351
|
Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 2005; 7:134-53. [PMID: 15831232 PMCID: PMC1871894 DOI: 10.1215/s1152851704001115] [Citation(s) in RCA: 495] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas, like other solid tumors, have extensive areas of hypoxia and necrosis. The importance of hypoxia in driving tumor growth is receiving increased attention. Hypoxia-inducible factor 1 (HIF-1) is one of the master regulators that orchestrate the cellular responses to hypoxia. It is a heterodimeric transcription factor composed of alpha and beta subunits. The alpha subunit is stable in hypoxic conditions but is rapidly degraded in normoxia. The function of HIF-1 is also modulated by several molecular mechanisms that regulate its synthesis, degradation, and transcriptional activity. Upon stabilization or activation, HIF-1 translocates to the nucleus and induces transcription of its downstream target genes. Most important to gliomagenesis, HIF-1 is a potent activator of angiogenesis and invasion through its upregulation of target genes critical for these functions. Activation of the HIF-1 pathway is a common feature of gliomas and may explain the intense vascular hyperplasia often seen in glioblastoma multiforme. Activation of HIF results in the activation of vascular endothelial growth factors, vascular endothelial growth factor receptors, matrix metalloproteinases, plasminogen activator inhibitor, transforming growth factors alpha and beta, angiopoietin and Tie receptors, endothelin-1, inducible nitric oxide synthase, adrenomedullin, and erythropoietin, which all affect glioma angiogenesis. In conclusion, HIF is a critical regulatory factor in the tumor microenvironment because of its central role in promoting proangiogenic and invasive properties. While HIF activation strongly promotes angiogenesis, the emerging vasculature is often abnormal, leading to a vicious cycle that causes further hypoxia and HIF upregulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Erwin G. Van Meir
- Address correspondence to Erwin G. Van Meir, Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, NE, Room C5078, Atlanta, GA 30322, USA (
)
| |
Collapse
|
352
|
Bos R, van Diest PJ, de Jong JS, van der Groep P, van der Valk P, van der Wall E. Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology 2005; 46:31-6. [PMID: 15656883 DOI: 10.1111/j.1365-2559.2005.02045.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS Hypoxia-inducible factor-1 (HIF-1) is the key transcription factor regulating the cellular response to hypoxia, including angiogenesis. Growth factors play an important role in tumour growth and angiogenesis and some have been shown to be induced by HIF-1 in vitro. This study investigated if angiogenesis or growth factors or their receptors are associated with HIF-1alpha in invasive breast cancer. METHODS AND RESULTS High levels of HIF-1alpha, detected by immunohistochemistry in 45 breast cancers, were positively associated with increased microvessel density (as a measure of angiogenesis) (P = 0.023). Furthermore, high levels of HIF-1alpha were associated with epithelial expression (> or = 10%) of epidermal growth factor receptor (EGFR) (P = 0.011), platelet-derived growth factor (PDGF)-BB (P < 0.001), and basic fibroblast growth factor (bFGF) (P = 0.045). A positive, yet insignificant, trend for HIF-1alpha to be associated with epithelial expression of transforming growth factor (TGF)-alpha (P = 0.081) and vascular endothelial growth factor (VEGF) (P = 0.109) was noticed as well as an inverse association with stromal expression of TGF-beta-R1 (P = 0.070). CONCLUSIONS In invasive breast cancer, HIF-1alpha is associated with angiogenesis, and expression of growth factors bFGF and PDGF-BB, and the receptor EGFR. Thus, agents targeting HIF-1 may combine different pathways of inhibiting breast cancer growth, including angiogenesis and growth factors.
Collapse
MESH Headings
- Autocrine Communication
- Becaplermin
- Breast Neoplasms/blood supply
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/blood supply
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Epithelial Cells/metabolism
- ErbB Receptors/metabolism
- Eukaryotic Initiation Factor-3
- Female
- Fibroblast Growth Factor 2/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit
- Immunohistochemistry
- Lymph Nodes/pathology
- Neoplasm Invasiveness
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Platelet-Derived Growth Factor/metabolism
- Proteins/metabolism
- Proto-Oncogene Proteins c-sis
- Stromal Cells/metabolism
- Transcription Factors/metabolism
- Transforming Growth Factor alpha/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- R Bos
- Department of Pathology, VU University Medical Centre, Amsterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
353
|
Bates DO, Jones ROP. The role of vascular endothelial growth factor in wound healing. INT J LOW EXTR WOUND 2005; 2:107-20. [PMID: 15866835 DOI: 10.1177/1534734603256626] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Revascularization of damaged tissue is a necessary part of wound healing. With unregulated or insufficient vessel growth, healing is delayed or pathological. Angiogenesis is regulated by expression of a variety of vascular growth factors and modulators, the most widely expressed and critical of which is vascular endothelial growth factor (VEGF). This protein is secreted by tissues in response to ischemic and inflammatory stimuli and results in endothelial migration, proliferation, and increased vascular permeability. The regulation of VEGF expression during wound healing is of considerable importance since angiogenesis appears to be disturbed in abnormally healing wounds. This paper describes the current state of knowledge of VEGF expression in wounds, regulation of expression, control of isoform specificity, and the effects of VEGF expression on blood vessels as they grow in wound healing, as understood from many different pathological paradigms.
Collapse
Affiliation(s)
- David O Bates
- Microvascular Research Laboratories, Department of Physiology, Preclinical Veterinary School, Southwell Street, University of Bristol.
| | | |
Collapse
|
354
|
Wagatsuma A, Tamaki H, Ogita F. Capillary supply and gene expression of angiogenesis‐related factors in murine skeletal muscle following denervation. Exp Physiol 2005; 90:403-9. [PMID: 15708874 DOI: 10.1113/expphysiol.2004.029769] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Capillary supply of skeletal muscle decreases during denervation. To gain insight into the regulation of this process, we investigated capillary supply and gene expression of angiogenesis-related factors in mouse gastrocnemius muscle following denervation for 4 months. Frozen transverse sections were stained for alkaline phosphatase to detect endogenous enzyme in the capillary endothelium. The mRNA for angiogenesis-related factors, including hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/Flk-1), fms-like tyrosine kinase (Flt-1), angiopoietin-1 and tyrosine kinase with Ig and epidermal growth factor(EGF) homology domain 2 (Tie-2), was analysed using a semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The fibre cross-sectional area after denervation was about 20% of the control value, and the capillary to fibre ratio was significantly lower in denervated than in control muscles. The number of capillaries around each fibre also decreased to about 40% of the control value. These observations suggest that muscle capillarity decreases in response to chronic denervation. RT-PCR analysis showed that the expression of VEGF mRNA was lower in denervated than in control muscles, while the expression of HIF-1alpha mRNA remained unchanged. The expression levels of the KDR/Flk-1 and Flt-1 genes were decreased in the denervated muscle. The expression levels of angiopoietin-1 but not Tie-2 genes were decreased in the denervated muscle. These findings indicate that reduction in the expression of mRNAs in the VEGF/KDR/Flk-1 and Flt-1 as well as angiopoietin-1/Tie-2 signal pathways might be one of the reasons for the capillary regression during chronic denervation.
Collapse
Affiliation(s)
- A Wagatsuma
- Department of Physiological Sciences, National Institute of Fitness and Sports, Shiromizu-cho 1, Kanoya, Kagoshima 891-2393, Japan.
| | | | | |
Collapse
|
355
|
Covello KL, Simon MC, Keith B. Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Res 2005; 65:2277-86. [PMID: 15781641 DOI: 10.1158/0008-5472.can-04-3246] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factors (HIF) are essential transcriptional regulators that mediate adaptation to hypoxic stress in rapidly growing tissues such as tumors. HIF activity is regulated by hypoxic stabilization of the related HIF-1alpha and HIF-2alpha subunits, which are frequently overexpressed in cancer cells. To assess the relative tumor-promoting functions of HIF-1alpha and HIF-2alpha directly, we replaced HIF-1alpha expression with HIF-2alpha by creating a novel "knock-in" allele at the Hif-1alpha locus through homologous recombination in primary murine embryonic stem cells. Compared with controls, s.c. teratomas derived from knock-in embryonic stem cells were larger and more proliferative, had increased microvessel density, and exhibited increased expression of vascular endothelial growth factor, transforming growth factor-alpha, and cyclin D1. These and other data indicate that HIF-2alpha promotes tumor growth more effectively than HIF-1alpha in multiple contexts.
Collapse
Affiliation(s)
- Kelly L Covello
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
356
|
Asikainen TM, Ahmad A, Schneider BK, Ho WB, Arend M, Brenner M, Günzler V, White CW. Stimulation of HIF-1alpha, HIF-2alpha, and VEGF by prolyl 4-hydroxylase inhibition in human lung endothelial and epithelial cells. Free Radic Biol Med 2005; 38:1002-13. [PMID: 15780758 DOI: 10.1016/j.freeradbiomed.2004.12.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 10/28/2004] [Accepted: 12/01/2004] [Indexed: 11/24/2022]
Abstract
Diminished alveolar and vascular development is characteristic of bronchopulmonary dysplasia (BPD) affecting many preterm newborns. Hypoxia promotes angiogenic responses in developing lung via, for example, vascular endothelial growth factor (VEGF). To determine if prolyl 4-hydroxylase (PHD) inhibition could augment hypoxia-inducible factors (HIFs) and expression of angiogenic proteins essential for lung development, HIF-1alpha and -2alpha proteins were assessed in human developing and adult lung microvascular endothelial cells and alveolar epithelial-like cells treated with either the HIF-PHD-selective inhibitor PHI-1 or the nonselective PHD inhibitors dimethyloxaloylglycine (DMOG) and deferoxamine (DFO). PHI-1 stimulated HIF-1alpha and -2alpha equally or more effectively than did DMOG or DFO, enhanced VEGF release, and elevated glucose consumption, whereas it was considerably less cytotoxic than DMOG or DFO. Moreover, VEGF receptor Flt-1 levels increased, whereas KDR/Flk-1 decreased. PHI-1 treatment also increased PHD-2, but not PHD-1 or -3, protein. These results provide proof of principle that HIF stimulation and modulation of HIF-regulated angiogenic proteins through PHI-1 treatment are feasible, effective, and nontoxic in human lung cells, suggesting the use of PHI-1 to enhance angiogenesis and lung growth in evolving BPD.
Collapse
Affiliation(s)
- Tiina M Asikainen
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
357
|
Bae DG, Kim TD, Li G, Yoon WH, Chae CB. Anti-Flt1 Peptide, a Vascular Endothelial Growth Factor Receptor 1–Specific Hexapeptide, Inhibits Tumor Growth and Metastasis. Clin Cancer Res 2005; 11:2651-61. [PMID: 15814646 DOI: 10.1158/1078-0432.ccr-04-1564] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to develop antagonists specific for the vascular endothelial growth factor receptor 1 (VEGFR1) and to investigate the effects of the antagonists on the VEGF-induced endothelial cell functions and tumor progression. EXPERIMENTAL DESIGN Hexapeptides that inhibit binding of VEGFR1 and VEGF were identified through screening of synthetic peptide library. A selected peptide, anti-Flt1, was investigated for binding specificity with various receptors and ligand peptides. Effects of the peptide on proliferation, cell migration, and fibrin gel-based angiogenesis of endothelial cells were also investigated. The activity of anti-Flt1, in vivo, was evaluated for inhibition of tumor growth and metastasis in VEGF-secreting cancer cell-implanted mice by s.c. injections of the peptide. RESULTS Here, we report on a short peptide that binds to VEGFR1 and prevents binding of VEGF. A hexapeptide, anti-Flt1 (Gly-Asn-Gln-Trp-Phe-Ile or GNQWFI), was identified from peptide libraries. The anti-Flt1 peptide shows specificity toward binding to VEGFR1 and it inhibits binding of VEGF, placental growth factor (PlGF), and VEGF/PlGF heterodimer to VEGFR1. This peptide does not inhibit the proliferation of endothelial cells induced by VEGF and VEGF/PlGF heterodimer but it effectively blocks VEGF-induced migration of endothelial cells and their capacity to form capillary-like structures on fibrin gel-based in vitro angiogenesis system. Furthermore, growth and metastasis of VEGF-secreting tumor cells were also significantly inhibited by s.c. injections of anti-Flt1 peptide in nude mice. Accordingly, VEGF-induced migration and capillary formation are mediated through VEGFR1, and these processes may play an important role in the growth and metastasis of VEGF-secreting tumors. CONCLUSIONS We show that a peptide (anti-Flt1) specific for VEGFR1 inhibits growth and metastasis of tumor that secretes VEGF. The effects on endothelial cell functions, in vitro, indicate that the anticancer activity of anti-Flt1 peptide with reduced blood vessel density could also be due to the blocking of VEGFR1-mediated endothelial cell migration and tube formation. Although the effects of anti-Flt1 peptide still remain to be further characterized, the receptor 1-specific peptide antagonist, anti-Flt1, has potential as a therapeutic agent for various angiogenesis-related diseases, especially cancer.
Collapse
Affiliation(s)
- Dong-Goo Bae
- Department of Life Science, Division of Molecular and Life Sciences, Postech Biotech Center, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | |
Collapse
|
358
|
Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 2005:209-31. [PMID: 15617481 DOI: 10.1007/3-7643-7311-3_15] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Napoleone Ferrara
- Department of Molecular Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
359
|
Mura M, dos Santos CC, Stewart D, Liu M. Vascular endothelial growth factor and related molecules in acute lung injury. J Appl Physiol (1985) 2005; 97:1605-17. [PMID: 15475552 DOI: 10.1152/japplphysiol.00202.2004] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
VEGFs and their receptors have been implicated in the regulation of vascular permeability in many organ systems, including the lung. Increased permeability and interstitial and pulmonary edema are prominent features of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Extrapolating data from other organ systems and animal experiments have suggested that overexpression of VEGF functions primarily as proinjurious molecules in the lung. Recent data, from animal models as well as from patients with ARDS, have shown decreased levels of VEGF in the lung. The role of VEGF and related molecules in ALI/ARDS is, therefore, controversial: what has become clear is that there are many unique features in the regulation of pulmonary vascular permeability and in VEGF expression in the lung. In this review, we explore a growing body of literature looking at the expression and function of VEGF and related molecules in different models of ALI and in patients with ALI/ARDS. Novel evidence points to a potential role of VEGF in promoting repair of the alveolar-capillary membrane during recovery from ALI/ARDS. Understanding the role of VEGF in this disease process is crucial for developing new therapeutic strategies for ALI/ARDS.
Collapse
Affiliation(s)
- Marco Mura
- Thoracic Surgery Research Laboratories, Toronto Generl Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4.
| | | | | | | |
Collapse
|
360
|
Peters K, Schmidt H, Unger RE, Kamp G, Pröls F, Berger BJ, Kirkpatrick CJ. Paradoxical effects of hypoxia-mimicking divalent cobalt ions in human endothelial cells in vitro. Mol Cell Biochem 2005; 270:157-66. [PMID: 15792365 DOI: 10.1007/s11010-005-4504-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Divalent cobalt ions (Co2+) induce the expression of hypoxia responsive genes and are often used in cell biology to mimic hypoxia. In this in vitro study we compared the effects of hypoxia and Co2+ on human endothelial cells and examined processes that are stimulated in hypoxia in vivo (proliferation and angiogenesis). We analyzed the expression of the hypoxia-inducible factor-1alpha (HIF-1alpha) under different hypoxic conditions (3% and nearly 0% O2) and Co2+ -concentrations (0.01-0.7 mM). As in hypoxia, the amount of HIF-1alpha protein was enhanced by exposure to Co2+ (did not correlate with mRNA amount). however, contrary to the results of hypoxia, in vitro-angiogenesis was inhibited after exposure to even low Co2+-concentrations (> or =0.01 mM). This led to the conclusion that although hypoxia signaling after Co2+ -exposure took place, further yet unknown Co2+ -induced event(s) must have occurred.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Pathology, Johannes Gutenberg-University, Langenbeckstr. 1, 55101 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
361
|
Gustafsson T, Ameln H, Fischer H, Sundberg CJ, Timmons JA, Jansson E. VEGF-A splice variants and related receptor expression in human skeletal muscle following submaximal exercise. J Appl Physiol (1985) 2005; 98:2137-46. [PMID: 15661835 DOI: 10.1152/japplphysiol.01402.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
VEGF-A contributes to muscle tissue angiogenesis following aerobic exercise training. The temporal response of the VEGF-A isoforms and their target receptors has not been comprehensively profiled in human skeletal muscle. We combined submaximal exercise with and without reduced leg blood flow to establish whether ischemia-induced metabolic stress was an important physiological stimuli responsible for regulating the VEGF-A system in humans. Nine healthy men performed two 45-min bouts of one-leg knee-extension exercise, with and without blood flow restriction. Muscle biopsies were obtained at rest and 2 and 6 h after exercise. Expression (mRNA) of the VEGF-A splice variants and related receptors [VEGF receptor (VEGFR)-1, VEGFR-2, and neuropilin-1] was determined by using qPCR. VEGF-A(total) expression increased more robustly after exercise with reduced blood flow, and initially this principally reflected an increase in VEGF-A(165). Six hours after exercise, there was a relatively greater increase in VEGF-A(189), and this response was not influenced by blood flow conditions. VEGFR-1 mRNA expression increased 2 h after exercise, and neuropilin-1 expression was transiently reduced, while all three receptors increased by 6 h. There was no evidence for the expression of the inhibitory VEGF-A(165B) variant in human skeletal muscle. Our study, reflecting both VEGF-A ligand and receptors, implicates metabolic perturbation as a regulator of human muscle angiogenesis and demonstrates that VEGF-A splice variants are distinctly regulated. Our findings also indicate that all three receptor genes exhibit different pretranslational regulation, in response to exercise in humans.
Collapse
Affiliation(s)
- T Gustafsson
- Karolinska Institute, Berzelius Väg 35, Stockholm 171 77, Sweden
| | | | | | | | | | | |
Collapse
|
362
|
Expression of vascular endothelial growth factor and its receptors in heart tissue following short-term swimming training. ACTA ACUST UNITED AC 2005. [DOI: 10.5432/ijshs.3.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
363
|
Abstract
Normal tissue function depends on adequate supply of oxygen through blood vessels. Reduced oxygen supply (hypoxia) induces a variety of specific adaptation mechanisms in mammals that occur at the cellular, local and systemic level. These mechanisms are in part governed by the activation of the hypoxia-inducible transcription factors HIF-1 and HIF-2. Prolyl and asparaginyl hydroxylases as recently characterized oxygen sensors allow the regulation of HIFs that in turn modulate expression of hypoxically regulated genes such as VEGF. VEGF plays a key role in the formation of a functional and integrated vascular network required during physiological processes such as embryogenesis or female reproductive cycle as well as during a variety of pathological processes such tumor growth, wound healing, retinopathy and ischemic diseases (myocardial infarction, cerebral ischemia). However, other angiogenic factors, such as angiopoietins, PDGF, ephrins and erythropoietin are additionally needed to enable the formation of a functional vascular network. Many of these factors are activated during hypoxia although no HIF binding sites have yet been identified in the regulatory sequences of theses genes. Hypoxia-induced gene products that result in new vessel growth may be part of a self-regulated physiological protection mechanism preventing cell injury, especially under conditions of chronically reduced blood blow (chronic ischemia).
Collapse
Affiliation(s)
- Hugo H Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany.
| |
Collapse
|
364
|
Vinores SA, Xiao WH, Aslam S, Shen J, Oshima Y, Nambu H, Liu H, Carmeliet P, Campochiaro PA. Implication of the hypoxia response element of the vegf promoter in mouse models of retinal and choroidal neovascularization, but not retinal vascular development. J Cell Physiol 2005; 206:749-58. [PMID: 16245301 DOI: 10.1002/jcp.20525] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Retinal neovascularization (NV) and macular edema, resulting from blood-retinal barrier (BRB) breakdown, are major causes of visual loss in ischemic retinopathies. Choroidal NV (CNV) occurs in diseases of the retinal pigmented epithelium/Bruch's membrane complex and is another extremely prevalent cause of visual loss. We used mice in which the hypoxia response element (HRE) is deleted from the vascular endothelial growth factor (vegf) promoter (Vegf(delta/delta) mice) to explore the role of induction of VEGF through the HRE in these disease processes. Compared to wild type (Vegf+/+) mice with oxygen-induced ischemic retinopathy (OIR) in which vegf mRNA levels were increased and prominent retinal NV and BRB breakdown occurred, Vegf(delta/delta) littermates with OIR failed to increase vegf mRNA levels in the retina and had significantly less retinal NV and BRB breakdown, but showed prominent dilation of some superficial retinal vessels. Vegf(+/delta) littermates with ischemic retinopathy developed comparable retinal NV to Vegf+/+ mice, exhibited intermediate levels of BRB breakdown, and did not show vasodilation. In a mouse model of CNV, due to laser-induced rupture of Bruch's membrane, the area of CNV at Bruch's membrane rupture sites was more than tenfold greater in Vegf+/+ mice than in Vegf(delta/delta) littermates. In contrast to these dramatic differences in pathologic ocular NV, Vegf(delta/delta) mice showed subtle differences in retinal vascular development compared to Vegf+/+ mice; it was slightly delayed, but otherwise normal. These data suggest that induction of VEGF through the HRE in its promoter is critical for retinal and CNV, but not for retinal vascular development.
Collapse
Affiliation(s)
- Stanley A Vinores
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9289, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Adeno‐associated virus mediated gene therapy for vascular retinopathies. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0075-7535(05)31005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
366
|
Silvestre JS, Lévy BI. Hormones and the neovascularization process: role of angiotensin II. EXS 2004:77-93. [PMID: 15617472 DOI: 10.1007/3-7643-7311-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
367
|
Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 2004; 280:9330-5. [PMID: 15613470 DOI: 10.1074/jbc.m413394200] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dicer is a multi-domain protein responsible for the generation of short interfering RNAs (siRNAs) from long double-stranded RNAs during RNA interference. It is also involved in the maturation of microRNAs, some of which are transcriptional regulators of developmental timing in nematodes. To assess the role of Dicer in mammals, we generated Dicerex1/2 mice with a deletion of the amino acid sequences corresponding to the first and second exons of the dicer gene via homologous recombination. We found that Dicerex1/2 homozygous embryos displayed a retarded phenotype and died between days 12.5 and 14.5 of gestation. Thus, these results show that dicerex1/2 is severely hypomorphic and that Dicer is essential for normal mouse development. Interestingly, we also found that blood vessel formation/maintenance in dicerex1/2 embryos and yolk sacs were severely compromised, suggesting a possible role for Dicer in angiogenesis. This finding is consistent with the altered expression of vegf, flt1, kdr, and tie1 in the mutant embryos. Taken together, the results of this study indicate that Dicer exerts its function on mouse embryonic angiogenesis probably through its role in the processing of microRNAs that regulate the expression levels of some critical angiogenic regulators in the cell.
Collapse
Affiliation(s)
- Wei J Yang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | |
Collapse
|
368
|
Beauchamp MH, Sennlaub F, Speranza G, Gobeil F, Checchin D, Kermorvant-Duchemin E, Abran D, Hardy P, Lachapelle P, Varma DR, Chemtob S. Redox-dependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy. Free Radic Biol Med 2004; 37:1885-94. [PMID: 15528047 DOI: 10.1016/j.freeradbiomed.2004.09.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/10/2004] [Accepted: 09/02/2004] [Indexed: 11/19/2022]
Abstract
Opposing effects have been ascribed to nitric oxide (NO) on retinal microvascular survival. We investigated whether changes in the redox state may contribute to explain apparent conflicting actions of NO in a model of oxygen-induced retinal vasoobliteration. Retinal microvascular obliteration was induced by exposing 7-day-old rat pups (P7) for 2 or 5 days to 80% O(2). The redox state of the retina was assessed by measuring reduced glutathione and oxidative and nitrosative products malondialdehyde and nitrotyrosine. The role of NO on vasoobliteration was evaluated by treating animals with nitric oxide synthase (NOS) inhibitors (N-nitro-l-arginine; L-NA) and by determining NOS isoform expression and activity; the contribution of nitrosative stress was also determined in animals treated with the degradation catalyst of peroxynitrite FeTPPS or with the superoxide dismutase mimetic CuDIPS. eNOS, but not nNOS or iNOS, expression and activity were increased throughout the exposure to hyperoxia. These changes were associated with an early (2 days hyperoxia) decrease in reduced glutathione and increases in malondialdehyde and nitrotyrosine. CuDIPS, FeTPPS, and L-NA treatments for these 2 days of hyperoxia nearly abolished the vasoobliteration. In contrast, during 5 days exposure to hyperoxia when the redox state rebalanced, L-NA treatment aggravated the vasoobliteration. Interestingly, VEGFR-2 expression was respectively increased by NOS inhibition after short-term (2 days) exposure to hyperoxia and decreased during the longer hyperoxia exposure. Data disclose that the dual effects of NO on newborn retinal microvascular integrity in response to hyperoxia in vivo depend on the redox state and seem mediated at least in part by VEGFR-2.
Collapse
Affiliation(s)
- Martin H Beauchamp
- Department of Pediatrics, Ophthalmology, and Pharmacology, Research Center of Hôpital Ste-Justine, Montréal, Québec H3T 1C5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Ramírez-Bergeron DL, Runge A, Dahl KDC, Fehling HJ, Keller G, Simon MC. Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development 2004; 131:4623-34. [PMID: 15342485 DOI: 10.1242/dev.01310] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxia Inducible Factor (HIF), consisting of HIF1alpha and ARNT (HIF1beta) subunits, activates multiple genes in response to oxygen (O(2)) deprivation. Arnt(-/-) mice exhibit substantial defects in blood cell and vessel development. We demonstrate that hypoxia accelerates the expression of Brachyury (a mesoderm-specific transcription factor), BMP4 (a mesoderm-promoting growth factor) and FLK1 (a marker of hemangioblasts, the bipotential progenitor of endothelial and hematopoietic cells) in differentiating ES cell cultures. Significantly, proliferation of embryonic hemangioblasts (BL-CFCs) is regulated by hypoxia, as Arnt(+/+) ES cells generate increased numbers of FLK1(+) cells, and BL-CFCs with accelerated kinetics in response to low O(2). This response is HIF-dependent as Arnt(-/-) ES cells produce fewer FLK1(+) cells and BL-CFCs, under both normoxic and hypoxic conditions. Interestingly, this defect is rescued when Arnt(-/-) ES cells are co-cultured with Arnt(+/+) ES cells. Vegf(+/-)or Vegf(-/-) ES cells generate proper numbers of FLK1(+) cells but fewer BL-CFCs, suggesting that additional factors regulated by HIF (other than VEGF) are involved in these early events. Thus, hypoxic responses are important for the establishment of various progenitor cells, including early mesoderm and its differentiation into hemangioblasts. Together these data suggest that ineffective responses to hypoxia in Arnt(-/-) embryos abrogate proper cardiovascular development during early embryogenesis, including the pathways controlling hemangioblast differentiation.
Collapse
Affiliation(s)
- Diana L Ramírez-Bergeron
- Howard Hughes Medical Institute and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
370
|
Nakagawa T, Li JH, Garcia G, Mu W, Piek E, Böttinger EP, Chen Y, Zhu HJ, Kang DH, Schreiner GF, Lan HY, Johnson RJ. TGF-beta induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways. Kidney Int 2004; 66:605-13. [PMID: 15253713 DOI: 10.1111/j.1523-1755.2004.00780.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Angiogenesis has a key role in numerous disease processes. One of the most important angiogenic factors is vascular endothelial growth factor (VEGF-A), whereas thrombospondin-1 (TSP-1) is a major antiangiogenic factor. Recent studies have shown that VEGF-A as well as TSP-1 is regulated by transforming growth factor-beta1 (TGF-beta1), but the mechanism remains unclear. METHODS We examined the role of TGF-beta1 and its signaling pathways in mediating expression of these two molecules. Rat proximal tubular cells (NRK52E) were stimulated with TGF-beta1 to induce VEGF-A and TSP-1 synthesis. To clarify roles of receptor-activated Smads (R-Smads), we blocked Smad signaling using overexpression of the inhibitory Smad, Smad7, and by using fibroblasts from wild-type or knockout mice. To confirm the antiantigenic role of Smads, soluble Flt-1 regulation in response to TGF-beta1 was also examined. In addition, the effect of conditioned media from NRK52E and Smad knockout cells was examined on endothelial cell proliferation. RESULTS Induction of VEGF-A and TSP-1 by TGF-beta1 in NRK52E cells was associated with activation of pathway-restricted R-Smads (Smad2 and 3) and blocking these Smads by overexpression of Smad7 blocked their induction. By using of Smad knockout cells, Smad3 was shown to have a key role in the stimulation of VEGF-A expression whereas Smad2 was critical for TSP-1 expression. Consistent with the hypothesis that Smad2 has an antiangiogenic function, we also demonstrated that Smad2, but not Smad3, mediated the expression of VEGF-A antagonist, soluble VEGF-A receptor sFlt-1, in response to TGF-beta1. Conditioned media from NRK52E, which was stimulated by TGF-beta1 for 24 hours, did not induce endothelial cell proliferation. However, conditioned media from Smad2 knockout induced endothelial cell proliferation, whereas endothelial cell proliferation was inhibited by Smad3 knockout-derived conditioned media. CONCLUSION R-Smads have distinct roles in mediating the expression of pro- and antiangiogenic growth factors in response to TGF-beta1.
Collapse
Affiliation(s)
- Takahiko Nakagawa
- Division of Nephrology-Medicine, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Nagamatsu T, Fujii T, Kusumi M, Zou L, Yamashita T, Osuga Y, Momoeda M, Kozuma S, Taketani Y. Cytotrophoblasts up-regulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology 2004; 145:4838-45. [PMID: 15284201 DOI: 10.1210/en.2004-0533] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sufficient cytotrophoblast (CT) invasion into the uterine wall and subsequent remodeling of maternal uterine vasculature is critical to establish uteroplacental circulation. The production of vascular endothelial growth factor (VEGF) family molecules is confirmed in placental cells including CTs, but it is not elucidated how the VEGF system in CTs is controlled by oxygen tension and how it is involved in the development of placental circulation. To address this, we explored the effect of oxygen tension on the expression of VEGF, placenta growth factor (PlGF), and their antagonist, soluble fms-like tyrosine kinase-1 (sFlt-1) using ELISA and real-time PCR in a primary CT cell culture. For comparison, the same was conducted in parallel using other cells comprising placenta, such as human umbilical vein endothelial cells (HUVECs) and villous fibroblasts (VFs). Reduced oxygen resulted in a pronounced increase in sFlt-1 mRNA amount and sFlt-1 release into the culture media in CTs, whereas this was not the case with HUVECs and VFs. Free (not bound to sFlt-1) VEGF was not detected in CT culture media regardless of oxygen concentration, even though VEGF expression was stimulated by reduced oxygen in CTs, which was similar to the stimulation in HUVECs and VFs. Free PlGF was also diminished in CT culture media by reduced oxygen. These results implicate that CTs possess a unique property to enhance sFlt-1 production under reduced oxygen, which could consequently antagonize angiogenic activity of VEGF and PlGF. The presented findings might provide a framework with which to understand the mechanism of uterine vascular remodeling and its perturbations as exemplified in preeclampsia.
Collapse
Affiliation(s)
- Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
372
|
|
373
|
Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N, Johnson RS. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 2004; 6:485-95. [PMID: 15542432 DOI: 10.1016/j.ccr.2004.09.026] [Citation(s) in RCA: 418] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 07/22/2004] [Accepted: 09/15/2004] [Indexed: 11/16/2022]
Abstract
We deleted the hypoxia-responsive transcription factor HIF-1alpha in endothelial cells (EC) to determine its role during neovascularization. We found that loss of HIF-1alpha inhibits a number of important parameters of EC behavior during angiogenesis: these include proliferation, chemotaxis, extracellular matrix penetration, and wound healing. Most strikingly, loss of HIF-1alpha in EC results in a profound inhibition of blood vessel growth in solid tumors. These phenomena are all linked to a decreased level of VEGF expression and loss of autocrine response of VEGFR-2 in HIF-1alpha null EC. We thus show that a HIF-1alpha-driven, VEGF-mediated autocrine loop in EC is an essential component of solid tumor angiogenesis.
Collapse
Affiliation(s)
- Nan Tang
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, San Diego, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
374
|
Moore LG, Shriver M, Bemis L, Hickler B, Wilson M, Brutsaert T, Parra E, Vargas E. Maternal adaptation to high-altitude pregnancy: an experiment of nature--a review. Placenta 2004; 25 Suppl A:S60-71. [PMID: 15033310 DOI: 10.1016/j.placenta.2004.01.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2003] [Revised: 12/23/2003] [Accepted: 01/02/2004] [Indexed: 11/25/2022]
Abstract
A long and productive history of studies at high altitude has demonstrated that chronic hypoxia plays a key role in the aetiology of intrauterine growth restriction (IUGR) and pre-eclampsia. Susceptibility to altitude-associated IUGR varies among high-altitude populations in relation to their duration of altitude exposure, with multigenerational residents demonstrating one-third the birth weight fall present in shorter-resident groups. Higher uteroplacental blood flow during pregnancy in multigenerational high-altitude residents suggests that such population differences are due, at least in part, to differences in maternal vascular responses to pregnancy. We hypothesize that natural selection acting on hypoxia-inducible factor (HIF)-targeted or -regulatory genes has enabled maternal vascular adaptation to pregnancy in long-resident high-altitude groups. Preliminary evidence in support of this hypothesis demonstrates that the potent HIF-targeted vasoconstrictor, endothelin-1 (ET-1), is differentially regulated by pregnancy and chronic hypoxia in Andean vs European residents of high altitude. Andeans show the normal, pregnancy-associated fall in ET-1 levels previously reported at low altitude, whereas Europeans have higher ET-1 levels and little pregnancy-associated change, like pre-eclamptic women. Single nucleotide polymorphisms (SNPs) in the ET-1 gene also differ in Andeans compared with low-altitude populations. We conclude that high altitude serves as an experiment of nature for elucidating genetic factors underlying susceptibility to complications of pregnancy and fetal life. Such studies may be important for identifying persons at risk for these complications at any altitude.
Collapse
Affiliation(s)
- L G Moore
- Department of Anthropology, University of Colorado at Denver, USA.
| | | | | | | | | | | | | | | |
Collapse
|
375
|
Nilsson I, Shibuya M, Wennström S. Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 2004; 299:476-85. [PMID: 15350545 DOI: 10.1016/j.yexcr.2004.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 06/05/2004] [Indexed: 12/19/2022]
Abstract
Changes in the local environment, such as reduced oxygen tension (hypoxia), elicit transcriptional activation of a variety of genes in mammalian cells. Here we have analyzed the effect of hypoxia in different vascular endothelial cells (ECs) with emphasis on hypoxia-regulated transcription factors and genes of importance for blood vessel dynamics. While hypoxia induced the transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) in all endothelial cells tested, the closely related HIF-2alpha protein was markedly induced in microvascular/capillary endothelial cells, but only weakly or not at all in artery and vein endothelial cells. Furthermore, microvascular/capillary endothelial cells responded to hypoxia with increased number of transcripts encoding vascular endothelial growth factor-A (VEGF-A), VEGF receptor-2, the angiopoietin receptor Tie2, platelet-derived growth factor-B (PDGF-B), and inducible nitric oxide synthase (iNOS). In vein endothelial cells, hypoxia instead increased transcripts encoding lymphatic vascular components VEGF-C, -D, and VEGF receptor-3. Finally, reduced VEGF receptor levels and phosphorylation indicated establishment of a functional autocrine VEGF-A loop in hypoxic endothelial cells. Our results show that endothelial cells, derived from different vascular beds, mount different transcriptional responses to changes in oxygen tension.
Collapse
Affiliation(s)
- Ingrid Nilsson
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
376
|
Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 2004; 105:1383-95. [PMID: 15471951 DOI: 10.1182/blood-2004-07-2909] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Besides its role as an essential regulator of physiologic and pathologic angiogenesis, vascular endothelial growth factor (VEGF) triggers growth, survival, and migration of leukemia and multiple myeloma cells; plays a pivotal role in hematopoiesis; inhibits maturation of dendritic cells; and increases osteoclastic bone-resorbing activity as well as osteoclast chemotaxis. Dysregulation of VEGF expression and signaling pathways therefore plays an important role in the pathogenesis and clinical features of hematologic malignancies, in particular multiple myeloma. Direct and indirect targeting of VEGF and its receptors therefore may provide a potent novel therapeutic approach to overcome resistance to therapies and thereby improve patient outcome.
Collapse
Affiliation(s)
- Klaus Podar
- Dana-Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA
| | | |
Collapse
|
377
|
Ahmad S, Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res 2004; 95:884-91. [PMID: 15472115 DOI: 10.1161/01.res.0000147365.86159.f5] [Citation(s) in RCA: 385] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preeclampsia is an inflammatory disorder in which serum levels of vascular endothelial growth factor (VEGF) and its soluble receptor-1 (sVEGFR-1, also known as sFlt-1) are elevated. We hypothesize that VEGF and placenta growth factor (PlGF) are dysregulated in preeclampsia due to high levels of sVEGFR-1, which leads to impaired placental angiogenesis. Analysis of supernatants taken from preeclamptic placental villous explants showed a four-fold increase in sVEGFR-1 than normal pregnancies, suggesting that villous explants in vitro retain a hypoxia memory reflecting long-term fetal programming. The relative ratios of VEGF to sVEGFR-1 and PlGF to sVEGFR-1 released from explants decreased by 53% and 70%, respectively, in preeclampsia compared with normal pregnancies. Exposure of normal villous explants to hypoxia increased sVEGFR-1 release compared with tissue normoxia (P<0.001), as did stimulation with tumor necrosis factor-alpha (P<0.01). Conditioned medium (CM) from normal villous explants induced endothelial cell migration and in vitro tube formation, which were both attenuated by pre-incubation with exogenous sVEGFR-1 (P<0.001). In contrast, endothelial cells treated with preeclamptic CM showed substantially reduced angiogenesis compared with normal CM (P<0.001), which was not further decreased by the addition of exogenous sVEGFR-1, indicating a saturation of the soluble receptor. Removal of sVEGFR-1 by immunoprecipitation from preeclamptic CM significantly restored migration (P<0.001) and tube formation (P<0.001) to levels comparable to that induced by normal CM, demonstrating that elevated levels of sVEGFR-1 in preeclampsia are responsible for inhibiting angiogenesis. Our finding demonstrates the dysregulation of the VEGF/PlGF axis in preeclampsia and offers an entirely new therapeutic approach to its treatment.
Collapse
Affiliation(s)
- Shakil Ahmad
- Department of Reproductive and Vascular Biology, The Medical School, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TG, UK.
| | | |
Collapse
|
378
|
Nilsson I, Rolny C, Wu Y, Pytowski B, Hicklin D, Alitalo K, Claesson-Welsh L, Wennström S. Vascular endothelial growth factor receptor 3 in hypoxia‐induced vascular development. FASEB J 2004; 18:1507-15. [PMID: 15466359 DOI: 10.1096/fj.03-1276com] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reduced tissue oxygen tension (hypoxia) is appreciated as an efficient stimulus for neovascularization. The effect of hypoxia on the very first stages of vascular development is, however, less well characterized. Here we show that hypoxic conditions (1% O2) potently stimulated formation of an extensive vascular network during a discrete stage of mouse embryonal stem cell differentiation. The morphological changes correlated with an expanding pool of endothelial cells and with activation of the vascular endothelial growth factor-d (Vegf-d) and Vegf receptor-3 genes. VEGF receptor-3 expression was confined to vascular endothelial cells and analysis of the lymphatic marker Prox-1 revealed no expansion of lymphatic endothelial cells. Administration of neutralizing antibodies against either VEGF receptor-3 or VEGF receptor-2 impaired vascular network formation, whereas neutralizing antibodies against VEGF receptor-1 potentiated development of immature vascular structures. In addition, sequestering of VEGF receptor-3 ligands reduced vascularization in a manner similar to neutralization of VEGF receptor-3. We conclude that hypoxia-driven vascular development requires the activity of VEGF receptor-3.
Collapse
Affiliation(s)
- Ingrid Nilsson
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Higashi Y, Yoshizumi M. Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacol Ther 2004; 102:87-96. [PMID: 15056500 DOI: 10.1016/j.pharmthera.2004.02.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent epidemiologic studies have shown that aerobic exercise, one of lifestyle modifications, reduces cardiovascular morbidity and mortality in the general population. However, the mechanisms underlying the anti-atherogenic and anti-hypertensive effects of exercise remain unclear. Hypertension is associated with alteration in endothelial function mediated through reduced nitric oxide (NO) bioavailability. Endothelial dysfunction is an early feature of atherosclerosis and vascular diseases in humans. Exercise training has been shown to improve endothelial function in animal models of hypertension and in patients with essential hypertension. These findings suggest that endothelial dysfunction in hypertension is reversible. Lifestyle modifications including exercise are expected to prevent cardiovascular complications through an augmentation of endothelial function in hypertensive patients. It is thought that exercise increases NO production and decreases NO inactivation, leading to an increase in NO bioavailability. In this review, we will focus on recent findings and on possible mechanisms underlying the beneficial effects of exercise on endothelial function in patients with hypertension.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Cardiovascular Physiology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami, Hiroshima 734-8551, Japan
| | | |
Collapse
|
380
|
Abstract
Exercise and muscle contractions create a powerful stimulus for structural remodeling of the vasculature. An increase in flow velocity through a vessel increases shear stress, a major stimulus for enlargement of conduit vessels. This leads to an endothelial-dependent, nitric oxide-dependent enlargement of the vessel. Increased flow within muscle, in the absence of contractions, leads to an enhanced capillarity by intussusceptive angiogenesis, a process of capillary splitting by intraluminal longitudinal divide. In contrast, sprouting angiogenesis requires extensive endothelial cell proliferation, with degradation of the extracellular matrix to permit migration and tube formation. This occurs during muscle adaptations to chronic contractions and/or muscle overload. The angiogenic growth factor VEGF appears to be an important element in angiogenesis. Recent advances in research have identified hemodynamic and mechanical stimuli that upregulate angiogenic processes, demonstrated a complexity of potent growth factors and interactions with their corresponding receptors, detected an interaction of cellular signaling events, and identified important tissue reorganization processes that must be coordinated to effect vascular remodeling. It is likely that much of this information is applicable to the vascular remodeling that occurs in response to exercise and/or muscle contractions.
Collapse
Affiliation(s)
- Barry M Prior
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
381
|
Brockington A, Lewis C, Wharton S, Shaw PJ. Vascular endothelial growth factor and the nervous system. Neuropathol Appl Neurobiol 2004; 30:427-46. [PMID: 15488020 DOI: 10.1111/j.1365-2990.2004.00600.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic factor essential for the formation of new blood vessels during embryogenesis and in many pathological conditions. A new role for VEGF as a neurotrophic factor has recently emerged. In the developing nervous system, VEGF plays a pivotal role not only in vascularization, but also in neuronal proliferation, and the growth of coordinated vascular and neuronal networks. After injury to the nervous system, activation of VEGF and its receptors may restore blood supply and promote neuronal survival and repair. There is a growing body of evidence that VEGF is essential for motor neurone survival, and that aberrant regulation of VEGF may play a role in the degeneration of neurones in diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- A Brockington
- Academic Neurology Unit, University of Sheffield, Medical School, Sheffield, UK
| | | | | | | |
Collapse
|
382
|
Abstract
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models. Hypoxia has been shown to be a major inducer of VEGF gene transcription. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high-affinity VEGF receptors. The role of VEGF in developmental angiogenesis is emphasized by the finding that loss of a single VEGF allele results in defective vascularization and early embryonic lethality. VEGF is critical also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. In situ hybridization studies demonstrate expression of VEGF mRNA in the majority of human tumors. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with various VEGF inhibitors in a variety of malignancies are ongoing. Very recently, an anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the Food and Drug Administration as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.
Collapse
Affiliation(s)
- Napoleone Ferrara
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
383
|
Takeda N, Maemura K, Imai Y, Harada T, Kawanami D, Nojiri T, Manabe I, Nagai R. Endothelial PAS Domain Protein 1 Gene Promotes Angiogenesis Through the Transactivation of Both Vascular Endothelial Growth Factor and Its Receptor, Flt-1. Circ Res 2004; 95:146-53. [PMID: 15192019 DOI: 10.1161/01.res.0000134920.10128.b4] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endothelial PAS domain protein 1 (EPAS1) is a basic-helix-loop-helix/PAS domain transcription factor that is expressed preferentially in vascular endothelial cells. EPAS1 shares high homology with hypoxia-inducible factor-1α (HIF-1α) and is reported to transactivate vascular endothelial growth factor (VEGF), fetal liver kinase-1 (Flk-1), and Tie2 promoters. In this study, we analyzed the role of EPAS1 in the process of angiogenesis. Using microarray technology, we looked for target genes regulated by EPAS1 in vascular endothelial cells. A total of 130 genes were upregulated by EPAS1, including fms-like tyrosine kinase-1 (Flt-1). Reporter analysis using human Flt-1 promoter and gel mobility shift assays showed that the heterodimer of EPAS1 and aryl hydrocarbon receptor nuclear translocator binds directly to HIF-1-binding site upstream of Flt-1 promoter and transactivates it. Small interfering RNA targeted to EPAS1 but not HIF-1α attenuated desferrioxamine-induced Flt-1 mRNA expression, thus EPAS1 is thought to play an essential role in hypoxic induction of Flt-1 gene. Furthermore, using mouse wound healing models, we demonstrated that adenovirus-mediated delivery of EPAS1 gene significantly induced the expression of VEGF, Flt-1, Flk-1, and Tie2 mRNA at the wound site and promoted mature angiogenesis. The proportion of the number of mural cells in newly formed vessels was significantly higher in EPAS1-treated wound area than VEGF-treated area. In conclusion, EPAS1 promotes Flt-1 gene expression and induces mRNA expression of VEGF, Flk-1, and Tie2, leading to enhancement of mature angiogenesis in vivo. Thus, EPAS1 may contribute to the construction of mature vessels by modulating the coordinated expressions of VEGF, Flt-1, Flk-1, and Tie2.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Receptor Nuclear Translocator
- Basic Helix-Loop-Helix Transcription Factors
- Binding Sites
- Cattle
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Chemotaxis/drug effects
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Deferoxamine/pharmacology
- Dimerization
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/metabolism
- Extracellular Matrix Proteins/biosynthesis
- Extracellular Matrix Proteins/genetics
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Genetic Therapy
- Humans
- Hypoxia-Inducible Factor 1
- Hypoxia-Inducible Factor 1, alpha Subunit
- Male
- Mice
- Mice, Inbred BALB C
- Myosin Heavy Chains
- Neovascularization, Physiologic/genetics
- Nonmuscle Myosin Type IIB
- Nuclear Proteins/physiology
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Small Interfering/pharmacology
- Receptor, TIE-2/biosynthesis
- Receptor, TIE-2/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Recombinant Fusion Proteins/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcriptional Activation
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/pharmacology
- Vascular Endothelial Growth Factor Receptor-1
- Vascular Endothelial Growth Factor Receptor-2/biosynthesis
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Wound Healing/genetics
Collapse
Affiliation(s)
- Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
384
|
Arkinstall MJ, Tunstall RJ, Cameron-Smith D, Hawley JA. Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation. Am J Physiol Endocrinol Metab 2004; 287:E25-31. [PMID: 14761878 DOI: 10.1152/ajpendo.00557.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), beta-hydroxyacyl-CoA dehydrogenase (beta-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content (P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 (P < 0.05) and UCP3 (P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.
Collapse
Affiliation(s)
- Melissa J Arkinstall
- School of Medical Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia
| | | | | | | |
Collapse
|
385
|
Affiliation(s)
- Frank R Sharp
- Department of Neurology, Pediatrics and Neuroscience Program, Vontz Center for Molecular Studies, Room 2327, 3125 Eden Avenue, University of Cincinnati, Cincinnati, Ohio 45267-0536, USA.
| | | |
Collapse
|
386
|
Oshima Y, Takahashi K, Oshima S, Saishin Y, Saishin Y, Silva RL, Liang X, Reddy PS, Ganesh S, Brann T, Liau G, Kaleko M, Connelly S, Campochiaro PA. Intraocular gutless adenoviral-vectored VEGF stimulates anterior segment but not retinal neovascularization. J Cell Physiol 2004; 199:399-411. [PMID: 15095287 DOI: 10.1002/jcp.10441] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1) have been implicated as important stimulatory factors for retinal neovascularization. In this study, we used intraocular gene transfer with gutless adenoviral (AGV) vectors to determine the effect of increased intraocular expression of VEGF, IGF-1, or sphingosine kinase (SPK), which produces sphingosine-1-phosphate, another angiogenic factor. Retinal neovascularization did not occur from intravitreous AGV-vectored VEGF, IGF-1, SPK, or combined VEGF and IGF-1, except occasionally adjacent to the retinal penetration site from the injection. However, corneal and iris neovascularization occurred after 2 weeks in all eyes injected with AGV.VEGF, but not those injected with only AGV.IGF-1 or AGV.SPK. These data suggest that the superficial capillary bed of the retina is relatively insensitive to VEGF, IGF-1, or SPK in adult mice, except when combined with retinal trauma. However, AGV-vectored VEGF is sufficient to consistently cause severe corneal and iris neovascularization. This provides a model for anterior segment neovascularization, which unlike previous models is relatively inexpensive and is not plagued by spontaneous regression, and therefore, may be useful for identification of new treatments.
Collapse
Affiliation(s)
- Yuji Oshima
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Maumenee, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Chaiworapongsa T, Romero R, Espinoza J, Bujold E, Mee Kim Y, Gonçalves LF, Gomez R, Edwin S. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award. Am J Obstet Gynecol 2004; 190:1541-7; discussion 1547-50. [PMID: 15284729 DOI: 10.1016/j.ajog.2004.03.043] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Soluble vascular endothelial growth factor receptor 1 (sVEGFR-1), which antagonizes VEGF functions, has been implicated in the pathophysiology of preeclampsia. The purpose of this study was to determine whether preeclampsia is associated with a change in the plasma concentration of sVEGFR-1, and, if so, whether such a change is correlated with the severity of the disease. METHODS A cross-sectional study was conducted to determine the concentrations of sVEGFR-1 in plasma obtained from normal pregnant women (n=61) and patients with preeclampsia (n=61). Plasma concentrations of sVEGFR-1 were determined by enzyme-linked immunoassay. RESULTS Preeclampsia had a higher median plasma concentration of sVEGFR-1 than normal pregnancy (P <.001). The median plasma concentration of sVEGFR-1 was higher in early-onset (< or =34 weeks) than late-onset (>34 weeks) preeclampsia (P=.005), and higher in severe than in mild preeclampsia (P=.002). In normal pregnancy, there was a correlation between plasma concentration of sVEGFR-1 and gestational age (r=0.5; P <.001). In contrast, there was a negative correlation between plasma concentration of sVEGFR-1 and gestational age at the onset of preeclampsia (r=-0.5; P <.001). CONCLUSION Preeclampsia is associated with an increased plasma sVEGFR-1 concentration. The elevation of sVEGFR-1 concentration is correlated with the severity of the disease. These observations suggest the participation of VEGF and its soluble receptor in the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Tinnakorn Chaiworapongsa
- Perinatology Research Branch, National Institute of Child Health & Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Harvey AJ, Kind KL, Pantaleon M, Armstrong DT, Thompson JG. Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod 2004; 71:1108-19. [PMID: 15163614 DOI: 10.1095/biolreprod.104.028639] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oxygen concentrations used during in vitro embryo culture can influence embryo development, cell numbers, and gene expression. Here we propose that the preimplantation bovine embryo possesses a molecular mechanism for the detection of, and response to, oxygen, mediated by a family of basic helix-loop-helix transcription factors, the hypoxia-inducible factors (HIFs). Day 5 compacting bovine embryos were cultured under different oxygen tensions (2%, 7%, 20%) and the effect on the expression of oxygen-regulated genes, development, and cell number allocation and HIFalpha protein localization were examined. Bovine in vitro-produced embryos responded to variations in oxygen concentration by altering gene expression. GLUT1 expression was higher following 2% oxygen culture compared with 7% and 20% cultured blastocysts. HIF mRNA expression (HIF1alpha, HIF2alpha) was unaltered by oxygen concentration. HIF2alpha protein was predominantly localized to the nucleus of blastocysts. In contrast, HIF1alpha protein was undetectable at any oxygen concentration or in the presence of the HIF protein stabilizer desferrioxamine (DFO), despite being detectable in cumulus cells following normal maturation conditions, acute anoxic culture, or in the presence of DFO. Oxygen concentration also significantly altered inner cell mass cell proportions at the blastocyst stage. These results suggest that oxygen can influence gene expression in the bovine embryo during postcompaction development and that these effects may be mediated by HIF2alpha.
Collapse
Affiliation(s)
- A J Harvey
- Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, The University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia.
| | | | | | | | | |
Collapse
|
389
|
Jubb AM, Pham TQ, Hanby AM, Frantz GD, Peale FV, Wu TD, Koeppen HW, Hillan KJ. Expression of vascular endothelial growth factor, hypoxia inducible factor 1alpha, and carbonic anhydrase IX in human tumours. J Clin Pathol 2004; 57:504-12. [PMID: 15113858 PMCID: PMC1770303 DOI: 10.1136/jcp.2003.012963] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To measure vascular endothelial growth factor (VEGF-A) mRNA in a large, diverse cohort of tumours and to investigate whether VEGF-A expression is associated with markers of hypoxia, including hypoxia inducible factor 1alpha (HIF-1alpha) and carbonic anhydrase IX (CA9). METHODS The expression of VEGF-A and CA9 was assessed in 5067 fresh frozen human tissue samples and 238 cell lines by DNA microarray analysis. In addition, tissue microarrays were constructed from 388 malignancies to investigate the expression of VEGF-A and HIF-1alpha by in situ hybridisation and immunohistochemistry, respectively. RESULTS VEGF-A was significantly upregulated in primary malignancies of the breast, cervix, colon and rectum, oesophagus, head and neck, kidney, ovary, skin, urinary system, and white blood cells by DNA microarray analysis. However, VEGF-A expression only correlated with CA9 expression in renal tissues. In the tissue microarrays, HIF-1alpha positive cores showed a significant increase in VEGF-A expression in lung, ovary, soft tissue, and thyroid malignancies. CONCLUSIONS The expression of VEGF-A is upregulated in a large proportion of human malignancies, and may be associated with markers of hypoxia. VEGF-A expression can be induced in the absence of hypoxia and hypoxia does not always provoke VEGF-A upregulation in tumours.
Collapse
Affiliation(s)
- A M Jubb
- Department of Pathology, Genentech Inc, South San Francisco, CA94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
390
|
Mohamed KM, Le A, Duong H, Wu Y, Zhang Q, Messadi DV. Correlation between VEGF and HIF-1alpha expression in human oral squamous cell carcinoma. Exp Mol Pathol 2004; 76:143-52. [PMID: 15010293 DOI: 10.1016/j.yexmp.2003.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Indexed: 11/21/2022]
Abstract
Understanding the development and progression of oral cancer is critical in the quest for successful therapeutic intervention. The hypoxic microenvironment present in human oral tumor in vivo may actively influence tumor growth and neovascularization. This study correlates expression of both VEGF and HIF-1alpha in normal keratinocytes and oral cancer cell lines and determine whether hypoxia played a role in VEGF and HIF-1alpha regulation. Three human oral cancer cell lines and three normal keratinocytes were exposed to both normoxia and hypoxia culture conditions. Northern and Western blot analysis were used to assess VEGF and HIF-1alpha expression in the different culture conditions. ELISA assays were performed to measure VEGF production in the different cell lines tested. Hypoxia upregulated VEGF and HIF-1alpha expression on both normal and oral cancer cell lines, with a statistically significant difference between normal and oral cancer cell lines. Pattern of hypoxia-induced VEGF mRNA level tightly followed the HIF-1alpha mRNA expression in the cell lines tested. These results suggest that hypoxia regulates both VEGF and HIF-1alpha expression in head and neck carcinoma cell lines, thus establishing a biochemical pathway between tumor hypoxia and neoangiogenesis in these aggressive neoplasms.
Collapse
|
391
|
Campbell S, Rowe J, Jackson CJ, Gallery EDM. Interaction of cocultured decidual endothelial cells and cytotrophoblasts in preeclampsia. Biol Reprod 2004; 71:244-52. [PMID: 15028631 DOI: 10.1095/biolreprod.103.026716] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Disturbed cell-cell communication between trophoblasts and the maternal endothelium may be responsible for the deficient endovascular invasion seen in preeclampsia. In vitro studies have been hampered by lack of suitable models to directly examine interactions between these cell types. Using a bilayer coculture model, we examined the effect of decidual endothelial cells on matrix metalloproteinase secretion and the migration of cytotrophoblasts from preeclamptic pregnancies. Cells were incubated on semipermeable membranes in 20% or 2% O(2) with or without the tumor promoter phorbol 12-myristate 13-acetate, which activates matrix metalloproteinase-2 and -9 in endothelial cells. Cytotrophoblasts from preeclamptic pregnancies secreted significantly less matrix metalloproteinase-2 and -9 than their normal counterparts. Although decidual endothelial cells downregulated cytotrophoblast migration in normal pregnancy, this was not observed in cocultures with cytotrophoblasts from preeclamptic pregnancies. In addition, cytotrophoblasts from preeclamptic pregnancies altered phorbol myristate acetate-induced activation of endothelial matrix metalloproteinases. Hypoxia increased cytotrophoblast migration when cells were incubated alone but not in coculture with decidual endothelial cells due to increased adhesion between the two cell types. These results suggest dysfunctional interactive regulation of migration and matrix metalloproteinase secretion in preeclampsia that could result in abnormal endovascular trophoblast invasion of the maternal vasculature.
Collapse
Affiliation(s)
- S Campbell
- Perinatal Research Group, The University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | | | | | | |
Collapse
|
392
|
Pichiule P, Chavez JC, LaManna JC. Hypoxic Regulation of Angiopoietin-2 Expression in Endothelial Cells. J Biol Chem 2004; 279:12171-80. [PMID: 14702352 DOI: 10.1074/jbc.m305146200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of endothelial cells to hypoxia-induced angiopoietin-2 (Ang2) expression. The increase in Ang2 mRNA levels occurred by transcriptional regulation and by post-transcriptional increase in mRNA stability. Induction of Ang2 mRNA resulted in an increase of intracellular and secreted Ang2 protein levels. Since the transcriptional regulation of several genes involved in angiogenesis during hypoxia is mediated by hypoxia-inducible factor-1 (HIF-1), it was conceivable that Ang2 expression might be regulated by the same oxygen-dependent mechanism. However, our data showed that pharmacological HIF inducers, CoCl(2) and DFO, did not affect Ang2 expression. Moreover, HIF-1-deficient hepatoma cell (Hepa1 c4) and its wild-type counterpart (Hepa1 c1c4) up-regulates Ang2 during hypoxia. These results indicated that hypoxia-driven Ang2 expression may be independent of the HIF pathway. Using neutralizing VEGF antibody or pharmacological inhibitors of VEGF receptors, we showed that hypoxia-induced VEGF participates but could not account completely for Ang2 expression during hypoxia. In addition, hypoxia elicited an increase of cyclooxygenase-2 (COX-2) expression and a parallel increase in prostanglandin E(2) (PGE(2)) and prostacyclin (PGI(2)) production. COX-2 inhibitors decreased the hypoxic induction of Ang2 and the hypoxic induction of PGE(2) and PGI(2) in a dose-dependent manner. Similarly, COX-2 but not COX-1 antisense treatment decreased hypoxic induction of Ang2 expression, and this effect was reversed by exogenous PGE(2). Finally, exogenous PGE(2) and PGI(2) were able to stimulate Ang2 under normoxic conditions. These findings suggest that COX-2-dependent prostanoids may play an important role in the regulation of hypoxia-induced Ang2 expression.
Collapse
MESH Headings
- Angiopoietin-2/biosynthesis
- Blotting, Western
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Survival
- Cells, Cultured
- Cobalt/pharmacology
- Cyclooxygenase 1
- Cyclooxygenase 2
- Cyclooxygenase 2 Inhibitors
- Cyclooxygenase Inhibitors/pharmacology
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Deferoxamine/pharmacology
- Dinoprostone/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Enzyme-Linked Immunosorbent Assay
- Epoprostenol/metabolism
- Humans
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1
- Hypoxia-Inducible Factor 1, alpha Subunit
- Inhibitory Concentration 50
- Iron Chelating Agents/pharmacology
- Isoenzymes/biosynthesis
- Lactones/pharmacology
- Membrane Proteins
- Nuclear Proteins/metabolism
- Oligonucleotides, Antisense/pharmacology
- Oxygen/metabolism
- Prostaglandin-Endoperoxide Synthases/biosynthesis
- Prostaglandins/metabolism
- RNA, Messenger/metabolism
- Recombinant Proteins/chemistry
- Sulfones
- Time Factors
- Transcription Factors
- Transcription, Genetic
- Transcriptional Activation
- Umbilical Veins/cytology
- Up-Regulation
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Paola Pichiule
- Department of Anatomy, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
393
|
Distler JHW, Wenger RH, Gassmann M, Kurowska M, Hirth A, Gay S, Distler O. Physiologic responses to hypoxia and implications for hypoxia-inducible factors in the pathogenesis of rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 50:10-23. [PMID: 14730595 DOI: 10.1002/art.11425] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
394
|
Spriet LL, Tunstall RJ, Watt MJ, Mehan KA, Hargreaves M, Cameron-Smith D. Pyruvate dehydrogenase activation and kinase expression in human skeletal muscle during fasting. J Appl Physiol (1985) 2004; 96:2082-7. [PMID: 14966024 DOI: 10.1152/japplphysiol.01318.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fasting forces adaptive changes in whole body and skeletal muscle metabolism that increase fat oxidation and decrease the oxidation of carbohydrate. We tested the hypothesis that 40 h of fasting would decrease pyruvate dehydrogenase (PDH) activity and increase PDH kinase (PDK) isoform mRNA expression in human skeletal muscle. The putative transcriptional activators of PDK isozymes, peroxisome proliferator-activated receptor-alpha (PPAR-alpha) protein, and forkhead homolog in rhabdomyosarcoma (FKHR) mRNA were also measured. Eleven healthy adults fasted after a standard meal (25% fat, 60% carbohydrate, 15% protein) with blood and skeletal muscle samples taken at 3, 15, and 40 h postprandial. Fasting increased plasma free fatty acid, glycerol, and beta-hydroxybutyrate concentrations and decreased glucose and insulin concentrations. PDH activity decreased from 0.88 +/- 0.11 mmol acetyl-CoA. min(-1). kg wet muscle wt(-1) at 3 h to 0.62 +/- 0.10 (P = not significant) and 0.39 +/- 0.06 (P < 0.05) mmol. min(-1). kg wet mass(-1) after 15 and 40 h of fasting. Although all four PDK isoforms were expressed in human skeletal muscle, PDK-2 and -4 mRNA were the most abundant. PDK-1 and -3 mRNA abundance was approximately 1 and 15% of the PDK-2 and -4 levels, respectively. The 40-h fast had no effect on PDK-1, -2, and -3 mRNA expression. PDK-4 mRNA was significantly increased approximately 3-fold after 15 h and approximately 14-fold after 40 h of fasting. Skeletal muscle PPAR-alpha protein and FKHR mRNA abundance were unaffected by the fast. The results suggest that decreased PDH activation after 40 h of fasting may have been a function of the large increase in PDK-4 mRNA expression and possible subsequent increase in PDK protein and activity. The changes in PDK-4 expression and PDH activity did not coincide with increases in the transcriptional activators PPAR-alpha and FKHR.
Collapse
Affiliation(s)
- Lawrence L Spriet
- Department of Human Biology & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
395
|
Tomanek RJ, Lund DD, Yue X. Hypoxic induction of myocardial vascularization during development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 543:139-49. [PMID: 14713119 DOI: 10.1007/978-1-4419-8997-0_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The development of the heart is closely linked to its temporally and spatially regulated vascularization. Hypoxia has been shown to stimulate myocardial capillary growth and improve myocardial perfusion during reperfusion in postnatal animals exposed to chronic or intermittent exposure to hypobaria. Vascular endothelial growth factor (VEGF) is up-regulated by hypoxia via HIF-1alpha, and these two molecules are colocalized with presumptive regions of hypoxia. VEGF up-regulation in embryonic and fetal hearts correlates with vascular tube formation which progresses from an epicardial to endocardial direction prior to the establishment of a functional coronary circulation. Our studies on explanted embryonic quail hearts indicate that vascular tube formation is enhanced by hypoxia (5-10% O2) and inhibited by hyperoxia. Three splice variants of VEGF (122, 126, 190) were found to increase and decrease with hypoxia and hyperoxia, respectively. While VEGF synthesis is stimulated by hypoxia, there are differences in the vascular patterning between exogenous VEGF-induced vascularization and that induced by hypoxia. Thus, other, yet to be identified, molecules are recruited by hypoxia. Acute hypoxia selectively enhances at least three splice variants of VEGF-A, and also selectively up-regulates VEGFR-1 (flt-1). However, we suggest that VEGF-B, a ligand for VEGFR-1 may contribute to embryonic myocardial vascularization, since we have shown that it plays a key role in this process under normoxic conditions. A second mechanism by which hypoxia may play a role in vascularization of the heart is via its vasodilatory effects, once the coronary circulation is functional. Increased blood flow serves as a mechanical (stretch) trigger for activation of VEGF and its receptors. In sum, there is evidence that a relative hypoxia provides both metabolic and mechanical stimuli for vascular growth in the developing heart.
Collapse
Affiliation(s)
- Robert J Tomanek
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City 52242, USA.
| | | | | |
Collapse
|
396
|
Chen JX, Meyrick B. Hypoxia increases Hsp90 binding to eNOS via PI3K-Akt in porcine coronary artery endothelium. J Transl Med 2004; 84:182-90. [PMID: 14661033 DOI: 10.1038/labinvest.3700027] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study examines the molecular mechanisms by which hypoxia regulates phosphorylated endothelial nitric oxide synthase (eNOS) activity and NO production in porcine coronary artery endothelial cells (PCAEC). Exposure to hypoxia (pO(2)=10 mmHg) for periods up to 3 h resulted in a time-dependent increase in eNOS protein expression and an early (15 min) and sustained increase in eNOS phosphorylation at Ser-1177. Exposure to hypoxia for 30 min led to a doubling in eNOS activity (control=6.2+/-4.4 vs hypoxia=14.1+/-5.0 fmol cGMP/microg protein, P<0.05) and NO release (control=5.9+/-0.8 vs hypoxia=11.8+/-1.2 nM/microg protein, P<0.05). Hypoxia also led to a significant increase in Akt phosphorylation and upregulation of Hsp90 binding to eNOS. Pretreatment of cells with either 1 microg/ml geldanamycin (a specific inhibitor of Hsp90) or 500 nM wortmannin (a specific PI3 kinase inhibitor) suppressed hypoxia-stimulated Akt and eNOS phosphorylation and significantly attenuated hypoxia-stimulated Hsp90 binding to eNOS. Both eNOS activity and NO production were inhibited by geldanamycin and wortmannin. Although hypoxia led to early activation of p42/44 mitogen-activated protein kinases (MAPK), inhibition of their pathway by PD98059 did not suppress hypoxia-stimulated eNOS phosphorylation and eNOS activity. These data demonstrate that hypoxia leads to increased eNOS phosphorylation via stimulated Hsp90 binding to eNOS and activation of the PI3-Akt pathway. We conclude that a coordinated interaction between Hsp90 and PI3-Akt may be an important mechanism by which eNOS activity and NO production is upregulated in hypoxic heart.
Collapse
Affiliation(s)
- Jian-xiong Chen
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
397
|
Tipoe GL, Fung ML. Expression of HIF-1alpha, VEGF and VEGF receptors in the carotid body of chronically hypoxic rat. Respir Physiol Neurobiol 2004; 138:143-54. [PMID: 14609506 DOI: 10.1016/s1569-9048(03)00188-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examined the protein expression and localization of HIF-1alpha, VEGF, VEGF receptors in the carotid body (CB) of rats breathing 10% inspired oxygen for up to 4 weeks. The immunoreactivity (IR) of HIF-1alpha was distributed numerously in the nuclei of glomus (type-I) and other cells since hypoxia for 1 day, but was faint and scattered in the normoxic CBs. Cytoplasmic staining of the VEGF was intense in glomus cells of the hypoxic but not the normoxic group. The IR levels of HIF-1alpha and VEGF reached plateau at 4 weeks, and the IRs of VEGFR-1 and VEGFR-2 were strongly positive in the hypoxic group. Yet, the expression of VEGFR-1-IR was mild, whereas the VEGFR-2-IR was intense in normoxic CBs, suggesting an upregulation of VEGFR-1 but not VEGFR-2 in hypoxia. Hence, HIF-1 may activate the expression of VEGF and VEGFR-1 in the CB and the expression of VEGF in the chemoreceptors may play a paracrine role in the vascular remodeling during chronic hypoxia.
Collapse
Affiliation(s)
- George L Tipoe
- Department of Anatomy, Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | | |
Collapse
|
398
|
Acker T, Plate KH. Hypoxia and hypoxia inducible factors (HIF) as important regulators of tumor physiology. Cancer Treat Res 2004; 117:219-48. [PMID: 15015563 DOI: 10.1007/978-1-4419-8871-3_14] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Regions of low oxygen tension are common findings in malignant tumors and are associated with increased frequency of tumor invasion and metastasis. Indeed, the ability to initiate homeostatic responses and adapt to hypoxia, e.g. by induction of angiogenesis, represents an important and crucial aspect in solid tumor growth. A significant advance in our understanding of the hypoxia response stems from the discovery of the hypoxia inducible factors (HIF) which act as key regulators of hypoxia-induced gene expression. Both, low levels of oxygen, apparently via reduced activity of a recently identified class of 2-oxoglutarate dependent oxygenases, and various tumor specific genetic alterations synergistically act to induce the HIF system. A widespread HIF activation can be observed in a variety of malignant tumors including brain tumors. The HIF system induces adaptive responses including angiogenesis, glycolysis, and pH regulation which confer increased resistance towards the hostile tumor microenvironment. Apart from protumorigenic the wide-ranging HIF pathway is known to harbor antitumorigenic components, which may, however, be disabled by tumor specific genetic alterations. Thus, mounting evidence has identified HIF as a crucial regulator of tumor growth and progression constituting an intriguing and novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Till Acker
- Edinger Institute, Neuropathology, Johann-Wolfgang Goethe University, Deutschordenstr. 46, 60528 Frankfurt, Germany
| | | |
Collapse
|
399
|
Abstract
Cellular oxygen (O2) concentrations are tightly regulated to maintain ATP levels required for metabolic reactions in the human body. Responses to changes in O2 concentrations are primarily regulated by the transcription factor hypoxia inducible factor (HIF). HIF activates transcription of genes that increase systemic O2 delivery or provide cellular metabolic adaptation under conditions of hypoxia. HIF activity is essential for embryogenesis and various processes in postnatal life, and therefore, HIF levels need to be precisely controlled. Abnormal HIF expression is related to numerous diseases of the vascular system, including heart disease, cancer, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Kelly L Covello
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
400
|
Coulet F, Nadaud S, Agrapart M, Soubrier F. Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 2003; 278:46230-40. [PMID: 12963737 DOI: 10.1074/jbc.m305420200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human endothelial nitric-oxide synthase gene (heNOS) is constitutively expressed in endothelial cells, and its expression is induced under hypoxia. The goal of this study was to search for regulatory elements of the endothelial nitric-oxide synthase (eNOS) gene responsive to hypoxia. Levels of eNOS mRNA, measured by real time reverse transcriptase-PCR analysis, were increased, and heNOS promoter activity was enhanced by hypoxia as compared with normoxia control experiments. Promoter truncation followed by footprint analysis allowed the mapping and identification of the hypoxia-responsive elements at position -5375 to -5366, closely related to hypoxia-inducible factor (HIF)-responsive element (HRE). To test whether known HIF-1 and HIF-2 are involved in hypoxia-induced heNOS promoter activation, HMEC-1 and HUVEC were transiently transfected with HIF-1alpha and HIF-1beta or HIF-2alpha and HIF-1beta expression vectors. Exogenous HIF-2 markedly increased luciferase reporter activity driven by the heNOS promoter in its native location. The induction of luciferase was conserved with the antisense construct and was increased in cotransfection experiments when this fragment was cloned 5' to the proximal 785-bp fragment of the eNOS promoter. Deletion analysis and site-directed mutagenesis demonstrated that the two contiguous HIF consensus binding sites spanning bp -5375 to -5366 relative to the transcription start site were both functional for heNOS promoter activity induction by hypoxia and by HIF-2 overexpression. In conclusion, we demonstrate that heNOS is a hypoxia-inducible gene, whose transcription is stimulated through HIF-2 interaction with two contiguous HRE sites located at -5375 to -5366 of the heNOS promoter.
Collapse
Affiliation(s)
- Florence Coulet
- INSERM, Unit 525, Université Pierre et Marie Curie, Faculté de Médecine Pitié-Salpêtrière, 91 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | |
Collapse
|