351
|
Srinivasan S, Wang F, Glavas S, Ott A, Hofmann F, Aktories K, Kalman D, Bourne HR. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 2003; 160:375-85. [PMID: 12551955 PMCID: PMC2172671 DOI: 10.1083/jcb.200208179] [Citation(s) in RCA: 360] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neutrophils exposed to chemoattractants polarize and accumulate polymerized actin at the leading edge. In neutrophil-like HL-60 cells, this asymmetry depends on a positive feedback loop in which accumulation of a membrane lipid, phosphatidylinositol (PI) 3,4,5-trisphosphate (PI[3,4,5]P3), leads to activation of Rac and/or Cdc42, and vice versa. We now report that Rac and Cdc42 play distinct roles in regulating this asymmetry. In the absence of chemoattractant, expression of constitutively active Rac stimulates accumulation at the plasma membrane of actin polymers and of GFP-tagged fluorescent probes for PI(3,4,5)P3 (the PH domain of Akt) and activated Rac (the p21-binding domain of p21-activated kinase). Dominant negative Rac inhibits chemoattractant-stimulated accumulation of actin polymers and membrane translocation of both fluorescent probes and attainment of morphologic polarity. Expression of constitutively active Cdc42 or of two different protein inhibitors of Cdc42 fails to mimic effects of the Rac mutants on actin or PI(3,4,5)P3. Instead, Cdc42 inhibitors prevent cells from maintaining a persistent leading edge and frequently induce formation of multiple, short lived leading edges containing actin polymers, PI(3,4,5)P3, and activated Rac. We conclude that Rac plays a dominant role in the PI(3,4,5)P3-dependent positive feedback loop required for forming a leading edge, whereas location and stability of the leading edge are regulated by Cdc42.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Cellular and Molecular Pharmacology and the Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Struckhoff EC, Lundquist EA. The actin-binding protein UNC-115 is an effector of Rac signaling during axon pathfinding in C. elegans. Development 2003; 130:693-704. [PMID: 12506000 DOI: 10.1242/dev.00300] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rac GTPases control cell shape by regulating downstream effectors that influence the actin cytoskeleton. UNC-115, a putative actin-binding protein similar to human abLIM/limatin, has previously been implicated in axon pathfinding. We have discovered the role of UNC-115 as a downstream cytoskeletal effector of Rac signaling in axon pathfinding. We show that unc-115 double mutants with ced-10 Rac, mig-2 Rac or unc-73 GEF but not with rac-2/3 Rac displayed synthetic axon pathfinding defects, and that loss of unc-115 function suppressed the formation of ectopic plasma membrane extensions induced by constitutively-active rac-2 in neurons. Furthermore, we show that UNC-115 can bind to actin filaments. Thus, UNC-115 is an actin-binding protein that acts downstream of Rac signaling in axon pathfinding.
Collapse
Affiliation(s)
- Eric C Struckhoff
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045-7534, USA
| | | |
Collapse
|
353
|
Abstract
Rac plays a central role in regulating neutrophil responses to inflammatory signals, including actin remodeling, chemotaxis, and superoxide production by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Rac-GTP is a component of the membrane-assembled NADPH oxidase complex, and new evidence suggests that Rac-GTP interacts directly with the oxidase flavocytochrome, in addition to binding to the regulatory p67 subunit, to regulate electron transfer both independently and cooperatively from NADPH to molecular oxygen. Other new studies suggest that Rac-GTP plays a dual role in NADPH oxidase activation, and can initiate signaling pathways leading to translocation of cytosolic oxidase subunits in addition to functioning in the assembled enzyme complex. Rac activation in response to neutrophil chemoattractants may be regulated in large part by a newly identified guanine nucleotide exchange factor, P-Rex1, which is activated by either phosphatidylinositols or Gbetagamma subunits. Multiple Rac GTPase activating proteins are present in neutrophils and may also modulate levels of Rac-GTP. The importance of Rac in a broad range of neutrophil functions is shown by the variety of defects seen in neutrophils from Rac2 knockout mice and from a patient with recurrent infections and a dominant-negative mutation in Rac2.
Collapse
Affiliation(s)
- Mary C Dinauer
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, James Whitcomb Riley Hospitals for Children, Indiana University School of Medicine, Indianapolis 46202, USA.
| |
Collapse
|
354
|
Carlyon JA, Chan WT, Galán J, Roos D, Fikrig E. Repression of rac2 mRNA expression by Anaplasma phagocytophila is essential to the inhibition of superoxide production and bacterial proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:7009-18. [PMID: 12471136 DOI: 10.4049/jimmunol.169.12.7009] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anaplasma phagocytophila, the etiologic agent of human granulocytic ehrlichiosis, is an emerging bacterial pathogen that invades neutrophils and can be cultivated in HL-60 cells. Infected neutrophils and HL-60 cells fail to produce superoxide anion (O(2)(-)), which is partially attributable to the fact that A. phagocytophila inhibits transcription of gp91(phox), an integral component of NADPH oxidase. cDNA microarray and RT-PCR analyses demonstrated that transcription of the gene encoding Rac2, a key component in NADPH oxidase activation, was down-regulated in infected HL-60 cells. Quantitative RT-PCR demonstrated that rac2 mRNA expression was reduced 7-fold in retinoic acid-differentiated HL-60 cells and 50-fold in neutrophils following A. phagocytophila infection. Rac2 protein expression was absent in infected HL-60 cells. Rac1 and Rac2 are interchangeable in their abilities to activate NADPH oxidase. HL-60 cells transfected to express myc-tagged rac1 and gp91(phox) from the CMV immediate early promoter maintained the ability to generate O(2)(-) 120 h postinfection. A. phagocytophila proliferation was severely inhibited in these cells. These results directly attribute the inhibition of rac2 and gp91(phox) transcription to the loss of NADPH oxidase activity in A. phagocytophila-infected cells and demonstrate its importance to bacterial intracellular survival.
Collapse
Affiliation(s)
- Jason A Carlyon
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA
| | | | | | | | | |
Collapse
|
355
|
Gardiner EM, Pestonjamasp KN, Bohl BP, Chamberlain C, Hahn KM, Bokoch GM. Spatial and temporal analysis of Rac activation during live neutrophil chemotaxis. Curr Biol 2002; 12:2029-34. [PMID: 12477392 DOI: 10.1016/s0960-9822(02)01334-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ability of cells to recognize and respond with directed motility to chemoattractant agents is critical to normal physiological function. Neutrophils represent the prototypic chemotactic cell in that they respond to signals initiated through the binding of bacterial peptides and other chemokines to G protein-coupled receptors with speeds of up to 30 microm/min. It has been hypothesized that localized regulation of cytoskeletal dynamics by Rho GTPases is critical to orchestrating cell movement. Using a FRET-based biosensor approach, we investigated the dynamics of Rac GTPase activation during chemotaxis of live primary human neutrophils. Rac has been implicated in establishing and maintaining the leading edge of motile cells, and we show that Rac is dynamically activated at specific locations in the extending leading edge. However, we also demonstrate activated Rac in the retracting tail of motile neutrophils. Rac activation is both stimulus and adhesion dependent. Expression of a dominant-negative Rac mutant confirms that Rac is functionally required both for tail retraction and for formation of the leading edge during chemotaxis. These data establish that Rac GTPase is spatially and temporally regulated to coordinate leading-edge extension and tail retraction during a complex motile response, the chemotaxis of human neutrophils.
Collapse
Affiliation(s)
- Elisabeth M Gardiner
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
356
|
Vicente-Manzanares M, Sancho D, Yáñez-Mó M, Sánchez-Madrid F. The leukocyte cytoskeleton in cell migration and immune interactions. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:233-89. [PMID: 12049209 DOI: 10.1016/s0074-7696(02)16007-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Leukocyte migration is crucial during the development of the immune system and in the responses to infection, inflammation, and tumor rejection. The migratory behavior of leukocytes under physiological and pathological conditions as well as the extracellular cues and intracellular machinery that control and guide migration have been studied thoroughly. The cytoskeleton of leukocytes is extremely versatile, bearing characteristic features that enable these cells to migrate under conditions of flow through narrow spaces and onto target tissues. What makes the cytoskeleton machinery so extraordinary is not so much its molecular composition, but its flexibility which allows it to display a unique combination of responses to the extracellular medium and a rapid regulation of the architecture of its components. This review focuses on the cytoskeleton of the leukocyte. Its molecular components and the regulation of their assembly and organization are discussed. Furthermore, it highlights aspects of the regulation of the leukocyte cytoskeleton that confer flexibility to these cells in order to perform their specific tasks. Finally, different subcellular structures such as the immunological synapse, the uropod of migrating leukocytes, and the phagosome displayed by phagocytic cells are discussed in detail. The relationship of the leukocyte with its environment occurs through different kinds of receptors that interact with ligands that are soluble, fixed on the membrane of other cells, or immobilized on the extracellular matrix. The impact of receptor-ligand binding on the functional responses and the rearrangement of the cytoskeleton is also examined.
Collapse
Affiliation(s)
- Miguel Vicente-Manzanares
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
357
|
Abstract
Rho GTPases including Rho, Rac, and Cdc42 act as intracellular molecular switches to control cellular responses such as actin cytoskeleton rearrangement, gene transcription, cell growth, and possibly transformation. Their roles have been increasingly implicated in activation of signaling processes in leukocytes including integrin-mediated signal transduction and growth factor-induced cell survival and proliferation pathways. In particular, functional disruption of Rac2, a hematopoietic-specific Rho GTPase, causes severe myeloid cell dysfunction in both mouse and man. Rac2-deficient mice and a human patient with a D57N Rac2 mutant share a phenotype of leukocytosis with defective neutrophil chemotaxis and superoxide production in response to some, but not all, agonists. Our studies also suggested that the phenotypic abnormalities associated with D57N may involve not only neutrophil cellular functions, but also abnormal cell survival in other hematopoietic cells. Together, these data demonstrate a critical and unique role for Rac2 in normal neutrophil function and define a new genetic immunodeficiency syndrome in humans.
Collapse
Affiliation(s)
- Yi Gu
- Howard Hughes Medical Institute, H.B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
358
|
Vilhardt F, Plastre O, Sawada M, Suzuki K, Wiznerowicz M, Kiyokawa E, Trono D, Krause KH. The HIV-1 Nef protein and phagocyte NADPH oxidase activation. J Biol Chem 2002; 277:42136-43. [PMID: 12207012 DOI: 10.1074/jbc.m200862200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nef, a multifunctional HIV protein, activates the Vav/Rac/p21-activated kinase (PAK) signaling pathway. Given the potential role of this pathway in the activation of the phagocyte NADPH oxidase, we have investigated the effect of the HIV-1 Nef protein on the phagocyte respiratory burst. Microglia (cell line and primary culture) were transduced with lentiviral expression vectors. Expression of Nef did not activate the NADPH oxidase by itself but led to a massive enhancement of the responses to a variety of stimuli (Ca(2+) ionophore, formyl peptide, endotoxin). These effects were not caused by up-regulation of phagocyte NADPH oxidase subunits. Nef mutants lacking motifs involved in the interaction with Vav and PAK failed to reproduce the effects of wild type Nef, suggesting a role for the Vav/Rac/PAK signaling pathway. The following results suggest a key role for Rac in the priming effect of Nef. (i) Inactivation of Rac by Clostridium difficile toxin B abolished the Nef effect. (ii) The fraction of activated Rac1 was increased in Nef-transduced cells, and (iii) the dominant positive Rac1(V12) mutant mimicked the effect of Nef. These results are to our knowledge the first analysis of the effect of Rac activation on the NADPH oxidase in intact phagocytes. Rac activation is not sufficient to stimulate the phagocyte NADPH oxidase; however, it markedly enhances the NADPH oxidase response to other stimuli.
Collapse
Affiliation(s)
- Frederik Vilhardt
- Biology of Ageing Laboratory, Department of Geriatrics, Geneva University Hospitals, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Gu Y, Byrne MC, Paranavitana NC, Aronow B, Siefring JE, D'Souza M, Horton HF, Quilliam LA, Williams DA. Rac2, a hematopoiesis-specific Rho GTPase, specifically regulates mast cell protease gene expression in bone marrow-derived mast cells. Mol Cell Biol 2002; 22:7645-57. [PMID: 12370311 PMCID: PMC135684 DOI: 10.1128/mcb.22.21.7645-7657.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Revised: 07/01/2002] [Accepted: 08/08/2002] [Indexed: 11/20/2022] Open
Abstract
Rho family GTPases activate intracellular kinase cascades to modulate transcription of multiple genes. Previous studies have examined the roles of the ubiquitously expressed Rho GTPase, Rac1, in regulation of gene expression in cell lines and implicated NF-kappaB, serum response factor, and kinase signaling pathways in this regulation. To understand the role of the closely related but hematopoiesis-specific Rho GTPase, Rac2, in regulation of gene transcription, we compared the gene expression profiles between wild-type and Rac2(-/-) bone marrow-derived mast cells. Our data demonstrate remarkable specificity in the regulation of gene expression by Rac2 versus Rac1. Microarray analysis demonstrated that expression of 38 known genes was significantly altered in Rac2(-/-) mast cells after cytokine stimulation compared with those in wild-type cells. Of these, the expression of the mouse mast cell protease 7 (MMCP-7) gene in wild-type cells was highly induced at the transcriptional level after stimulation with stem cell factor (SCF). In spite of compensatorily increased expression of Rac1 in Rac2-deficient cells, SCF-induced MMCP-7 transcription did not occur. Surprisingly, the loss of MMCP-7 induction was not due to decreased activation of NF-kappaB, a transcription factor postulated to lie downstream of Rac1 and known to play a critical role in hematopoietic cell differentiation and proliferation. However, the activities of c-Jun N-terminal kinases (JNKs) were markedly decreased in Rac2(-/-) mast cells. Our results suggest that cytokine-stimulated activation of MMCP-7 gene transcription is selectively regulated by a Rac2-dependent JNK signaling pathway in primary mast cells and imply a remarkable specificity in the regulation of transcriptional activity by these two highly related Rho GTPases.
Collapse
Affiliation(s)
- Yi Gu
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Li S, Yamauchi A, Marchal CC, Molitoris JK, Quilliam LA, Dinauer MC. Chemoattractant-stimulated Rac activation in wild-type and Rac2-deficient murine neutrophils: preferential activation of Rac2 and Rac2 gene dosage effect on neutrophil functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5043-51. [PMID: 12391220 DOI: 10.4049/jimmunol.169.9.5043] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hemopoietic-specific Rho family GTPase Rac2 shares 92% amino acid identity with ubiquitously expressed Rac1. Neutrophils from rac2(-/-) mice have multiple defects, including chemoattractant-stimulated NADPH oxidase activity and chemotaxis, which may result from an overall reduction in cellular Rac or mechanisms that discriminate Rac1 and Rac2. We show that murine neutrophils have similar amounts of Rac1 and Rac2, unlike human neutrophils, which express predominantly Rac2. An affinity precipitation assay for Rac-GTP showed that although FMLP-induced activation of both isoforms in wild-type neutrophils, approximately 4-fold more Rac2-GTP was detected than Rac1-GTP. Wild-type and Rac2-deficient neutrophils have similar levels of total Rac1. FMLP-induced Rac1-GTP in rac2(-/-) neutrophils was approximately 3-fold greater than in wild-type cells, which have similar levels of total Rac1, yet FMLP-stimulated F-actin, chemotaxis, and superoxide production are markedly impaired in rac2(-/-) neutrophils. Heterozygous rac2(+/-) neutrophils, which had intermediate levels of total and FMLP-induced activated Rac2, exhibited intermediate functional responses to FMLP, suggesting that Rac2 was rate limiting for these functions. Thus, phenotypic defects in FMLP-stimulated Rac2-deficient neutrophils appear to reflect distinct activation and signaling profiles of Rac1 and Rac2, rather than a reduction in the total cellular level of Rac.
Collapse
Affiliation(s)
- Shijun Li
- Herman B Wells Center for Pediatric Research and Department of Pediatrics (Hematology/Oncology), Indiana University Medical School, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
361
|
Grill B, Schrader JW. Activation of Rac-1, Rac-2, and Cdc42 by hemopoietic growth factors or cross-linking of the B-lymphocyte receptor for antigen. Blood 2002; 100:3183-92. [PMID: 12384416 DOI: 10.1182/blood-2002-01-0154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interleukin-3 (IL-3)-induced activation of endogenous Rac-1, Rac-2, and Cdc42. Rac-1 was also activated by colony-stimulating factor-1 (CSF-1), Steel locus factor (SLF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-5 or by cross-linking the B-lymphocyte receptor for antigen (BCR). The activation of Rac-1 induced by cross-linking the BCR or by IL-3 stimulation was blocked only partially by Ly294002, with about 25% to 30% of Rac-1 activation still occurring in the absence of detectable increases in phosphatidyl-inositol-3 kinase (PI-3K) activity. Overexpression of constitutively active mutants of H-Ras, N-Ras, or M-Ras resulted in activation of coexpressed Rac-1 through an Ly29402-resistant, PI-3K-independent mechanism. Overexpression of constitutively active mutants of p21 Ras, or Rac-1, but not of PI-3K, was sufficient for activation of p38 mitogen-activated protein kinase (MAPK) in cells of hemopoietic origin. Inhibition of increases in PI-3K activity by Ly294002 had no effect on the IL-3-induced activation of p38 MAPK. In contrast, Ly294002 partially inhibited the activation of p38 MAPK induced by cross-linking of the BCR, although some p38 MAPK activation occurred in the absence of increases in the activity of Rac-1 or PI-3K. The activation of Rac-1, Rac-2, and Cdc42 by IL-3 and other hemopoietic growth factors is likely to be an important component of their actions in promoting growth, survival, and function.
Collapse
Affiliation(s)
- Brock Grill
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
362
|
Cicchetti G, Allen PG, Glogauer M. Chemotactic signaling pathways in neutrophils: from receptor to actin assembly. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 13:220-8. [PMID: 12090462 DOI: 10.1177/154411130201300302] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this review, we present an overview of the signaling elements between neutrophil chemotactic receptors and the actin cytoskeleton that drives cell motility. From receptor-ligand interactions, activation of heterotrimeric G-proteins, their downstream effectors PLC and PI-3 kinase, the activation of small GTPases of the Rho family, and their regulation of particular cytoskeletal regulatory proteins, we describe pathways specific to the chemotaxing neutrophil and elements documented to be important for neutrophil function.
Collapse
Affiliation(s)
- Gregor Cicchetti
- Hematology Division, Harvard Medical School, Brigham and Women's Hospital, LMRC 301, Boston, MA 02115, USA
| | | | | |
Collapse
|
363
|
Abstract
Reactive oxygen species (ROS) have been increasingly recognized as important components of cell signaling in addition to their well-established roles in host defense. The formation of ROS in phagocytic and nonphagocytic cells involves membrane-localized and Rac guanosine triphosphatase (GTPase)-regulated reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase(s). We discuss here the current molecular models for Rac GTPase action in the control of the phagocytic leukocyte NADPH oxidase. As a mechanistically detailed example of Rac GTPase signaling, the NADPH oxidase provides a potential paradigm for signaling by Rho family GTPases in general.
Collapse
Affiliation(s)
- Gary M Bokoch
- Departments of Immunology and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
364
|
The TRQQKRP motif located near the C-terminus of Rac2 is essential for Rac2 biologic functions and intracellular localization. Blood 2002. [DOI: 10.1182/blood.v100.5.1679.h81702001679_1679_1688] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rac GTPases regulate a wide variety of cellular processes including actin cytoskeleton organization, gene expression, cell-cycle progression, and apoptosis. Here we report that the TRQQKRP motif of Rac2 located near the C-terminus, a region of sequence disparity among Rac proteins, is essential for complementation of Rac2 function in Rac2-deficient cells. Deletion of this sequence can also intragenically suppress the dominant-negative Rac2D57Nmutation in a variety of functional assays. In Rac2-deficient cells, expression of TRQQKRP-deleted Rac2 protein is unable to completely rescue migration and nicotinamide adenine dinucleotide phosphate oxidase deficiencies previously described in these cells. In fibroblasts, the Rac2D57N mutant phenotypes of abnormal proliferation, cell morphology, and membrane ruffling are suppressed by the TRQQKRP motif deletion. In myeloid hematopoietic cells, the deletion of the TRQQKRP motif eliminates a Rac2D57N-induced block in in vitro differentiation of neutrophils not previously described with this mutant. Mechanistically, deletion of the TRQQKRP motif results in diminished geranylgeranylation and delocalization of intracellular Rac2 protein. Taken together, these results indicate that the TRQQKRP motif in Rac2 protein is required for efficient prenylation and correct intracellular localization of Rac2 protein and is essential for Rac2 to mediate a variety of its biologic functions. These data suggest that precise localization of Rac2 protein in intracellular compartments and/or with other proteins/lipids is a prerequisite for its diverse functions.
Collapse
|
365
|
Abstract
Fcγ receptor–mediated phagocytosis is a complex process involving the activation of protein tyrosine kinases, events that are potentially down-regulated by protein tyrosine phosphatases. We used the J774A.1 macrophage cell line to examine the roles played by the protein tyrosine phosphatase SHP-1 in the negative regulation of Fcγ receptor–mediated phagocytosis. Stimulation with sensitized sheep red blood cells (sRBCs) induced tyrosine phosphorylation of CBL and association of CBL with CRKL. These events were completely or partially abrogated by PP1 or the heterologous expression of dominant-negative SYK, respectively. Heterologous expression of wild-type but not catalytically inactive SHP-1 also completely abrogated the phagocytosis of IgG-sensitized sRBCs. Most notably, overexpressed SHP-1 associates with CBL and this association led to CBL dephosphorylation, loss of the CBL-CRKL interaction, and the suppression of Rac activation. These data represent the first direct evidence that SHP-1 is involved in the regulation of Fcγ receptor–mediated phagocytosis and suggest that activating signals mediated by SRC family kinases SYK, CBL, phosphatidyl inositol-3 (PI-3) kinase, and Rac are directly opposed by inhibitory signals through SHP-1.
Collapse
|
366
|
Schrader JW, Schallhorn A, Grill B, Guo X. Activation of small GTPases of the Ras and Rho family by growth factors active on mast cells. Mol Immunol 2002; 38:1181-6. [PMID: 12217381 DOI: 10.1016/s0161-5890(02)00060-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The small GTPases of the Ras and Rho families are activated by the key growth factors for mast cell development and survival, SLF and IL-3. While there are many clues that activation of Ras and Rho proteins play critical roles in growth, survival and differentiation, as well as in functions, such as migration and degranulation, limitations in the specificity of experimental tools still obscure their precise functions. There is increasing evidence that differences in subcellular localization of closely related GTPases determines important differences in their function. However, other data also point to differences in sensitivity to activation by GEF and in the effectors they engage.
Collapse
Affiliation(s)
- John W Schrader
- The Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, BC, V6T 1Z3, Vancouver, Canada.
| | | | | | | |
Collapse
|
367
|
Wang C, Hayashi H, Harrison R, Chiu B, Chan JR, Ostergaard HL, Inman RD, Jongstra J, Cybulsky MI, Jongstra-Bilen J. Modulation of Mac-1 (CD11b/CD18)-mediated adhesion by the leukocyte-specific protein 1 is key to its role in neutrophil polarization and chemotaxis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:415-23. [PMID: 12077272 DOI: 10.4049/jimmunol.169.1.415] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukocyte-specific protein 1 (LSP1) is an intracellular filamentous-actin binding protein which modulates cell motility. The cellular process in which LSP1 functions to regulate motility is not yet identified. In this study, we show that LSP1 negatively regulates fMLP-induced polarization and chemotaxis of neutrophils through its function on adhesion via specific integrins. Using LSP1-deficient (Lsp1(-/-)) mice, we show increased neutrophil migration into mouse knee joints during zymosan-induced acute inflammation, an inflammatory model in which the number of resident synoviocytes are not affected by LSP1-deficiency. In vitro chemotaxis experiments performed by time-lapse videomicroscopy showed that purified Lsp1(-/-) bone-marrow neutrophils exhibit an increased migration rate toward a gradient of fMLP as compared with wild-type neutrophils. This difference was observed when cells migrated on fibrinogen, but not fibronectin, suggesting a role for LSP1 in modulating neutrophil adhesion by specific integrins. LSP1 is also a negative regulator of fMLP-induced adhesion to fibrinogen or ICAM-1, but not to ICAM-2, VCAM-1, or fibronectin. These results suggest that LSP1 regulates the function of Mac-1 (CD11b/CD18), which binds only to fibrinogen and ICAM-1 among the substrates we tested. fMLP-induced filamentous actin polarization is also increased in the absence of LSP1 when cells were layered on fibrinogen, but not on fibronectin. Our findings suggest that the increased neutrophil recruitment in Lsp1(-/-) mice during acute inflammation derives from the negative regulatory role of LSP1 on neutrophil adhesion, polarization, and migration via specific integrins, such as Mac-1, which mediate neutrophil responses to chemotactic stimuli.
Collapse
Affiliation(s)
- Chunjie Wang
- Cellular and Molecular Biology Division, Toronto Western Research Institute, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Abstract
Ubiquitin-mediated degradation targets cell cycle regulators for proteolysis. Much of the ubiquitin pathway's substrate specificity is conferred by E3 ubiquitin ligases, and cullins are core components of some E3s. CUL-4A encodes one of six mammalian cullins and is amplified and/or overexpressed in breast cancer, which suggests a role in regulating cell cycle progression. To examine CUL-4A's physiologic function, we generated a CUL-4A deletion mutation in mice. No viable CUL-4A(-/-) pups and no homozygous mutant embryos as early as 7.5 days postcoitum (dpc) were recovered. However, CUL-4A(-/-) blastocysts are viable, hatch, form an inner cell mass and trophectoderm, and implant (roughly 4.5 dpc), indicating that CUL-4A(-/-) embryos die between 4.5 and 7.5 dpc. Despite 87% similarity between the Cul-4A and Cul-4B cullins, the CUL-4A(-/-) lethal phenotype indicates that CUL-4A has one or more distinct function(s). Surprisingly, 44% fewer heterozygous pups were recovered than expected by Mendelian genetics, indicating that many heterozygous embryos also die during gestation due to haploinsufficiency. Taken together, our findings indicate that appropriate CUL-4A expression is critical for early embryonic development.
Collapse
Affiliation(s)
- Binghui Li
- Department of Pediatric, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut Street, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
369
|
Abstract
Experiments with cell lines have unveiled the implication of the Rho/Rac family of GTPases in cytoskeletal organization, mitogenesis, and cell migration. However, there have not been adequate animal models to investigate the role of these proteins in more physiological settings. This scenario has changed recently in the case of the T-cell lineage after the generation of animal models for Rho/Rac family members, their regulators, and effectors. These studies have revealed the implication of these GTPases on multiple regulatory layers of T-cells, including the coordination of cytoskeletal change, activation of kinase cascades, stimulation of calcium fluxes, and the induction of gene expression. These pathways affect the transition of different T-cell maturation stages, the positive/negative selection of thymocytes, T-cell responses to antigens, and the homeostasis of peripheral T-lymphocytes. Moreover, these animals have revealed interesting cross-talks between Rho/Rac pathways and other signal transduction routes that participate in lymphocyte responses.
Collapse
Affiliation(s)
- Xosé R Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, University of Salamanca-CSIC. 37007 Salamanca, Spain.
| |
Collapse
|
370
|
Abstract
P-Rex1, a novel Rac activator, has been identified in the first biochemical purification of a guanine nucleotide exchange factor for GTPases of the Rho family. P-Rex1 is synergistically activated by PIP(3) and Gbetagamma and may act as a coincidence detector for these signaling molecules.
Collapse
Affiliation(s)
- Orion D Weiner
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave/ C-1, 502, Boston, Massachusetts 02115, USA.
| |
Collapse
|
371
|
Croker BA, Handman E, Hayball JD, Baldwin TM, Voigt V, Cluse LA, Yang FC, Williams DA, Roberts AW. Rac2-deficient mice display perturbed T-cell distribution and chemotaxis, but only minor abnormalities in T(H)1 responses. Immunol Cell Biol 2002; 80:231-40. [PMID: 12067410 DOI: 10.1046/j.1440-1711.2002.01077.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The haematopoietic-specific RhoGTPase, Rac2, has been indirectly implicated in T-lymphocyte development and function, and as a pivotal regulator of T Helper 1 (T(H)1) responses. In other haematopoietic cells it regulates cytoskeletal rearrangement downstream of extracellular signals. Here we demonstrate that Rac2 deficiency results in an abnormal distribution of T lymphocytes in vivo and defects in T-lymphocyte migration and filamentous actin generation in response to chemoattractants in vitro. To investigate the requirement for Rac2 in IFN-gamma production and TH1 responses in vivo, Rac2-deficient mice were challenged with Leishmania major and immunized with ovalbumin-expressing cytomegalovirus. Despite a minor skewing towards a T(H)2 phenotype, Rac2-deficient mice displayed no increased susceptibility to L. major infection. Cytotoxic T-lymphocyte responses to cytomegalovirus and ovalbumin were also normal. Although Rac2 is required for normal T-lymphocyte migration, its role in the generation of T(H)1 responses to infection in vivo is largely redundant.
Collapse
Affiliation(s)
- Ben A Croker
- Divisions of Cancer, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, South Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Yamamori T, Inanami O, Sumimoto H, Akasaki T, Nagahata H, Kuwabara M. Relationship between p38 mitogen-activated protein kinase and small GTPase Rac for the activation of NADPH oxidase in bovine neutrophils. Biochem Biophys Res Commun 2002; 293:1571-8. [PMID: 12054696 DOI: 10.1016/s0006-291x(02)00418-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Superoxide production by NADPH oxidase is essential for bactericidal properties of neutrophils. However, molecular mechanisms underlying the activation of this enzyme remain largely unknown. Here, using bovine neutrophils we examined the role of p38 mitogen-activated protein kinase (p38 MAPK) in the signaling pathways of the NADPH oxidase activation. Superoxide production was induced by stimulation with serum-opsonized zymosan (OZ) and attenuated by p38 MAPK inhibitor, SB203580. OZ stimulation induced the translocation of p47(phox) and Rac to the plasma membrane and SB203580 completely blocked the translocation of Rac, but only partially blocked that of p47(phox). Furthermore, SB203580 abolished the OZ-elicited activation of Rac, which was assessed by detecting the GTP-bound form of this protein. Phosphatidylinositol 3-kinase (PI3K) inhibitors, wortmannin and LY294002, blocked not only p38 MAPK activation but also Rac activation. However, SB203580 showed no effect on the PI3K activity. These results suggested that PI3K/p38 MAPK/Rac pathway was present in the activation of NADPH oxidase in bovine neutrophils.
Collapse
Affiliation(s)
- Tohru Yamamori
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
373
|
Price MO, Atkinson SJ, Knaus UG, Dinauer MC. Rac activation induces NADPH oxidase activity in transgenic COSphox cells, and the level of superoxide production is exchange factor-dependent. J Biol Chem 2002; 277:19220-8. [PMID: 11896053 DOI: 10.1074/jbc.m200061200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient expression of constitutively active Rac1 derivatives, (G12V) or (Q61L), was sufficient to induce phagocyte NADPH oxidase activity in a COS-7 cell model in which human cDNAs for essential oxidase components, gp91(phox), p22(phox), p47(phox), and p67(phox), were expressed as stable transgenes. Expression of constitutively active Rac1 in "COS(phox)" cells induced translocation of p47(phox) and p67(phox) to the membrane. Furthermore, translocation of p47(phox) was induced in the absence of p67(phox) expression, even though Rac does not directly bind p47(phox). Rac effector domain point substitutions (A27K, G30S, D38A, Y40C), which can selectively eliminate interaction with different effector proteins, impaired Rac1V12-induced superoxide production. Activation of endogenous Rac1 by expression of constitutively active Rac-guanine nucleotide exchange factor (GEF) derivatives was sufficient to induce high level NADPH oxidase activity in COS(phox) cells. The constitutively active form of the hematopoietic-specific GEF, Vav1, was the most effective at activating superoxide production, despite detection of higher levels of Rac1-GTP upon expression of constitutively active Vav2 or Tiam1 derivatives. These data suggest that Rac can play a dual role in NADPH oxidase activation, both by directly participating in the oxidase complex and by activating signaling events leading to oxidase assembly, and that Vav1 may be the physiologically relevant GEF responsible for activating this Rac-regulated complex.
Collapse
Affiliation(s)
- Marianne O Price
- Herman B Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
374
|
Strey A, Janning A, Barth H, Gerke V. Endothelial Rho signaling is required for monocyte transendothelial migration. FEBS Lett 2002; 517:261-6. [PMID: 12062449 DOI: 10.1016/s0014-5793(02)02643-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial toxins affecting Rho activity in microvascular endothelial cells were employed to elucidate whether endothelial Rho participates in regulating the migration of monocytes across monolayers of cultured endothelial cells. Inactivation of Rho by the Clostridium C3 exoenzyme resulted in an increased adhesion of peripheral blood monocytes to the endothelium and a decreased rate of transendothelial monocyte migration. Cytotoxic necrotizing factor 1-mediated activation of endothelial Rho also reduced the rate of monocyte transmigration, but did not affect monocyte-endothelium adhesion. Thus, efficient leukocyte extravasation requires Rho signaling not only within the migrating leukocytes but also within the endothelial lining of the vessel wall.
Collapse
Affiliation(s)
- Anke Strey
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | | | | | | |
Collapse
|
375
|
Price MO, McPhail LC, Lambeth JD, Han CH, Knaus UG, Dinauer MC. Creation of a genetic system for analysis of the phagocyte respiratory burst: high-level reconstitution of the NADPH oxidase in a nonhematopoietic system. Blood 2002; 99:2653-61. [PMID: 11929750 DOI: 10.1182/blood.v99.8.2653] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The phagocyte nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) oxidase was functionally reconstituted in monkey kidney COS-7 cells by transfection of essential subunits, gp91(phox), p22(phox), p47(phox), and p67(phox). COS-7 cells express the essential small guanosine 5'-triphosphatase, Rac1. Transgenic COS-phox cells were capable of arachidonic acid-induced NADPH oxidase activity up to 80% of that of human neutrophils, and of phorbol myristate acetate (PMA)-induced activity up to 20% of that of neutrophils. Expression of all 4 phox components was required for enzyme activity, and enzyme activation was associated with membrane translocation of p47(phox), p67(phox), and Rac1. Expression of p47(phox) Ser303Ala/Ser304Ala or Ser379Ala phosphorylation-deficient mutants resulted in significantly impaired NAPDH oxidase activity, compared with expression of wild-type p47(phox) or the p47(phox) Ser303Glu/Ser304Glu phosphorylation mimic, suggesting that p47(phox) phosphorylation contributes to enzyme activity in the COS system, as is the case in neutrophils. Hence, COS-phox cells should be useful as a new whole-cell model that is both capable of high-level superoxide production and readily amenable to genetic manipulation for investigation of NADPH oxidase function. PMA-elicited superoxide production in COS-phox cells was regulated by activation of protein kinase C (PKC) and Rac. Although COS-7 cells differ from human neutrophils in PKC isoform expression, transient expression of major neutrophil isoforms in COS-phox cells did not increase PMA-induced superoxide production, suggesting that endogenous isoforms were not rate limiting. Val204 in p67(phox), previously shown to be required for NADPH oxidase activity under cell-free conditions, was found to be essential for superoxide production by intact COS-phox cells, on the basis of transfection studies using a p67(phox) (Val204Ala) mutant.
Collapse
Affiliation(s)
- Marianne O Price
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
376
|
Croker BA, Tarlinton DM, Cluse LA, Tuxen AJ, Light A, Yang FC, Williams DA, Roberts AW. The Rac2 guanosine triphosphatase regulates B lymphocyte antigen receptor responses and chemotaxis and is required for establishment of B-1a and marginal zone B lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3376-86. [PMID: 11907095 DOI: 10.4049/jimmunol.168.7.3376] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have defined roles for the hemopoietic-specific Rho guanosine triphosphatase, Rac2, in B lymphocyte development and function through examination of rac2(-/-) mice. Rac2-deficient mice displayed peripheral blood B lymphocytosis and marked reductions in peritoneal cavity B-1a lymphocytes, marginal zone B lymphocytes, and IgM-secreting plasma cells as well as reduced concentrations of serum IgM and IgA. The rac2(-/-) B lymphocytes exhibited reduced calcium flux following coligation of B cell AgR and CD19 and reduced chemotaxis in chemokine gradients. T cell-independent responses to DNP-dextran were of reduced magnitude, but normal kinetics, in rac2(-/-) mice, while T-dependent responses to nitrophenyl-keyhole limpet hemocyanin were subtly abnormal. Rac2 is therefore an essential element in regulating B lymphocyte functions and maintaining B lymphocyte populations in vivo.
Collapse
MESH Headings
- Actins/antagonists & inhibitors
- Actins/metabolism
- Animals
- Antibody-Producing Cells/pathology
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- Antigens, T-Independent/pharmacology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/pathology
- Calcium/antagonists & inhibitors
- Calcium/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Migration Inhibition
- Chemokines/pharmacology
- Chemotaxis, Leukocyte/immunology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Haptens
- Hemocyanins/pharmacology
- Immunoglobulin A/blood
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Ligands
- Lymphocyte Activation/genetics
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Up-Regulation/genetics
- Up-Regulation/immunology
- rac GTP-Binding Proteins/deficiency
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/physiology
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
- Ben A Croker
- Division of Cancer and Hematology and Immunology, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
377
|
Welch HCE, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR. P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 2002; 108:809-21. [PMID: 11955434 DOI: 10.1016/s0092-8674(02)00663-3] [Citation(s) in RCA: 429] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rac, a member of the Rho family of monomeric GTPases, is an integrator of intracellular signaling in a wide range of cellular processes. We have purified a PtdIns(3,4,5)P3-sensitive activator of Rac from neutrophil cytosol. It is an abundant, 185 kDa guanine-nucleotide exchange factor (GEF), which we cloned and named P-Rex1. The recombinant enzyme has Rac-GEF activity that is directly, substantially, and synergistically activated by PtdIns(3,4,5)P3 and Gbetagammas both in vitro and in vivo. P-Rex1 antisense oligonucleotides reduced endogenous P-Rex1 expression and C5a-stimulated reactive oxygen species formation in a neutrophil-like cell line. P-Rex1 appears to be a coincidence detector in PtdIns(3,4,5)P3 and Gbetagamma signaling pathways that is particularly adapted to function downstream of heterotrimeric G proteins in neutrophils.
Collapse
|
378
|
Curnock AP, Logan MK, Ward SG. Chemokine signalling: pivoting around multiple phosphoinositide 3-kinases. Immunology 2002; 105:125-36. [PMID: 11872087 PMCID: PMC1782650 DOI: 10.1046/j.1365-2567.2002.01345.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The role of chemokines in mediating directional cell migration is well established, but more recently it has become evident that chemokines are able to couple to distinct signalling pathways that are involved in not only chemotaxis, but also cell growth and transcriptional activation. The signalling pathway controlled by the phosphoinositide 3-kinase (PI3K) family of lipid kinases has been the focus of much attention with respect to their role in chemokine-mediated functional responses. Indeed, there now exists convincing biochemical, pharmacological and genetic evidence that both CC and CXC chemokines stimulate PI3K-dependent chemotaxis of inflammatory cells such as eosinophils, macrophages, neutrophils and T lymphocytes. This review considers the role of individual PI3Ks (e.g. the p85/p110 heterodimer, PI3Kgamma and PI3KC2alpha) as well their downstream effector targets in mediating chemokine-stimulated cell migration.
Collapse
Affiliation(s)
- Adam P Curnock
- Department of Pharmacy and Pharmacology, Bath University, Claverton Down, Bath, Avon BA2 7AY, UK
| | | | | |
Collapse
|
379
|
Abstract
At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, however, nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS) play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and reestablish "redox homeostasis." Higher organisms, however, have evolved the use of NO and ROS also as signaling molecules for other physiological functions. These include regulation of vascular tone, monitoring of oxygen tension in the control of ventilation and erythropoietin production, and signal transduction from membrane receptors in various physiological processes. NO and ROS are typically generated in these cases by tightly regulated enzymes such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. In a given signaling protein, oxidative attack induces either a loss of function, a gain of function, or a switch to a different function. Excessive amounts of ROS may arise either from excessive stimulation of NAD(P)H oxidases or from less well-regulated sources such as the mitochondrial electron-transport chain. In mitochondria, ROS are generated as undesirable side products of the oxidative energy metabolism. An excessive and/or sustained increase in ROS production has been implicated in the pathogenesis of cancer, diabetes mellitus, atherosclerosis, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, obstructive sleep apnea, and other diseases. In addition, free radicals have been implicated in the mechanism of senescence. That the process of aging may result, at least in part, from radical-mediated oxidative damage was proposed more than 40 years ago by Harman (J Gerontol 11: 298-300, 1956). There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Collapse
Affiliation(s)
- Wulf Dröge
- Division of Immunochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| |
Collapse
|
380
|
Seveau S, Eddy RJ, Maxfield FR, Pierini LM. Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol Biol Cell 2001; 12:3550-62. [PMID: 11694588 PMCID: PMC60275 DOI: 10.1091/mbc.12.11.3550] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
On treatment with chemoattractant, the neutrophil plasma membrane becomes organized into detergent-resistant membrane domains (DRMs), the distribution of which is intimately correlated with cell polarization. Plasma membrane at the front of polarized cells is susceptible to extraction by cold Triton X-100, whereas membrane at the rear is resistant to extraction. After cold Triton X-100 extraction, DRM components, including the transmembrane proteins CD44 and CD43, the GPI-linked CD16, and the lipid analog, DiIC(16), are retained within uropods and cell bodies. Furthermore, CD44 and CD43 interact concomitantly with DRMs and with the F-actin cytoskeleton, suggesting a mechanism for the formation and stabilization of DRMs. By tracking the distribution of DRMs during polarization, we demonstrate that DRMs progress from a uniform distribution in unstimulated cells to small, discrete patches immediately after activation. Within 1 min, DRMs form a large cap comprising the cell body and uropod. This process is dependent on myosin in that an inhibitor of myosin light chain kinase can arrest DRM reorganization and cell polarization. Colabeling DRMs and F-actin revealed a correlation between DRM distribution and F-actin remodeling, suggesting that plasma membrane organization may orient signaling events that control cytoskeletal rearrangements and, consequently, cell polarity.
Collapse
Affiliation(s)
- S Seveau
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
381
|
Abstract
Epigenetic modification of DNA via CpG methylation is essential for the proper regulation of gene expression during embryonic development. Methylation of CpG motifs results in gene repression, while CpG island-containing genes are maintained in an unmethylated state and are transcriptionally active. The molecular mechanisms involved in maintaining the hypomethylation of CpG islands remain unclear. The transcriptional activator CpG binding protein (CGBP) exhibits a unique binding specificity for DNA elements that contain unmethylated CpG motifs, which makes it a potential candidate for the regulation of CpG island-containing genes. In order to assess the global function of this protein, mice lacking CGBP were generated via homologous recombination. No viable mutant mice were identified, indicating that CGBP is required for murine development. Mutant embryos were also absent between 6.5 and 12.5 days postcoitum (dpc). Approximately, one-fourth of all implantation sites at 6.5 dpc appeared empty with no intact embryos present. However, histological examination of 6.5-dpc implantation sites revealed the presence of embryo remnants, indicating that CGBP mutant embryos die very early in development. In vitro blastocyst outgrowth assays revealed that CGBP-null blastocysts are viable and capable of hatching and forming both an inner cell mass and a trophectoderm. Therefore, CGBP plays a crucial role in embryo viability and peri-implantation development.
Collapse
Affiliation(s)
- D L Carlone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | |
Collapse
|
382
|
Lundquist EA, Reddien PW, Hartwieg E, Horvitz HR, Bargmann CI. Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 2001; 128:4475-88. [PMID: 11714673 DOI: 10.1242/dev.128.22.4475] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans genome contains three rac-like genes, ced-10, mig-2, and rac-2. We report that ced-10, mig-2 and rac-2 act redundantly in axon pathfinding: inactivating one gene had little effect, but inactivating two or more genes perturbed both axon outgrowth and guidance. mig-2 and ced-10 also have redundant functions in some cell migrations. By contrast, ced-10 is uniquely required for cell-corpse phagocytosis, and mig-2 and rac-2 have only subtle roles in this process. Rac activators are also used differentially. The UNC-73 Trio Rac GTP exchange factor affected all Rac pathways in axon pathfinding and cell migration but did not affect cell-corpse phagocytosis. CED-5 DOCK180, which acts with CED-10 Rac in cell-corpse phagocytosis, acted with MIG-2 but not CED-10 in axon pathfinding. Thus, distinct regulatory proteins modulate Rac activation and function in different developmental processes.
Collapse
Affiliation(s)
- E A Lundquist
- Department of Molecular Biosciences, University of Kansas, 5049 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA.
| | | | | | | | | |
Collapse
|
383
|
Dwir O, Kansas GS, Alon R. Cytoplasmic anchorage of L-selectin controls leukocyte capture and rolling by increasing the mechanical stability of the selectin tether. J Cell Biol 2001; 155:145-56. [PMID: 11581291 PMCID: PMC2150804 DOI: 10.1083/jcb.200103042] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
L-selectin is a leukocyte lectin that mediates leukocyte capture and rolling in the vasculature. The cytoplasmic domain of L-selectin has been shown to regulate leukocyte rolling. In this study, the regulatory mechanisms by which this domain controls L-selectin adhesiveness were investigated. We report that an L-selectin mutant generated by truncation of the COOH-terminal 11 residues of L-selectin tail, which impairs association with the cytoskeletal protein alpha-actinin, could capture leukocytes to glycoprotein L-selectin ligands under physiological shear flow. However, the conversion of initial tethers into rolling was impaired by this partial tail truncation, and was completely abolished by a further four-residue truncation of the L-selectin tail. Physical anchorage of both cell-free tail-truncated mutants within a substrate fully rescued their adhesive deficiencies. Microkinetic analysis of full-length and truncated L-selectin-mediated rolling at millisecond temporal resolution suggests that the lifetime of unstressed L-selectin tethers is unaffected by cytoplasmic tail truncation. However, cytoskeletal anchorage of L-selectin stabilizes the selectin tether by reducing the sensitivity of its dissociation rate to increasing shear forces. Low force sensitivity (reactive compliance) of tether lifetime is crucial for selectins to mediate leukocyte rolling under physiological shear stresses. This is the first demonstration that reduced reactive compliance of L-selectin tethers is regulated by cytoskeletal anchorage, in addition to intrinsic mechanical properties of the selectin-carbohydrate bond.
Collapse
Affiliation(s)
- O Dwir
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|
384
|
Yu H, Leitenberg D, Li B, Flavell RA. Deficiency of small GTPase Rac2 affects T cell activation. J Exp Med 2001; 194:915-26. [PMID: 11581314 PMCID: PMC2193485 DOI: 10.1084/jem.194.7.915] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Accepted: 07/25/2001] [Indexed: 11/04/2022] Open
Abstract
Rac2 is a hematopoietic-specific GTPase acting as a molecular switch to mediate both transcriptional activation and cell morphological changes. We have examined the effect of Rac2 deficiency during T cell activation. In Rac2(-/-) T cells, proliferation was reduced upon stimulation with either plate-bound anti-CD3 or T cell receptor-specific antigen. This defect is accompanied with decreased activation of mitogen activated protein kinase extracellular signal-regulated kinase (ERK)1/2 and p38, and reduced Ca(2)+ mobilization. TCR stimulation-induced actin polymerization is also reduced. In addition, anti-CD3 cross-linking-induced T cell capping is reduced compared with wild-type T cells. These results indicate that Rac2 is important in mediating both transcriptional and cytoskeletal changes during T cell activation. The phenotypic similarity of Rac2(-/-) to Vav(-/-) cells implicates Rac2 as a downstream mediator of Vav signaling.
Collapse
Affiliation(s)
- Hong Yu
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| | - Dave Leitenberg
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| | - Baiyong Li
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Richard A. Flavell
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
385
|
Worthylake RA, Burridge K. Leukocyte transendothelial migration: orchestrating the underlying molecular machinery. Curr Opin Cell Biol 2001; 13:569-77. [PMID: 11544025 DOI: 10.1016/s0955-0674(00)00253-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transendothelial migration of leukocytes involves the spatiotemporal regulation of adhesion molecules, chemokines and cytoskeletal regulators. Recent results show that distinct steps of leukocyte transendothelial migration are regulated by sequential integrin activation and coordinated Rho family GTPase activity. Progress has been made in understanding how the dynamic regulation of these molecules translates into leukocyte transmigration.
Collapse
Affiliation(s)
- R A Worthylake
- Department of Cell and Developmental Biology, CB #7090, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
386
|
Dan C, Kelly A, Bernard O, Minden A. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 2001; 276:32115-21. [PMID: 11413130 DOI: 10.1074/jbc.m100871200] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAK4 is the most recently identified member of the PAK family of serine/threonine kinases. PAK4 differs from other members of the PAK family in sequence and in many of its functions. Previously, we have shown that an important function of this kinase is to mediate the induction of filopodia in response to the Rho GTPase Cdc42. Here we show that PAK4 also regulates the activity of the protein kinase LIM kinase 1 (LIMK1). PAK4 was shown to interact specifically with LIMK1 in binding assays. Immune complex kinase assays revealed that both wild-type and constitutively active PAK4 phosphorylated LIMK1 even more strongly than PAK1, and activated PAK4 stimulated LIMK1's ability to phosphorylate cofilin. Immunofluorescence experiments revealed that PAK4 and LIMK1 cooperate to induce cytoskeletal changes in C2C12 cells. Furthermore, dominant negative LIMK1 and a mutant cofilin inhibited the specific cytoskeletal and cell shape changes that were induced in response to a recently characterized constitutively activated PAK4 mutant.
Collapse
Affiliation(s)
- C Dan
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
387
|
Abstract
Neutrophils and other phagocytes migrate to the site of infection, ingest pathogens, and destroy them after releasing granule contents and active oxygen. These activities of the cells are closely associated with a rapid reorganization of the cytoskeleton, in which actin polymerizes, cross-links, anchors to the membrane and depolymerizes under the control of various actin-associated proteins. Defect in actin or its associated proteins results in neutrophil cytoskeletal disease where abnormality primarily appears as motility or chemotactic defect of the cells. Although their molecular mechanisms have not been elucidated, neutrophil actin dysfunction and neutrophil actin dysfunction with abnormal 47- and 89-kd proteins have been reported. Recently, abnormal-beta-actin disease and disease with Rac 2 mutation, both of which accompany neutrophil chemotactic dysfunction, were analyzed at the molecular level. These diseases are systemic, but neutrophil dysfunction of the patients is remarkable. Here we review the literature on diseases due to cytoskeletal abnormality. Many other diseases with actin or actin-associated protein dysfunction may be reported in the near future.
Collapse
Affiliation(s)
- H Nunoi
- Department of Pediatrics, Miyazaki Medical College, Japan
| | | | | |
Collapse
|
388
|
Abstract
Cell migration involves dynamic and spatially regulated changes to the cytoskeleton and cell adhesion. The Rho GTPases play key roles in coordinating the cellular responses required for cell migration. Recent research has revealed new molecular links between Rho family proteins and the actin cytoskeleton, showing that they act to regulate actin polymerization, depolymerization and the activity of actin-associated myosins. In addition, studies on integrin signalling suggest that the substratum continuously feeds signals to Rho proteins in migrating cells to influence migration rate. There is also increasing evidence that Rho proteins affect the organization of the microtubule and intermediate filament networks and that this is important for cell migration.
Collapse
Affiliation(s)
- A J Ridley
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, UK.
| |
Collapse
|
389
|
Worthylake RA, Lemoine S, Watson JM, Burridge K. RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 2001; 154:147-60. [PMID: 11448997 PMCID: PMC2196864 DOI: 10.1083/jcb.200103048] [Citation(s) in RCA: 381] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transendothelial migration of monocytes is the process by which monocytes leave the circulatory system and extravasate through the endothelial lining of the blood vessel wall and enter the underlying tissue. Transmigration requires coordination of alterations in cell shape and adhesive properties that are mediated by cytoskeletal dynamics. We have analyzed the function of RhoA in the cytoskeletal reorganizations that occur during transmigration. By loading monocytes with C3, an inhibitor of RhoA, we found that RhoA was required for transendothelial migration. We then examined individual steps of transmigration to explore the requirement for RhoA in extravasation. Our studies showed that RhoA was not required for monocyte attachment to the endothelium nor subsequent spreading of the monocyte on the endothelial surface. Time-lapse video microscopy analysis revealed that C3-loaded monocytes also had significant forward crawling movement on the endothelial monolayer and were able to invade between neighboring endothelial cells. However, RhoA was required to retract the tail of the migrating monocyte and complete diapedesis. We also demonstrate that p160ROCK, a serine/threonine kinase effector of RhoA, is both necessary and sufficient for RhoA-mediated tail retraction. Finally, we find that p160ROCK signaling negatively regulates integrin adhesions and that inhibition of RhoA results in an accumulation of beta2 integrin in the unretracted tails.
Collapse
Affiliation(s)
- R A Worthylake
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
390
|
Ingram DA, Hiatt K, King AJ, Fisher L, Shivakumar R, Derstine C, Wenning MJ, Diaz B, Travers JB, Hood A, Marshall M, Williams DA, Clapp DW. Hyperactivation of p21(ras) and the hematopoietic-specific Rho GTPase, Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro. J Exp Med 2001; 194:57-69. [PMID: 11435472 PMCID: PMC2193446 DOI: 10.1084/jem.194.1.57] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2000] [Accepted: 05/16/2001] [Indexed: 01/08/2023] Open
Abstract
Mutations in the NF1 tumor suppressor gene cause neurofibromatosis type I (NF1), a disease characterized by the formation of cutaneous neurofibromas infiltrated with a high density of degranulating mast cells. A hallmark of cell lines generated from NF1 patients or Nf1-deficient mice is their propensity to hyperproliferate. Neurofibromin, the protein encoded by NF1, negatively regulates p21(ras) activity by accelerating the conversion of Ras-GTP to Ras-GDP. However, identification of alterations in specific p21(ras) effector pathways that control proliferation in NF1-deficient cells is incomplete and critical for understanding disease pathogenesis. Recent studies have suggested that the proliferative effects of p21(ras) may depend on signaling outputs from the small Rho GTPases, Rac and Rho, but the physiologic importance of these interactions in an animal disease model has not been established. Using a genetic intercross between Nf1(+/)- and Rac2(-)(/)- mice, we now provide genetic evidence to support a biochemical model where hyperactivation of the extracellular signal-regulated kinase (ERK) via the hematopoietic-specific Rho GTPase, Rac2, directly contributes to the hyperproliferation of Nf1-deficient mast cells in vitro and in vivo. Further, we demonstrate that Rac2 functions as mediator of cross-talk between phosphoinositide 3-kinase (PI-3K) and the classical p21(ras)-Raf-Mek-ERK pathway to confer a distinct proliferative advantage to Nf1(+/)- mast cells. Thus, these studies identify Rac2 as a novel mediator of cross-talk between PI-3K and the p21(ras)-ERK pathway which functions to alter the cellular phenotype of a cell lineage involved in the pathologic complications of a common genetic disease.
Collapse
Affiliation(s)
- David A. Ingram
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Kelly Hiatt
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Alastair J. King
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lucy Fisher
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Rama Shivakumar
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Christina Derstine
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mary Jo Wenning
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Bruce Diaz
- Eli Lilly and Company, Indianapolis, IN 46285
| | - Jeffrey B. Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Antoinette Hood
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - David A. Williams
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
- Howard Hughes Medical Institute, Indianapolis, IN 46202
| | - D. Wade Clapp
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
391
|
Kurkchubasche AG, Panepinto JA, Tracy TF, Thurman GW, Ambruso DR. Clinical features of a human Rac2 mutation: a complex neutrophil dysfunction disease. J Pediatr 2001; 139:141-7. [PMID: 11445809 DOI: 10.1067/mpd.2001.114718] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The case of an infant with multiple, rapidly progressive, soft-tissue infections is presented. Despite features suggesting a neutrophil disorder, results of screening tests of phagocyte function were normal. A novel, multifaceted leukocyte disorder-distinguished by defects in shape change, chemotaxis, ingestion, degranulation, superoxide anion production, and bactericidal activity-was established secondary to a defect in Rac2.
Collapse
Affiliation(s)
- A G Kurkchubasche
- Department of Surgery, Division of Pediatric Surgery, Brown University School of Medicine, Providence, Rhode Island, USA
| | | | | | | | | |
Collapse
|
392
|
Stappenbeck TS, Gordon JI. Extranuclear sequestration of phospho-Jun N-terminal kinase and distorted villi produced by activated Rac1 in the intestinal epithelium of chimeric mice. Development 2001; 128:2603-14. [PMID: 11493576 DOI: 10.1242/dev.128.13.2603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we used a genetic mosaic system to conduct an in vivo analysis of the effects of Rac1 activation on the developing intestinal epithelium (Stappenbeck, T. S. and Gordon, J. I. (2000) Development127, 2629-2642). Expression of a constitutively active human Rac1 (Rac1Leu61) in the 129/Sv-derived small intestinal epithelium of C57Bl/6-ROSA26↔129/Sv chimeric mice led to precocious differentiation of some lineages with accompanying alterations in their apical actin. We have now explored the underlying mechanisms. Rac1Leu61 leads to accumulation of the 46 kDa form of phosphorylated Jun N-terminal kinase (p-Jnk) in the apical cytoplasm, but not in the nucleus of E18.5 proliferating and differentiating intestinal epithelial cells. The effect is cell-autonomous, selective for this mitogen-activated protein kinase family member, and accompanied by apical cytoplasmic accumulation of p21-activated kinase. c-Jun, a downstream nuclear target of p-Jnk, does not show evidence of enhanced phosphorylation, providing functional evidence for cytoplasmic sequestration of p-Jnk in Rac1Leu61-expressing epithelium. In adult chimeras, Rac1 activation augments cell proliferation in crypts of Lieberkühn, without a compensatory change in basal apoptosis and produces a dramatic, very unusual widening of villi. These results reveal a novel in vivo paradigm for Rac1 activation involving p-Jnk-mediated signaling at a distinctive extra-nuclear site, with associated alterations in the actin cytoskeleton. They also provide a new perspective about the determinants of small intestinal villus morphogenesis.
Collapse
Affiliation(s)
- T S Stappenbeck
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
393
|
Gu Y, Jia B, Yang FC, D'Souza M, Harris CE, Derrow CW, Zheng Y, Williams DA. Biochemical and biological characterization of a human Rac2 GTPase mutant associated with phagocytic immunodeficiency. J Biol Chem 2001; 276:15929-38. [PMID: 11278678 DOI: 10.1074/jbc.m010445200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho GTPase, Rac2, is expressed only in hematopoietic cell lineages, suggesting a specific cellular function in these cells. Genetic targeting studies in mice showed that Rac2 is an essential regulator of neutrophil chemotaxis, L-selectin capture and rolling, and superoxide production. Recently, a dominant negative mutation of Rac2, D57N, has been reported to be associated with a human phagocytic immunodeficiency. To understand further the cellular phenotypes associated with this D57N Rac2 mutant we examined its biochemical characteristics and functional effects when expressed in primary murine bone marrow cells. When compared with wild type (WT) Rac2, D57N Rac2 displayed approximately 10% GTP binding ability resulting from a markedly enhanced rate of GTP dissociation and did not respond to the guanine nucleotide exchange factors. These results suggest that D57N Rac2 may act in a dominant negative fashion in cells by sequestering endogenous guanine nucleotide exchange factors. When expressed in hematopoietic cells, D57N Rac2 reduced endogenous activities of not only Rac2, but also Rac1 and decreased cell expansion in vitro in the presence of growth factors due to increased cell apoptosis. Unexpectedly, D57N expression had no effect on proliferation. In contrast, expansion of cells transduced with WT Rac2 and a dominant active mutant, Q61L, was associated with significantly increased proliferation. Transplantation of transduced bone marrow cells into lethally irradiated recipients showed that the percentage of D57N-containing peripheral blood cells decreased markedly from 40% at 1 month to <5% by 3 months postinjection. Neutrophils derived in vitro from the transduced progenitor cells containing D57N demonstrated markedly impaired migration and O(2)(-) responses to formyl-methionyl-leucyl-phenylalanine, reflecting the same cellular phenotype in these differentiated cells as those described previously in patient cells. These data suggest that the phenotypic abnormalities associated with D57N Rac2 may involve not only neutrophil cellular functions, but also abnormal cell survival in other hematopoietic cells and that overexpression of Rac leads to increased proliferation of normal cells in vitro, whereas deficiency of Rac leads to increased apoptosis.
Collapse
Affiliation(s)
- Y Gu
- Howard Hughes Medical Institute and the Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
394
|
Yang FC, Atkinson SJ, Gu Y, Borneo JB, Roberts AW, Zheng Y, Pennington J, Williams DA. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci U S A 2001; 98:5614-8. [PMID: 11320224 PMCID: PMC33261 DOI: 10.1073/pnas.101546898] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Indexed: 11/18/2022] Open
Abstract
Critical to homeostasis of blood cell production by hematopoietic stem/progenitor (HSC/P) cells is the regulation of HSC/P retention within the bone marrow microenvironment and migration between the bone marrow and the blood. Key extracellular regulatory elements for this process have been defined (cell-cell adhesion, growth factors, chemokines), but the mechanism by which HSC/P cells reconcile multiple external signals has not been elucidated. Rac and related small GTPases are candidates for this role and were studied in HSC/P deficient in Rac2, a hematopoietic cell-specific family member. Rac2 appears to be critical for HSC/P adhesion both in vitro and in vivo, whereas a compensatory increase in Cdc42 activation regulates HSC/P migration. This genetic analysis provides physiological evidence of cross-talk between GTPase proteins and suggests that a balance of these two GTPases controls HSC/P adhesion and mobilization in vivo.
Collapse
Affiliation(s)
- F C Yang
- Howard Hughes Medical Institute, Section of Pediatric Hematology/Oncology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
395
|
Wehrle-Haller B, Meller M, Weston JA. Analysis of melanocyte precursors in Nf1 mutants reveals that MGF/KIT signaling promotes directed cell migration independent of its function in cell survival. Dev Biol 2001; 232:471-83. [PMID: 11401406 DOI: 10.1006/dbio.2001.0167] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neural crest-derived melanocyte precursors (MPs) in avian and murine embryos emerge from the dorsal neural tube into a migration staging area (MSA). MPs subsequently migrate from the MSA on a dorsolateral pathway between the dermamyotome and the overlying epithelium. In mouse embryos, MPs express the receptor tyrosine kinase, KIT, and require its cognate ligand, Mast cell growth factor (MGF), for survival and differentiation. Prior to the onset of MP migration, MGF is expressed on the dorsolateral pathway at some distance from cells in the MSA and appears to be required for normal MP development. To learn if MGF is required solely for MP survival on this pathway, or if it also provides directional cues for migration, we uncoupled survival from chemoattractive or motogenic functions of this ligand using mice that carry a targeted mutation at the Neurofibromin (Nf1) locus and consequently lack RAS-GAP function. We show that Nf1-mutant MPs survive in the absence of MGF in vitro and in vivo and that Nf1-mutant MPs disperse normally on the lateral migration pathway in the presence of MGF. In contrast, Nf1-mutant MPs persist in the location of the MSA but are not observed on the lateral migration pathway in double-mutant mice that also lack MGF. We conclude that MGF/KIT function provides a signal required for directed migration of the MPs on the lateral pathway in vivo, independent of its function in survival. We further suggest that the MGF mediates MP migration through a signaling pathway that does not involve RAS.
Collapse
Affiliation(s)
- B Wehrle-Haller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254, USA
| | | | | |
Collapse
|
396
|
|
397
|
Zhang B, Gao Y, Moon SY, Zhang Y, Zheng Y. Oligomerization of Rac1 gtpase mediated by the carboxyl-terminal polybasic domain. J Biol Chem 2001; 276:8958-67. [PMID: 11134022 DOI: 10.1074/jbc.m008720200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPase Rac1 mediates a variety of signal transduction processes leading to activation of NADPH oxidase, actin cytoskeleton reorganization, transcription activation, and stimulation of DNA synthesis. In this study, Rac1 was found to form a reversible monomer and oligomer in both the GDP- and GTP-bound states in vitro and in cells. Mutational analysis and peptide competition experiments showed that the unique C-terminal domain of Rac1 consisting of six consecutive basic residues (amino acids 183-188) is required for the homophilic interaction. Oligomerization of Rac1-GTP led to a self-stimulatory GTPase-activating protein (GAP) activity, resulting in a significantly enhanced intrinsic GTP hydrolysis rate of Rac1-GTP. Deletion or mutation of the polybasic residues drastically decreased its intrinsic GTPase activity and resulted in a loss of the self-stimulatory GAP activity. In the oligomeric state, Rac1 became insensitive to the RhoGAP stimulation, albeit maintaining the responsiveness to the guanine nucleotide exchange factor. The ability of the Rac1 C-terminal mutants to activate the effector p21(cdc42/rac)-activated kinase-1 correlated with their oligomerization states, suggesting that oligomer formation potentiates effector activation. Furthermore, the oligomer-to-monomer transition of Rac1-GDP could be driven effectively by interaction with the Rho guanine nucleotide dissociation inhibitor. Building on previous characterizations of Rac1 interaction with regulatory proteins and effectors, these results suggest that Rac1 may employ yet another means of regulation by cycling between the monomeric and oligomeric states to effectively generate a transient and augmented signal.
Collapse
Affiliation(s)
- B Zhang
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
398
|
Affiliation(s)
- S H Zigmond
- Biology Department, University of Pennsylvania, Philadelphia 19104-6018, USA
| |
Collapse
|
399
|
van Nieuw Amerongen GP, van Hinsbergh VW. Cytoskeletal effects of rho-like small guanine nucleotide-binding proteins in the vascular system. Arterioscler Thromb Vasc Biol 2001; 21:300-11. [PMID: 11231907 DOI: 10.1161/01.atv.21.3.300] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rho-like small GTPases, with their main representatives (Rho, Rac, and Cdc42), have been recognized in the past decade as key regulators of the F-actin cytoskeleton. Rho-like small GTPases are now known to play a major role in vascular processes caused by changes in the actin cytoskeleton, such as smooth muscle cell contraction, endothelial permeability, platelet activation, and leukocyte migration. Data are now accumulating regarding the involvement of Rho GTPases in vascular disorders associated with vascular remodeling, altered cell contractility, and cell migration. The unraveling of signal transduction pathways used by the Rho-like GTPases revealed many upstream regulators and downstream effector molecules, and their number is still growing. An important action of Rho, Rac, and Cdc42 is their ability to regulate the phosphorylation status of the myosin light chain, a major regulator of actin-myosin interaction. Present knowledge of the Rho-like small GTPases has resulted in the development of promising new strategies for the treatment of many vascular disorders, including hypertension, vasospasms, and vascular leakage.
Collapse
|
400
|
Abstract
A Rac GTPase-regulated multiprotein NADPH oxidase is critical for the formation of reactive oxygen species (ROS) in phagocytic leukocytes and other nonphagocytic cells. NADPH oxidase reduces molecular oxygen to form superoxide anion in a two-step process. Electrons are initially transferred from NADPH to cytochrome b-associated FAD, then to cytochrome b heme and finally to molecular oxygen. We show here that Rac is required for both electron-transfer reactions. Mutational and biophysical analysis shows that Rac and p67phox independently regulate cytochrome b to catalyze the transfer of electrons from NADPH to FAD. However, they must interact with each other to induce the subsequent transfer of electrons from FAD to cytochrome b heme and molecular oxygen. This two-step model of regulation by Rac GTPase may provide a means of more effectively controlling the inflammatory responses of phagocytic leukocytes.
Collapse
Affiliation(s)
- B A Diebold
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|