97.30 to 99.38) respectively. The total coincidence rate was 97.78% (926/947, 95% CI 96.80 to 98.70), and the kappa was 0.952 (p < 0.05). CONCLUSIONS With comparable sensitivity and specificity to the commercial qRT-PCR kits, RT-RAA assay for SARS-CoV-2 exhibited the distinctive advantages of simplicity and rapidity in terms of operation and turnaround time.
Collapse
Affiliation(s)
- J Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - K Cai
- Hubei Center for Disease Control and Prevention, Wuhan 430000, China
| | - X He
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - X Shen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - J Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Hebei Medical University, Shijiazhuang 050031, China
| | - J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - J Xu
- Hubei Center for Disease Control and Prevention, Wuhan 430000, China
| | - F Qiu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - W Lei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - L Cui
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Y Ge
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - T Wu
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Y Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - H Yan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Y Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - J Yu
- The NO.1 Affiliated hospital of Shanxi Datong University, Institute of Brain Science-Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Datong 037000, China
| | - X Ma
- The NO.1 Affiliated hospital of Shanxi Datong University, Institute of Brain Science-Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Datong 037000, China; The Fifth People's Hospital of DaTong, Datong 037000, China
| | - H Shi
- Datong City Center for Disease Control and Prevention, Datong 037000, China
| | - R Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Hebei Medical University, Shijiazhuang 050031, China
| | - X Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Y Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Hebei Medical University, Shijiazhuang 050031, China
| | - P Niu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - W Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - G Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Y Jiang
- Hubei Center for Disease Control and Prevention, Wuhan 430000, China.
| | - W Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - X Ma
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
375
|
Lippi G, Mattiuzzi C, Bovo C, Plebani M. Current laboratory diagnostics of coronavirus disease 2019 (COVID-19). ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:137-145. [PMID: 32420937 PMCID: PMC7569648 DOI: 10.23750/abm.v91i2.9548] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022]
Abstract
Laboratory medicine provides an almost irreplaceable contribution to the diagnostic reasoning and managed care of most human pathologies. The novel coronavirus disease 2019 (COVID-19) is not an exception to this paradigm. Although the relatively recent emergence does not allow to draw definitive conclusions on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics, some standpoints can be conveyed. First and foremost, it seems now clear that we will be living together with this virus for quite a long time, so that our vigilance and responsiveness against the emergence of new local outbreaks shall be maintained at the highest possible levels. The etiological diagnosis of COVID-19 is, and will remain for the foreseeable future, deeply based on direct identification of viral RNA by means of molecular biology techniques in biological materials, especially upper and lower respiratory tract specimens. Whether other materials, such as blood, urine, stools, saliva and throat washing, will become valid alternatives has not been unequivocally defined so far. As concerns serological testing, promising information can be garnered from preliminary investigations, showing that the vast majority of COVID-19 patients seem to develop a sustained immune response against the virus, characterized especially by emergence of anti-SARS-CoV-2 IgG and IgA, 1 to 2 weeks after the onset of fever and/or respiratory symptoms. Whether these antibodies will have persistent neutralizing activity against the virus is still to be elucidated on individual and general basis. The availability of rapid tests for detecting either viral antigens or anti-SARS-CoV-2 antibodies are a potentially viable opportunity for purposes of epidemiologic surveillance, though more information is needed on accuracy and reliability of these portable immunoassays.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy.
| | - Camilla Mattiuzzi
- Service of Clinical Governance, Provincial Agency for Social and Sanitary Services, Trento, Italy.
| | - Chiara Bovo
- Medical Direction, University Hospital of Verona, Verona, Italy.
| | - Mario Plebani
- Department of Laboratory Medicine, University Hospital of Padova, Padova, Italy.
| |
Collapse
|
376
|
Sanduzzi A, Sanduzzi Zamparelli S. Nasopharyngeal and Oropharyngeal Swabs, And/Or Serology for SARS COVID-19: What Are We Looking For? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093289. [PMID: 32397262 PMCID: PMC7246850 DOI: 10.3390/ijerph17093289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/26/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
Abstract
Governments and clinicians that were fully involved in the dramatic SARS-CoV-2 outbreak during the last few weeks in Italy (and more or less all over the world) are fiercely debating the use of methods for screening this viral infection. Thus, all countries are employing a lot of resources in order to test more and more subjects. For this purpose, there are different strategies, based on either direct or indirect tests. Among the first category, the main assays used for SARS-CoV-2 are based on a real-time reverse transcriptase polymerase chain reaction (RT-PCR). Such tests can be performed on nasopharyngeal and oropharyngeal swabs for the categories of those with symptoms and those potentially exposed. In order to integrate the molecular assays in the diagnosis of SARS-CoV-2, a wide range of serology immunoassays (IAs) have also been developed. If we want to identify "immune" people in order to let them to come back to work, serology is the best (and probably the only) approach.
Collapse
Affiliation(s)
- Alessandro Sanduzzi
- Section of Respiratory Disease, Department of Clinical Medicine and Surgery, Monaldi Hospital, Federico II University, 80138 Naples, Italy;
- Staff of The United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair on Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
- Correspondence:
| | - Stefano Sanduzzi Zamparelli
- Section of Respiratory Disease, Department of Clinical Medicine and Surgery, Monaldi Hospital, Federico II University, 80138 Naples, Italy;
| |
Collapse
|