351
|
Shen L, Gan M, Tan Z, Jiang D, Jiang Y, Li M, Wang J, Li X, Zhang S, Zhu L. A Novel Class of tRNA-Derived Small Non-Coding RNAs Respond to Myocardial Hypertrophy and Contribute to Intergenerational Inheritance. Biomolecules 2018; 8:biom8030054. [PMID: 30012983 PMCID: PMC6165373 DOI: 10.3390/biom8030054] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023] Open
Abstract
tRNA-derived fragments (tRFs) are a new class of non-coding RNA that play an important role in regulating cellular RNA processing and protein translation. However, there is currently no study reporting the influence of tRFs on myocardial hypertrophy. In this study, we used an isoproterenol (ISO)-induced myocardial hypertrophy rat model. Small RNA (<40 nts) transcriptome sequencing was used to select differentially expressed tRFs. We also compared the tRFs expression pattern in F0 sperm and the hearts of F1 offspring between the myocardial hypertrophy group (Hyp) and the control group (Con). Isoproterenol successfully induced a typical cardiac hypertrophy model in our study. Small RNA-seq revealed that tRFs were extremely enriched (84%) in the Hyp heart. Overexpression of tRFs1 and tRFs2 both enlarged the surface area of cardiac cells and increased expression of hypertrophic markers (ANF, BNP, and β-MHC). Luciferase reporter assay identified that tRFs1 directly target 3′UTR of Timp3. tRFs1, tRFs2, tRFs3, and tRFs4 were also highly expressed in Hyp F0 sperm and in Hyp F1 offspring hearts, but there was no differential expression of tRFs7, tRFs9, and tRFs10. Compared to Con F1 offspring, Hyp F1 offspring had elevated expression levels of β-MHC and ANP genes, and they had increased fibrosis and apoptosis in their hearts. These results demonstrated that tRFs are involved in regulating the response of myocardial hypertrophy. Besides, tRFs might serve as novel epigenetic factors that contribute to the intergenerational inheritance of cardiac hypertrophy.
Collapse
Affiliation(s)
- Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mailin Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhengdong Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yanzhi Jiang
- College of Life and Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jinyong Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
352
|
Frías-Lasserre D, Villagra CA, Guerrero-Bosagna C. Stress in the Educational System as a Potential Source of Epigenetic Influences on Children's Development and Behavior. Front Behav Neurosci 2018; 12:143. [PMID: 30057532 PMCID: PMC6053942 DOI: 10.3389/fnbeh.2018.00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022] Open
Abstract
Despite current advances on the relevance of environmental cues and epigenetic mechanisms in biological processes, including behavior, little attention has been paid to the potential link between epigenetic influences and educational sciences. For instance, could the learning environment and stress determine epigenetic marking, affecting students' behavior development? Could this have consequences on educational outcomes? So far, it has been shown that environmental stress influences neurological processes and behavior both in humans and rats. Through epigenetic mechanisms, offspring from stressed individuals develop altered behavior without any exposure to traumatizing experiences. Methylated DNA and noncoding RNAs regulate neurological processes such as synaptic plasticity and brain cortex development in children. The malfunctioning of these processes is associated with several neurological disorders, and these findings open up new avenues for the design of enriched environments for education and therapy. In this article, we discuss current cases of stress and behavioral disorders found in youngsters, and highlight the importance of considering epigenetic processes affecting the development of cognitive abilities and learning within the educational environment and for the development of teaching methodologies.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Cristian A. Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
353
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
354
|
Manners MT, Yohn NL, Lahens NF, Grant GR, Bartolomei MS, Blendy JA. Transgenerational inheritance of chronic adolescent stress: Effects of stress response and the amygdala transcriptome. GENES BRAIN AND BEHAVIOR 2018; 18:e12493. [PMID: 29896789 DOI: 10.1111/gbb.12493] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
Adolescent stress can impact health and well-being not only during adulthood of the exposed individual but even in future generations. To investigate the molecular mechanisms underlying these long-term effects, we exposed adolescent males to stress and measured anxiety behaviors and gene expression in the amygdala-a critical region in the control of emotional states-in their progeny for two generations, offspring and grandoffspring. Male C57BL/6 mice underwent chronic unpredictable stress (CUS) for 2 weeks during adolescence and were used to produce two generations of offspring. Male and female offspring and grandoffspring were tested in behavioral assays to measure affective behavior and stress reactivity. Remarkably, transgenerational inheritance of paternal stress exposure produced a protective phenotype in the male, but not the female lineage. RNA-seq analysis of the amygdala from male offspring and grandoffspring identified differentially expressed genes (DEGs) in mice derived from fathers exposed to CUS. The DEGSs clustered into numerous pathways, and the "notch signaling" pathway was the most significantly altered in male grandoffspring. Therefore, we show that paternal stress exposure impacts future generations which manifest in behavioral changes and molecular adaptations.
Collapse
Affiliation(s)
- M T Manners
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - N L Yohn
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - N F Lahens
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - G R Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
355
|
Gilardi F, Augsburger M, Thomas A. Will Widespread Synthetic Opioid Consumption Induce Epigenetic Consequences in Future Generations? Front Pharmacol 2018; 9:702. [PMID: 30018553 PMCID: PMC6037745 DOI: 10.3389/fphar.2018.00702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
A growing number of evidence demonstrates that ancestral exposure to xenobiotics (pollutants, drugs of abuse, etc.) can perturb the physiology and behavior of descendants. Both maternal and paternal transmission of phenotype across generations has been proved, demonstrating that parental drug history may have significant implications for subsequent generations. In the last years, the burden of novel synthetic opioid (NSO) consumption, due to increased medical prescription of pain medications and to easier accessibility of these substances on illegal market, is raising new questions first in term of public health, but also about the consequences of the parental use of these drugs on future generations. Besides being associated to the neonatal abstinence syndrome, in utero exposure to opioids has an impact on neuronal development with long-term repercussions that are potentially transmitted to subsequent generations. In addition, recent reports suggest that opioid use even before conception influences the reactivity to opioids of the progeny and the following generations, likely through epigenetic mechanisms. This review describes the current knowledge about the transgenerational effects of opioid consumption. We summarize the preclinical and clinical findings showing the implications for the subsequent generations of parental exposure to opioids earlier in life. Limitations of the existing data on NSOs and new perspectives of the research are also discussed, as well as clinical and forensic consequences.
Collapse
Affiliation(s)
- Federica Gilardi
- Forensic Toxicology and Chemistry Unit, University Center of Legal Medicine, Lausanne University Hospital - Geneva University Hospitals, Geneva, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marc Augsburger
- Forensic Toxicology and Chemistry Unit, University Center of Legal Medicine, Lausanne University Hospital - Geneva University Hospitals, Geneva, Switzerland
| | - Aurelien Thomas
- Forensic Toxicology and Chemistry Unit, University Center of Legal Medicine, Lausanne University Hospital - Geneva University Hospitals, Geneva, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
356
|
Harker A, Carroll C, Raza S, Kolb B, Gibb R. Preconception Paternal Stress in Rats Alters Brain and Behavior in Offspring. Neuroscience 2018; 388:474-485. [PMID: 29964157 DOI: 10.1016/j.neuroscience.2018.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
Abstract
Whereas environmental challenges during gestation have been repeatedly shown to alter offspring brain architecture and behavior, exploration examining the consequences of paternal preconception experience on offspring outcome is limited. The goal of this study was to examine the effects of preconception paternal stress (PPS) on cerebral plasticity and behavior in the offspring. Several behavioral assays were performed on offspring between postnatal days 33 (P33) and 101 (P101). Following behavioral testing, the brains were harvested and dendritic morphology (dendritic complexity, length, and spine density) were examined on cortical pyramidal cells in medial prefrontal cortex (mPFC), orbital frontal cortex (OFC), parietal cortex (Par1), and the CA1 area of the hippocampus. As anticipated, behavior was altered on both the activity box assay and elevated plus maze and performance was impaired in the Whishaw tray reaching task. Neuroanatomical measures revealed a heavier brain in stressed animals and dendritic changes in all regions measured, the precise effect varying with the measure and cerebral region. Thus, PPS impacted both behavior and neuronal morphology of offspring. These effects likely have an epigenetic basis given that in a parallel study of littermates of the current animals we found extensive epigenetic changes at P21.
Collapse
Affiliation(s)
- Allonna Harker
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada.
| | - Cathy Carroll
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada.
| | - Sarah Raza
- Canadian Institute for Advanced Research, Toronto, ON, Canada.
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada; Canadian Institute for Advanced Research, Toronto, ON, Canada.
| | - Robbin Gibb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada.
| |
Collapse
|
357
|
Patton GC, Olsson CA, Skirbekk V, Saffery R, Wlodek ME, Azzopardi PS, Stonawski M, Rasmussen B, Spry E, Francis K, Bhutta ZA, Kassebaum NJ, Mokdad AH, Murray CJL, Prentice AM, Reavley N, Sheehan P, Sweeny K, Viner RM, Sawyer SM. Adolescence and the next generation. Nature 2018; 554:458-466. [PMID: 29469095 DOI: 10.1038/nature25759] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/18/2018] [Indexed: 12/30/2022]
Abstract
Adolescent growth and social development shape the early development of offspring from preconception through to the post-partum period through distinct processes in males and females. At a time of great change in the forces shaping adolescence, including the timing of parenthood, investments in today's adolescents, the largest cohort in human history, will yield great dividends for future generations.
Collapse
Affiliation(s)
- George C Patton
- The University of Melbourne, Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, Parkville, Victoria 3010, Australia.,Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia.,Centre for Adolescent Health, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Craig A Olsson
- The University of Melbourne, Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, Parkville, Victoria 3010, Australia.,Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia.,Centre for Adolescent Health, Royal Children's Hospital, Parkville, Victoria 3052, Australia.,Deakin University Geelong, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria 3220, Australia
| | - Vegard Skirbekk
- Centre for Fertility and Health, Norwegian Institute of Public Health, Nydalen, Oslo 0403, Norway.,Columbia University, New York, New York 10032, USA
| | - Richard Saffery
- The University of Melbourne, Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, Parkville, Victoria 3010, Australia.,Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Mary E Wlodek
- The University of Melbourne, Department of Physiology, Parkville, Victoria 3010, Australia
| | - Peter S Azzopardi
- The University of Melbourne, Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, Parkville, Victoria 3010, Australia.,Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia.,Maternal and Child Health Program, International Development Discipline, Burnet Institute, Melbourne, Victoria 3004, Australia.,Wardliparingga Aboriginal Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Marcin Stonawski
- Department of Demography, Cracow University of Economics, Cracow 31-510, Poland.,European Commission, Joint Research Centre, Centre for Advanced Studies, Ispra, Varese 21027, Italy
| | - Bruce Rasmussen
- Victoria Institute of Strategic Economic Studies, Victoria University, Melbourne, Victoria 3000, Australia
| | - Elizabeth Spry
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia.,Centre for Adolescent Health, Royal Children's Hospital, Parkville, Victoria 3052, Australia.,Deakin University Geelong, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria 3220, Australia
| | - Kate Francis
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia.,Centre for Adolescent Health, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Zulfiqar A Bhutta
- SickKids Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Centre of Excellence in Women and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Nicholas J Kassebaum
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington 98121, USA.,Division of Pediatric Anesthesiology & Pain Medicine, Seattle Children's Hospital, Seattle, Washington 98105, USA
| | - Ali H Mokdad
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington 98121, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington 98121, USA
| | - Andrew M Prentice
- MRC Unit The Gambia, Fajara, Gambia.,MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Nicola Reavley
- The University of Melbourne, Melbourne School of Population and Global Health, Parkville, Victoria 3010, Australia
| | - Peter Sheehan
- Victoria Institute of Strategic Economic Studies, Victoria University, Melbourne, Victoria 3000, Australia
| | - Kim Sweeny
- Victoria Institute of Strategic Economic Studies, Victoria University, Melbourne, Victoria 3000, Australia
| | - Russell M Viner
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Susan M Sawyer
- The University of Melbourne, Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, Parkville, Victoria 3010, Australia.,Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia.,Centre for Adolescent Health, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
358
|
Yu T, Tang C, Zhang Y, Zhang R, Yan W. Microfluidics-based digital quantitative PCR for single-cell small RNA quantification. Biol Reprod 2018; 97:490-496. [PMID: 29024970 DOI: 10.1093/biolre/iox102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023] Open
Abstract
Quantitative analyses of small RNAs at the single-cell level have been challenging because of limited sensitivity and specificity of conventional real-time quantitative PCR methods. A digital quantitative PCR (dqPCR) method for miRNA quantification has been developed, but it requires the use of proprietary stem-loop primers and only applies to miRNA quantification. Here, we report a microfluidics-based dqPCR (mdqPCR) method, which takes advantage of the Fluidigm BioMark HD system for both template partition and the subsequent high-throughput dqPCR. Our mdqPCR method demonstrated excellent sensitivity and reproducibility suitable for quantitative analyses of not only miRNAs but also all other small RNA species at the single-cell level. Using this method, we discovered that each sperm has a unique miRNA profile.
Collapse
Affiliation(s)
- Tian Yu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Ying Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Ruirui Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.,Department of Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
359
|
Jawaid A, Roszkowski M, Mansuy IM. Transgenerational Epigenetics of Traumatic Stress. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:273-298. [PMID: 30072057 DOI: 10.1016/bs.pmbts.2018.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traumatic stress is a type of environmental experience that can modify behavior, cognition and physiological functions such as metabolism, in mammals. Many of the effects of traumatic stress can be transmitted to subsequent generations even when individuals from these generations are not exposed to any traumatic stressor. This book chapter discusses the concept of epigenetic/non-genomic inheritance of such traits involving the germline in mammals. It includes a comprehensive review of animal and human studies on inter- and transgenerational inheritance of the effects of traumatic stress, some of the epigenetic changes in the germline currently known to be associated with traumatic stress, and possible mechanisms for their induction and maintenance during development and adulthood. We also describe some experimental interventions that attempted to prevent the transmission of these effects, and consider the evolutionary importance of transgenerational inheritance and future outlook of the field.
Collapse
Affiliation(s)
- Ali Jawaid
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| | - Martin Roszkowski
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|
360
|
Briffa JF, Wlodek ME, Moritz KM. Transgenerational programming of nephron deficits and hypertension. Semin Cell Dev Biol 2018; 103:94-103. [PMID: 29859996 DOI: 10.1016/j.semcdb.2018.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/16/2023]
Abstract
Exposure to a sub-optimal environment in the womb can result in poor fetal growth and impair the normal development of organs. The kidney, specifically the process of nephrogenesis, has been shown to be impacted by many common pregnancy exposures including an inadequate diet, poor placental function, maternal stress as well as maternal smoking and alcohol consumption. This can result in offspring being born with a reduced nephron endowment, which places these individuals at increased risk of hypertension and chronic kidney disease (CKD). Of recent interest is whether this disease risk can be passed on to subsequent generations and, if so, what are the mechanisms and pathways involved. In this review, we highlight the growing body of evidence that a low birth weight and hypertension, which are both major risk factors for cardiovascular and CKD, can be transmitted across generations. However, as yet there is little data as to whether a low nephron endowment contributes to this disease transmission. The emerging data suggests transmission can occur both through both the maternal and paternal lines, which likely involves epigenetic mechanisms such chromatin remodelling (DNA methylation and histone modification) and non-coding RNA modifications. In addition, females who were born small and/or have a low nephron endowment are at an increased risk for pregnancy complications, which can influence the growth and development of the next generation. Future animal studies in this area should include examining nephron endowment across multiple generations and determining adult renal function. Clinically, long term follow-up studies of large birth cohorts need to be undertaken to more clearly determine the impact a sub-optimal environment in one generation has on the health outcomes in the second, and subsequent, generation.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
361
|
Dal Lin C, Gola E, Brocca A, Rubino G, Marinova M, Brugnolo L, Plebani M, Iliceto S, Tona F. miRNAs may change rapidly with thoughts: The Relaxation Response after myocardial infarction. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
362
|
Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates. Mol Psychiatry 2018; 23:1432-1445. [PMID: 29257131 DOI: 10.1038/mp.2017.237] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Stress-related psychopathology is highly prevalent among elderly individuals and is associated with detrimental effects on mood, appetite and cognition. Conversely, under certain circumstances repeated mild-to-moderate stressors have been shown to enhance cognitive performance in rodents and exert stress-inoculating effects in humans. As most stress-related favorable outcomes have been reported in adolescence and young-adulthood, this apparent disparity could result from fundamental differences in how aging organisms respond to stress. Furthermore, given prominent age-related alterations in sex hormones, the effect of chronic stress in aging females remains a highly relevant yet little studied issue. In the present study, female C57BL/6 mice aged 3 (young-adult) and 20-23 (old) months were subjected to 8 weeks of chronic unpredictable stress (CUS). Behavioral outcomes were measured during the last 3 weeks of the CUS protocol, followed by brain dissection for histological and molecular end points. We found that in young-adult female mice, CUS resulted in decreased anxiety-like behavior and enhanced cognitive performance, whereas in old female mice it led to weight loss, dysregulated locomotion and memory impairment. These phenotypes were paralleled by differential changes in the expression of hypothalamic insulin and melanocortin-4 receptors and were consistent with an age-dependent reduction in the dynamic range of stress-related changes in the hippocampal transcriptome. Supported by an integrated microRNA (miRNA)-mRNA expression analysis, the present study proposes that, when confronted with ongoing stress, neuroprotective mechanisms involving the upregulation of neurogenesis, Wnt signaling and miR-375 can be harnessed more effectively during young-adulthood. Conversely, we suggest that aging alters the pattern of immune activation elicited by stress. Ultimately, interventions that modulate these processes could reduce the burden of stress-related psychopathology in late life.
Collapse
|
363
|
Paternal cholestasis exacerbates obesity-associated hypertension in male offspring but is prevented by paternal ursodeoxycholic acid treatment. Int J Obes (Lond) 2018; 43:319-330. [PMID: 29795465 PMCID: PMC6124644 DOI: 10.1038/s41366-018-0095-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 11/30/2022]
Abstract
Background: Obesity is a heterogeneous phenotype and risk associations to non-communicable diseases such as cardiovascular disease and type 2 diabetes are influenced by several factors. The paternal metabolic status at the time of conception influences offspring susceptibility to developing obesity and adiposity-associated cardiometabolic disease. Cholestatic liver diseases are characterized by raised circulating serum bile acid levels and dyslipidemia, and are commonly treated with ursodeoxycholic acid (UDCA). We hypothesized that paternal cholestasis alters offspring susceptibility to developing obesity and adiposity-associated cardiometabolic disease and that this may be modified by paternal UDCA treatment. Methods: Cholestasis was induced in male C57BL/6 mice with a 0.5% cholic acid (CA)-supplemented diet for 10 weeks prior to mating with normal chow (NC)-fed females. Offspring of cholestatic and NC-fed fathers were fed either a NC diet or challenged with an obesogenic ‘western diet’ (WD) from 12 weeks of age. Offspring body weight and cardiometabolic function were assessed, and the impact of treatment of paternal cholestasis with UDCA was evaluated. Results: Male offspring (18 weeks old) of cholestatic fathers challenged with WD had raised fasting insulin, hepatic triglyceride content and serum cholesterol levels compared to diet-matched controls. At 25–29 weeks of age, WD-fed male offspring of cholestatic fathers had higher systolic and diastolic blood pressure than controls and this was prevented by paternal UDCA treatment. In contrast, WD-challenged female offspring of cholestatic fathers showed improved glucose tolerance compared to controls. Conclusions: We demonstrated in our model of paternal cholestasis that offspring susceptibility to adiposity-associated cardiometabolic disease is affected in a sex-specific manner and paternal UDCA treatment had a protective effect against hypertension in the obese male offspring. The most prevalent human cholestatic conditions are primary sclerosing cholangitis and primary biliary cholangitis. These findings are of clinical relevance to children of men with these conditions.
Collapse
|
364
|
Dickson DA, Paulus JK, Mensah V, Lem J, Saavedra-Rodriguez L, Gentry A, Pagidas K, Feig LA. Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. Transl Psychiatry 2018; 8:101. [PMID: 29795112 PMCID: PMC5966454 DOI: 10.1038/s41398-018-0146-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 01/07/2023] Open
Abstract
Exposure of male mice to early life stress alters the levels of specific sperm miRNAs that promote stress-associated behaviors in their offspring. To begin to evaluate whether similar phenomena occur in men, we searched for sperm miRNA changes that occur in both mice and men exposed to early life stressors that have long-lasting effects. For men, we used the Adverse Childhood Experience (ACE) questionnaire. It reveals the degree of abusive and/or dysfunctional family experiences when young, which increases risks of developing future psychological and physical disorders. For male mice, we used adolescent chronic social instability (CSI) stress, which not only enhances sociability defects for >1 year, but also anxiety and defective sociability in female offspring for multiple generations through the male lineage. Here we found a statistically significant inverse correlation between levels of multiple miRNAs of the miR-449/34 family and ACE scores of Caucasian males. Remarkably, we found members of the same sperm miRNA family are also reduced in mice exposed to CSI stress. Thus, future studies should be designed to directly test whether reduced levels of these miRNAs could be used as unbiased indicators of current and/or early life exposure to severe stress. Moreover, after mating stressed male mice, these sperm miRNA reductions persist in both early embryos through at least the morula stage and in sperm of males derived from them, suggesting these miRNA changes contribute to transmission of stress phenotypes across generations. Since offspring of men exposed to early life trauma have elevated risks for psychological disorders, these findings raise the possibility that a portion of this risk may be derived from epigenetic regulation of these sperm miRNAs.
Collapse
Affiliation(s)
- David A. Dickson
- 0000 0004 1936 7531grid.429997.8Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA USA
| | - Jessica K. Paulus
- 0000 0004 0367 5222grid.475010.7Predictive Analytics and Comparative Effectiveness (PACE) Center, Institute for Clinical Research and Health Policy Studies (ICRHPS), Tufts Medical Center/Tufts University School of Medicine, Boston, MA USA
| | - Virginia Mensah
- 0000 0004 1936 9094grid.40263.33Division of Reproductive Endocrinology and Infertility, Women and Infants Hospital Fertility Center, Department of OB/GYN, Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Janis Lem
- 0000 0000 8934 4045grid.67033.31The Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111 USA
| | - Lorena Saavedra-Rodriguez
- 0000 0000 8934 4045grid.67033.31Department of Developmental, Molecular and Chemical Biology and Department of Neuroscience, Tufts University School of Medicine, Boston, MA USA
| | - Adrienne Gentry
- 0000 0001 2113 1622grid.266623.5Department of Obstetrics, Gynecology and Women’s Health, University of Louisville School of Medicine, Louisville, KY USA
| | - Kelly Pagidas
- 0000 0001 2113 1622grid.266623.5Department of Obstetrics, Gynecology and Women’s Health, University of Louisville School of Medicine, Louisville, KY USA
| | - Larry A. Feig
- 0000 0004 1936 7531grid.429997.8Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA USA ,0000 0000 8934 4045grid.67033.31Department of Developmental, Molecular and Chemical Biology and Department of Neuroscience, Tufts University School of Medicine, Boston, MA USA
| |
Collapse
|
365
|
Panzeri I, Pospisilik JA. Epigenetic control of variation and stochasticity in metabolic disease. Mol Metab 2018; 14:26-38. [PMID: 29909200 PMCID: PMC6034039 DOI: 10.1016/j.molmet.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The alarming rise of obesity and its associated comorbidities represents a medical burden and a major global health and economic issue. Understanding etiological mechanisms underpinning susceptibility and therapeutic response is of primary importance. Obesity, diabetes, and metabolic diseases are complex trait disorders with only partial genetic heritability, indicating important roles for environmental programing and epigenetic effects. SCOPE OF THE REVIEW We will highlight some of the reasons for the scarce predictability of metabolic diseases. We will outline how genetic variants generate phenotypic variation in disease susceptibility across populations. We will then focus on recent conclusions about epigenetic mechanisms playing a fundamental role in increasing variability and subsequently disease triggering. MAJOR CONCLUSIONS Currently, we are unable to predict or mechanistically define how "missing heritability" drives disease. Unravelling this black box of regulatory processes will allow us to move towards a truly personalized and precision medicine.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - John Andrew Pospisilik
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| |
Collapse
|
366
|
Noncoding RNAs: Stress, Glucocorticoids, and Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:849-865. [PMID: 29559087 DOI: 10.1016/j.biopsych.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a pathologic response to trauma that impacts ∼8% of the population and is highly comorbid with other disorders, such as traumatic brain injury. PTSD affects multiple biological systems throughout the body, including the hypothalamic-pituitary-adrenal axis, cortical function, and the immune system, and while the study of the biological underpinnings of PTSD and related disorders are numerous, the roles of noncoding RNAs (ncRNAs) are just emerging. Moreover, deep sequencing has revealed that ncRNAs represent most of the transcribed mammalian genome. Here, we present developing evidence that ncRNAs are involved in critical aspects of PTSD pathophysiology. In that regard, we summarize the roles of three classes of ncRNAs in PTSD and related disorders: microRNAs, long-noncoding RNAs, and retrotransposons. This review evaluates findings from both animal and human studies with a special focus on the role of ncRNAs in hypothalamic-pituitary-adrenal axis abnormalities and glucocorticoid dysfunction in PTSD and traumatic brain injury. We conclude that ncRNAs may prove to be useful biomarkers to facilitate personalized medicines for trauma-related brain disorders.
Collapse
|
367
|
Chan JC, Nugent BM, Bale TL. Parental Advisory: Maternal and Paternal Stress Can Impact Offspring Neurodevelopment. Biol Psychiatry 2018; 83:886-894. [PMID: 29198470 PMCID: PMC5899063 DOI: 10.1016/j.biopsych.2017.10.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/07/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Parental stress exposures are implicated in the risk for offspring neurodevelopmental and neuropsychiatric disorders, prompting critical examination of preconception and prenatal periods as vulnerable to environmental insults such as stress. Evidence from human studies and animal models demonstrates the influence that both maternal and paternal stress exposures have in changing the course of offspring brain development. Mechanistic examination of modes of intergenerational transmission of exposure during pregnancy has pointed to alterations in placental signaling, including changes in inflammatory, nutrient-sensing, and epigenetic pathways. Transmission of preconception paternal stress exposure is associated with changes in epigenetic marks in sperm, with a primary focus on the reprogramming of DNA methylation, histone posttranslational modifications, and small noncoding RNAs. In this review, we discuss evidence supporting the important contribution of intergenerational parental stress in offspring neurodevelopment and disease risk, and the currently known epigenetic mechanisms underlying this transmission.
Collapse
Affiliation(s)
- Jennifer C Chan
- Department of Biomedical Sciences, School of Veterinary Medicine and Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bridget M Nugent
- Department of Pharmacology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
368
|
Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A. A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance. Front Cell Dev Biol 2018; 6:50. [PMID: 29868581 PMCID: PMC5962689 DOI: 10.3389/fcell.2018.00050] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
The past decade has seen a tremendous increase in interest and progress in the field of sperm epigenetics. Studies have shown that chromatin regulation during male germline development is multiple and complex, and that the spermatozoon possesses a unique epigenome. Its DNA methylation profile, DNA-associated proteins, nucleo-protamine distribution pattern and non-coding RNA set up a unique epigenetic landscape which is delivered, along with its haploid genome, to the oocyte upon fertilization, and therefore can contribute to embryogenesis and to the offspring health. An emerging body of compelling data demonstrates that environmental exposures and paternal lifestyle can change the sperm epigenome and, consequently, may affect both the embryonic developmental program and the health of future generations. This short review will attempt to provide an overview of what is currently known about sperm epigenome and the existence of transgenerational epigenetic inheritance of paternally acquired traits that may contribute to the offspring phenotype.
Collapse
Affiliation(s)
- Alexandre Champroux
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Cocquet
- INSERM U1016, Institut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Joëlle Henry-Berger
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joël R. Drevet
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ayhan Kocer
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
369
|
Harris EP, Allardice HA, Schenk AK, Rissman EF. Effects of maternal or paternal bisphenol A exposure on offspring behavior. Horm Behav 2018; 101:68-76. [PMID: 28964733 PMCID: PMC5882611 DOI: 10.1016/j.yhbeh.2017.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical used in the production of polycarbonate plastics and resins. Exposure to BPA during gestation has been proposed as a risk factor for the development of neurobehavioral disorders, such as autism spectrum disorder. To address the behavioral impact of developmental exposure to BPA, we tested offspring of mice exposed to a daily low dose of BPA during pregnancy. We also asked if preconception exposure of the sire affected behaviors in offspring. Sires that consumed BPA for 50days prior to mating weighed less than controls, but no effects on any reproductive measures were noted. Juvenile offspring exposed to BPA maternally, but not paternally, spent less time in the open arms of the elevated plus maze than controls, indicating increased anxiety-like behavior. However, neither parental exposure group differed significantly from controls in the social recognition task. We also assessed the behaviors of maternally exposed offspring in two novel tasks: ultrasonic vocalizations (USVs) in pups and operant reversal learning in adults. Maternal BPA exposure increased the duration and median frequency of USVs emitted by pups during maternal separation. In the reversal learning task, females responded more accurately and earned more rewards than males. Additionally, control females received more rewards than BPA females during the acquisition phase of the task. These are among the first studies conducted to ask if BPA exposure via the sire affects offspring behavior and the first study to report effects of gestational BPA exposure on pup USVs and adult operant responding.
Collapse
Affiliation(s)
- Erin P Harris
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather A Allardice
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - A Katrin Schenk
- Department of Physics, Randolph College, Lynchburg, VA 24503, USA
| | - Emilie F Rissman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
370
|
Barouki R, Melén E, Herceg Z, Beckers J, Chen J, Karagas M, Puga A, Xia Y, Chadwick L, Yan W, Audouze K, Slama R, Heindel J, Grandjean P, Kawamoto T, Nohara K. Epigenetics as a mechanism linking developmental exposures to long-term toxicity. ENVIRONMENT INTERNATIONAL 2018; 114:77-86. [PMID: 29499450 PMCID: PMC5899930 DOI: 10.1016/j.envint.2018.02.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/13/2018] [Accepted: 02/08/2018] [Indexed: 05/17/2023]
Abstract
A variety of experimental and epidemiological studies lend support to the Developmental Origin of Health and Disease (DOHaD) concept. Yet, the actual mechanisms accounting for mid- and long-term effects of early-life exposures remain unclear. Epigenetic alterations such as changes in DNA methylation, histone modifications and the expression of certain RNAs have been suggested as possible mediators of long-term health effects of environmental stressors. This report captures discussions and conclusions debated during the last Prenatal Programming and Toxicity meeting held in Japan. Its first aim is to propose a number of criteria that are critical to support the primary contribution of epigenetics in DOHaD and intergenerational transmission of environmental stressors effects. The main criteria are the full characterization of the stressors, the actual window of exposure, the target tissue and function, the specificity of the epigenetic changes and the biological plausibility of the linkage between those changes and health outcomes. The second aim is to discuss long-term effects of a number of stressors such as smoking, air pollution and endocrine disruptors in order to identify the arguments supporting the involvement of an epigenetic mechanism. Based on the developed criteria, missing evidence and suggestions for future research will be identified. The third aim is to critically analyze the evidence supporting the involvement of epigenetic mechanisms in intergenerational and transgenerational effects of environmental exposure and to particularly discuss the role of placenta and sperm. While the article is not a systematic review and is not meant to be exhaustive, it critically assesses the contribution of epigenetics in the long-term effects of environmental exposures as well as provides insight for future research.
Collapse
Affiliation(s)
- R Barouki
- INSERM UMR-S 1124, Université Paris Descartes, Paris, France; Service de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants Malades, AP-HP, Paris, France.
| | - E Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, and Centre for Occupational and Environmental Medicine, Stockholm County Council, Sweden
| | - Z Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | - J Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; Technische Universität München, Experimental Genetics, 85354 Freising, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - J Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Karagas
- Department of Epidemiology, Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - A Puga
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Y Xia
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | | | - W Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA MS575; Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - K Audouze
- INSERM UMR-S973, Molécules Thérapeutiques in silico, University of Paris Diderot, Paris, France
| | - R Slama
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - J Heindel
- Program in Endocrine Disruption Strategies, Commonweal, Bolinas, CA, USA
| | - P Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - T Kawamoto
- Department of Environmental Health, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - K Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|
371
|
Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y, Liebers R, Zhang L, Qu Y, Qian J, Pahima M, Liu Y, Yan M, Cao Z, Lei X, Cao Y, Peng H, Liu S, Wang Y, Zheng H, Woolsey R, Quilici D, Zhai Q, Li L, Zhou T, Yan W, Lyko F, Zhang Y, Zhou Q, Duan E, Chen Q. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol 2018; 20:535-540. [PMID: 29695786 PMCID: PMC5926820 DOI: 10.1038/s41556-018-0087-2] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 03/19/2018] [Indexed: 12/29/2022]
Abstract
The discovery of RNAs (for example, messenger RNAs, non-coding RNAs) in sperm has opened the possibility that sperm may function by delivering additional paternal information aside from solely providing the DNA 1 . Increasing evidence now suggests that sperm small non-coding RNAs (sncRNAs) can mediate intergenerational transmission of paternally acquired phenotypes, including mental stress2,3 and metabolic disorders4-6. How sperm sncRNAs encode paternal information remains unclear, but the mechanism may involve RNA modifications. Here we show that deletion of a mouse tRNA methyltransferase, DNMT2, abolished sperm sncRNA-mediated transmission of high-fat-diet-induced metabolic disorders to offspring. Dnmt2 deletion prevented the elevation of RNA modifications (m5C, m2G) in sperm 30-40 nt RNA fractions that are induced by a high-fat diet. Also, Dnmt2 deletion altered the sperm small RNA expression profile, including levels of tRNA-derived small RNAs and rRNA-derived small RNAs, which might be essential in composing a sperm RNA 'coding signature' that is needed for paternal epigenetic memory. Finally, we show that Dnmt2-mediated m5C contributes to the secondary structure and biological properties of sncRNAs, implicating sperm RNA modifications as an additional layer of paternal hereditary information.
Collapse
Affiliation(s)
- Yunfang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Xudong Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Junchao Shi
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yusheng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Reinhard Liebers
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Liwen Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongcun Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Maya Pahima
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ying Liu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Menghong Yan
- Key Laboratory of Nutrition and Metabolism, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhonghong Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong University of Technology, Zibo, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongying Peng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Shichao Liu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Rebekah Woolsey
- Nevada Proteomics Center, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - David Quilici
- Nevada Proteomics Center, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Qi Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
372
|
Korgan AC, O'Leary E, King JL, Weaver ICG, Perrot TS. Effects of paternal high-fat diet and rearing environment on maternal investment and development of defensive responses in the offspring. Psychoneuroendocrinology 2018. [PMID: 29518693 DOI: 10.1016/j.psyneuen.2018.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Paternal preconception risk factors (e.g. stress, diet, drug use) correlate with metabolic dysfunction in offspring, which is often comorbid with depressive and anxiety-like phenotypes. Detection of these risk factors or deleterious phenotypes informs a female about prevailing ecological demands, in addition to potential adverse environment-induced phenotypes that may be disseminated to her offspring. We examined whether a F0 male rat's prior exposure to an obesogenic high-fat diet (HFD) influences a female's attraction towards a male, subsequent mother-infant interactions and the development of defensive (emotional) responses in the F1 offspring. Females displayed less interest in the HFD exposed F0 males relative to control diet-exposed F0 males. Dams that reared F1 offspring in larger, semi-naturalistic housing provided more licking and grooming and active arched-back-nursing behavior. However, some of these effects interacted with paternal experience. F0 HFD and maternal rearing environment revealed sex-dependent, between group differences in F1 offspring wean weight, juvenile social interactions and anxiety-like behavior in adolescence. Our results show for the first time in mammals that male exposure to HFD may contribute to stable behavioral variation among females in courtship, maternal care, even when the females are not directly exposed to a HFD, and anxiety-like behavior in F1 offspring. Furthermore, when offspring were exposed to a predatory threat, hypothalamic Crf gene regulation was influenced by early housing. These results, together with our previous findings, suggest that paternal experience and maternal rearing conditions can influence maternal behavior and development of defensive responses of offspring.
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Elizabeth O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Jillian L King
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada; Brain Repair Centre, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada; Brain Repair Centre, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada.
| |
Collapse
|
373
|
Li Y, Lei X, Guo W, Wu S, Duan Y, Yang X, Yang X. Transgenerational endotoxin tolerance-like effect caused by paternal dietary Astragalus polysaccharides in broilers' jejunum. Int J Biol Macromol 2018; 111:769-779. [DOI: 10.1016/j.ijbiomac.2018.01.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
|
374
|
Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y, Liebers R, Zhang L, Qu Y, Qian J, Pahima M, Liu Y, Yan M, Cao Z, Lei X, Cao Y, Peng H, Liu S, Wang Y, Zheng H, Woolsey R, Quilici D, Zhai Q, Li L, Zhou T, Yan W, Lyko F, Zhang Y, Zhou Q, Duan E, Chen Q. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol 2018. [DOI: doi.org/10.1038/s41556-018-0087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
375
|
Mendelson MM, Lyass A, O'Donnell CJ, D'Agostino RB, Levy D. Association of Maternal Prepregnancy Dyslipidemia With Adult Offspring Dyslipidemia in Excess of Anthropometric, Lifestyle, and Genetic Factors in the Framingham Heart Study. JAMA Cardiol 2018; 1:26-35. [PMID: 27437650 DOI: 10.1001/jamacardio.2015.0304] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IMPORTANCE Dyslipidemia in young adults in the United States during their childbearing years is common, and the consequences for the next generation are poorly understood. Further understanding of the harmful consequences of elevated low-density lipoprotein cholesterol (LDL-C) levels in young adults may help to inform population screening and management strategies. OBJECTIVE To examine whether adult levels of serum LDL-C are associated with maternal prepregnancy LDL-C levels beyond that attributable to inherited genetic sequence polymorphisms, diet, physical activity, and body mass index. DESIGN, SETTING, AND PARTICIPANTS The Framingham Heart Study is a multigenerational, population-based inception cohort initiated in 1948 in Framingham, Massachusetts. In this study of families, the analyses included 538 parent-offspring pairs with parental LDL-C levels measured in the study prior to the offspring's birth. Parental prebirth, parental concurrent, and adult offspring assessments occurred in 1971-1983, 1998-2001, and 2002-2005, respectively. Data analyses were conducted between March 1, 2013, and May 30, 2015. EXPOSURES Maternal prepregnancy LDL-C levels compared with paternal prepregnancy and parental concurrent LDL-C levels in association with adult offspring LDL-C levels. MAIN OUTCOMES AND MEASURES Adult offspring LDL-C levels were examined as both a continuous and dichotomous outcome (using a threshold of 130 mg/dL). RESULTS Among the 538 parent-offspring pairs, there were 241 mother-offspring and 297 father-offspring pairs with a mean (SD) offspring age of 26 (3) years. Adult offspring LDL-C levels were associated with maternal prepregnancy LDL-C levels after adjustment for family relatedness and offspring lifestyle, anthropometric factors, and inherited genetic variants (β = 0.32 [SE, 0.05] mg/dL; P < .001). After multivariable adjustment, adults who had been exposed to elevated maternal prepregnancy LDL-C levels were at a 3.8 (95% CI, 1.5-9.8) times higher odds of having elevated LDL-C levels (P = .005) and had an adjusted LDL-C level of 18 mg/dL (95% CI, 9-27 mg/dL) higher than did those without such exposure. Maternal prepregnancy LDL-C levels explained 13% of the variation in adult offspring LDL-C levels beyond common genetic variants and classic risk factors for elevated LDL-C levels. CONCLUSIONS AND RELEVANCE Adult offspring dyslipidemia is associated with maternal prepregnancy dyslipidemia in excess of measured lifestyle, anthropometric, and inherited genetic factors. The findings support the possibility of a maternal epigenetic contribution to cardiovascular disease risk in the general population. Further research is warranted to determine whether ongoing public health efforts to identify and reduce dyslipidemia in young adults prior to their childbearing years may have additional potential health benefits for the subsequent generation.
Collapse
Affiliation(s)
- Michael M Mendelson
- Framingham Heart Study, Boston University School of Medicine, Boston, Massachusetts 2Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts3Population Studies Branch, Division of Intramural Research, National H
| | - Asya Lyass
- Framingham Heart Study, Boston University School of Medicine, Boston, Massachusetts 4Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - Christopher J O'Donnell
- Framingham Heart Study, Boston University School of Medicine, Boston, Massachusetts 5Center for Population Genomics, Veteran's Administration Healthcare System, Boston, Massachusetts6Cardiovascular Epidemiology and Human Genomics Branch, Division of Intra
| | - Ralph B D'Agostino
- Framingham Heart Study, Boston University School of Medicine, Boston, Massachusetts 4Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - Daniel Levy
- Framingham Heart Study, Boston University School of Medicine, Boston, Massachusetts 3Population Studies Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
376
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
377
|
Melén E, Barouki R, Barry M, Boezen HM, Hoffmann B, Krauss-Etschmann S, Koppelman GH, Forsberg B. Promoting respiratory public health through epigenetics research: an ERS Environment Health Committee workshop report. Eur Respir J 2018; 51:51/4/1702410. [PMID: 29618601 DOI: 10.1183/13993003.02410-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden .,Sachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Robert Barouki
- INSERM UMR-S1124, Paris, France.,Université Paris Descartes, Sorbonne Paris cité 45 rue des Saints-Pères, Paris, France.,Hôpital Necker Enfants malades, AP-HP, Paris, France
| | - Maeve Barry
- Advocacy and EU Affairs Dept, European Respiratory Society, Brussels, Belgium
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Barbara Hoffmann
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany, Member of the German Center for Lung Research (DZL).,Institute of Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Dept of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - Bertil Forsberg
- Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
378
|
Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy016. [PMID: 30038800 PMCID: PMC6051467 DOI: 10.1093/eep/dvy016] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
Ancestral environmental exposures such as toxicants, abnormal nutrition or stress can promote the epigenetic transgenerational inheritance of disease and phenotypic variation. These environmental factors induce the epigenetic reprogramming of the germline (sperm and egg). The germline epimutations can in turn increase disease susceptibility of subsequent generations of the exposed ancestors. A variety of environmental factors, species and exposure specificity of this induced epigenetic transgenerational inheritance of disease is discussed with a consideration of generational toxicology. The molecular mechanisms and processes involved in the ability of these inherited epimutations to increase disease susceptibility are discussed. In addition to altered disease susceptibility, the potential impact of the epigenetic inheritance on phenotypic variation and evolution is considered. Observations suggest environmentally induced epigenetic transgenerational inheritance of disease is a critical aspect of disease etiology, toxicology and evolution that needs to be considered.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
- Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1-509-335-1524; Fax: +1-509-335-2176; E-mail:
| |
Collapse
|
379
|
Guerrero-Bosagna C, Morisson M, Liaubet L, Rodenburg TB, de Haas EN, Košťál Ľ, Pitel F. Transgenerational epigenetic inheritance in birds. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy008. [PMID: 29732172 PMCID: PMC5920295 DOI: 10.1093/eep/dvy008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 05/04/2023]
Abstract
While it has been shown that epigenetics accounts for a portion of the variability of complex traits linked to interactions with the environment, the real contribution of epigenetics to phenotypic variation remains to be assessed. In recent years, a growing number of studies have revealed that epigenetic modifications can be transmitted across generations in several animal species. Numerous studies have demonstrated inter- or multi-generational effects of changing environment in birds, but very few studies have been published showing epigenetic transgenerational inheritance in these species. In this review, we mention work conducted in parent-to-offspring transmission analyses in bird species, with a focus on the impact of early stressors on behaviour. We then present recent advances in transgenerational epigenetics in birds, which involve germline linked non-Mendelian inheritance, underline the advantages and drawbacks of working on birds in this field and comment on future directions of transgenerational studies in bird species.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58 183, Sweden
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | - T Bas Rodenburg
- Behavioural Ecology Group, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - Elske N de Haas
- Behavioural Ecology Group, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - Ľubor Košťál
- Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Frédérique Pitel
- GenPhySE, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
- Correspondence address. GenPhySE, INRA, 31326 Castanet-Tolosan, France. Tel:+33 561 28 54 35. E-mail:
| |
Collapse
|
380
|
Rassoulzadegan M, Cuzin F. Nutrition meets heredity: a case of RNA-mediated transmission of acquired characters. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy006. [PMID: 29732170 PMCID: PMC5920336 DOI: 10.1093/eep/dvy006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
RNA-based inheritance provides a reasonable hypothesis to explain multigenerational maintenance of the disease in the progeny of either a male or female parent suffering from the metabolic syndrome (obesity and type 2 diabetes) induced by abnormal diet. Although, it is still difficult to formulate a complete rational mechanism, study of inheritance is a most direct way to learn about the epigenetic control of gene expression and we wished to summarised our current approach along this line.
Collapse
Affiliation(s)
- Minoo Rassoulzadegan
- Université de Nice Sophia Antipolis, Inserm U1091 – CNRS U7277, Nice 06034, France
| | - François Cuzin
- Université de Nice Sophia Antipolis, Inserm U1091 – CNRS U7277, Nice 06034, France
| |
Collapse
|
381
|
Abbott PW, Gumusoglu SB, Bittle J, Beversdorf DQ, Stevens HE. Prenatal stress and genetic risk: How prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology 2018; 90:9-21. [PMID: 29407514 DOI: 10.1016/j.psyneuen.2018.01.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Risk for neuropsychiatric disorders is complex and includes an individual's internal genetic endowment and their environmental experiences and exposures. Embryonic development captures a particularly complex period, in which genetic and environmental factors can interact to contribute to risk. These environmental factors are incorporated differently into the embryonic brain than postnatal one. Here, we comprehensively review the human and animal model literature for studies that assess the interaction between genetic risks and one particular environmental exposure with strong and complex associations with neuropsychiatric outcomes-prenatal maternal stress. Gene-environment interaction has been demonstrated for stress occurring during childhood, adolescence, and adulthood. Additional work demonstrates that prenatal stress risk may be similarly complex. Animal model studies have begun to address some underlying mechanisms, including particular maternal or fetal genetic susceptibilities that interact with stress exposure and those that do not. More specifically, the genetic underpinnings of serotonin and dopamine signaling and stress physiology mechanisms have been shown to be particularly relevant to social, attentional, and internalizing behavioral changes, while other genetic factors have not, including some growth factor and hormone-related genes. Interactions have reflected both the diathesis-stress and differential susceptibility models. Maternal genetic factors have received less attention than those in offspring, but strongly modulate impacts of prenatal stress. Priorities for future research are investigating maternal response to distinct forms of stress and developing whole-genome methods to examine the contributions of genetic variants of both mothers and offspring, particularly including genes involved in neurodevelopment. This is a burgeoning field of research that will ultimately contribute not only to a broad understanding of psychiatric pathophysiology but also to efforts for personalized medicine.
Collapse
Affiliation(s)
- Parker W Abbott
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| | - Serena B Gumusoglu
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - Jada Bittle
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - David Q Beversdorf
- Interdisciplinary Neuroscience Program, Interdisciplinary Intercampus Research Program, Thompson Center for Autism and Neurodevelopment Disorders, Departments of Radiology, Neurology and Psychological Sciences, University of Missouri, Columbia, MO, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 2312 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| |
Collapse
|
382
|
Pembrey ME. Does cross-generational epigenetic inheritance contribute to cultural continuity? ENVIRONMENTAL EPIGENETICS 2018; 4:dvy004. [PMID: 29732169 PMCID: PMC5920305 DOI: 10.1093/eep/dvy004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Human studies of cross-generational epigenetic inheritance have to consider confounding by social patterning down the generations, often referred to as 'cultural inheritance'. This raises the question to what extent is 'cultural inheritance' itself epigenetically mediated rather than just learnt. Human studies of non-genetic inheritance have demonstrated that, beyond foetal life, experiences occurring in mid-childhood before puberty are the most likely to be associated with cross-generational responses in the next generation(s). It is proposed that cultural continuity is played out along the axis, or 'payoff', between responsiveness and stability. During the formative years of childhood a stable family and/or home permits small children to explore and thereby learn. To counter disruptions to this family home ideal, cultural institutions such as local schools, religious centres and market places emerged to provide ongoing stability, holding the received wisdom of the past in an accessible state. This cultural support allows the growing child to freely indulge their responsiveness. Some of these prepubertal experiences induce epigenetic responses that also transfer molecular signals to the gametes through which they contribute to the conception of future offspring. In parallel co-evolution with growing cultural support for increasing responsiveness, 'runaway' responsiveness is countered by the positive selection of genetic variants that dampen responsiveness. Testing these ideas within longitudinal multigenerational cohorts will need information on ancestors/parents' own communities and experiences (Exposome scans) linked to ongoing Phenome scans on grandchildren; coupled with epigenome analysis, metastable epialleles and DNA methylation age. Interactions with genetic variants affecting responsiveness should help inform the broad hypothesis.
Collapse
Affiliation(s)
- Marcus E Pembrey
- Centre for Child and Adolescent Health, University of Bristol, Bristol, UK
- Great Ormond Street Institute of Child Health, Faculty of Population Health Sciences, University College London, London, UK
| |
Collapse
|
383
|
Caballero-Campo P, Lin W, Simbulan R, Liu X, Feuer S, Donjacour A, Rinaudo PF. Advanced Paternal Age Affects Sperm Count and Anogenital Distance in Mouse Offspring. Reprod Sci 2018; 25:515-522. [PMID: 29554862 PMCID: PMC6348427 DOI: 10.1177/1933719118759441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Western society, couples increasingly delay parenthood until later in life. Overall, studies have focused on the reproductive performance of older parents or the impact of advanced maternal age on pregnancy outcomes, but few studies have examined how advanced paternal age (APA) affects offspring health. The aim of this study was to investigate the impact of increasing paternal age on offspring reproductive performance and long-term metabolic health in a mouse model. Here, the same adult B6D2F1/J male mice were mated at 4, 12, and 18 months of age with 6- to 10-week-old naturally cycling CF1 females to generate 3 offspring cohorts conceived at increasing paternal ages PA4, PA12, and PA18. The offspring resulting from mating the same fathers at different ages (n = 20 per age; 10 males and 10 females) were maintained up to 20 weeks of age and morphometric parameters, growth curve, and glucose tolerance were measured. We found that increasing paternal age was associated with a trend toward longer time to conception. Litter sizes were not significantly different. Reassuringly, metabolic parameters and growth curve were not different in the 3 cohorts of offspring. Most importantly, increased paternal age (PA4 vs PA18) was associated with a statistically significant decrease in sperm concentration, sperm motility, and anogenital distance in offspring. These changes raise concerns about the potential impact of APA on the reproductive fitness in males of the next generation.
Collapse
Affiliation(s)
- Pedro Caballero-Campo
- Department of Obstetrics Gynecology and Reproductive Sciences, University of
California San Francisco, San Francisco, CA, USA
- Unidad de Reproducción Humana, Clínica y Fundación Tambre, Madrid,
Spain
- Depto. Biología de la Reproducción, Instituto Nacional de Ciencias
Biomédicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Wingka Lin
- Department of Obstetrics Gynecology and Reproductive Sciences, University of
California San Francisco, San Francisco, CA, USA
| | - Rhodel Simbulan
- Department of Obstetrics Gynecology and Reproductive Sciences, University of
California San Francisco, San Francisco, CA, USA
| | - Xiaowei Liu
- Department of Obstetrics Gynecology and Reproductive Sciences, University of
California San Francisco, San Francisco, CA, USA
| | - Sky Feuer
- Department of Obstetrics Gynecology and Reproductive Sciences, University of
California San Francisco, San Francisco, CA, USA
| | - Annemarie Donjacour
- Department of Obstetrics Gynecology and Reproductive Sciences, University of
California San Francisco, San Francisco, CA, USA
| | - Paolo F. Rinaudo
- Department of Obstetrics Gynecology and Reproductive Sciences, University of
California San Francisco, San Francisco, CA, USA
| |
Collapse
|
384
|
Zhu Q, Stöger R, Alberio R. A Lexicon of DNA Modifications: Their Roles in Embryo Development and the Germline. Front Cell Dev Biol 2018; 6:24. [PMID: 29637072 PMCID: PMC5880922 DOI: 10.3389/fcell.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine (5mC) on CpG dinucleotides has been viewed as the major epigenetic modification in eukaryotes for a long time. Apart from 5mC, additional DNA modifications have been discovered in eukaryotic genomes. Many of these modifications are thought to be solely associated with DNA damage. However, growing evidence indicates that some base modifications, namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC), and N6-methadenine (6mA), may be of biological relevance, particularly during early stages of embryo development. Although abundance of these DNA modifications in eukaryotic genomes can be low, there are suggestions that they cooperate with other epigenetic markers to affect DNA-protein interactions, gene expression, defense of genome stability and epigenetic inheritance. Little is still known about their distribution in different tissues and their functions during key stages of the animal lifecycle. This review discusses current knowledge and future perspectives of these novel DNA modifications in the mammalian genome with a focus on their dynamic distribution during early embryonic development and their potential function in epigenetic inheritance through the germ line.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
385
|
Adrian-Kalchhauser I, Walser JC, Schwaiger M, Burkhardt-Holm P. RNA sequencing of early round goby embryos reveals that maternal experiences can shape the maternal RNA contribution in a wild vertebrate. BMC Evol Biol 2018; 18:34. [PMID: 29566669 PMCID: PMC5863367 DOI: 10.1186/s12862-018-1132-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Background It has been proposed that non-genetic inheritance could promote species fitness. Non-genetic inheritance could allow offspring to benefit from the experience of their parents, and could advocate pre-adaptation to prevailing and potentially selective conditions. Indeed, adaptive parental effects have been modeled and observed, but the molecular mechanisms behind them are far from understood. Results In the present study, we investigated whether maternal RNA can carry information about environmental conditions experienced by the mother in a wild vertebrate. Maternal RNA directs the development of the early embryo in many non-mammalian vertebrates and invertebrates. However, it is not known whether vertebrate maternal RNA integrates information about the parental environment. We sequenced the maternal RNA contribution from a model that we expected to rely on parental effects: the invasive benthic fish species Neogobius melanostomus (Round Goby). We found that maternal RNA expression levels correlated with the water temperature experienced by the mother before oviposition, and identified temperature-responsive gene groups such as core nucleosome components or the microtubule cytoskeleton. Conclusions Our findings suggest that the maternal RNA contribution may incorporate environmental information. Maternal RNA should therefore be considered a potentially relevant pathway for non-genetic inheritance. Also, the ability of a species to integrate environmental information in the maternal RNA contribution could potentially contribute to species fitness and may also play a role in extraordinary adaptive success stories of invasive species such as the round goby. Electronic supplementary material The online version of this article (10.1186/s12862-018-1132-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Adrian-Kalchhauser
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| | - Jean-Claude Walser
- Department of Environmental Systems Science, Genetic Diversity Centre Zurich, ETH Zurich, Universitätstrasse 16, CH-8092, Zurich, Switzerland
| | - Michaela Schwaiger
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Patricia Burkhardt-Holm
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| |
Collapse
|
386
|
Krout D, Roemmich JN, Bundy A, Garcia RA, Yan L, Claycombe-Larson KJ. Paternal exercise protects mouse offspring from high-fat-diet-induced type 2 diabetes risk by increasing skeletal muscle insulin signaling. J Nutr Biochem 2018; 57:35-44. [PMID: 29669306 DOI: 10.1016/j.jnutbio.2018.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
Paternal obesity increases, while paternal exercise decreases, offspring obesity and type 2 diabetes (T2D) risk; however, no studies have determined whether a paternal high-fat (HF) diet and exercise interact to alter offspring body weight (BW), adiposity and T2D risk. Three-week-old male C57BL/6 mice were fed a normal-fat (NF) diet (16% fat) or an HF diet (45% fat) and assigned to either voluntary wheel running exercise or cage activity for 3 months prior to mating with NF-diet-fed dams. After weaning, male offspring were fed an NF or HF diet for an additional 3 months. F1 male mice whose fathers ate an HF diet had decreased % body fat accompanied by decreased gene expression of beige adipocyte marker FGF21. However, paternal HF-diet-induced reductions in F1 offspring % body fat normalized but did not reduce T2D risk. Exercise was protective against paternal HF-diet-induced insulin resistance by increasing the expression of insulin signaling (GLUT4, IRS1 and PI3K) markers in skeletal muscle resulting in normal T2D risk. When fathers were fed an HF diet and exercised, a postnatal HF diet increased beiging (PPARγ). Thus, these findings show that increases in T2D risk in male offspring when the father consumes an HF diet can be normalized when the father also exercises preconception and that this protection may occur by increases in insulin signaling potential within offspring skeletal muscle. Future studies should further determine the physiological mechanism(s) underlying the beneficial effects of exercise through the paternal lineage.
Collapse
Affiliation(s)
- Danielle Krout
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - James N Roemmich
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Amy Bundy
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Rolando A Garcia
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Lin Yan
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Kate J Claycombe-Larson
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| |
Collapse
|
387
|
Mashoodh R, Habrylo IB, Gudsnuk KM, Pelle G, Champagne FA. Maternal modulation of paternal effects on offspring development. Proc Biol Sci 2018; 285:20180118. [PMID: 29514964 PMCID: PMC5879637 DOI: 10.1098/rspb.2018.0118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/12/2018] [Indexed: 01/22/2023] Open
Abstract
The paternal transmission of environmentally induced phenotypes across generations has been reported to occur following a number of qualitatively different exposures and appear to be driven, at least in part, by epigenetic factors that are inherited via the sperm. However, previous studies of paternal germline transmission have not addressed the role of mothers in the propagation of paternal effects to offspring. We hypothesized that paternal exposure to nutritional restriction would impact male mate quality and subsequent maternal reproductive investment with consequences for the transmission of paternal germline effects. In the current report, using embryo transfer in mice, we demonstrate that sperm factors in adult food restricted males can influence growth rate, hypothalamic gene expression and behaviour in female offspring. However, under natural mating conditions females mated with food restricted males show increased pre- and postnatal care, and phenotypic outcomes observed during embryo transfer conditions are absent or reversed. We demonstrate that these compensatory changes in maternal investment are associated with a reduced mate preference for food restricted males and elevated gene expression within the maternal hypothalamus. Therefore, paternal experience can influence offspring development via germline inheritance, but mothers can serve as a modulating factor in determining the impact of paternal influences on offspring development.
Collapse
Affiliation(s)
- Rahia Mashoodh
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Ireneusz B Habrylo
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
| | - Kathryn M Gudsnuk
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
| | - Geralyn Pelle
- Columbia University Medical Center, 650 W 168 St, New York, NY 10032, USA
| | - Frances A Champagne
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
- Department of Psychology, University of Texas at Austin, 108 E Dean Keeton St, Austin, TX 78712, USA
| |
Collapse
|
388
|
Abstract
Background Developmental programming of the embryo is controlled by genetic information but also dictated by epigenetic information contained in spermatozoa. Lifestyle and environmental factors not only influence health in one individual but can also affect the phenotype of the following generations. This is mediated via epigenetic inheritance i.e., gametic transmission of environmentally-driven epigenetic information to the offspring. Evidence is accumulating that preconceptional exposure to certain lifestyle and environmental factors, such as diet, physical activity, and smoking, affects the phenotype of the next generation through remodeling of the epigenetic blueprint of spermatozoa. Scope of Review This review will summarize current knowledge about the different epigenetic signals in sperm that are responsive to environmental and lifestyle factors and are capable of affecting embryonic development and the phenotype of the offspring later in life. Major conclusions Like somatic cells, the epigenome of spermatozoa has proven to be dynamically reactive to a wide variety of environmental and lifestyle stressors. The functional consequence on embryogenesis and phenotype of the next generation remains largely unknown. However, strong evidence of environmentally-driven sperm-borne epigenetic factors, which are capable of altering the phenotype of the next generation, is emerging on a large scale.
Collapse
|
389
|
Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie Y, Tang C, Yan W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018; 11:8. [PMID: 29482626 PMCID: PMC5827984 DOI: 10.1186/s13072-018-0178-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Environmental toxicants such as DDT have been shown to induce the epigenetic transgenerational inheritance of disease (e.g., obesity) through the germline. The current study was designed to investigate the DDT-induced concurrent alterations of a number of different epigenetic processes including DNA methylation, non-coding RNA (ncRNA) and histone retention in sperm. METHODS Gestating females were exposed transiently to DDT during fetal gonadal development, and then, the directly exposed F1 generation, the directly exposed germline F2 generation and the transgenerational F3 generation sperm were investigated. RESULTS DNA methylation and ncRNA were altered in each generation sperm with the direct exposure F1 and F2 generations being predominantly distinct from the F3 generation epimutations. The piRNA and small tRNA were the most predominant classes of ncRNA altered. A highly conserved set of histone retention sites were found in the control lineage generations which was not significantly altered between generations, but a large number of new histone retention sites were found only in the transgenerational generation DDT lineage sperm. CONCLUSIONS Therefore, all three different epigenetic processes were concurrently altered as DDT induced the epigenetic transgenerational inheritance of sperm epimutations. The direct exposure generations sperm epigenetic alterations were distinct from the transgenerational sperm epimutations. The genomic features and gene associations with the epimutations were investigated to help elucidate the integration of these different epigenetic processes. Observations demonstrate all three epigenetic processes are involved in transgenerational inheritance. The different epigenetic processes appear to be integrated in mediating the epigenetic transgenerational inheritance phenomenon.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
390
|
Review: Sperm-oocyte interactions and their implications for bull fertility, with emphasis on the ubiquitin-proteasome system. Animal 2018; 12:s121-s132. [PMID: 29477154 DOI: 10.1017/s1751731118000253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fertilization is an intricate cascade of events that irreversibly alter the participating male and female gamete and ultimately lead to the union of paternal and maternal genomes in the zygote. Fertilization starts with sperm capacitation within the oviductal sperm reservoir, followed by gamete recognition, sperm-zona pellucida interactions and sperm-oolemma adhesion and fusion, followed by sperm incorporation, oocyte activation, pronuclear development and embryo cleavage. At fertilization, bull spermatozoon loses its acrosome and plasma membrane components and contributes chromosomes, centriole, perinuclear theca proteins and regulatory RNAs to the zygote. While also incorporated in oocyte cytoplasm, structures of the sperm tail, including mitochondrial sheath, axoneme, fibrous sheath and outer dense fibers are degraded and recycled. The ability of some of these sperm contributed components to give rise to functional zygotic structures and properly induce embryonic development may vary between bulls, bearing on their reproductive performance, and on the fitness, health, fertility and production traits of their offspring. Proper functioning, recycling and remodeling of gamete structures at fertilization is aided by the ubiquitin-proteasome system (UPS), the universal substrate-specific protein recycling pathway present in bovine and other mammalian oocytes and spermatozoa. This review is focused on the aspects of UPS relevant to bovine fertilization and bull fertility.
Collapse
|
391
|
Mennigen JA, Thompson LM, Bell M, Tellez Santos M, Gore AC. Transgenerational effects of polychlorinated biphenyls: 1. Development and physiology across 3 generations of rats. Environ Health 2018; 17:18. [PMID: 29458364 PMCID: PMC5819226 DOI: 10.1186/s12940-018-0362-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/08/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are persistent organic environmental contaminants and known endocrine-disrupting chemicals (EDCs). Previous studies demonstrated that developmental exposure to the weakly estrogenic PCB mixture Aroclor 1221 (A1221) in Sprague-Dawley rats altered sexual development, adult reproductive physiology and body weight. The current study tested the hypothesis that prenatal A1221 exposure not only disrupts these endpoints within an exposed individual's (F1 generation) lifespan, but may also affect subsequent generations (F2-F3). METHODS We treated pregnant female rats on embryonic days (E) 16 and E18 with A1221 (1 mg/kg), estradiol benzoate (50 μg/kg, positive estrogenic control), or vehicle (3% DMSO in sesame oil, negative control). Endpoints related to sexually dimorphic developmental trajectories of reproductive and developmental physiology were measured, and as adults, reproductive endocrine status was assessed, in the F1, F2, and F3 generations. RESULTS Significant effects of transgenerational EDCs were found for body weight and serum hormones. The A1221 descendants had significantly higher body weight in the F2-maternal lineage throughout postnatal development, and in F3-maternal lineage animals after weaning. In females, generation- and lineage-specific effects of exposure were found for serum progesterone and estradiol. Specifically, serum progesterone concentrations were lower in F2-A1221 females, and higher in F3-A1221 females, compared to their respective F2- and F3-vehicle counterparts. Serum estradiol concentrations were higher in F3-A1221 than F3-vehicle females. Reproductive and adrenal organ weights, birth outcomes, sex ratio, and estrous cycles, were unaffected. It is notable that effects of A1221 were only sometimes mirrored by the estrogenic control, EB, indicating that the mechanism of action of A1221 was likely via non-estrogenic pathways. CONCLUSIONS PCBs caused body weight and hormonal effects in rats that were not observed in the directly exposed F1 offspring, but emerged in F2 and F3 generations. Furthermore, most effects were in the maternal lineage; this may relate to the timing of exposure of the F1 fetuses at E16 and 18, when germline (the future F2 generation) epigenetic changes diverge in the sexes. These results showing transgenerational effects of EDCs have implications for humans, as we are now in the 3rd generation since the Chemical Revolution of the mid-twentieth century, and even banned chemicals such as PCBs have a persistent imprint on the health of our descendants.
Collapse
Affiliation(s)
- Jan A. Mennigen
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 107 W Dean Keeton, C0875, Austin, TX 78712 USA
| | - Lindsay M. Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 107 W Dean Keeton, C0875, Austin, TX 78712 USA
| | - Mandee Bell
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 107 W Dean Keeton, C0875, Austin, TX 78712 USA
| | - Marlen Tellez Santos
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 107 W Dean Keeton, C0875, Austin, TX 78712 USA
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 107 W Dean Keeton, C0875, Austin, TX 78712 USA
| |
Collapse
|
392
|
Rompala GR, Mounier A, Wolfe CM, Lin Q, Lefterov I, Homanics GE. Heavy Chronic Intermittent Ethanol Exposure Alters Small Noncoding RNAs in Mouse Sperm and Epididymosomes. Front Genet 2018; 9:32. [PMID: 29472946 PMCID: PMC5809758 DOI: 10.3389/fgene.2018.00032] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/24/2018] [Indexed: 02/02/2023] Open
Abstract
While the risks of maternal alcohol abuse during pregnancy are well-established, several preclinical studies suggest that chronic preconception alcohol consumption by either parent may also have significance consequences for offspring health and development. Notably, since isogenic male mice used in these studies are not involved in gestation or rearing of offspring, the cross-generational effects of paternal alcohol exposure suggest a germline-based epigenetic mechanism. Many recent studies have demonstrated that the effects of paternal environmental exposures such as stress or malnutrition can be transmitted to the next generation via alterations to small noncoding RNAs in sperm. Therefore, we used high throughput sequencing to examine the effect of preconception ethanol on small noncoding RNAs in sperm. We found that chronic intermittent ethanol exposure altered several small noncoding RNAs from three of the major small RNA classes in sperm, tRNA-derived small RNA (tDR), mitochondrial small RNA, and microRNA. Six of the ethanol-responsive small noncoding RNAs were evaluated with RT-qPCR on a separate cohort of mice and five of the six were confirmed to be altered by chronic ethanol exposure, supporting the validity of the sequencing results. In addition to altered sperm RNA abundance, chronic ethanol exposure affected post-transcriptional modifications to sperm small noncoding RNAs, increasing two nucleoside modifications previously identified in mitochondrial tRNA. Furthermore, we found that chronic ethanol reduced epididymal expression of a tRNA methyltransferase, Nsun2, known to directly regulate tDR biogenesis. Finally, ethanol-responsive sperm tDR are similarly altered in extracellular vesicles of the epididymis (i.e., epididymosomes), supporting the hypothesis that alterations to sperm tDR emerge in the epididymis and that epididymosomes are the primary source of small noncoding RNAs in sperm. These results add chronic ethanol to the growing list of paternal exposures that can affect small noncoding RNA abundance and nucleoside modifications in sperm. As small noncoding RNAs in sperm have been shown to causally induce heritable phenotypes in offspring, additional research is warranted to understand the potential effects of ethanol-responsive sperm small noncoding RNAs on offspring health and development.
Collapse
Affiliation(s)
- Gregory R Rompala
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anais Mounier
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cody M Wolfe
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qishan Lin
- Mass Spectrometry Facility, Center for Functional Genomics, University at Albany, Rensselaer, NY, United States
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
393
|
Guadagno A, Wong TP, Walker CD. Morphological and functional changes in the preweaning basolateral amygdala induced by early chronic stress associate with anxiety and fear behavior in adult male, but not female rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:25-37. [PMID: 28963066 DOI: 10.1016/j.pnpbp.2017.09.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/24/2017] [Indexed: 12/27/2022]
Abstract
Suboptimal maternal care is a form of chronic early-life stress (ELS) and a risk factor for mental illness and behavioral impairments throughout the life span. The amygdala, particularly the basolateral amygdala (BLA), exhibits exquisite sensitivity to ELS and could promote dysregulation of stress reactivity and anxiety-related disorders. While ELS has profound impacts on the adult or adolescent amygdala, less is known regarding the sensitivity of the preweaning BLA to ELS. We employed a naturalistic rodent model of chronic ELS that limits the amount of bedding/nesting material (LB) available to the mother between postnatal day (PND) 1-9 and examined the morphological and functional effects in the preweaning BLA on PND10 and 18-22. BLA neurons displayed dendritic hypertrophy and increased spine numbers in male, but not female, LB pups already by PND10 and BLA volume tended to increase after LB exposure in preweaning rats, suggesting an accelerated and long-lasting recruitment of the amygdala. Morphological changes seen in male LB pups were paralleled with increased evoked synaptic responses recorded from BLA neurons in vitro, suggesting enhanced excitatory inputs to these neurons. Interestingly, morphological and functional changes in the preweaning BLA were not associated with basal hypercorticosteronemia or enhanced stress responsiveness in LB pups, perhaps due to a differential sensitivity of the neuroendocrine stress axis to the effects of LB exposure. Early changes in the synaptic organization and excitability of the neonatal amygdala might contribute to the increased anxiety-like and fear behavior observed in adulthood, specifically in male offspring.
Collapse
Affiliation(s)
- Angela Guadagno
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Claire-Dominique Walker
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
394
|
Qu J, Hodges E, Molaro A, Gagneux P, Dean MD, Hannon GJ, Smith AD. Evolutionary expansion of DNA hypomethylation in the mammalian germline genome. Genome Res 2018; 28:145-158. [PMID: 29259021 PMCID: PMC5793779 DOI: 10.1101/gr.225896.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023]
Abstract
DNA methylation in the germline is among the most important factors influencing the evolution of mammalian genomes. Yet little is known about its evolutionary rate or the fraction of the methylome that has undergone change. We compared whole-genome, single-CpG DNA methylation profiles in sperm of seven species-human, chimpanzee, gorilla, rhesus macaque, mouse, rat, and dog-to investigate epigenomic evolution. We developed a phylo-epigenetic model for DNA methylation that accommodates the correlation of states at neighboring sites and allows for inference of ancestral states. Applying this model to the sperm methylomes, we uncovered an overall evolutionary expansion of the hypomethylated fraction of the genome, driven both by the birth of new hypomethylated regions and by extensive widening of hypomethylated intervals in ancestral species. This expansion shows strong lineage-specific aspects, most notably that hypomethylated intervals around transcription start sites have evolved to be considerably wider in primates and dog than in rodents, whereas rodents show evidence of a greater trend toward birth of new hypomethylated regions. Lineage-specific hypomethylated regions are enriched near sets of genes with common developmental functions and significant overlap across lineages. Rodent-specific and primate-specific hypomethylated regions are enriched for binding sites of similar transcription factors, suggesting that the plasticity accommodated by certain regulatory factors is conserved, despite substantial change in the specific sites of regulation. Overall our results reveal substantial global epigenomic change in mammalian sperm methylomes and point to a divergence in trans-epigenetic mechanisms that govern the organization of epigenetic states at gene promoters.
Collapse
Affiliation(s)
- Jianghan Qu
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Antoine Molaro
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Pascal Gagneux
- Division of Comparative Pathology and Medicine, Department of Pathology, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew D Dean
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- The New York Genome Center, New York, New York 10013, USA
| | - Andrew D Smith
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
395
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
396
|
Boschen KE, Keller SM, Roth TL, Klintsova AY. Epigenetic mechanisms in alcohol- and adversity-induced developmental origins of neurobehavioral functioning. Neurotoxicol Teratol 2018; 66:63-79. [PMID: 29305195 DOI: 10.1016/j.ntt.2017.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
The long-term effects of developmental alcohol and stress exposure are well documented in both humans and non-human animal models. Damage to the brain and attendant life-long impairments in cognition and increased risk for psychiatric disorders are debilitating consequences of developmental exposure to alcohol and/or psychological stress. Here we discuss evidence for a role of epigenetic mechanisms in mediating these consequences. While we highlight some of the common ways in which stress or alcohol impact the epigenome, we point out that little is understood of the epigenome's response to experiencing both stress and alcohol exposure, though stress is a contributing factor as to why women drink during pregnancy. Advancing our understanding of this relationship is of critical concern not just for the health and well-being of individuals directly exposed to these teratogens, but for generations to come.
Collapse
Affiliation(s)
- K E Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599, United States
| | - S M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - T L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - A Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
397
|
Denham J. Exercise and epigenetic inheritance of disease risk. Acta Physiol (Oxf) 2018; 222. [PMID: 28371392 DOI: 10.1111/apha.12881] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Epigenetics is the study of gene expression changes that occur in the absence of altered genotype. Current evidence indicates a role for environmentally induced alterations to epigenetic modifications leading to health and disease changes across multiple generations. This phenomenon is called intergenerational or transgenerational epigenetic inheritance of health or disease. Environmental insults, in the form of toxins, plastics and particular dietary interventions, perturb the epigenetic landscape and influence the health of F1 through to F4 generations in rodents. There is, however, the possibility that healthy lifestyles and environmental factors, such as exercise training, could lead to favourable, heritable epigenetic modifications that augment transcriptional programmes protective of disease, including metabolic dysfunction, heart disease and cancer. The health benefits conferred by regular physical exercise training are unquestionable, yet many of the molecular changes may have heritable health implications for future generations. Similar to other environmental factors, exercise modulates the epigenome of somatic cells and researchers are beginning to study exercise epigenetics in germ cells. The germ cell epigenetic modifications affected by exercise offer a molecular mechanism for the inheritance of health and disease risk. The aims of this review are to: (i) provide an update on the expanding field of exercise epigenetics; (ii) offer an overview of data on intergenerational/transgenerational epigenetic inheritance of disease by environmental insults; (iii) to discuss the potential of exercise-induced intergenerational inheritance of health and disease risk; and finally, outline potential mechanisms and avenues for future work on epigenetic inheritance through exercise.
Collapse
Affiliation(s)
- J. Denham
- School of Science and Technology; University of New England; Armidale NSW Australia
| |
Collapse
|
398
|
McGowan PO, Matthews SG. Prenatal Stress, Glucocorticoids, and Developmental Programming of the Stress Response. Endocrinology 2018; 159:69-82. [PMID: 29136116 DOI: 10.1210/en.2017-00896] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 01/06/2023]
Abstract
The early environment has a major impact on the developing embryo, fetus, and infant. Parental adversity (maternal and paternal) and glucocorticoid exposure before conception and during pregnancy have profound effects on the development and subsequent function of the hypothalamic-pituitary-adrenal axis and related behaviors. These effects are species-, sex-, and age-specific and depend on the timing and duration of exposure. The impact of these early exposures can extend across multiple generations, via both the maternal and paternal lineage, and recent studies have begun to determine the mechanisms by which this occurs. Improved knowledge of the mechanisms by which adversity and glucocorticoids program stress systems will allow development of strategies to ameliorate and/or reverse these long-term effects.
Collapse
Affiliation(s)
- Patrick O McGowan
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
- Center for Environmental Epigenetics and Development, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
399
|
Frasch MG, Baier CJ, Antonelli MC, Metz GAS. Perinatal Psychoneuroimmunology: Protocols for the Study of Prenatal Stress and Its Effects on Fetal and Postnatal Brain Development. Methods Mol Biol 2018; 1781:353-376. [PMID: 29705857 DOI: 10.1007/978-1-4939-7828-1_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prenatal stress (PS) impacts early behavioral, neuroimmune, and cognitive development. Pregnant rat models have been very valuable in examining the mechanisms of such fetal programming. A newer pregnant sheep model of maternal stress offers the unique advantages of chronic in utero monitoring and manipulation. This chapter presents the techniques used to model single and multigenerational stress exposures and their pleiotropic effects on the offspring.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA.
| | - Carlos J Baier
- Departamento de Biología, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Marta C Antonelli
- Facultad de Medicina, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
400
|
Abstract
Identifying microRNA (miRNA) signatures in animal tissues is an essential first step in studies assessing post-transcriptional regulation of gene expression in health or disease. Small RNA sequencing (sRNA-Seq) is a next-generation sequencing-based technology that is currently considered the most powerful and versatile tool for miRNA profiling. Here, we describe a sRNA-Seq protocol including RNA purification from mammalian tissues, library preparation, and raw data analysis.
Collapse
Affiliation(s)
- Lucas Carminatti Pantaleão
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|