351
|
Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 2019; 138:302-325. [PMID: 30639256 PMCID: PMC7115878 DOI: 10.1016/j.addr.2019.01.005] [Citation(s) in RCA: 579] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
Many different iron oxide nanoparticles have been evaluated over the years, for a wide variety of biomedical applications. We here summarize the synthesis, surface functionalization and characterization of iron oxide nanoparticles, as well as their (pre-) clinical use in diagnostic, therapeutic and theranostic settings. Diagnostic applications include liver, lymph node, inflammation and vascular imaging, employing mostly magnetic resonance imaging but recently also magnetic particle imaging. Therapeutic applications encompass iron supplementation in anemia and advanced cancer treatments, such as modulation of macrophage polarization, magnetic fluid hyperthermia and magnetic drug targeting. Because of their properties, iron oxide nanoparticles are particularly useful for theranostic purposes. Examples of such setups, in which diagnosis and therapy are intimately combined and in which iron oxide nanoparticles are used, are image-guided drug delivery, image-guided and microbubble-mediated opening of the blood-brain barrier, and theranostic tissue engineering. Together, these directions highlight the versatility and the broad applicability of iron oxide nanoparticles, and indicate the integration in future medical practice of multiple iron oxide nanoparticle-based materials.
Collapse
Affiliation(s)
- Seyed Mohammadali Dadfar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Karolin Roemhild
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Natascha I Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Nuclear Medicine, RWTH Aachen University Clinic, Aachen, Germany; Leibniz Institute for Interactive Materials - DWI, RWTH Aachen University, Aachen, Germany
| | - Saskia von Stillfried
- Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
352
|
Liu J, Zhang F, Allen AJ, Johnston-Peck AC, Pettibone JM. Comparing sulfidation kinetics of silver nanoparticles in simulated media using direct and indirect measurement methods. NANOSCALE 2018; 10:22270-22279. [PMID: 30465677 PMCID: PMC6624851 DOI: 10.1039/c8nr06668j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Reported reaction kinetics of metal nanoparticles in natural and engineered systems commonly have used proxy measurements to infer chemical transformations, but extension of these methods to complex media has proven difficult. Here, we compare the sulfidation rate of AgNPs using two ion selective electrode (ISE)-based methods, which rely on either (i) direct measurement of free sulfide, or (ii) monitor the free Ag+ available in solution over time in the presence of sulfide species. Most experiments were carried out in moderately hard reconstituted water at pH 7 containing fulvic acid or humic acid, which represented a broad set of known interferences in ISE. Distinct differences in the measured rates were observed between the two proxy-based methods and details of the divergent results are discussed. The two ISE based methods were then compared to direct monitoring of AgNP chemical conversion to Ag2S using synchrotron-based in situ X-ray diffraction (XRD). Using XRD, distinct rates from both ISE-based technique were observed, which demonstrated that ISE measurements alone are inadequate to discriminate both the rate and extent of AgNP sulfidation. XRD rate data elucidated previously unidentified reaction regimes that were associated with AgNP coating (PVP and citrate acid) and NOM components, which provided new mechanistic insight into metallic NP processing. In general, the extent of Ag2S formation was inversely proportional to surface coverage of the initial AgNP. Overall, methods to determine reaction kinetics of nanomaterials in increasingly complex media and heterogeneous size distributions to improve NP-based design and performance will require similar approaches.
Collapse
Affiliation(s)
- Jingyu Liu
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
| | | | | | | | | |
Collapse
|
353
|
Swarnakar NK, Venkatesan N, Betageri G. Critical In Vitro Characterization Methods of Lipid-Based Formulations for Oral Delivery: a Comprehensive Review. AAPS PharmSciTech 2018; 20:16. [PMID: 30569266 DOI: 10.1208/s12249-018-1239-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Lipids have been extensively used in formulations to enhance dissolution and bioavailability of poorly water-soluble as well as water-soluble drug molecules. The digestion of lipid-based formulations, in the presence of bile salts, phospholipids, and cholesterol, changes the lipid composition in vivo, resulting in the formation of different colloidal phases in the intestine. Therefore, in vitro characterization and evaluation of such formulations are critical in developing a successful formulation. This review covers comprehensive discussion on in vitro characterization techniques such as solubility, drug entrapment, thermal characterization, dissolution, and digestion of lipid-based formulations.
Collapse
|
354
|
Size and shape control of metal nanoparticles in millifluidic reactors. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Engineered metal nanoparticles (metal NPs) possess unique size -dependent optical and electronic properties that could enable new applications in biomedicine, energy generation, microelectronics, micro-optics, and catalysis. For metal NPs to make a mark in these fields, however, new synthetic strategies must be developed that permit NP synthesis on the kilogram scale, while maintaining precise control over NP physiochemical properties (size, shape, composition, and surface chemistry). Currently, NP batch syntheses produce product on the milligram scale and rely on synthetic strategies that are not readily amenable to scale-up. Flow reactor systems (including lab-on-a-chip devices) provide a synthesis platform that can circumvent many of the traditional limitations of batch-scale NP syntheses. These reactors provide more uniform reagent mixing, more uniform heat transfer, opportunities to interface in situ monitoring technology, and allow product yield to be scaled up simply by running multiple reactors in parallel. While many NP syntheses have been successfully transferred to microfluidic reactor systems, microfluidic reactor fabrication is time intensive and typically requires sophisticated lithography facilities. Consequently, millifluidic flow reactors (reactors with channel dimensions of 0.5–10.0 mm) are gaining popularity in NP synthesis. These millifluidic reactors provide many of the same synthetic advantages as microfluidic devices, but are simpler to construct, easier to reconfigure, and more straightforward to interface with in situ monitoring techniques. In this chapter, we will discuss the progress that has been made in developing millifluidic reactors for functionalized metal NP synthesis. First, we will review the basic wet-chemical strategies used to control metal NP size and shape in batch reactors. We will then survey some of the basic principles of millifluidic device design, construction, and operation. We will also discuss the potential for incorporating in situ monitoring for quality control during synthesis. We will conclude by highlighting some particularly relevant examples of millifluidic metal NP synthesis that have set new standards for metal NP size, shape, and surface chemistry control.
Graphical Abstract: Credit: Sam Lohse
Collapse
|
355
|
He W, Yan J, Sui F, Wang S, Su X, Qu Y, Yang Q, Guo H, Ji M, Lu W, Shao Y, Hou P. Turning a Luffa Protein into a Self-Assembled Biodegradable Nanoplatform for Multitargeted Cancer Therapy. ACS NANO 2018; 12:11664-11677. [PMID: 30335959 DOI: 10.1021/acsnano.8b07079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The peptide-derived self-assembly platform has attracted increasing attention for its great potential to develop into multitargeting nanomedicines as well as its inherent biocompatibility and biodegradability. However, their clinical application potentials are often compromised by low stability, weak membrane penetrating ability, and limited functions. Herein, inspired by a natural protein from the seeds of Luffa cylindrica, we engineered via epitope grafting and structure design a hybrid peptide-based nanoplatform, termed Lupbin, which is capable of self-assembling into a stable superstructure and concurrently targeting multiple protein-protein interactions (PPIs) located in cytoplasm and nuclei. We showed that Lupbin can efficiently penetrate cell membrane, escape from early endosome-dependent degradation, and subsequently disassemble into free monomers with wide distribution in cytosol and nucleus. Importantly, Lupbin abrogated tumor growth and metastasis through concurrent blockade of the Wnt/β-catenin signaling and reactivation of the p53 signaling, with a highly favorable in vivo biosafety profile. Our strategy expands the application of self-assembled nanomedicines into targeting intercellular PPIs, provides a potential nanoplatform with high stability for multitargeted cancer therapy, and likely reinvigorates the development of peptide-based therapeutics for the treatment of different human diseases including cancer.
Collapse
Affiliation(s)
- Wangxiao He
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Jin Yan
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Fang Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Xi Su
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Yiping Qu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Qingchen Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Hui Guo
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Meiju Ji
- Center for Translational Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Yongping Shao
- Frontier Institute of Science and Technology, Center for Translational Medicine, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| |
Collapse
|
356
|
Suman K, Joshi YM. Microstructure and Soft Glassy Dynamics of an Aqueous Laponite Dispersion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13079-13103. [PMID: 30180583 DOI: 10.1021/acs.langmuir.8b01830] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthetic hectorite clay Laponite RD/XLG is composed of disk-shaped nanoparticles that acquire dissimilar charges when suspended in an aqueous medium. Owing to their property to spontaneously self-assemble, Laponite is used as a rheology modifier in a variety of commercial water-based products. In particular, an aqueous dispersion of Laponite undergoes a liquid-to-solid transition at about 1 vol % concentration. The evolution of the physical properties as the dispersion transforms to the solid state is reminiscent of physical aging in molecular as well as colloidal glasses. The corresponding soft glassy dynamics of an aqueous Laponite dispersion, including the rheological behavior, has been extensively studied in the literature. In this feature article, we take an overview of recent advances in understanding soft glassy dynamics and various efforts taken to understand the peculiar rheological behavior. Furthermore, the continuously developing microstructure that is responsible for the eventual formation of a soft solid state that supports its own weight against gravity has also been a topic of intense debate and discussion. In particularly, extensive experimental and theoretical studies lead to two types of microstructures for this system: an attractive gel-like or a repulsive glass-like structure. We carefully examine and critically analyze the literature and propose a state (phase) diagram that suggests an aqueous Laponite dispersion to be present in an attractive gel state.
Collapse
Affiliation(s)
- Khushboo Suman
- Department of Chemical Engineering , Indian Institute of Technology Kanpur , India
| | - Yogesh M Joshi
- Department of Chemical Engineering , Indian Institute of Technology Kanpur , India
| |
Collapse
|
357
|
Chi C, Li X, Zhang Y, Chen L, Li L. Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
358
|
Vakil P, Muhammed F, Hardy D, Dickens TJ, Ramakrishnan S, Strouse GF. Dielectric Properties for Nanocomposites Comparing Commercial and Synthetic Ni- and Fe 3O 4-Loaded Polystyrene. ACS OMEGA 2018; 3:12813-12823. [PMID: 31458007 PMCID: PMC6644897 DOI: 10.1021/acsomega.8b01477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/26/2018] [Indexed: 05/12/2023]
Abstract
Nanomaterial-loaded thermoplastics are attractive for applications in adaptive printing methods, as the physical properties of the printed materials are dependent on the nanomaterial type and degree of dispersion. This study compares the dispersion and the impact on the dielectric properties of two common nanoparticles, nickel and iron oxide, loaded into polystyrene. Comparisons between commercial and synthetically prepared samples indicate that well-passivated synthetically prepared nanomaterials are dispersed and minimize the impact on the dielectric properties of the host polymer by limiting particle-particle contacts. Commercial samples were observed to phase-segregate, leading to the loss of the low-k performance of polystyrene. The change in the real and imaginary dielectric was systematically studied in two earth abundant nanoparticles at the concentration between 0 and 13 vol % (0-50 wt %). By varying the volume percentage of fillers in the matrix, it is shown that one can increase the magnetic properties of the materials while minimizing unwanted contributions to the dielectric constant and dielectric loss. The well-dispersed nanoparticle systems were successfully modeled through the Looyenga dielectric theory, thus giving one a predictive ability for the dielectric properties. The current experimental work coupled with modeling could facilitate future material choices and guide design rules for printable polymer composite systems.
Collapse
Affiliation(s)
- Parth
N. Vakil
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan Way, Tallahassee, Florida 32306, United
States
| | - Faheem Muhammed
- Chemical & Biomedical Engineering and Department of Industrial
and Manufacturing
Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, United States
| | - David Hardy
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan Way, Tallahassee, Florida 32306, United
States
| | - Tarik J. Dickens
- Chemical & Biomedical Engineering and Department of Industrial
and Manufacturing
Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, United States
- High
Performance Materials Institute, 2005 Levy Avenue, Tallahassee, Florida 32310, United
States
| | - Subramanian Ramakrishnan
- Chemical & Biomedical Engineering and Department of Industrial
and Manufacturing
Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, United States
- E-mail: (S.R.)
| | - Geoffrey F. Strouse
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan Way, Tallahassee, Florida 32306, United
States
- E-mail: (G.F.S.)
| |
Collapse
|
359
|
Yang Y, Wang B, Shen X, Yao L, Wang L, Chen X, Xie S, Li T, Hu J, Yang D, Dong A. Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties. J Am Chem Soc 2018; 140:15038-15047. [DOI: 10.1021/jacs.8b09779] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
360
|
Space- and time-resolved small angle X-ray scattering to probe assembly of silver nanocrystal superlattices. Nat Commun 2018; 9:4211. [PMID: 30310061 PMCID: PMC6181943 DOI: 10.1038/s41467-018-06734-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/14/2018] [Indexed: 11/08/2022] Open
Abstract
The structure of nanocrystal superlattices has been extensively studied and well documented, however, their assembly process is poorly understood. In this work, we demonstrate an in situ space- and time-resolved small angle X-ray scattering measurement that we use to probe the assembly of silver nanocrystal superlattices driven by electric fields. The electric field creates a nanocrystal flux to the surface, providing a systematic means to vary the nanocrystal concentration near the electrode and thereby to initiate nucleation and growth of superlattices in several minutes. Using this approach, we measure the space- and time-resolved concentration and polydispersity gradients during deposition and show how they affect the superlattice constant and degree of order. We find that the field induces a size-selection effect that can reduce the polydispersity near the substrate by 21% leading to better quality crystals and resulting in field strength-dependent superlattice lattice constants.
Collapse
|
361
|
Cho S, Park W, Kim H, Jokisaari JR, Roth EW, Lee S, Klie RF, Lee B, Kim DH. Gallstone-Formation-Inspired Bimetallic Supra-nanostructures for Computed-Tomography-Image-Guided Radiation Therapy. ACS APPLIED NANO MATERIALS 2018; 1:4602-4611. [PMID: 34056557 PMCID: PMC8157682 DOI: 10.1021/acsanm.8b00908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Inspired by the gallstone formation mechanism, we report a fast one-pot synthesis of high-surface-area bimetallic hierarchical supra-nanostructures. As gallstones are generated from metal cholate complexes, cholate bile acid molecules with Au/Ag metal precursors formed stable nanocomplexes aggregated with metal Au ions and preformed ~2 nm silver halide nanoparticles before reduction. When a reducing agent was added, the metal cholate nanocomplexes quickly formed noble bimetallic hierarchical supra-nanostructures. The morphology of bimetallic supra-nanostructures could be tailored by changing the feeding ratio of each metal precursor. In situ synchrotron small-angle X-ray scattering measurement with a custom-designed reaction cell showed two-step growth and attachment behavior toward hierarchical supra-nanostructures from the gallstone-formation-inspired metal cholate nanocomplexes in a 60 s reaction. Additional wide-angle X-ray scattering, X-ray absorption near-edge structure, in situ Fourier transform infrared, and high-resolution scanning transmission electron microscopy investigations subsequently revealed the mechanism for the evolution of bimetallic hierarchical supra-nanostructures. The gallstone-formation-inspired synthesis mechanism can be universally applied to other metals, for example, Pt-Ag and Pd-Ag bimetallic nanostructures. Finally, the synthesized high-surface-area bimetallic supra-nanostructures demonstrated significantly enhanced X-ray computed tomography imaging contrast and radiosensitizing effect for a potential image-guided nanomedicine application. We believe that our synthetic method inspired by gallstone formation and understanding represents an important step toward the development of hierarchical nanoparticles for various applications.
Collapse
Affiliation(s)
- Soojeong Cho
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Wooram Park
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Hacksung Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Jacob R. Jokisaari
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Eric W. Roth
- NUANCE/QBIC, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Robert F. Klie
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Corresponding Authors: (B.L.). (D.-H.K.)
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Corresponding Authors: (B.L.). (D.-H.K.)
| |
Collapse
|
362
|
Ryu J, Lee H, Kim H, Sohn D. Lamellar Thickness of Poly(ethylene oxide) Film Crystallized from the Gel State. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jungju Ryu
- Neutron Science Center, Korea Atomic Energy Research Institute, Daejeon 34057, Korea
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| | - Hoik Lee
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano 386-8567, Japan
| | - Hyosin Kim
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| | - Daewon Sohn
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
363
|
Hudson MH, Chen M, Kamysbayev V, Janke EM, Lan X, Allan G, Delerue C, Lee B, Guyot-Sionnest P, Talapin DV. Conduction Band Fine Structure in Colloidal HgTe Quantum Dots. ACS NANO 2018; 12:9397-9404. [PMID: 30125488 DOI: 10.1021/acsnano.8b04539] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
HgTe colloidal quantum dots (QDs) are of interest because quantum confinement of semimetallic bulk HgTe allows one to synthetically control the bandgap throughout the infrared. Here, we synthesize highly monodisperse HgTe QDs and tune their doping both chemically and electrochemically. The monodispersity of the QDs was evaluated using small-angle X-ray scattering (SAXS) and suggests a diameter distribution of ∼10% across multiple batches of different sizes. Electron-doped HgTe QDs display an intraband absorbance and bleaching of the first two excitonic features. We see splitting of the intraband peaks corresponding to electronic transitions from the occupied 1Se state to a series of nondegenerate 1Pe states. Spectroelectrochemical studies reveal that the degree of splitting and relative intensity of the intraband features remain constant across doping levels up to two electrons per QD. Theoretical modeling suggests that the splitting of the 1Pe level arises from spin-orbit coupling and reduced QD symmetry. The fine structure of the intraband transitions is observed in the ensemble studies due to the size uniformity of the as-synthesized QDs and strong spin-orbit coupling inherent to HgTe.
Collapse
Affiliation(s)
| | | | | | | | | | - Guy Allan
- University of Lille, CNRS, Centrale Lille, ISEN, University of Valenciennes , UMR 8520 - IEMN, F-59000 Lille , France
| | - Christophe Delerue
- University of Lille, CNRS, Centrale Lille, ISEN, University of Valenciennes , UMR 8520 - IEMN, F-59000 Lille , France
| | | | | | | |
Collapse
|
364
|
Blanco MA, Hatch HW, Curtis JE, Shen VK. A methodology to calculate small-angle scattering profiles of macromolecular solutions from molecular simulations in the grand-canonical ensemble. J Chem Phys 2018; 149:084203. [PMID: 30193476 DOI: 10.1063/1.5029274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The theoretical framework to evaluate small-angle scattering (SAS) profiles for multi-component macromolecular solutions is re-examined from the standpoint of molecular simulations in the grand-canonical ensemble, where the chemical potentials of all species in solution are fixed. This statistical mechanical ensemble resembles more closely scattering experiments, capturing concentration fluctuations that arise from the exchange of molecules between the scattering volume and the bulk solution. The resulting grand-canonical expression relates scattering intensities to the different intra- and intermolecular pair distribution functions, as well as to the distribution of molecular concentrations on the scattering volume. This formulation represents a generalized expression that encompasses most of the existing methods to evaluate SAS profiles from molecular simulations. The grand-canonical SAS methodology is probed for a series of different implicit-solvent, homogeneous systems at conditions ranging from dilute to concentrated. These systems consist of spherical colloids, dumbbell particles, and highly flexible polymer chains. Comparison of the resulting SAS curves against classical methodologies based on either theoretical approaches or canonical simulations (i.e., at a fixed number of molecules) shows equivalence between the different scattering intensities so long as interactions between molecules are net repulsive or weakly attractive. On the other hand, for strongly attractive interactions, grand-canonical SAS profiles deviate in the low- and intermediate-q range from those calculated in a canonical ensemble. Such differences are due to the distribution of molecules becoming asymmetric, which yields a higher contribution from configurations with molecular concentrations larger than the nominal value. Additionally, for flexible systems, explicit discrimination between intra- and inter-molecular SAS contributions permits the implementation of model-free, structural analysis such as Guinier's plots at high molecular concentrations, beyond what the traditional limits are for such analysis.
Collapse
Affiliation(s)
- Marco A Blanco
- Chemical Informatics Group, Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Harold W Hatch
- Chemical Informatics Group, Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Vincent K Shen
- Chemical Informatics Group, Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
365
|
Siegrist S, Cörek E, Detampel P, Sandström J, Wick P, Huwyler J. Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology 2018; 13:73-99. [PMID: 30182784 DOI: 10.1080/17435390.2018.1505000] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The increasing nanomedicine usage has raised concerns about their possible impact on human health. Present evaluation strategies for nanomaterials rely on a case-by-case hazard assessment. They take into account material properties, biological interactions, and toxicological responses. Authorities have also emphasized that exposure route and intended use should be considered in the safety assessment of nanotherapeutics. In contrast to an individual assessment of nanomaterial hazards, we propose in the present work a novel and unique evaluation strategy designed to uncover potential adverse effects of such materials. We specifically focus on spherical engineered nanoparticles used as parenterally administered nanomedicines. Standardized assay protocols from the US Nanotechnology Characterization Laboratory as well as the EU Nanomedicine Characterisation Laboratory can be used for experimental data generation. We focus on both cellular uptake and intracellular persistence as main indicators for nanoparticle hazard potentials. Based on existing regulatory specifications defined by authorities such as the European Medicines Agency and the United States Food and Drug Administration, we provide a robust framework for application-oriented classification paired with intuitive decision making. The Hazard Evaluation Strategy (HES) for injectable nanoparticles is a three-tiered concept covering physicochemical characterization, nanoparticle (bio)interactions, and hazard assessment. It is cost-effective and can assist in the design and optimization of nanoparticles intended for therapeutic use. Furthermore, this concept is designed to be adaptable for alternative exposure and application scenarios. To the knowledge of the authors, the HES is unique in its methodology based on exclusion criteria. It is the first hazard evaluation strategy designed for nanotherapeutics.
Collapse
Affiliation(s)
- Stefan Siegrist
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| | - Emre Cörek
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| | - Pascal Detampel
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| | - Jenny Sandström
- b Swiss Centre for Applied Human Toxicology , Basel , Switzerland
| | - Peter Wick
- c Laboratory for Patricles-Biology Interactions , Empa Swiss Federal Laboratories for Materials Science and Technology , St. Gallen , Switzerland
| | - Jörg Huwyler
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| |
Collapse
|
366
|
Mudalige TK, Qu H, Van Haute D, Ansar SM, Linder SW. Capillary electrophoresis and asymmetric flow field-flow fractionation for size-based separation of engineered metallic nanoparticles: A critical comparative review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
367
|
Bertolotti F, Moscheni D, Guagliardi A, Masciocchi N. When Crystals Go Nano - The Role of Advanced X-ray Total Scattering Methods in Nanotechnology. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800534] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Federica Bertolotti
- Aarhus Institute of Advanced Studies (AIAS); Aarhus University; Høegh-Guldbergs Gade 6B 8000 Aarhus C Denmark
- Department of Science and High Technology and To.Sca.Lab. University of Insubria; Via Valleggio 11 22100 Como Italy
| | - Daniele Moscheni
- Department of Science and High Technology and To.Sca.Lab. University of Insubria; Via Valleggio 11 22100 Como Italy
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab.; Consiglio Nazionale delle Ricerche; Via Valleggio 11 22100 Como Italy
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab. University of Insubria; Via Valleggio 11 22100 Como Italy
| |
Collapse
|
368
|
Cho S, Lee B, Park W, Huang X, Kim DH. Photoperiodic Flower Mimicking Metallic Nanoparticles for Image-Guided Medicine Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27570-27577. [PMID: 30086228 PMCID: PMC7047606 DOI: 10.1021/acsami.8b09596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoradiosensitizers have been developed to enhance localization and precision of therapeutic radiation delivery. A specific volume of comprising surface atoms is known to be the radiosensitizing region. However, the shape-dependent local dose enhancement of nanoparticles is often underestimated and rarely reported. Here, a noble metal nanostructure, inspired by the photoperiodic day-flowers, was synthesized by metal reduction with bile acid molecules. The impact of high surface area of day-flower mimicking metallic nanoparticles (D-NP) on radiosensitizing effect was demonstrated with assays for ROS generation, cellular apoptosis, and clonogenic survival of human liver cancer cells (HepG2) cells. In comparison with lower-surface-area spherical night-flower mimicking metallic nanoparticles (N-NP), exposure of our D-NP to external beam radiation doses led to a significant increase in reactive oxygen species (ROS) production and radiosensitizing cell cycle synchronization, resulting in an enhanced cancer-cell-killing effect. In clonogenic survival studies, dose-enhancing factor (DEF) of D-NP was 16.5-fold higher than N-NP. Finally, we demonstrated in vivo feasibility of our D-NP as a potent nanoradiosensitizer and CT contrast agent for advanced image-guided radiation therapy.
Collapse
Affiliation(s)
- Soojeong Cho
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Wooram Park
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Xiaoke Huang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Corresponding Author: . Tel.: 1-312-503-1307. Fax: 1-312-926-5991. Address: Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave., Suite 1600, Chicago, IL 60611
| |
Collapse
|
369
|
Vordos N, Giannakopoulos S, Vansant EF, Kalaitzis C, Nolan JW, Bandekas DV, Karavasilis I, Mitropoulos AC, Touloupidis S. Small-angle X-ray scattering (SAXS) and nitrogen porosimetry (NP): two novel techniques for the evaluation of urinary stone hardness. Int Urol Nephrol 2018; 50:1779-1785. [PMID: 30128922 DOI: 10.1007/s11255-018-1961-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/12/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate urinary stones using small-angle X-ray scattering (SAXS) and nitrogen porosimetry (NP). Traditionally, stones are categorized as hard or soft based on their chemical composition. We hypothesized that stone hardness is associated not only with its chemical composition but also with its internal architecture. SAXS and NP are well-known techniques in material sciences. We tested whether SAXS and NP are applicable for evaluating human urinary stones and whether they provide information at the nanoscale level that could be useful in clinical practice. METHODS Thirty endoscopically removed urinary stones were studied. Standard techniques for stone analysis were used to determine the stone composition. SAXS was used to evaluate the solid part of the stone by measuring the crystal thickness (T) and the fractal dimension (Dm/Ds), while NP was used to evaluate the porosity of the stone, i.e., the pore radius, pore volume, and specific surface area (SSA). RESULTS All stones were successfully analyzed with SAXS and NP. Each stone demonstrated unique characteristics regarding T, Dm/Ds, pore radius, pore volume, and SSA. Significant differences in those parameters were seen among the stones with almost identical chemical compositions. The combination of high T, high SSA, low Dm/Ds, low pore volume, and low pore radius is indicative of a hard material and vice versa. CONCLUSIONS SAXS and NP can be used to evaluate human urinary stones. They provide information on stone hardness based on their nanostructure characteristics, which may be different even among stones with similar compositions.
Collapse
Affiliation(s)
- Nick Vordos
- Hephaestus Advanced Laboratory, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece.,Department of Electrical Engineering, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece
| | - Stilianos Giannakopoulos
- Department of Urology, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece.
| | - Etienne F Vansant
- Hephaestus Advanced Laboratory, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece.,Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerpen, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Christos Kalaitzis
- Department of Urology, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - John W Nolan
- Hephaestus Advanced Laboratory, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece
| | - Dimitrios V Bandekas
- Department of Electrical Engineering, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece
| | - Ioannis Karavasilis
- Department of Urology, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Athanasios Ch Mitropoulos
- Hephaestus Advanced Laboratory, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece
| | - Stavros Touloupidis
- Department of Urology, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| |
Collapse
|
370
|
Schroer MA, Lehmkühler F, Möller J, Lange H, Grübel G, Schulz F. Pressure-Stimulated Supercrystal Formation in Nanoparticle Suspensions. J Phys Chem Lett 2018; 9:4720-4724. [PMID: 30070842 DOI: 10.1021/acs.jpclett.8b02145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticles can self-organize into "supercrystals" with many potential applications. Different paths can lead to nanoparticle self-organization into such periodic arrangements. An essential step is the transition from an amorphous state to the crystalline one. We investigate how pressure can induce a phase transition of a nanoparticle model system in water from the disordered liquid state to highly ordered supercrystals. We observe reversible pressure-induced supercrystal formation in concentrated solutions of gold nanoparticles by means of small-angle X-ray scattering. The supercrystal formation occurs only at high salt concentrations in the aqueous solution. The pressure dependence of the structural parameters of the resulting crystal lattices is determined. The observed transition can be reasoned with the combined effect of salt and pressure on the solubility of the organic PEG shell that passivates the nanoparticles.
Collapse
Affiliation(s)
- Martin A Schroer
- European Molecular Biology Laboratory (EMBL) , Hamburg Outstation c/o DESY , 22607 Hamburg , Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron (DESY) , 22607 Hamburg , Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , 22761 Hamburg , Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility (XFEL) , 22869 Schenefeld , Germany
| | - Holger Lange
- The Hamburg Centre for Ultrafast Imaging (CUI) , 22761 Hamburg , Germany
- University of Hamburg, Institute of Physical Chemistry , 20146 Hamburg , Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY) , 22607 Hamburg , Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , 22761 Hamburg , Germany
| | - Florian Schulz
- The Hamburg Centre for Ultrafast Imaging (CUI) , 22761 Hamburg , Germany
- University of Hamburg, Institute of Physical Chemistry , 20146 Hamburg , Germany
| |
Collapse
|
371
|
Wu W, Zhang R, McClements DJ, Chefetz B, Polubesova T, Xing B. Transformation and Speciation Analysis of Silver Nanoparticles of Dietary Supplement in Simulated Human Gastrointestinal Tract. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8792-8800. [PMID: 29969018 DOI: 10.1021/acs.est.8b01393] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Knowledge of the physicochemical properties of ingestible silver nanoparticles (AgNPs) in the human gastrointestinal tract (GIT) is essential for assessing their bioavailability, bioactivity, and potential health risks. The gastrointestinal fate of AgNPs and silver ions from a commercial dietary supplement was therefore investigated using a simulated human GIT. In the mouth, no dissolution or aggregation of AgNPs occurred, which was attributed to the neutral pH and the formation of biomolecular corona, while the silver ions formed complexes with biomolecules (Ag-biomolecule). In the stomach, aggregation of AgNPs did not occur, but extensive dissolution was observed due to the low pH and the presence of Cl-. In the fed state (after meal), 72% AgNPs (by mass) dissolved, with 74% silver ions forming Ag-biomolecule and 26% forming AgCl. In the fasted state (before meal), 76% AgNPs dissolved, with 82% silver ions forming Ag-biomolecule and 18% forming AgCl. A biomolecular corona around AgNPs, comprised of mucin with multiple sulfhydryl groups, inhibited aggregation and dissolution of AgNPs. In the small intestine, no further dissolution or aggregation of AgNPs occurred, while the silver ions existed only as Ag-biomolecule. These results provide useful information for assessing the bioavailability of ingestible AgNPs and their subsequently potential health risks, and for the safe design and utilization of AgNPs in biomedical applications.
Collapse
Affiliation(s)
- Wenhao Wu
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Ruojie Zhang
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Benny Chefetz
- Department of Soil and Water Sciences , Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Tamara Polubesova
- Department of Soil and Water Sciences , Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Baoshan Xing
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
372
|
Razza N, Rizza G, Coulon PE, Didier L, Fadda GC, Voit B, Synytska A, Grützmacher H, Sangermano M. Enabling the synthesis of homogeneous or Janus hairy nanoparticles through surface photoactivation. NANOSCALE 2018; 10:14492-14498. [PMID: 30022204 DOI: 10.1039/c8nr04239j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoparticles (NPs) homogeneously covered with polymer chains or with chains of two different polymers segregated in distinct domains ("Janus" particles) possess remarkable features. Their unique colloidal properties can be finely tuned by the grafted polymers while the characteristics of the nano-core remain unaffected. Herein, a simple and robust photochemical approach is reported to synthesize, from 50 nm cores, homogeneous and Janus "hairy" nanoparticles with hydrophilic and amphiphilic properties, respectively. This is achieved by using a surface-anchored bis(acyl)phosphane oxide photoinitiator which allows a spatially controlled surface-initiated photopolymerization at room temperature. Homogeneous and Janus hairy nanoparticles dispersed in water have very different interaction behaviours which are directly visualized by in situ liquid cell transmission electron microscopy and confirmed by small angle X-ray scattering from a statistically relevant number of particles.
Collapse
Affiliation(s)
- Nicolò Razza
- Dipartimento di Scienza Applicata e Tecnologia Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Bohórquez AC, Unni M, Belsare S, Chiu-Lam A, Rice L, Pampo C, Siemann D, Rinaldi C. Stability and Mobility of Magnetic Nanoparticles in Biological Environments Determined from Dynamic Magnetic Susceptibility Measurements. Bioconjug Chem 2018; 29:2793-2805. [PMID: 30011185 DOI: 10.1021/acs.bioconjchem.8b00419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low tumor accumulation following systemic delivery remains a key challenge for advancing many cancer nanomedicines. One obstacle in engineering nanoparticles for high tumor accumulation is a lack of techniques to monitor their stability and mobility in situ. One way to monitor the stability and mobility of magnetic nanoparticles biological fluids in situ is through dynamic magnetic susceptibility measurements (DMS), which under certain conditions provide a measure of the particle's rotational diffusivity. For magnetic nanoparticles modified to have commonly used biomedical surface coatings, we describe a systematic comparison of DMS measurements in whole blood and tumor tissue explants. DMS measurements clearly demonstrated that stability and mobility changed over time and from one medium to another for each different coating. It was found that nanoparticles coated with covalently grafted, dense layers of PEG were the only ones to show good stability and mobility in all settings tested. These studies illustrate the utility of DMS measurements to estimate the stability and mobility of nanoparticles in situ, and which can provide insights that lead to engineering better nanoparticles for in vivo use.
Collapse
Affiliation(s)
- Ana C Bohórquez
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States
| | - Mythreyi Unni
- Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| | - Sayali Belsare
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States
| | - Andreina Chiu-Lam
- Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| | - Lori Rice
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Christine Pampo
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Dietmar Siemann
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States.,Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| |
Collapse
|
374
|
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. NANOSCALE 2018; 10:12871-12934. [PMID: 29926865 DOI: 10.1039/c8nr02278j] [Citation(s) in RCA: 589] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanostructures have attracted huge interest as a rapidly growing class of materials for many applications. Several techniques have been used to characterize the size, crystal structure, elemental composition and a variety of other physical properties of nanoparticles. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed. In addition, given that the significance of nanoparticles in basic research and applications is constantly increasing, it is necessary that researchers from separate fields overcome the challenges in the reproducible and reliable characterization of nanomaterials, after their synthesis and further process (e.g. annealing) stages. The principal objective of this review is to summarize the present knowledge on the use, advances, advantages and weaknesses of a large number of experimental techniques that are available for the characterization of nanoparticles. Different characterization techniques are classified according to the concept/group of the technique used, the information they can provide, or the materials that they are destined for. We describe the main characteristics of the techniques and their operation principles and we give various examples of their use, presenting them in a comparative mode, when possible, in relation to the property studied in each case.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
375
|
Sels A, Salassa G, Cousin F, Lee LT, Bürgi T. Covalently bonded multimers of Au 25(SBut) 18 as a conjugated system. NANOSCALE 2018; 10:12754-12762. [PMID: 29946605 DOI: 10.1039/c8nr01902a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aromatic dithiol linkers were used to prepare aggregates of Au25(SR)18 clusters (SR: thiolate) via ligand exchange reactions. Fractions of different aggregate sizes were separated by size exclusion chromatography (SEC). The aggregates were characterized by UV-vis absorption spectroscopy, matrix assisted laser desorption ionization (MALDI) mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy (including diffusion-ordered spectroscopy, DOSY) and small angle X-ray scattering (SAXS). At a 2 : 1 cluster : dithiol ratio, small aggregates (dimers, trimers) and also larger aggregates consisting of 10-20 Au25 clusters were formed, according to DOSY, besides unreacted (monomeric) Au25(SR)18. MALDI mass spectrometry shows signals consistent with dimers and trimers (doubly charged). The SAXS curves for the small aggregates can be well fitted by a pearl-necklace model. For the bigger aggregates the SAXS curves evidence a characteristic separation distance between the clusters within the aggregates, which is imposed by the length of the linker. The SAXS curves of these larger aggregates can be well fitted with a core-shell sphere model with a sticky hard-sphere structure factor, in agreement with closely packed aggregates. The absorption spectra of smaller aggregates resemble those of individual Au25(SR)18 clusters; however, and most importantly, the larger aggregates show completely different, less structured spectra with a new band emerging at 840 nm. We assign this drastic change in the absorption spectra and the new band to the electronic coupling between the clusters through the all aromatic linker. In accordance with this view, the aggregates formed with a linker containing methylene groups, thus breaking conjugation, do not show the band at 840 nm. By the addition of monothiols to the larger aggregates their size can be reduced through an "unlinking" reaction. This reaction also affects the band at 840 nm, which moves to higher energy when reducing the aggregate size, as would be expected within a particle in a box model. The electronic coupling between the clusters through the linker is the basis for future applications in nanoelectronics.
Collapse
Affiliation(s)
- Annelies Sels
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
376
|
He Z, Jiang H, Wu L, Liu J, Wang G, Wang X, Wang J, Hou Z, Chen G, Yu S. Real‐Time Probing of Nanowire Assembly Kinetics at the Air–Water Interface by In Situ Synchrotron X‐Ray Scattering. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen He
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| | - Hui‐Jun Jiang
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at MicroscalesiChEMUniversity of Science and Technology of China Hefei 230026 China
| | - Long‐Long Wu
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Jian‐Wei Liu
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| | - Geng Wang
- Shanghai Synchrotron Radiation FacilityShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
| | - Xiao Wang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Jin‐Long Wang
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| | - Zhong‐Huai Hou
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at MicroscalesiChEMUniversity of Science and Technology of China Hefei 230026 China
| | - Gang Chen
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Shu‐Hong Yu
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| |
Collapse
|
377
|
Burian M, Amenitsch H. Dummy-atom modelling of stacked and helical nanostructures from solution scattering data. IUCRJ 2018; 5:390-401. [PMID: 30002840 PMCID: PMC6038956 DOI: 10.1107/s2052252518005493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/09/2018] [Indexed: 05/24/2023]
Abstract
The availability of dummy-atom modelling programs to determine the shape of monodisperse globular particles from small-angle solution scattering data has led to outstanding scientific advances. However, there is no equivalent procedure that allows modelling of stacked, seemingly endless structures, such as helical systems. This work presents a bead-modelling algorithm that reconstructs the structural motif of helical and rod-like systems. The algorithm is based on a 'projection scheme': by exploiting the recurrent nature of stacked systems, such as helices, the full structure is reduced to a single building-block motif. This building block is fitted by allowing random dummy-atom movements without an underlying grid. The proposed method is verified using a variety of analytical models, and examples are presented of successful shape reconstruction from experimental data sets. To make the algorithm available to the scientific community, it is implemented in a graphical computer program that encourages user interaction during the fitting process and also includes an option for shape reconstruction of globular particles.
Collapse
Affiliation(s)
- Max Burian
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, Graz 8010, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, Graz 8010, Austria
| |
Collapse
|
378
|
Mozaffari S, Li W, Thompson C, Ivanov S, Seifert S, Lee B, Kovarik L, Karim AM. Ligand-Mediated Nucleation and Growth of Palladium Metal Nanoparticles. J Vis Exp 2018. [PMID: 29985367 DOI: 10.3791/57667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The size, size distribution and stability of colloidal nanoparticles are greatly affected by the presence of capping ligands. Despite the key contribution of capping ligands during the synthesis reaction, their role in regulating the nucleation and growth rates of colloidal nanoparticles is not well understood. In this work, we demonstrate a mechanistic investigation of the role of trioctylphosphine (TOP) in Pd nanoparticles in different solvents (toluene and pyridine) using in situ SAXS and ligand-based kinetic modeling. Our results under different synthetic conditions reveal the overlap of nucleation and growth of Pd nanoparticles during the reaction, which contradicts the LaMer-type nucleation and growth model. The model accounts for the kinetics of Pd-TOP binding for both, the precursor and the particle surface, which is essential to capture the size evolution as well as the concentration of particles in situ. In addition, we illustrate the predictive power of our ligand-based model through designing the synthetic conditions to obtain nanoparticles with desired sizes. The proposed methodology can be applied to other synthesis systems and therefore serves as an effective strategy for predictive synthesis of colloidal nanoparticles.
Collapse
Affiliation(s)
- Saeed Mozaffari
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University
| | - Wenhui Li
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University
| | - Coogan Thompson
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University
| | - Sergei Ivanov
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory
| | | | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory
| | - Libor Kovarik
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University;
| |
Collapse
|
379
|
Sankova N, Semeykina V, Selishchev D, Glazneva T, Parkhomchuk E, Larichev Y, Uvarov N. Influence of Tetraalkylammonium Compounds on Photocatalytic and Physical Properties of TiO2. Catal Letters 2018. [DOI: 10.1007/s10562-018-2455-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
380
|
Morcos B, Lecante P, Morel R, Haumesser PH, Santini CC. Magnetic, Structural, and Chemical Properties of Cobalt Nanoparticles Synthesized in Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7086-7095. [PMID: 29804454 DOI: 10.1021/acs.langmuir.8b00271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cobalt nanoparticles (CoNPs) exhibit quite unique magnetic, catalytic, and optical properties. In this work, imidazolium-based ionic liquids (ILs) are successfully used to elaborate magnetically responsive suspensions of quite monodisperse CoNPs with diameters below 5 nm. The as-synthesized CoNPs adopt the noncompact and metastable structure of ϵ-Co that progressively evolves at room temperature toward the stable hexagonal close-packed allotrope of Co. Accordingly, magnetization curves are consistent with zero-valent Co. As expected in this size range, the CoNPs are superparamagnetic at room temperature. Their blocking temperature is found to depend on the size of the IL cation. The CoNPs produced in an IL with a large cation exhibit a very high anisotropy, attributed to an enhanced dipolar coupling of the NPs, even though a larger interparticle distance is observed in this IL. Finally, the presence of surface hydrides on the CoNPs is assessed and paves the way toward the synthesis for Co-based bimetallic NPs.
Collapse
Affiliation(s)
- Bishoy Morcos
- Univ. Grenoble Alpes , F-38000 Grenoble , France
- CEA, LETI , MINATEC Campus , F-38054 Grenoble , France
- Univ. Lyon, CNRS-UMR 5265 , 43 Bd du 11 Novembre 1918 , F-69616 Villeurbanne Cedex , France
| | - Pierre Lecante
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES, CNRS , 29 rue Jeanne Marvig , F-31055 Toulouse , France
| | - Robert Morel
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), INAC, SPINTEC , F-38000 Grenoble , France
| | - Paul-Henri Haumesser
- Univ. Grenoble Alpes , F-38000 Grenoble , France
- CEA, LETI , MINATEC Campus , F-38054 Grenoble , France
| | - Catherine C Santini
- Univ. Lyon, CNRS-UMR 5265 , 43 Bd du 11 Novembre 1918 , F-69616 Villeurbanne Cedex , France
| |
Collapse
|
381
|
Povia M, Herranz J, Binninger T, Nachtegaal M, Diaz A, Kohlbrecher J, Abbott DF, Kim BJ, Schmidt TJ. Combining SAXS and XAS To Study the Operando Degradation of Carbon-Supported Pt-Nanoparticle Fuel Cell Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01321] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mauro Povia
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Juan Herranz
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tobias Binninger
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Ana Diaz
- Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Daniel F. Abbott
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Bae-Jung Kim
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Thomas J. Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
382
|
Wu L, Fournier AP, Willis JJ, Cargnello M, Tassone CJ. In Situ X-ray Scattering Guides the Synthesis of Uniform PtSn Nanocrystals. NANO LETTERS 2018; 18:4053-4057. [PMID: 29812947 DOI: 10.1021/acs.nanolett.8b02024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Compared to monometallic nanocrystals (NCs), bimetallic ones often exhibit superior properties due to their wide tunability in structure and composition. A detailed understanding of their synthesis at the atomic scale provides crucial knowledge for their rational design. Here, exploring the Pt-Sn bimetallic system as an example, we study in detail the synthesis of PtSn NCs using in situ synchrotron X-ray scattering. We show that when Pt(II) and Sn(IV) precursors are used, in contrast to a typical simultaneous reduction mechanism, the PtSn NCs are formed through an initial reduction of Pt(II) to form Pt NCs, followed by the chemical transformation from Pt to PtSn. The kinetics derived from the in situ measurements shows fast diffusion of Sn into the Pt lattice accompanied by reordering of these atoms into intermetallic PtSn structure within 300 s at the reaction temperature (∼280 °C). This crucial mechanistic understanding enables the synthesis of well-defined PtSn NCs with controlled structure and composition via a seed-mediated approach. This type of in situ characterization can be extended to other multicomponent nanostructures to advance their rational synthesis for practical applications.
Collapse
Affiliation(s)
- Liheng Wu
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
- Department of Chemical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Amanda P Fournier
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Joshua J Willis
- Department of Chemical Engineering , Stanford University , Stanford , California 94305 , United States
- SUNCAT Center for Interface Science and Catalysis , Stanford University , Stanford , California 94305 , United States
| | - Matteo Cargnello
- Department of Chemical Engineering , Stanford University , Stanford , California 94305 , United States
- SUNCAT Center for Interface Science and Catalysis , Stanford University , Stanford , California 94305 , United States
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| |
Collapse
|
383
|
He Z, Jiang HJ, Wu LL, Liu JW, Wang G, Wang X, Wang JL, Hou ZH, Chen G, Yu SH. Real-Time Probing of Nanowire Assembly Kinetics at the Air-Water Interface by In Situ Synchrotron X-Ray Scattering. Angew Chem Int Ed Engl 2018; 57:8130-8134. [PMID: 29750852 DOI: 10.1002/anie.201803552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Indexed: 11/07/2022]
Abstract
Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy.
Collapse
Affiliation(s)
- Zhen He
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Hui-Jun Jiang
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, 230026, China
| | - Long-Long Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jian-Wei Liu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Geng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jin-Long Wang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Huai Hou
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, 230026, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
384
|
Kim YJ, Lee B. Unique p-n Heterostructured Water-Borne Nanoparticles Exhibiting Impressive Charge-Separation Ability. CHEMSUSCHEM 2018; 11:1628-1638. [PMID: 29663700 DOI: 10.1002/cssc.201800091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The ecofriendly synthesis of organic semiconductors with heterojunctions is of interest and requires surfactants to stabilize colloidal nanoparticles (NPs) in aqueous solution. The use of conventional surfactants results in p-n heterostructured NPs, in which both p- and n-type semiconductors are phase separated and confined within a core surrounded by the surfactant shell. The performances of these devices, however, are not comparable to those of solid organic semiconductor films. Further efforts are required to understand and control the morphological structure of the nanoparticles to improve their performances. Here, by using a new class of polyethyleneglycol-based surfactant, PEG-C60, we synthesized unique p-n heterostructured water-borne NPs that comprise a p-type semiconductor core and an n-type PEG-C60 shell. We demonstrate that the morphology gives rise to charge separation superior to conventional water-borne NPs. These PEG-C60-based water-borne NPs can, thus, provide a new paradigm in the current field of water-based organic semiconductor colloids.
Collapse
Affiliation(s)
- Yu Jin Kim
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
385
|
Kumar S, Yadav I, Aswal VK, Kohlbrecher J. Structure and Interaction of Nanoparticle-Protein Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5679-5695. [PMID: 29672062 DOI: 10.1021/acs.langmuir.8b00110] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The integration of nanoparticles with proteins is of high scientific interest due to the amazing potential displayed by their complexes, combining the nanoscale properties of nanoparticles with the specific architectures and functions of the protein molecules. The nanoparticle-protein complexes, in particular, are useful in the emerging field of nanobiotechnology (nanomedicine, drug delivery, and biosensors) as the nanoparticles having sizes comparable to that of living cells can access and operate within the cell. The understanding of nanoparticle interaction with different protein molecules is a prerequisite for such applications. The interaction of the two components has been shown to result in conformational changes in proteins and to affect the surface properties and colloidal stability of the nanoparticles. In this feature article, our recent studies exploring the driving interactions in nanoparticle-protein systems and resultant structures are presented. The anionic colloidal silica nanoparticles and two globular charged proteins [lysozyme and bovine serum albumin (BSA)] have been investigated as model systems. The adsorption behavior of the two proteins on nanoparticles is found to be completely different, but they both give rise to similar phase transformation from one phase to two phase in respective nanoparticle-protein systems. The presence of protein induces the short-range and long-range attraction between the nanoparticles with lysozyme and BSA, respectively. The observed phase behavior and its dependence on various physiochemical parameters (e.g., nanoparticle size, ionic strength, and solution pH) have been explained in terms of underlying interactions.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 , India
| | - Indresh Yadav
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 , India
- Homi Bhabha National Institute , Mumbai 400 094 , India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 , India
- Homi Bhabha National Institute , Mumbai 400 094 , India
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging , Paul Scherrer Institut , CH-5232 PSI Villigen , Switzerland
| |
Collapse
|
386
|
Li M, Wang W, Yin P. A General Approach to Access Morphologies of Polyoxometalates in Solution by Using SAXS: An Ab Initio Modeling Protocol. Chemistry 2018; 24:6639-6644. [PMID: 29473664 DOI: 10.1002/chem.201800344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 11/08/2022]
Abstract
Herein, we reported a general protocol for an ab initio modeling approach to deduce structure information of polyoxometalates (POMs) in solutions from scattering data collected by the small-angle X-ray scattering (SAXS) technique. To validate the protocol, the morphologies of a serious of known POMs in either aqueous or organic solvents were analyzed. The obtained particle morphologies were compared and confirmed with previous reported crystal structures. To extend the feasibility of the protocol to an unknown system of aqueous solutions of Na2 MoO4 with the pH ranging from -1 to 8.35, the formation of {Mo36 } clusters was probed, identified, and confirmed by SAXS. The approach was further optimized with a multi-processing capability to achieve fast analysis of experimental data, thereby, facilitating in situ studies of formations of POMs in solutions. The advantage of this approach is to generate intuitive 3D models of POMs in solutions without confining information such as symmetries and possible sizes.
Collapse
Affiliation(s)
- Mu Li
- South China Advanced Institute for Soft Matter Science and Technology and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Weiyu Wang
- South China Advanced Institute for Soft Matter Science and Technology and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| |
Collapse
|
387
|
Mancini GF, Karl RM, Shanblatt ER, Bevis CS, Gardner DF, Tanksalvala MD, Russell JL, Adams DE, Kapteyn HC, Badding JV, Mallouk TE, Murnane MM. Colloidal crystal order and structure revealed by tabletop extreme ultraviolet scattering and coherent diffractive imaging. OPTICS EXPRESS 2018; 26:11393-11406. [PMID: 29716059 DOI: 10.1364/oe.26.011393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Colloidal crystals with specific electronic, optical, magnetic, vibrational properties, can be rationally designed by controlling fundamental parameters such as chemical composition, scale, periodicity and lattice symmetry. In particular, silica nanospheres -which assemble to form colloidal crystals- are ideal for this purpose, because of the ability to infiltrate their templates with semiconductors or metals. However characterization of these crystals is often limited to techniques such as grazing incidence small-angle scattering that provide only global structural information and also often require synchrotron sources. Here we demonstrate small-angle Bragg scattering from nanostructured materials using a tabletop-scale setup based on high-harmonic generation, to reveal important information about the local order of nanosphere grains, separated by grain boundaries and discontinuities. We also apply full-field quantitative ptychographic imaging to visualize the extended structure of a silica close-packed nanosphere multilayer, with thickness information encoded in the phase. These combined techniques allow us to simultaneously characterize the silica nanospheres size, their symmetry and distribution within single colloidal crystal grains, the local arrangement of nearest-neighbor grains, as well as to quantitatively determine the number of layers within the sample. Key to this advance is the good match between the high harmonic wavelength used (13.5nm) and the high transmission, high scattering efficiency, and low sample damage of the silica colloidal crystal at this wavelength. As a result, the relevant distances in the sample - namely, the interparticle distance (≈124nm) and the colloidal grains local arrangement (≈1μm) - can be investigated with Bragg coherent EUV scatterometry and ptychographic imaging within the same experiment simply by tuning the EUV spot size at the sample plane (5μm and 15μm respectively). In addition, the high spatial coherence of high harmonics light, combined with advances in imaging techniques, makes it possible to image near-periodic structures quantitatively and nondestructively, and enables the observation of the extended order of quasi-periodic colloidal crystals, with a spatial resolution better than 20nm. In the future, by harnessing the high time-resolution of tabletop high harmonics, this technique can be extended to dynamically image the three-dimensional electronic, magnetic, and transport properties of functional nanosystems.
Collapse
|
388
|
Li X, Charaya H, Bernard GM, Elliott JAW, Michaelis VK, Lee B, Chung HJ. Low-Temperature Ionic Conductivity Enhanced by Disrupted Ice Formation in Polyampholyte Hydrogels. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02498] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xinda Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hemant Charaya
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Guy M. Bernard
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Janet A. W. Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | | | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Hyun-Joong Chung
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
389
|
Andersen HL, Bøjesen ED, Birgisson S, Christensen M, Iversen BB. Pitfalls and reproducibility ofin situsynchrotron powder X-ray diffraction studies of solvothermal nanoparticle formation. J Appl Crystallogr 2018. [DOI: 10.1107/s1600576718003552] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In situpowder X-ray diffraction (PXRD) is a powerful characterization tool owing to its ability to provide time-resolved information about phase composition, crystal structure and microstructure. The application of high-flux synchrotron X-ray beams and the development of custom-built reactors have facilitated second-scale time-resolved studies of nanocrystallite formation and growth during solvothermal synthesis. The short exposure times required for good time resolution limit the data quality, while the employed high-temperature–high-pressure reactors further complicate data acquisition and treatment. Based on experience gathered during ten years of conductingin situstudies of solvothermal reactions at a number of different synchrotrons, a compilation of useful advice for conductingin situPXRD experiments and data treatment is presented here. In addition, the reproducibility of the employed portablein situPXRD setup, experimental procedure and data analysis is evaluated. This evaluation is based on repeated measurements of an LaB6line-profile standard throughout 5 d of beamtime and on the repetition of ten identicalin situsynchrotron PXRD experiments on the hydrothermal formation of γ-Fe2O3nanocrystallites. The study reveals inconsistencies in the absolute structural and microstructural values extracted by Rietveld refinement and whole powder pattern modelling of thein situPXRD data, but also illustrates the robustness of trends and relative changes in the extracted parameters. From the data, estimates of the effective errors and reproducibility ofin situPXRD studies of solvothermal nanocrystallite formation are provided.
Collapse
|
390
|
Balog S. Taylor Dispersion of Polydisperse Nanoclusters and Nanoparticles: Modeling, Simulation, and Analysis. Anal Chem 2018. [DOI: 10.1021/acs.analchem.7b04476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sandor Balog
- University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
391
|
Kim D, Lee B, Thomopoulos S, Jun YS. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. Nat Commun 2018; 9:962. [PMID: 29511184 PMCID: PMC5840387 DOI: 10.1038/s41467-018-03041-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/16/2018] [Indexed: 12/03/2022] Open
Abstract
Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.
Collapse
Affiliation(s)
- Doyoon Kim
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
392
|
Vorontsov AV, Tsybulya SV. Influence of Nanoparticles Size on XRD Patterns for Small Monodisperse Nanoparticles of Cu0 and TiO2 Anatase. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04480] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander V. Vorontsov
- Altai State University, Prospekt
Lenina 61, Barnaul 656049, Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Prospekt Akademia Lavrentyeva 9, Novosibirsk 630090, Russia
| | - Sergei V. Tsybulya
- Boreskov Institute of Catalysis, Prospekt Akademia Lavrentyeva 5, Novosibirsk 630090, Russia
| |
Collapse
|
393
|
Watt J, Collins AM, Vreeland EC, Montano GA, Huber DL. Magnetic Nanocomposites and Their Incorporation into Higher Order Biosynthetic Functional Architectures. ACS OMEGA 2018; 3:503-508. [PMID: 31457908 PMCID: PMC6641278 DOI: 10.1021/acsomega.7b02031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 06/10/2023]
Abstract
A magnetically active Fe3O4/poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PBD) nanocomposite is formed by the encapsulation of magnetite nanoparticles with a short-chain amphiphilic block copolymer. This material is then incorporated into the self-assembly of higher order polymer architectures, along with an organic pigment, to yield biosynthetic, bifunctional optical and magnetically active Fe3O4/bacteriochlorophyll c/PEO-b-PBD polymeric chlorosomes.
Collapse
Affiliation(s)
- John Watt
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Aaron M. Collins
- Department
of Chemistry, Southern New Hampshire University, 2500 North River Road, Hooksett, New Hampshire 03106, United States
| | - Erika C. Vreeland
- Imagion
Biosystems, 800 Bradbury
Drive SE, Albuquerque, New
Mexico 87106, United
States
| | - Gabriel A. Montano
- Department
of Chemistry & Biochemistry, Northern
Arizona University, South
San Francisco Street, Flagstaff, Arizona 86011, United
States
| | - Dale L. Huber
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
394
|
Scanlon MD, Smirnov E, Stockmann TJ, Peljo P. Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics. Chem Rev 2018; 118:3722-3751. [DOI: 10.1021/acs.chemrev.7b00595] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Micheál D. Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Evgeny Smirnov
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - T. Jane Stockmann
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, Sorbonne Paris Cité, Paris Diderot University, 15 Rue J.A. Baïf, 75013 Paris, France
| | - Pekka Peljo
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
395
|
Lazarev S, Besedin I, Zozulya AV, Meijer JM, Dzhigaev D, Gorobtsov OY, Kurta RP, Rose M, Shabalin AG, Sulyanova EA, Zaluzhnyy I, Menushenkov AP, Sprung M, Petukhov AV, Vartanyants IA. Ptychographic X-Ray Imaging of Colloidal Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702575. [PMID: 29171683 DOI: 10.1002/smll.201702575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/08/2017] [Indexed: 05/21/2023]
Abstract
Ptychographic coherent X-ray imaging is applied to obtain a projection of the electron density of colloidal crystals, which are promising nanoscale materials for optoelectronic applications and important model systems. Using the incident X-ray wavefield reconstructed by mixed states approach, a high resolution and high contrast image of the colloidal crystal structure is obtained by ptychography. The reconstructed colloidal crystal reveals domain structure with an average domain size of about 2 µm. Comparison of the domains formed by the basic close-packed structures, allows us to conclude on the absence of pure hexagonal close-packed domains and confirms the presence of random hexagonal close-packed layers with predominantly face-centered cubic structure within the analyzed part of the colloidal crystal film. The ptychography reconstruction shows that the final structure is complicated and may contain partial dislocations leading to a variation of the stacking sequence in the lateral direction. As such in this work, X-ray ptychography is extended to high resolution imaging of crystalline samples.
Collapse
Affiliation(s)
- Sergey Lazarev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- National Research Tomsk Polytechnic University (TPU), pr. Lenina 30, 634050, Tomsk, Russia
| | - Ilya Besedin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Alexey V Zozulya
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Janne-Mieke Meijer
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterial Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Dmitry Dzhigaev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Oleg Yu Gorobtsov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Ruslan P Kurta
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Max Rose
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Anatoly G Shabalin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Elena A Sulyanova
- Shubnikov Institute of Crystallography RAS, Leninskii pr. 59, 119333, Moscow, Russia
| | - IvanA Zaluzhnyy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Alexey P Menushenkov
- National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Andrei V Petukhov
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterial Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| |
Collapse
|
396
|
Uppuluri R, Sen Gupta A, Rosas AS, Mallouk TE. Soft chemistry of ion-exchangeable layered metal oxides. Chem Soc Rev 2018; 47:2401-2430. [DOI: 10.1039/c7cs00290d] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disassembly and re-assembly of layered metal oxides by soft chemical approaches can be used to tailor functionalities in artificial photosynthesis, energy storage, optics, and piezoelectrics.
Collapse
Affiliation(s)
- Ritesh Uppuluri
- Departments of Chemistry
- Biochemistry and Molecular Biology, and Physics, The Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| | - Arnab Sen Gupta
- Department of Materials Science and Engineering
- The Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| | - Alyssa S. Rosas
- Departments of Chemistry
- Biochemistry and Molecular Biology, and Physics, The Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| | - Thomas E. Mallouk
- Departments of Chemistry
- Biochemistry and Molecular Biology, and Physics, The Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| |
Collapse
|
397
|
Maguire CM, Rösslein M, Wick P, Prina-Mello A. Characterisation of particles in solution - a perspective on light scattering and comparative technologies. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:732-745. [PMID: 30369998 PMCID: PMC6201793 DOI: 10.1080/14686996.2018.1517587] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 05/07/2023]
Abstract
We present here a perspective detailing the current state-of-the-art technologies for the characterisation of nanoparticles (NPs) in liquid suspension. We detail the technologies involved and assess their applications in the determination of NP size and concentration. We also investigate the parameters that can influence the results and put forward a cause and effect analysis of the principle factors influencing the measurement of NP size and concentration by NP tracking analysis and dynamic light scattering, to identify areas where uncertainties in the measurement can arise. Also included are technologies capable of characterising NPs in solution, whose measurements are not based on light scattering. It is hoped that the manuscript, with its detailed description of the methodologies involved, will assist scientists in selecting the appropriate technology for characterising their materials and enabling them to comply with regulatory agencies' demands for accurate and reliable NP size and concentration data.
Collapse
Affiliation(s)
- Ciarán Manus Maguire
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
- CONTACT Ciarán Manus Maguire ; Adriele Prina-Mello LBCAM and Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, James Street, Dublin 8, Ireland
| | - Matthias Rösslein
- Laboratory for Materials - Biology Interactions, Swiss Federal Laboratories for Materials Research and Testing (Empa), St. Gallen, Switzerland
| | - Peter Wick
- Laboratory for Materials - Biology Interactions, Swiss Federal Laboratories for Materials Research and Testing (Empa), St. Gallen, Switzerland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
398
|
Kim BH, Yang J, Lee D, Choi BK, Hyeon T, Park J. Liquid-Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1703316. [PMID: 29178589 DOI: 10.1002/adma.201703316] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Indexed: 05/26/2023]
Abstract
For the past few decades, nanoparticles of various sizes, shapes, and compositions have been synthesized and utilized in many different applications. However, due to a lack of analytical tools that can characterize structural changes at the nanoscale level, many of their growth and transformation processes are not yet well understood. The recently developed technique of liquid-phase transmission electron microscopy (TEM) has gained much attention as a new tool to directly observe chemical reactions that occur in solution. Due to its high spatial and temporal resolution, this technique is widely employed to reveal fundamental mechanisms of nanoparticle growth and transformation. Here, the technical developments for liquid-phase TEM together with their application to the study of solution-phase nanoparticle chemistry are summarized. Two types of liquid cells that can be used in the high-vacuum conditions required by TEM are discussed, followed by recent in situ TEM studies of chemical reactions of colloidal nanoparticles. New findings on the growth mechanism, transformation, and motion of nanoparticles are subsequently discussed in detail.
Collapse
Affiliation(s)
- Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiwoong Yang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghoon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Back Kyu Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
399
|
Magurudeniya HD, Ringstrand BS, Seifert S, Firestone MA. Reversible hierarchical structure induced by solvation and temperature modulation in an ionic liquid-based random bottlebrush copolymer. Polym Chem 2018. [DOI: 10.1039/c8py01218k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Discoidal bottlebrush poly(ionic liquid)s are reversibly stacked into 1-D rod like assembles by temperature changes.
Collapse
Affiliation(s)
- Harsha D. Magurudeniya
- Materials Physics & Applications Division
- Los Alamos National Laboratory
- Los Alamos
- USA 87545
| | - Bryan S. Ringstrand
- Materials Physics & Applications Division
- Los Alamos National Laboratory
- Los Alamos
- USA 87545
| | - Sönke Seifert
- X-ray Sciences Division
- Argonne National Laboratory
- Lemont
- USA 60439
| | - Millicent A. Firestone
- Materials Physics & Applications Division
- Los Alamos National Laboratory
- Los Alamos
- USA 87545
| |
Collapse
|
400
|
|