351
|
Tang Q, Precit MR, Thomason MK, Blanc SF, Ahmed-Qadri F, McFarland AP, Wolter DJ, Hoffman LR, Woodward JJ. Thymidine starvation promotes c-di-AMP-dependent inflammation during pathogenic bacterial infection. Cell Host Microbe 2022; 30:961-974.e6. [PMID: 35439435 DOI: 10.1016/j.chom.2022.03.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Antimicrobials can impact bacterial physiology and host immunity with negative treatment outcomes. Extensive exposure to antifolate antibiotics promotes thymidine-dependent Staphylococcus aureus small colony variants (TD-SCVs), commonly associated with worse clinical outcomes. We show that antibiotic-mediated disruption of thymidine synthesis promotes elevated levels of the bacterial second messenger cyclic di-AMP (c-di-AMP), consequently inducing host STING activation and inflammation. An initial antibiotic screen in Firmicutes revealed that c-di-AMP production was largely driven by antifolate antibiotics targeting dihydrofolate reductase (DHFR), which promotes folate regeneration required for thymidine biosynthesis. Additionally, TD-SCVs exhibited excessive c-di-AMP production and STING activation in a thymidine-dependent manner. Murine lung infection with TD-SCVs revealed STING-dependent elevation of proinflammatory cytokines, causing higher airway neutrophil infiltration and activation compared with normal-colony S. aureus and hemin-dependent SCVs. Collectively, our results suggest that thymidine metabolism disruption in Firmicutes leads to elevated c-di-AMP-mediated STING-dependent inflammation, with potential impacts on antibiotic usage and infection outcomes.
Collapse
Affiliation(s)
- Qing Tang
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Mimi R Precit
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Maureen K Thomason
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Sophie F Blanc
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Fariha Ahmed-Qadri
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Adelle P McFarland
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Daniel J Wolter
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Lucas R Hoffman
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
352
|
Martin-Fernandez M, Buta S, Le Voyer T, Li Z, Dynesen LT, Vuillier F, Franklin L, Ailal F, Muglia Amancio A, Malle L, Gruber C, Benhsaien I, Altman J, Taft J, Deswarte C, Roynard M, Nieto-Patlan A, Moriya K, Rosain J, Boddaert N, Bousfiha A, Crow YJ, Jankovic D, Sher A, Casanova JL, Pellegrini S, Bustamante J, Bogunovic D. A partial form of inherited human USP18 deficiency underlies infection and inflammation. J Exp Med 2022; 219:213053. [PMID: 35258551 PMCID: PMC8908790 DOI: 10.1084/jem.20211273] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 11/05/2022] Open
Abstract
Human USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I–mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-γ–dependent induction of IL-12 and IL-23 is reduced owing to IFN-I–mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease.
Collapse
Affiliation(s)
- Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sofija Buta
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tom Le Voyer
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Zhi Li
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Lasse Toftdal Dynesen
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Françoise Vuillier
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Lina Franklin
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Fatima Ailal
- Department of Pediatric Infectious Diseases, Clinical Immunology Unit, Children's Hospital, Centre Hospitalo-universitaire Averroes, Casablanca, Morocco.,Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
| | - Alice Muglia Amancio
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Hospital do Cancer de Muriae, Fundacao Cristiano Varella, Muriae, Minas Gerais, Brazil
| | - Louise Malle
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Conor Gruber
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ibtihal Benhsaien
- Department of Pediatric Infectious Diseases, Clinical Immunology Unit, Children's Hospital, Centre Hospitalo-universitaire Averroes, Casablanca, Morocco.,Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
| | - Jennie Altman
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Justin Taft
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline Deswarte
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Manon Roynard
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Alejandro Nieto-Patlan
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Kunihiko Moriya
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Jérémie Rosain
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Nathalie Boddaert
- University of Paris, Imagine Institute, Paris, France.,Department of Radiology, Assistance Publique - Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Aziz Bousfiha
- Department of Pediatric Infectious Diseases, Clinical Immunology Unit, Children's Hospital, Centre Hospitalo-universitaire Averroes, Casablanca, Morocco.,Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
| | - Yanick J Crow
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jean-Laurent Casanova
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, New York, NY.,Center for the Study of Primary Immunodeficiencies, Assistance Publique - Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Jacinta Bustamante
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Center for the Study of Primary Immunodeficiencies, Assistance Publique - Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
353
|
Lei C, Tan Y, Ni D, Peng J, Yi G. cGAS-STING signaling in ischemic diseases. Clin Chim Acta 2022; 531:177-182. [DOI: 10.1016/j.cca.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
|
354
|
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
355
|
STING Agonists/Antagonists: Their Potential as Therapeutics and Future Developments. Cells 2022; 11:cells11071159. [PMID: 35406723 PMCID: PMC8998017 DOI: 10.3390/cells11071159] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023] Open
Abstract
The cGAS STING pathway has received much attention in recent years, and it has been recognized as an important component of the innate immune response. Since the discovery of STING and that of cGAS, many observations based on preclinical models suggest that the faulty regulation of this pathway is involved in many type I IFN autoinflammatory disorders. Evidence has been accumulating that cGAS/STING might play an important role in pathologies beyond classical immune diseases, as in, for example, cardiac failure. Human genetic mutations that result in the activation of STING or that affect the activity of cGAS have been demonstrated as the drivers of rare interferonopathies affecting young children and young adults. Nevertheless, no data is available in the clinics demonstrating the therapeutic benefit in modulating the cGAS/STING pathway. This is due to the lack of STING/cGAS-specific low molecular weight modulators that would be qualified for clinical exploration. The early hopes to learn from STING agonists, which have reached the clinics in recent years for selected oncology indications, have not yet materialized since the initial trials are progressing very slowly. In addition, transforming STING agonists into potent selective antagonists has turned out to be more challenging than expected. Nevertheless, there has been progress in identifying novel low molecular weight compounds, in some cases with unexpected mode of action, that might soon move to clinical trials. This study gives an overview of some of the potential indications that might profit from modulation of the cGAS/STING pathway and a short overview of the efforts in identifying STING modulators (agonists and antagonists) suitable for clinical research and describing their potential as a "drug".
Collapse
|
356
|
Huang KC, Chanda D, McGrath S, Dixit V, Zhang C, Wu J, Tendyke K, Yao H, Hukkanen R, Taylor N, Verbel D, Kim DS, Endo A, Noland TA, Chen Y, Matijevic M, Wang J, Hutz J, Sarwar N, Fang FG, Bao X. Pharmacological Activation of STING in Bladder Induces Potent Anti-tumor Immunity in Non-Muscle Invasive Murine Bladder Cancer. Mol Cancer Ther 2022; 21:914-924. [PMID: 35313332 DOI: 10.1158/1535-7163.mct-21-0780] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
Schweinfurthins, a class of natural products, have attracted considerable interest for novel therapy development because of their selective and potent anti-proliferative activity against human cancer cells. However, the underlying mechanism is not well understood. Herein, we demonstrated that schweinfurthins preferentially inhibited the proliferation of PTEN deficient cancer cells by indirect inhibition of AKT phosphorylation. Intracellularly, schweinfurthins and their analogs arrested trans-Golgi-network trafficking, likely by binding to oxysterol-binding proteins, leading to an effective inhibition of mTOR/AKT signaling through inducing endoplasmic reticulum stress and suppressing both lipid raft-mediated PI3K activation and mTOR/RheB complex formation. Moreover, schweinfurthins were found to be highly potent toward PTEN-deficient B cell lymphoma cells, and displayed two orders of magnitude lower activity toward normal human peripheral blood mononuclear cells and primary fibroblasts in vitro. These results revealed a previously unrecognized role of schweinfurthins in trans-Golgi-network trafficking and linked mechanistically this cellular effect with mTOR/AKT signaling and with cancer cell survival and growth. Our findings suggest a new opportunity to modulate oncogenic signaling by interfering with TGN trafficking to treat mTOR/AKT-dependent human cancers.
Collapse
Affiliation(s)
| | - Dinesh Chanda
- Johnson & Johnson (United States), Cambridge, MA, United States
| | | | | | - Chi Zhang
- Dewpoint Therapeutics, Boston, United States
| | - Jiayi Wu
- H3biomedicine Inc, United States
| | | | - Huilan Yao
- H3 Biomedicine, Cambridge, United States
| | | | - Noel Taylor
- Eisai (United States), Andover, United States
| | | | | | | | | | - Yu Chen
- Eisai Inc, Cambridge, United States
| | - Mark Matijevic
- Boston Pharmaceuticals, Cambridge, Massachusetts, United States
| | - John Wang
- Eisai (United States), Andover, Massachusetts, United States
| | - Janna Hutz
- Eisai, Inc., Cambridge, MA, United States
| | | | | | - Xingfeng Bao
- H3biomedicine Inc., Cambridge, MA, United States
| |
Collapse
|
357
|
Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication. Nat Commun 2022; 13:1406. [PMID: 35301296 PMCID: PMC8931115 DOI: 10.1038/s41467-022-28745-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
Human rhinovirus (HRV), like coronavirus (HCoV), are positive-strand RNA viruses that cause both upper and lower respiratory tract illness, with their replication facilitated by concentrating RNA-synthesizing machinery in intracellular compartments made of modified host membranes, referred to as replication organelles (ROs). Here we report a non-canonical, essential function for stimulator of interferon genes (STING) during HRV infections. While the canonical function of STING is to detect cytosolic DNA and activate inflammatory responses, HRV infection triggers the release of STIM1-bound STING in the ER by lowering Ca2+, thereby allowing STING to interact with phosphatidylinositol 4-phosphate (PI4P) and traffic to ROs to facilitates viral replication and transmission via autophagy. Our results thus hint a critical function of STING in HRV viral replication and transmission, with possible implications for other RO-mediated RNA viruses. Evidence exists that the typically antiviral signaling mediator STING is, counterintuitively, needed for optimal human rhinovirus infection. Here the authors confirm this finding and show how human rhinovirus can reduce stored Ca2+ levels to drive this effect.
Collapse
|
358
|
Horneff G, Schütz C, Rösen-Wolff A. [Autoinflammation-A clinical and genetic challenge]. Hautarzt 2022; 73:309-322. [PMID: 35286425 DOI: 10.1007/s00105-022-04970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the last two decades clinical rheumatological practice has been confronted with a steadily increasing number of autoinflammatory diseases, the immunological pathomechanisms of which have been elucidated and in part can be clinically well classified. Whereas targeted genetic diagnostics previously served to confirm a clinically suspected diagnosis, genetic sequencing technology has much improved and enables a new diagnostic approach via high-throughput sequencing, e.g., panel sequencing, whole exome and whole genome sequencing. Thus, the decision to make a diagnosis clinically and/or genetically, has become a daily challenge. This article contrasts the clinical, immunological and genetic aspects of autoinflammatory diseases.
Collapse
Affiliation(s)
- Gerd Horneff
- Zentrum für Allgemeine Pädiatrie und Neonatologie, Asklepios Klinik Sankt Augustin, Arnold Janssen Str. 29, 53757, Sankt Augustin, Deutschland. .,Zentrum für Kinder- und Jugendmedizin, Universität Köln, Köln, Deutschland.
| | - Catharina Schütz
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Deutschland
| | - Angela Rösen-Wolff
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Deutschland
| |
Collapse
|
359
|
Weidler S, Lee-Kirsch MA. Autoinflammatorische Erkrankungen – ein expandierendes Spektrum. Monatsschr Kinderheilkd 2022. [DOI: 10.1007/s00112-022-01436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
360
|
Kemmoku H, Kuchitsu Y, Mukai K, Taguchi T. Specific association of TBK1 with the trans-Golgi network following STING stimulation. Cell Struct Funct 2022; 47:19-30. [PMID: 35125375 PMCID: PMC10511044 DOI: 10.1247/csf.21080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/30/2022] [Indexed: 12/17/2023] Open
Abstract
Stimulator of interferon genes (STING) is essential for the type I interferon response induced by microbial DNA or self-DNA leaked from mitochondria/nuclei. In response to the emergence of such DNAs in the cytosol, STING relocates from the endoplasmic reticulum (ER) to the Golgi, and activates TANK-binding kinase 1 (TBK1), a cytosolic kinase essential for the activation of STING-dependent downstream signalling. To understand at which subcellular compartments TBK1 becomes associated with STING, we generated cells stably expressing fluorescent protein-tagged STING (mNeonGreen-STING) and TBK1 (TBK1-mScarletI). We found that after STING stimulation, TBK1 became associated with the trans-Golgi network (TGN), not the other parts of the Golgi. STING variants that constitutively induce the type I interferon response have been identified in patients with autoinflammatory diseases named "STING-associated vasculopathy with onset in infancy (SAVI)". Even in cells expressing these constitutively active STING variants, TBK1 was found to be associated with TGN, not the other parts of the Golgi. These results suggest that TGN acts as a specific platform where STING associates with and activates TBK1.Key words: the Golgi, membrane traffic, innate immunity, STING.
Collapse
Affiliation(s)
- Haruka Kemmoku
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshihiko Kuchitsu
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
361
|
Harley ITW, Sawalha AH. Systemic lupus erythematosus as a genetic disease. Clin Immunol 2022; 236:108953. [PMID: 35149194 PMCID: PMC9167620 DOI: 10.1016/j.clim.2022.108953] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus is the prototypical systemic autoimmune disease, as it is characterized both by protean multi-organ system manifestations and by the uniform presence of pathogenic autoantibodies directed against components of the nucleus. Prior to the modern genetic era, the diverse clinical manifestations of SLE suggested to many that SLE patients were unlikely to share a common genetic risk basis. However, modern genetic studies have revealed that SLE usually arises when an environmental exposure occurs in an individual with a collection of genetic risk variants passing a liability threshold. Here, we summarize the current state of the field aimed at: (1) understanding the genetic architecture of this complex disease, (2) synthesizing how this genetic risk architecture impacts cellular and molecular disease pathophysiology, (3) providing illustrative examples that highlight the rich complexity of the pathobiology of this prototypical autoimmune disease and (4) communicating this complex etiopathogenesis to patients.
Collapse
Affiliation(s)
- Isaac T W Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Human Immunology and Immunotherapy Initiative (HI(3)), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Regional Veteran's Administration Medical Center (VAMC), Medicine Service, Rheumatology Section, Aurora, CO, USA.
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
362
|
Fernandez-Ruiz R, Niewold TB. Type I Interferons in Autoimmunity. J Invest Dermatol 2022; 142:793-803. [PMID: 35016780 PMCID: PMC8860872 DOI: 10.1016/j.jid.2021.11.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022]
Abstract
Dysregulated IFN-1 responses play crucial roles in the development of multiple forms of autoimmunity. Many patients with lupus, systemic sclerosis, Sjogren's syndrome, and dermatomyositis demonstrate enhanced IFN-1 signaling. IFN-1 excess is associated with disease severity and autoantibodies and could potentially predict response to newer therapies targeting IFN-1 pathways. In this review, we provide an overview of the signaling pathway and immune functions of IFN-1s in health and disease. We also review the systemic autoimmune diseases classically associated with IFN-1 upregulation and current therapeutic strategies targeting the IFN-1 system.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Timothy B Niewold
- Judith & Stewart Colton Center for Autoimmunity, Department of Medicine Research, NYU Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
363
|
Bai W, Wang R, Shen M, Li M, Zeng X. A 16-year-old Boy with Arthritis, Rash, and Hemoptysis: Beyond "Undifferentiated Connective Tissue Disease"? RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:46-50. [PMID: 36467020 PMCID: PMC9524812 DOI: 10.2478/rir-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/16/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Wei Bai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Min Shen
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
364
|
Lin B, Goldbach-Mansky R. Pathogenic insights from genetic causes of autoinflammatory inflammasomopathies and interferonopathies. J Allergy Clin Immunol 2022; 149:819-832. [PMID: 34893352 PMCID: PMC8901451 DOI: 10.1016/j.jaci.2021.10.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
A number of systemic autoinflammatory diseases arise from gain-of-function mutations in genes encoding IL-1-activating inflammasomes or cytoplasmic nucleic acid sensors including the receptor and sensor STING and result in increased IL-1 and type I interferon production, respectively. Blocking these pathways in human diseases has provided proof-of-concept, confirming the prominent roles of these cytokines in disease pathogenesis. Recent insights into the multilayered regulation of these sensor pathways and insights into their role in amplifying the disease pathogenesis of monogenic and complex genetic diseases spurred new drug development targeting the sensors. This review provides insights into the pathogenesis and genetic causes of these "prototypic" diseases caused by gain-of function mutations in IL-1-activating inflammasomes (inflammasomopathies) and in interferon-activating pathways (interferonopathies) including STING-associated vasculopathy with onset in infancy, Aicardi-Goutieres syndrome, and proteasome-associated autoinflammatory syndromes that link activation of the viral sensors STING, "self" nucleic acid metabolism, and the ubiquitin-proteasome system to "type I interferon production" and human diseases. Clinical responses and biomarker changes to Janus kinase inhibitors confirm a role of interferons, and a growing number of diseases with "interferon signatures" unveil extensive cross-talk between major inflammatory pathways. Understanding these interactions promises new tools in tackling the significant clinical challenges in treating patients with these conditions.
Collapse
Affiliation(s)
- Bin Lin
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
365
|
Chuprin J, McCormack L, Richmond JM, Rashighi M. Evaluating the use of JAK inhibitors in inflammatory connective tissue diseases in pediatric patients: an update. Expert Rev Clin Immunol 2022; 18:263-272. [PMID: 35209781 DOI: 10.1080/1744666x.2022.2047022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Connective tissue diseases (CTDs) are a category of conditions that affect tissues that support and provide structure to the body. These diseases include rheumatoid arthritis, systemic lupus erythematosus, dermatomyositis, and sclerosing diseases. CTDs can be caused by dysregulation of inflammatory pathways, specifically an upregulation of interferons and JAK/STAT pathway activation. AREAS COVERED While CTDs have historically been treated with broadly immunosuppressant medications such as corticosteroids and disease-modifying antirheumatic drugs (DMARDS), newer and more targeted immunomodulating medications called Janus kinase inhibitors (JAKi), have emerged as potential treatments. EXPERT OPINION While most studies regarding JAKi for CTDs have focused on adult populations, pediatric patients with CTDs may also benefit from JAKi therapy. Moreover, the JAK/STAT inhibitor tofacitinib has been approved by the FDA for the treatment of active polyarticular course juvenile idiopathic arthritis. In this review, we have summarized what has been published on the use of JAKi for various pediatric CTDs.
Collapse
Affiliation(s)
- Jane Chuprin
- Department of Dermatology and Connective Tissue Disease Clinic and Research Center, University of Massachusetts Chan Medical School
| | - Lindsay McCormack
- Department of Dermatology and Connective Tissue Disease Clinic and Research Center, University of Massachusetts Chan Medical School
| | - Jillian M Richmond
- Department of Dermatology and Connective Tissue Disease Clinic and Research Center, University of Massachusetts Chan Medical School.,Connective Tissue Disease Clinic and Research Center, University of Massachusetts Chan Medical School
| | - Mehdi Rashighi
- Department of Dermatology and Connective Tissue Disease Clinic and Research Center, University of Massachusetts Chan Medical School.,Connective Tissue Disease Clinic and Research Center, University of Massachusetts Chan Medical School
| |
Collapse
|
366
|
Pang ES, Daraj G, Balka KR, De Nardo D, Macri C, Hochrein H, Masterman KA, Tan PS, Shoppee A, Magill Z, Jahan N, Bafit M, Zhan Y, Kile BT, Lawlor KE, Radford KJ, Wright MD, O’Keeffe M. Discordance in STING-Induced Activation and Cell Death Between Mouse and Human Dendritic Cell Populations. Front Immunol 2022; 13:794776. [PMID: 35281062 PMCID: PMC8914948 DOI: 10.3389/fimmu.2022.794776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Stimulator of Interferon Genes (STING) is a cytosolic sensor of cyclic dinucleotides (CDNs). The activation of dendritic cells (DC) via the STING pathway, and their subsequent production of type I interferon (IFN) is considered central to eradicating tumours in mouse models. However, this contribution of STING in preclinical murine studies has not translated into positive outcomes of STING agonists in phase I & II clinical trials. We therefore questioned whether a difference in human DC responses could be critical to the lack of STING agonist efficacy in human settings. This study sought to directly compare mouse and human plasmacytoid DCs and conventional DC subset responses upon STING activation. We found all mouse and human DC subsets were potently activated by STING stimulation. As expected, Type I IFNs were produced by both mouse and human plasmacytoid DCs. However, mouse and human plasmacytoid and conventional DCs all produced type III IFNs (i.e., IFN-λs) in response to STING activation. Of particular interest, all human DCs produced large amounts of IFN-λ1, not expressed in the mouse genome. Furthermore, we also found differential cell death responses upon STING activation, observing rapid ablation of mouse, but not human, plasmacytoid DCs. STING-induced cell death in murine plasmacytoid DCs occurred in a cell-intrinsic manner and involved intrinsic apoptosis. These data highlight discordance between STING IFN and cell death responses in mouse and human DCs and caution against extrapolating STING-mediated events in mouse models to equivalent human outcomes.
Collapse
Affiliation(s)
- Ee Shan Pang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ghazal Daraj
- Translational Research Institute, Mater Research-University of Queensland, Woolloongabba, QLD, Australia
| | - Katherine R. Balka
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dominic De Nardo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christophe Macri
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Kelly-Anne Masterman
- Translational Research Institute, Mater Research-University of Queensland, Woolloongabba, QLD, Australia
| | - Peck S. Tan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Angus Shoppee
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zoe Magill
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nazneen Jahan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mariam Bafit
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yifan Zhan
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Benjamin T. Kile
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Kristen J. Radford
- Translational Research Institute, Mater Research-University of Queensland, Woolloongabba, QLD, Australia
| | - Mark D. Wright
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Meredith O’Keeffe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Meredith O’Keeffe,
| |
Collapse
|
367
|
Fritsch LE, Ju J, Gudenschwager Basso EK, Soliman E, Paul S, Chen J, Kaloss AM, Kowalski EA, Tuhy TC, Somaiya RD, Wang X, Allen IC, Theus MH, Pickrell AM. Type I Interferon Response Is Mediated by NLRX1-cGAS-STING Signaling in Brain Injury. Front Mol Neurosci 2022; 15:852243. [PMID: 35283725 PMCID: PMC8916033 DOI: 10.3389/fnmol.2022.852243] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation is a significant contributor to neuronal death and dysfunction following traumatic brain injury (TBI). Recent evidence suggests that interferons may be a key regulator of this response. Our studies evaluated the role of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) signaling pathway in a murine model of TBI. Methods Male, 8-week old wildtype, STING knockout (-/-), cGAS -/-, and NLRX1 -/- mice were subjected to controlled cortical impact (CCI) or sham injury. Histopathological evaluation of tissue damage was assessed using non-biased stereology, which was complemented by analysis at the mRNA and protein level using qPCR and western blot analysis, respectively. Results We found that STING and Type I interferon-stimulated genes were upregulated after CCI injury in a bi-phasic manner and that loss of cGAS or STING conferred neuroprotection concomitant with a blunted inflammatory response at 24 h post-injury. cGAS -/- animals showed reduced motor deficits 4 days after injury (dpi), and amelioration of tissue damage was seen in both groups of mice up to 14 dpi. Given that cGAS requires a cytosolic damage- or pathogen-associated molecular pattern (DAMP/PAMP) to prompt downstream STING signaling, we further demonstrate that mitochondrial DNA is present in the cytosol after TBI as one possible trigger for this pathway. Recent reports suggest that the immune modulator NLR containing X1 (NLRX1) may sequester STING during viral infection. Our findings show that NLRX1 may be an additional regulator that functions upstream to regulate the cGAS-STING pathway in the brain. Conclusions These findings suggest that the canonical cGAS-STING-mediated Type I interferon signaling axis is a critical component of neural tissue damage following TBI and that mtDNA may be a possible trigger in this response.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Jing Ju
- Molecular and Cellular Biology Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Swagatika Paul
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jiang Chen
- Molecular and Cellular Biology Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth A. Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Taylor C. Tuhy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Rachana Deven Somaiya
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
368
|
Lee PY, Aksentijevich I, Zhou Q. Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2). Semin Immunopathol 2022; 44:269-280. [PMID: 35178658 DOI: 10.1007/s00281-022-00918-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Deficiency of adenosine deaminase 2 (DADA2) was first described as a monogenic form of systemic vasculitis that closely resembles polyarteritis nodosa (PAN). The phenotypic spectrum of DADA2 has vastly expanded in recent years and now includes pure red cell aplasia, bone marrow failure syndrome, lymphoproliferative disease, and humoral immunodeficiency. Vasculitis remains the most common presentation of DADA2, and treatment with tumor necrosis factor inhibitors (TNFi) has shown remarkable efficacy in preventing stroke and ameliorating features of systemic inflammation. The precise function of ADA2 has not been elucidated, and how absence of ADA2 ignites inflammation is an active area of research. In this review, we will discuss the current understanding of DADA2 from research and clinical perspectives. We will evaluate several proposed functions of ADA2, including polarization of monocyte phenotype, regulation of neutrophil extracellular trap formation, and modulation of innate immunity. We will also review the role of inflammatory cytokines including TNF and type I interferons. Lastly, we will provide future perspectives on understanding the phenotypic heterogeneity of DADA2 and discuss potential treatment options.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Immunology, Boston Childrens Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Qing Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
369
|
Meric-Bernstam F, Sweis RF, Hodi FS, Messersmith WA, Andtbacka RHI, Ingham M, Lewis N, Chen X, Pelletier M, Chen X, Wu J, McWhirter SM, Müller T, Nair N, Luke JJ. Phase I Dose-Escalation Trial of MIW815 (ADU-S100), an Intratumoral STING Agonist, in Patients with Advanced/Metastatic Solid Tumors or Lymphomas. Clin Cancer Res 2022; 28:677-688. [PMID: 34716197 DOI: 10.1158/1078-0432.ccr-21-1963] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I study assessed the safety, pharmacokinetics (PKs), and efficacy of MIW815 (ADU-S100), a novel synthetic cyclic dinucleotide that activates the stimulator of IFN genes (STING) pathway, in patients with advanced/metastatic cancers. PATIENTS AND METHODS Patients (n = 47) received weekly i.t. injections of MIW815, 50 to 6,400 μg, on a 3-weeks-on/1-week-off schedule. RESULTS A maximum tolerated dose was not reached. Most common treatment-related adverse events were pyrexia (17%), chills, and injection-site pain (each 15%). MIW815 was rapidly absorbed from the injection site with dose-proportional PK, a rapid terminal plasma half-life (approximately 24 minutes), and high interindividual variability. One patient had a partial response (PR; Merkel cell carcinoma); two patients had unconfirmed PR (parotid cancer, myxofibrosarcoma). Lesion size was stable or decreased in 94% of evaluable, injected lesions. RNA expression and immune infiltration assessments in paired tumor biopsies did not reveal significant on-treatment changes. However, increases in inflammatory cytokines and peripheral blood T-cell clonal expansion suggested systemic immune activation. CONCLUSIONS MIW815 was well tolerated in patients with advanced/metastatic cancers. Clinical activity of single-agent MIW815 was limited in this first-in-human study; however, evidence of systemic immune activation was seen.
Collapse
Affiliation(s)
- Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Wells A Messersmith
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Matthew Ingham
- Columbia University Irving Medical Center, New York, New York
| | - Nancy Lewis
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xinhui Chen
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | - Marc Pelletier
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | - Xueying Chen
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | - Jincheng Wu
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | | | | | - Nitya Nair
- Aduro Biotech, Inc., Berkeley, California
| | - Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
370
|
David C, Frémond ML. [When to consider type I interferonopathy in adulthood?]. Rev Med Interne 2022; 43:347-355. [PMID: 35177256 DOI: 10.1016/j.revmed.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Type I interferonopathies (IP1) are a heterogeneous group of Mendelian diseases characterized by overactivation of the type I interferon (IFN) pathway. They are caused by monogenic (rarely digenic) mutations of proteins involved in this key pathway of innate immunity. IP1 transmission can be dominant, recessive or X-linked and penetrance differs from one IP1 to another. The clinical spectrum is broad and mainly includes central nervous system involvement with calcifications of the basal ganglia, skin disorders such as cutaneous vasculitis that can be mutilating. Joint disorders including non-destructive deforming arthropathy, pulmonary involvement such as intra-alveolar haemorrhage or interstitial lung disease, and haematological symptoms with cytopenia and/or immune deficiency are also seen. The clinical manifestations vary from one IP1 to another and their spectrum is constantly expanding along with the description of new IP1s and patients. The inflammatory syndrome is generally mild and autoimmune stigmata are frequently found. Almost all patients display overexpression of the type I IFN pathway detected, for instance, by the evaluation of IFN-stimulated genes expression, referred as "interferon signature". The related morbidity and mortality are high. However, the beneficial effect on certain symptoms of targeted therapies inhibiting type I IFN, such as JAK inhibitors, has led to a promising improvement in the management of these patients.
Collapse
Affiliation(s)
- C David
- Université de Paris, Institut Imagine, laboratoire de neurogénétique et neuroinflammation, 24, boulevard du Montparnasse, 75015 Paris, France
| | - M-L Frémond
- Université de Paris, Institut Imagine, laboratoire de neurogénétique et neuroinflammation, 24, boulevard du Montparnasse, 75015 Paris, France; Unité d'immuno-hématologie et rhumatologie pédiatriques, centre de référence des maladies rhumatologiques et auto-immunes systémiques rares en pédiatrie (RAISE), hôpital Necker-Enfants-Malades, Centre - Université de Paris, AP-HP, 75015 Paris, France.
| |
Collapse
|
371
|
Chowdhury A, Witte S, Aich A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 2022; 10:796066. [PMID: 35223833 PMCID: PMC8873532 DOI: 10.3389/fcell.2022.796066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria, in symbiosis with the host cell, carry out a wide variety of functions from generating energy, regulating the metabolic processes, cell death to inflammation. The most prominent function of mitochondria relies on the oxidative phosphorylation (OXPHOS) system. OXPHOS heavily influences the mitochondrial-nuclear communication through a plethora of interconnected signaling pathways. Additionally, owing to the bacterial ancestry, mitochondria also harbor a large number of Damage Associated Molecular Patterns (DAMPs). These molecules relay the information about the state of the mitochondrial health and dysfunction to the innate immune system. Consequently, depending on the intracellular or extracellular nature of detection, different inflammatory pathways are elicited. One group of DAMPs, the mitochondrial nucleic acids, hijack the antiviral DNA or RNA sensing mechanisms such as the cGAS/STING and RIG-1/MAVS pathways. A pro-inflammatory response is invoked by these signals predominantly through type I interferon (T1-IFN) cytokines. This affects a wide range of organ systems which exhibit clinical presentations of auto-immune disorders. Interestingly, tumor cells too, have devised ingenious ways to use the mitochondrial DNA mediated cGAS-STING-IRF3 response to promote neoplastic transformations and develop tumor micro-environments. Thus, mitochondrial nucleic acid-sensing pathways are fundamental in understanding the source and nature of disease initiation and development. Apart from the pathological interest, recent studies also attempt to delineate the structural considerations for the release of nucleic acids across the mitochondrial membranes. Hence, this review presents a comprehensive overview of the different aspects of mitochondrial nucleic acid-sensing. It attempts to summarize the nature of the molecular patterns involved, their release and recognition in the cytoplasm and signaling. Finally, a major emphasis is given to elaborate the resulting patho-physiologies.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Steffen Witte
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging, from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
372
|
The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING-p53 signaling. Nat Immunol 2022; 23:287-302. [PMID: 35105987 DOI: 10.1038/s41590-021-01105-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2'3'cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of Lrrc8c-/- mice have increased cell cycle progression, proliferation, survival, Ca2+ influx and cytokine production-a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2'3'cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function. Lrrc8c-/- mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING-p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.
Collapse
|
373
|
Zhang ZD, Zhong B. Regulation and function of the cGAS-MITA/STING axis in health and disease. CELL INSIGHT 2022; 1:100001. [PMID: 37192983 PMCID: PMC10120319 DOI: 10.1016/j.cellin.2021.100001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 05/18/2023]
Abstract
The innate immune systems detect pathogens via pattern-recognition receptors including nucleic acid sensors and non-nucleic acid sensors. Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS, also known as MB21D1) is a cytosolic DNA sensor that recognizes double-stranded DNA (dsDNA) and catalyzes the synthesis of 2',3'-cGAMP. Subsequently, 2',3'-cGAMP binds to the adaptor protein mediator of IRF3 activation (MITA, also known as STING, MPYS, ERIS, and TMEM173) to activate downstream signaling cascades. The cGAS-MITA/STING signaling critically mediates immune responses against DNA viruses, retroviruses, bacteria, and protozoan parasites. In addition, recent discoveries have extended our understanding of the roles of the cGAS-MITA/STING pathway in autoimmune diseases and cancers. Here, we summarize the identification and activation of cGAS and MITA/STING, present the updated functions and regulatory mechanisms of cGAS-MITA/STING signaling and provide a comprehensive understanding of the cGAS-MITA/STING axis in autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
374
|
Qin X, Zou H, Niu C. The STING pathway: An uncharacterized angle beneath the gut-retina axis. Exp Eye Res 2022; 217:108970. [PMID: 35114214 DOI: 10.1016/j.exer.2022.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
The gut-retina axis is an emerging concept that describes a close interaction between the gut host-microbiota interface and the retina. Stimulator of interferon genes (STING) is a universally expressed adaptor protein localized in the endoplasmic reticulum. When activated by the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), STING induces the activation of the transcription factor interferon regulatory factor 3 (IRF3) and nuclear factor-κB (NF-κB). Downstream effects include inflammation, autophagy, and programmed cell death. Dysregulation of the STING pathway has emerged as a crucial pathogenic mechanism underpinning a broad range of inflammatory diseases, autoimmune diseases, and cancer. Recently, a positive feedback loop between dysbiosis and aberrant activation of the intestinal STING pathway has been demonstrated, concurrently related to increased intestinal permeability. Alternations in the STING pathway have also been reported in the retina of patients with ocular diseases and retinal cells treated with pathological stimuli. Collectively, there is a chance that dysbiosis in patients with retinal diseases disrupts intestinal homeostasis and exacerbates barrier dysfunction through the erroneous accumulation of STING in the gut. Subsequent translocation of microbial products into the bloodstream allows access to the eye via the impaired blood-retina barrier, inducing the chronic activation of the STING pathway in the retina to participate in the disease progression. In this review, we explore how the alterations in the STING pathway could contribute to the gut disturbance and retinal pathologies and discuss its potential as a therapeutic target to treat the gut-retina axis-related diseases, which sheds some light on the better understanding of the crosstalk between the gut and retina.
Collapse
Affiliation(s)
- Xinran Qin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
| | - Chen Niu
- FosunLead Lingzhi Biomedical Technology Co. Ltd, Shanghai, China
| |
Collapse
|
375
|
Li X, Yu Z, Fang Q, Yang M, Huang J, Li Z, Wang J, Chen T. The transmembrane endoplasmic reticulum-associated E3 ubiquitin ligase TRIM13 restrains the pathogenic-DNA-triggered inflammatory response. SCIENCE ADVANCES 2022; 8:eabh0496. [PMID: 35080984 PMCID: PMC8791621 DOI: 10.1126/sciadv.abh0496] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The endoplasmic reticulum (ER)-localized stimulator of interferon genes (STING) is the core adaptor for the pathogenic-DNA-triggered innate response. Aberrant activation of STING causes autoinflammatory and autoimmune diseases, raising the concern about how STING is finely tuned during innate response to pathogenic DNAs. Here, we report that the transmembrane domain (TM)-containing ER-localized E3 ubiquitin ligase TRIM13 (tripartite motif containing 13) is required for restraining inflammatory response to pathogenic DNAs. TRIM13 deficiency enhances pathogenic-DNA-triggered inflammatory cytokine production, inhibits DNA virus replication, and causes age-related autoinflammation. Mechanistically, TRIM13 interacts with STING via the TM and catalyzes Lys6-linked polyubiquitination of STING, leading to decelerated ER exit and accelerated ER-initiated degradation of STING. STING deficiency reverses the enhanced innate anti-DNA virus response in TRIM13 knockout mice. Our study delineates a potential strategy for controlling the homeostasis of STING by transmembrane ER-associated TRIM13 during the pathogenic-DNA-triggered inflammatory response.
Collapse
Affiliation(s)
- Xuelian Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Zhou Yu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Qian Fang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Mingjin Yang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Jiaying Huang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zheng Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Immunology, Bone Marrow Transplantation Centre of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Haematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China
- Corresponding author. (J.W.); (T.C.)
| | - Taoyong Chen
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- Corresponding author. (J.W.); (T.C.)
| |
Collapse
|
376
|
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, Adang LA, Armangue T, Barchus K, Cordova DR, Crow YJ, Dale RC, Durrant KL, Eleftheriou D, Fazzi EM, Gattorno M, Gavazzi F, Hanson EP, Lee-Kirsch MA, Montealegre Sanchez GA, Neven B, Orcesi S, Ozen S, Poli MC, Schumacher E, Tonduti D, Uss K, Aletaha D, Feldman BM, Vanderver A, Brogan PA, Goldbach-Mansky R. The 2021 EULAR and ACR points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI and AGS. Ann Rheum Dis 2022; 81:601-613. [PMID: 35086813 PMCID: PMC9036471 DOI: 10.1136/annrheumdis-2021-221814] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of 'points to consider' to improve diagnosis, treatment and long-term monitoring of patients with these rare diseases. METHODS Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates and an allied healthcare professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires and consensus methodology, 'points to consider' to guide patient management were developed. RESULTS The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI and AGS. CONCLUSION These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment and management of patients with CANDLE/PRAAS, SAVI and AGS and aim to standardise and improve care, quality of life and disease outcomes.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lovro Lamot
- Department of Pediatrics, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Micol Romano
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Erkan Demirkaya
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David Piskin
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Sofia Torreggiani
- 1Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,UOC Pediatria a Media Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Lombardia, Italy
| | - Laura A Adang
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thais Armangue
- Pediatric Neuroimmunology Unit, Neurology Service, Sant Joan de Deu Children's Hospital, and IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Kathe Barchus
- Autoinflammatory Alliance, San Francisco, California, USA
| | - Devon R Cordova
- Aicardi-Goutieres Syndrome Americas Association, Manhattan Beach, California, USA
| | - Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburg, Edinburg, UK.,Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, Île-de-France, France
| | - Russell C Dale
- Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Durrant
- Autoinflammatory Alliance, San Francisco, California, USA.,Kaiser San Francisco Hospital, San Francisco, California, USA
| | - Despina Eleftheriou
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elisa M Fazzi
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Sciences ASST Civil Hospital, University of Brescia, Brescia, Italy
| | - Marco Gattorno
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Gavazzi
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eric P Hanson
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gina A Montealegre Sanchez
- Intramural Clinical Management and Operations Branch (ICMOB), Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bénédicte Neven
- Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Institut Imagine Institut des Maladies Genetiques, Paris, Île-de-France, France
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Lombardia, Italy
| | - Seza Ozen
- Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - M Cecilia Poli
- Department of Pediatrics, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | - Davide Tonduti
- Child Neurology Unit, COALA (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milano, Italy
| | - Katsiaryna Uss
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Aletaha
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Brian M Feldman
- Division of Rheumatology, Hospital for Sick Children, Toronto, Ontario, Canada.,30Department of Pediatrics, Faculty of Medicine, University of Toronto Institute of Health Policy Management and Evaluation, Toronto, Ontario, Canada
| | - Adeline Vanderver
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul A Brogan
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
377
|
Lindahl H, Bryceson YT. Neuroinflammation Associated With Inborn Errors of Immunity. Front Immunol 2022; 12:827815. [PMID: 35126383 PMCID: PMC8807658 DOI: 10.3389/fimmu.2021.827815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
378
|
The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022; 603:145-151. [PMID: 35045565 PMCID: PMC8891013 DOI: 10.1038/s41586-022-04421-w] [Citation(s) in RCA: 363] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications1,2. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs 3–5). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome5–17. Here we show that the cyclic GMP-AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. 18). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS–STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS–STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics. The cGAS–STING pathway has a central role in the pathogenesis of severe COVID-19 by driving the increase in type I interferons that occurs in the later stages of SARS-CoV-2 infection.
Collapse
|
379
|
Shang M, Lu K, Guan W, Cao S, Ren M, Zhou C. 2',3'-Cyclic GMP-AMP Dinucleotides for STING-Mediated Immune Modulation: Principles, Immunotherapeutic Potential, and Synthesis. ChemMedChem 2022; 17:e202100671. [PMID: 34807508 DOI: 10.1002/cmdc.202100671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/09/2022]
Abstract
The cGAS-STING pathway discovered ten years ago is an important component of the innate immune system. Activation of cGAS-STING triggers downstream signalling, such as TBK1-IRF3, NF-κB and autophagy, which in turn leads to antipathogen responses, durable antitumour immunity or autoimmune diseases. 2',3'-Cyclic GMP-AMP dinucleotides (2',3'-cGAMP), the key second messengers produced by cGAS, play a pivotal role in cGAS-STING signalling by binding and activating STING. Thus, 2',3'-cGAMP has immunotherapeutic potential, which in turn has stimulated research on the design and synthesis of 2',3'-cGAMP analogues for clinical applications over the past ten years. This review presents the discovery, metabolism, and function of 2',3'-cGAMP in the cGAS-STING innate immune signalling axis. The enzymatic and chemical syntheses of 2',3'-cGAMP analogues as STING-targeting therapeutics are also summarized.
Collapse
Affiliation(s)
- Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenli Guan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shujie Cao
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
380
|
David C, Frémond ML. Lung Inflammation in STING-Associated Vasculopathy with Onset in Infancy (SAVI). Cells 2022; 11:318. [PMID: 35159128 PMCID: PMC8834229 DOI: 10.3390/cells11030318] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
STING-associated vasculopathy with onset in infancy (SAVI) is a type I interferonopathy caused by gain-of-function mutations in STING1 encoding stimulator of interferon genes (STING) protein. SAVI is characterized by severe inflammatory lung disease, a feature not observed in previously described type I interferonopathies i.e., Mendelian autoinflammatory disorders defined by constitutive activation of the type I interferon (IFN) pathway. Molecular defects in nucleic acid metabolism or sensing are central to the pathophysiology of these diseases, with such defects occurring at any step of the tightly regulated pathway of type I IFN production and signaling (e.g., exonuclease loss of function, RNA-DNA hybrid accumulation, constitutive activation of adaptor proteins such as STING). Among over 30 genotypes, SAVI and COPA syndrome, whose pathophysiology was recently linked to a constitutive activation of STING signaling, are the only type I interferonopathies presenting with predominant lung involvement. Lung disease is the leading cause of morbidity and mortality in these two disorders which do not respond to conventional immunosuppressive therapies and only partially to JAK1/2 inhibitors. In human silicosis, STING-dependent sensing of self-DNA following cell death triggered by silica exposure has been found to drive lung inflammation in mice and human models. These recent findings support a key role for STING and nucleic acid sensing in the homeostasis of intrinsic pulmonary inflammation. However, mechanisms by which monogenic defects in the STING pathway lead to pulmonary damages are not yet fully elucidated, and an improved understanding of such mechanisms is fundamental to improved future patient management. Here, we review the recent insights into the pathophysiology of SAVI and outline our current understanding of self-nucleic acid-mediated lung inflammation in humans.
Collapse
Affiliation(s)
- Clémence David
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Marie-Louise Frémond
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 Boulevard du Montparnasse, 75015 Paris, France
- Paediatric Immunology-Hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, APHP.Centre-Université de Paris, 24 Boulevard du Montparnasse, 75015 Paris, France
| |
Collapse
|
381
|
Ghirardo S, Mazzolai M, Di Marco A, Petreschi F, Ullmann N, Ciofi Degli Atti ML, Cutrera R. Biological Treatments and Target Therapies for Pediatric Respiratory Medicine: Not Only Asthma. Front Pediatr 2022; 10:837667. [PMID: 35242725 PMCID: PMC8885732 DOI: 10.3389/fped.2022.837667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
We present a description of pediatric pneumology biological medications and other target therapies. The article aims at introducing the importance of a molecular approach to improve treatments. The first item treated was T2-High asthma and its current biological treatment and prescribing indications to propose a flow-chart to guide the clinical choice. Molecular rationales of such treatments are used to introduce a more general description of the biological and molecular approach to target therapies application. We introduce a general interpretation approach to neutrophilic asthma using the molecular plausibility one in order to propose possible future treatments mainly targeting interleukin-1 (IL-1), IL-17, IL-12, and IL-23. Indeed, cytokines can be excellent targets for several biological treatments. Downregulation of specific cytokines can be crucial in treating autoinflammatory and rheumatological diseases with a pulmonary involvement. Such conditions, although rare, should be early recognized as they can involve significant improvement with a properly targeted therapy. We face these conditions in a cherry-picking fashion picturing SAVI (STING-associated vasculopathy with onset in infancy), CANDLE (chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature), and COPA (coat proteins alpha syndrome) syndrome pulmonary involvement. Such examples are functional to introduce molecular-based approach for patients with rare conditions. Molecular plausibility can be highly valuable in treating patients with not-approved but possibly highly effective therapies. Due to the rarity of these conditions, we stress the concept of basket trials using the example of cytokinin-directed immunosuppressive treatment. Lastly, we provide an example of augmentative therapy using the alpha1 antitrypsin deficiency as a model. In summary, the article presents a collection of the most recent achievements and some possible future developments of target therapies for pediatric pulmonary conditions.
Collapse
Affiliation(s)
- Sergio Ghirardo
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.,Clinical, Management and Technology Innovation Research Unit, Medical Direction, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Michele Mazzolai
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Antonio Di Marco
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesca Petreschi
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nicola Ullmann
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marta Lucia Ciofi Degli Atti
- Clinical, Management and Technology Innovation Research Unit, Medical Direction, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Renato Cutrera
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
382
|
SANTOS SOBRINHO ELIANEM, SANTOS HÉRCULESO, MARTINS ERNANER, FONSECA FRANCINESOUZAALVESDA, FARIAS LUCYANAC, AGUILAR CHARLESM, PEREIRA ULISSESA, NICOLAU JUNIOR NILSON, GOMES MATHEUSS, SOUZA CINTYANDE, RAVNJAK JOÃOMATHEUSA, PORTO RAPHAELR, ALMEIDA ANNACHRISTINADE. Protein-coding gene interaction network prediction of bioactive plant compound action against SARS-CoV-2: a novel hypothesis using bioinformatics analysis. AN ACAD BRAS CIENC 2022; 94:e20201380. [DOI: 10.1590/0001-3765202220201380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
|
383
|
Incidence and Prevalence of Children's Diffuse Lung Disease in Spain. Arch Bronconeumol 2022; 58:22-29. [DOI: 10.1016/j.arbres.2021.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 02/03/2023]
|
384
|
The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Acta Pharm Sin B 2022; 12:50-75. [PMID: 35127372 PMCID: PMC8799861 DOI: 10.1016/j.apsb.2021.05.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.
Collapse
Key Words
- AA, amino acids
- AAD, aortic aneurysm and dissection
- AKT, protein kinase B
- AMPK, AMP-activated protein kinase
- ATP, adenosine triphosphate
- Ang II, angiotensin II
- CBD, C-binding domain
- CDG, c-di-GMP
- CDNs, cyclic dinucleotides
- CTD, C-terminal domain
- CTT, C-terminal tail
- CVDs, cardiovascular diseases
- Cardiovascular diseases
- Cys, cysteine
- DAMPs, danger-associated molecular patterns
- Damage-associated molecular patterns
- DsbA-L, disulfide-bond A oxidoreductase-like protein
- ER stress
- ER, endoplasmic reticulum
- GTP, guanosine triphosphate
- HAQ, R71H-G230A-R293Q
- HFD, high-fat diet
- ICAM-1, intracellular adhesion molecule 1
- IFN, interferon
- IFN-I, type 1 interferon
- IFNAR, interferon receptors
- IFNIC, interferon-inducible cells
- IKK, IκB kinase
- IL, interleukin
- IRF3, interferon regulatory factor 3
- ISGs, IRF-3-dependent interferon-stimulated genes
- Inflammation
- LBD, ligand-binding pocket
- LPS, lipopolysaccharides
- MI, myocardial infarction
- MLKL, mixed lineage kinase domain-like protein
- MST1, mammalian Ste20-like kinases 1
- Metabolic diseases
- Mitochondria
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-kappa B
- NLRP3, NOD-, LRR- and pyrin domain-containing protein 3
- NO2-FA, nitro-fatty acids
- NTase, nucleotidyltransferase
- PDE3B/4, phosphodiesterase-3B/4
- PKA, protein kinase A
- PPI, protein–protein interface
- Poly: I.C, polyinosinic-polycytidylic acid
- ROS, reactive oxygen species
- SAVI, STING-associated vasculopathy with onset in infancy
- SNPs, single nucleotide polymorphisms
- STIM1, stromal interaction molecule 1
- STING
- STING, stimulator of interferon genes
- Ser, serine
- TAK1, transforming growth factor β-activated kinase 1
- TBK1, TANK-binding kinase 1
- TFAM, mitochondrial transcription factor A
- TLR, Toll-like receptors
- TM, transmembrane
- TNFα, tumor necrosis factor-alpha
- TRAF6, tumor necrosis factor receptor-associated factor 6
- TREX1, three prime repair exonuclease 1
- YAP1, Yes-associated protein 1
- cGAMP, 2′,3′-cyclic GMP–AMP
- cGAS
- cGAS, cyclic GMP–AMP synthase
- dsDNA, double-stranded DNA
- hSTING, human stimulator of interferon genes
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
Collapse
|
385
|
Ou L, Zhang A, Cheng Y, Chen Y. The cGAS-STING Pathway: A Promising Immunotherapy Target. Front Immunol 2021; 12:795048. [PMID: 34956229 PMCID: PMC8695770 DOI: 10.3389/fimmu.2021.795048] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
With the continuous development of immunotherapy, researchers have paid more attention to the specific immune regulatory mechanisms of various immune responses in different diseases. As a novel and vital innate immune signal pathway, the cGAS-STING signal pathway activated by nucleic acid substances, interplays with other immune responses, by which it participates in regulating cancer, autoimmune and inflammatory diseases, microbial and parasitic infectious diseases, and other diseases. With the exception of its role in innate immunity, the growing list of researches demonstrated expanding roles of the cGAS-STING signal pathway in bridging the innate immunity (macrophage polarization) with the adaptive immunity (T lymphocytes differentiation). Macrophages and T lymphocytes are the most representative cells of innate immunity and adaptive immunity, respectively. Their polarization or differentiation are involved in the pathogenesis and progression of various diseases. Here we mainly summarized recent advanced discoveries of how the cGAS-STING signal pathway regulated macrophages polarization and T lymphocytes differentiation in various diseases and vaccine applications, providing a promising direction for the development and clinical application of immunotherapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Liang Ou
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ao Zhang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Yuxing Cheng
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
386
|
Ma Y, Xu H, Sun B, Du S, Cui S, Zhang L, Ding N, Yang D. pH-Responsive Oxygen and Hydrogen Peroxide Self-Supplying Nanosystem for Photodynamic and Chemodynamic Therapy of Wound Infection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59720-59730. [PMID: 34889592 DOI: 10.1021/acsami.1c19681] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) has been continuously explored in the antibacterial aspect and has achieved more effective antibacterial effect than a single therapy. We design a pH-responsive O2 and H2O2 self-supplying zeolitic imidazolate framework-67 (ZIF-67) nanosystem for PDT/CDT of wound infection. Under the acidic inflammatory conditions, ZIF-67 can degrade to produce Co2+ and release CaO2 and graphene quantum dots (GQDs). The exposed CaO2 reacted with water to generate H2O2 and O2. The self-supplied O2 alleviates hypoxia at the site of inflammation and enhances external light-initiated GQD-mediated PDT, while H2O2 was catalyzed by endogenous Co2+ to produce hydroxyl radicals for Co2+-triggered CDT. In vitro and in vivo experiments confirm that CaO2/GQDs@ZIF-67 has a combined PDT/CDT effect. The antibacterial mechanism indicates that bacteria post-treated with CaO2/GQDs@ZIF-67 may be sterilized by reactive oxygen species-mediated oxidative stress and the leakage of bacterial contents. The experiments also find that CaO2/GQDs@ZIF-67 may activate the immune response and enhance the therapeutic effect by activating the cyclic GMP-AMP synthase-stimulator of interferon genes signaling pathway.
Collapse
Affiliation(s)
- Yunsu Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huanghuang Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Suqian Center for Disease Control and Prevention, Suqian, Jiangsu 223800, China
| | - Bo Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Silin Du
- Kangda College of Nanjing Medical University, Nanjing, Jiangsu 222000, China
| | - Shuai Cui
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ning Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
387
|
Albright ER, Mickelson CK, Kalejta RF. Human Cytomegalovirus UL138 Protein Inhibits the STING Pathway and Reduces Interferon Beta mRNA Accumulation during Lytic and Latent Infections. mBio 2021; 12:e0226721. [PMID: 34903048 PMCID: PMC8669494 DOI: 10.1128/mbio.02267-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
The cGAS/STING/TBK1 (cyclic guanine monophosphate-AMP synthase/stimulator of interferon genes/Tank-binding kinase 1) innate immunity pathway is activated during human cytomegalovirus (HCMV) productive (lytic) replication in fully differentiated cells and during latency within incompletely differentiated myeloid cells. While multiple lytic-phase HCMV proteins neutralize steps along this pathway, none of them are expressed during latency. Here, we show that the latency-associated protein UL138 inhibits the cGAS/STING/TBK1 innate immunity pathway during transfections and infections, in fully differentiated cells and incompletely differentiated myeloid cells, and with loss of function and restoration of function approaches. UL138 inhibits the pathway downstream of STING but upstream of interferon regulatory factor 3 (IRF3) phosphorylation and NF-κB function and reduces the accumulation of interferon beta mRNA during both lytic and latent infections. IMPORTANCE While a cellular restriction versus viral countermeasure arms race between innate immunity and viral latency is expected, few examples have been documented. Our identification of the first HCMV latency protein that inactivates the cGAS/STING/TBK1 innate immune pathway opens the door to understanding how innate immunity, or its neutralization, impacts long-term persistence by HCMV and other latent viruses.
Collapse
Affiliation(s)
- Emily R. Albright
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Clayton K. Mickelson
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
388
|
Bao T, Liu J, Leng J, Cai L. The cGAS-STING pathway: more than fighting against viruses and cancer. Cell Biosci 2021; 11:209. [PMID: 34906241 PMCID: PMC8670263 DOI: 10.1186/s13578-021-00724-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the classic Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway, downstream signals can control the production of type I interferon and nuclear factor kappa-light-chain-enhancer of activated B cells to promote the activation of pro-inflammatory molecules, which are mainly induced during antiviral responses. However, with progress in this area of research, studies focused on autoimmune diseases and chronic inflammatory conditions that may be relevant to cGAS-STING pathways have been conducted. This review mainly highlights the functions of the cGAS-STING pathway in chronic inflammatory diseases. Importantly, the cGAS-STING pathway has a major impact on lipid metabolism. Different research groups have confirmed that the cGAS-STING pathway plays an important role in the chronic inflammatory status in various organs. However, this pathway has not been studied in depth in diabetes and diabetes-related complications. Current research on the cGAS-STING pathway has shown that the targeted therapy of diseases that may be caused by inflammation via the cGAS-STING pathway has promising outcomes.
Collapse
Affiliation(s)
- Terigen Bao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
- Department of Pediatrics, The Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lu Cai
- Department of Pediatrics, The Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Departments of Pharmacology and Toxicology, The University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
389
|
Sikora KA, Wells KV, Bolek EC, Jones AI, Grayson PC. Somatic Mutations in Rheumatologic Diseases: VEXAS Syndrome and Beyond. Rheumatology (Oxford) 2021; 61:3149-3160. [PMID: 34888629 DOI: 10.1093/rheumatology/keab868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 11/15/2022] Open
Abstract
Discovery of the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome demonstrates that somatic mutations in hematologic precursor cells can cause adult-onset, complex inflammatory disease. Unlike germline mutations, somatic mutations occur throughout the lifespan, are restricted to specific tissue types, and may play a causal role in non-heritable rheumatologic diseases, especially conditions that start in later life. Improvements in sequencing technology have enabled researchers and clinicians to detect somatic mutations in various tissue types, especially blood. Understanding the relationships between cell-specific acquired mutations and inflammation is likely to yield key insights into causal factors that underlie many rheumatologic diseases. The objective of this review is to detail how somatic mutations are likely to be relevant to clinicians who care for patients with rheumatologic diseases, with particular focus on the pathogenetic mechanisms of the VEXAS syndrome.
Collapse
Affiliation(s)
- Keith A Sikora
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristina V Wells
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ertugrul Cagri Bolek
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Adrianna I Jones
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter C Grayson
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
390
|
Staels F, Collignon T, Betrains A, Gerbaux M, Willemsen M, Humblet-Baron S, Liston A, Vanderschueren S, Schrijvers R. Monogenic Adult-Onset Inborn Errors of Immunity. Front Immunol 2021; 12:753978. [PMID: 34867986 PMCID: PMC8635491 DOI: 10.3389/fimmu.2021.753978] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogenous group of disorders driven by genetic defects that functionally impact the development and/or function of the innate and/or adaptive immune system. The majority of these disorders are thought to have polygenic background. However, the use of next-generation sequencing in patients with IEI has led to an increasing identification of monogenic causes, unravelling the exact pathophysiology of the disease and allowing the development of more targeted treatments. Monogenic IEI are not only seen in a pediatric population but also in adulthood, either due to the lack of awareness preventing childhood diagnosis or due to a delayed onset where (epi)genetic or environmental factors can play a role. In this review, we discuss the mechanisms accounting for adult-onset presentations and provide an overview of monogenic causes associated with adult-onset IEI.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | | | - Albrecht Betrains
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Steven Vanderschueren
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
391
|
Savic S, Coe J, Laws P. Autoinflammation: Interferonopathies and Other Autoinflammatory Diseases. J Invest Dermatol 2021; 142:781-792. [PMID: 34887082 DOI: 10.1016/j.jid.2021.07.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022]
Abstract
The family of autoinflammatory diseases (AIDs) continues to expand and now includes over 40 genetically defined disorders. Their defining feature is a dysregulated inflammatory innate immune response. Many AIDs have overlapping clinical characteristics, and dermatological manifestations are common. Autoinflammatory features have also been recognized in more common dermatological conditions such as psoriasis. Furthermore, there is an increasing understanding that immunodeficiencies, autoimmune disorders, and even some allergic disorders share overlapping autoinflammatory features. The discovery that certain somatic mutations, arising within the bone marrow and restricted to the myeloid cell lineage can cause acquired AID heralds a new era of discoveries in this field.
Collapse
Affiliation(s)
- Sinisa Savic
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre, School of Medicine, University of Leeds, Leeds, United Kingdom; Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), School of Medicine, University of Leeds, Leeds, United Kingdom; Department of Allergy and Clinical Immunology, The Leeds Teaching Hospitals, National Health Service (NHS) Trust, Leeds, United Kingdom.
| | - James Coe
- Leeds Centre for Dermatology, Leeds Teaching Hospitals, National Health Service (NHS) Trust, Leeds, United Kingdom
| | - Philip Laws
- Leeds Centre for Dermatology, Leeds Teaching Hospitals, National Health Service (NHS) Trust, Leeds, United Kingdom
| |
Collapse
|
392
|
Cao X, Cordova AF, Li L. Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chem Rev 2021; 122:3414-3458. [PMID: 34870969 DOI: 10.1021/acs.chemrev.1c00716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.
Collapse
|
393
|
Gothe F, Gehrig J, Rapp CK, Knoflach K, Reu-Hofer S, Länger F, Schramm D, Ley-Zaporozhan J, Ehl S, Schwerk N, Faletti L, Griese M. Early-onset, fatal interstitial lung disease in STAT3 gain-of-function patients. Pediatr Pulmonol 2021; 56:3934-3941. [PMID: 34549903 DOI: 10.1002/ppul.25684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Gain-of-function variants in STAT3 are known to cause severe, multifaceted autoimmunity. Here we report three individuals with de-novo STAT3 GOF alleles and early-onset, severe interstitial lung disease manifesting during the first 3 years of life. Imaging and histology revealed different forms of interstitial pneumonia alongside fibrotic and cystic tissue destruction. Definitive diagnosis was established by postmortem whole exome sequencing and functional validation of two new STAT3 variants. Such lung-predominant forms of STAT3 GOF disease expand the phenotypic spectrum of diseases associated with activating STAT3 variants and add to our understanding of this life-threatening inborn error of immunity.
Collapse
Affiliation(s)
- Florian Gothe
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jonathan Gehrig
- Center for Chronic Immunodeficiency, Medical Center, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - Christina K Rapp
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Katrin Knoflach
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Simone Reu-Hofer
- Department of Pathology, Julius-Maximilians-Universität Wuerzburg, Wuerzburg, Germany
| | - Florian Länger
- Department of Pathology, Hannover Medical School, Hanover, Germany.,German Center for Lung Research (DZL), BREATH Hannover, Hanover, Germany
| | - Dirk Schramm
- Department of Pediatric Pneumology, University Children's Hospital Düsseldorf, Düsseldorf, Germany
| | - Julia Ley-Zaporozhan
- Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Nicolaus Schwerk
- German Center for Lung Research (DZL), BREATH Hannover, Hanover, Germany.,Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany
| | - Laura Faletti
- Center for Chronic Immunodeficiency, Medical Center, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,German Center for Lung Research (DZL), CPC Munich, Munich, Germany
| |
Collapse
|
394
|
Padilla-Mejia NE, Makarov AA, Barlow LD, Butterfield ER, Field MC. Evolution and diversification of the nuclear envelope. Nucleus 2021; 12:21-41. [PMID: 33435791 PMCID: PMC7889174 DOI: 10.1080/19491034.2021.1874135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.
Collapse
Affiliation(s)
- Norma E. Padilla-Mejia
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alexandr A. Makarov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lael D. Barlow
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Erin R. Butterfield
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České, Czech Republic
| |
Collapse
|
395
|
Shahgolzari M, Yavari A, Arjeini Y, Miri SM, Darabi A, Mozaffari Nejad AS, Keshavarz M. Immunopathology and Immunopathogenesis of COVID-19, what we know and what we should learn. GENE REPORTS 2021; 25:101417. [PMID: 34778602 PMCID: PMC8570409 DOI: 10.1016/j.genrep.2021.101417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) directly interacts with host's epithelial and immune cells, leading to inflammatory response induction, which is considered the hallmark of infection. The host immune system is programmed to facilitate the clearance of viral infection by establishing a modulated response. However, SARS-CoV-2 takes the initiative and its various structural and non-structural proteins directly or indirectly stimulate the uncontrolled activation of injurious inflammatory pathways through interaction with innate immune system mediators. Upregulation of cell-signaling pathways such as mitogen-activate protein kinase (MAPK) in response to recognition of SARS-CoV-2 antigens by innate immune system receptors mediates unbridled production of proinflammatory cytokines and cells causing cytokine storm, tissue damage, increased pulmonary edema, acute respiratory distress syndrome (ARDS), and mortality. Moreover, this acute inflammatory state hinders the immunomodulatory effect of T helper cells and timely response of CD4+ and CD8+ T cells against infection. Furthermore, inflammation-induced overproduction of Th17 cells can downregulate the antiviral response of Th1 and Th2 cells. In fact, the improperly severe response of the innate immune system is the key to conversion from a non-severe to severe disease state and needs to be investigated more deeply. The virus can also modulate the protective immune responses by developing immune evasion mechanisms, and thereby provide a more stable niche. Overall, combination of detrimental immunostimulatory and immunomodulatory properties of both the SARS-CoV-2 and immune cells does complicate the immune interplay. Thorough understanding of immunopathogenic basis of immune responses against SARS-CoV-2 has led to developing several advanced vaccines and immune-based therapeutics and should be expanded more rapidly. In this review, we tried to delineate the immunopathogenesis of SARS-CoV-2 in humans and to provide insight into more effective therapeutic and prophylactic strategies.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Yaser Arjeini
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Miri
- Freelance Researcher of Biomedical Sciences, No 32, Vaezi Street, Tehran, Iran
| | - Amirhossein Darabi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Sasan Mozaffari Nejad
- Department of Microbiology, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
396
|
Krutzke S, Horneff G. Treatment of Two Boys Suffering From Deficiency of Adenosine Deaminase Type 2 (DADA2) With TNF-Inhibitor Etanercept. J Clin Rheumatol 2021; 27:S509-S512. [PMID: 31651641 DOI: 10.1097/rhu.0000000000001145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
397
|
Wu D, Shen M, Yao Q. Cutaneous Manifestations of Autoinflammatory Diseases. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:217-225. [PMID: 36467982 PMCID: PMC9524803 DOI: 10.2478/rir-2021-0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/07/2021] [Indexed: 06/17/2023]
Abstract
Autoinflammatory diseases (AIDs) are a heterogeneous group of disorders in which recurrent or continuous aseptic inflammation arises primarily through antigen-independent hyperactivation of the innate immune system. The skin is frequently involved with a wide variety of cutaneous manifestations, most of which are non-specific. Recognition of skin lesions in AIDs may sometimes provide clues for a correct diagnosis. In this review, the cutaneous involvements of >20 selected AIDs were summarized and organized into different categories based on their characteristic manifestations, such as urticarial dermatosis, neutrophilic dermatosis, granulomatosis, chilblain, lipodystrophy, and hyperkeratosis. With this classification scheme, cutaneous manifestations in AIDs could be more easily identified to facilitate diagnosis in clinical practice.
Collapse
Affiliation(s)
- Di Wu
- Department of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Min Shen
- Department of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qingping Yao
- Division of Rheumatology, Allergy, and Immunology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
398
|
Malik MNH, Waqas SFH, Zeitvogel J, Cheng J, Geffers R, Gouda ZAE, Elsaman AM, Radwan AR, Schefzyk M, Braubach P, Auber B, Olmer R, Müsken M, Roesner LM, Gerold G, Schuchardt S, Merkert S, Martin U, Meissner F, Werfel T, Pessler F. Congenital deficiency reveals critical role of ISG15 in skin homeostasis. J Clin Invest 2021; 132:141573. [PMID: 34847081 PMCID: PMC8803340 DOI: 10.1172/jci141573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Ulcerating skin lesions are manifestations of human ISG15 deficiency, a type I interferonopathy. However, chronic inflammation may not be their exclusive cause. We describe two siblings with recurrent skin ulcers that healed with scar formation upon corticosteroid treatment. Both had a homozygous nonsense mutation in the ISG15 gene, leading to unstable ISG15 protein lacking the functional domain. We characterized ISG15–/– dermal fibroblasts, HaCaT keratinocytes, and human induced pluripotent stem cell–derived vascular endothelial cells. ISG15-deficient cells exhibited the expected hyperinflammatory phenotype, but also dysregulated expression of molecules critical for connective tissue and epidermis integrity, including reduced collagens and adhesion molecules, but increased matrix metalloproteinases. ISG15–/– fibroblasts exhibited elevated ROS levels and reduced ROS scavenger expression. As opposed to hyperinflammation, defective collagen and integrin synthesis was not rescued by conjugation-deficient ISG15. Cell migration was retarded in ISG15–/– fibroblasts and HaCaT keratinocytes, but normalized under ruxolitinib treatment. Desmosome density was reduced in an ISG15–/– 3D epidermis model. Additionally, there were loose architecture and reduced collagen and desmoglein expression, which could be reversed by treatment with ruxolitinib/doxycycline/TGF-β1. These results reveal critical roles of ISG15 in maintaining cell migration and epidermis and connective tissue homeostasis, whereby the latter likely requires its conjugation to yet unidentified targets.
Collapse
Affiliation(s)
- Muhammad Nasir Hayat Malik
- Biomarkers for Infectious Diseases, Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Syed F Hassnain Waqas
- Biomarkers for Infectious Diseases, Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Jana Zeitvogel
- Institute for Dermatology, Allergology and Venerology, Hannover Medical School (MHH), Hannover, Germany
| | - Jingyuan Cheng
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | | | - Ahmed R Radwan
- Department of Rheumatology and Rehabilitation, Sohag University, Sohag, Egypt
| | - Matthias Schefzyk
- Institute for Dermatology, Allergology and Venerology, Hannover Medical School (MHH), Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School (MHH), Hannover, Germany
| | - Bernd Auber
- Institute for Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Ruth Olmer
- LEBAO, Hannover Medical School (MHH), Hannover, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lennart M Roesner
- Genome Analytics, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Sven Schuchardt
- Department of Bio and Environmental Analytics, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | | | - Ulrich Martin
- LEBAO, Hannover Medical School (MHH), Hannover, Germany
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Werfel
- Genome Analytics, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Frank Pessler
- Biomarkers for Infectious Diseases, Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| |
Collapse
|
399
|
Abstract
Childhood interstitial lung disease (ChILD) is an umbrella term encompassing a diverse group of diffuse lung diseases affecting infants and children. Although the timely and accurate diagnosis of ChILD is often challenging, it is optimally achieved through the multidisciplinary integration of imaging findings with clinical data, genetics, and potentially lung biopsy. This article reviews the definition and classification of ChILD; the role of imaging, pathology, and genetics in ChILD diagnosis; treatment options; and future goals. In addition, a practical approach to ChILD imaging based on the latest available research and the characteristic imaging appearance of ChILD entities are presented.
Collapse
|
400
|
Al-Gburi S, Beissert S, Günther C. Molecular mechanisms of vasculopathy and coagulopathy in COVID-19. Biol Chem 2021; 402:1505-1518. [PMID: 34657406 DOI: 10.1515/hsz-2021-0245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 primarily affects the respiratory system and may lead to severe systemic complications, such as acute respiratory distress syndrome (ARDS), multiple organ failure, cytokine storm, and thromboembolic events. Depending on the immune status of the affected individual early disease control can be reached by a robust type-I-interferon (type-I-IFN) response restricting viral replication. If type-I-IFN upregulation is impaired, patients develop severe COVID-19 that involves profound alveolitis, endothelitis, complement activation, recruitment of immune cells, as well as immunothrombosis. In patients with proper initial disease control there can be a second flare of type-I-IFN release leading to post-COVID manifestation such as chilblain-like lesions that are characterized by thrombosis of small vessels in addition to an inflammatory infiltrate resembling lupus erythematosus (LE). Mechanistically, SARS-CoV-2 invades pneumocytes and endothelial cells by acting on angiotensin-II-converting enzyme 2 (ACE2). It is hypothesized, that viral uptake might downregulate ACE2 bioavailability and enhance angiotensin-II-derived pro-inflammatory and pro-thrombotic state. Since ACE2 is encoded on the X chromosome these conditions might also be influenced by gender-specific regulation. Taken together, SARS-CoV-2 infection affects the vascular compartment leading to variable thrombogenic or inflammatory response depending on the individual immune response status.
Collapse
Affiliation(s)
- Suzan Al-Gburi
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Stefan Beissert
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Claudia Günther
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|