351
|
Zhu J, Garrigues L, Van den Toorn H, Stahl B, Heck AJR. Discovery and Quantification of Nonhuman Proteins in Human Milk. J Proteome Res 2019; 18:225-238. [PMID: 30489082 PMCID: PMC6326037 DOI: 10.1021/acs.jproteome.8b00550] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 01/11/2023]
Abstract
The question whether and which nonhuman peptides or proteins are present in human milk was raised many decades ago. However, due to cross-reactivity or nonspecific antibody recognition, the accuracy of detection by immunochemical methods has been a concern. Additionally, the relative low-abundance of nonhuman peptides/proteins in the complex milk sample makes them a challenging target to detect. Here, by deep proteome profiling, we detected several nonhuman peptides, which could be grouped as nonhuman proteins. We next estimated their concentration in human milk by combining data-dependent shotgun proteomics and parallel reaction monitoring. First, we fractionated human milk at the protein level and were able to detect 1577 human proteins. Additionally, we identified 109 nonhuman peptides, of which 71 were grouped into 36 nonhuman proteins. In the next step, we targeted 37 nonhuman peptides and nine of them could be repeatedly quantified in human milk samples. Peptides/proteins originating from bovine milk products were the dominant nonhuman proteins observed, notably bovine caseins (α-S1-, α-S2-, β-, κ-caseins) and β-lactoglobulin. The method we present here can be expanded to investigate more about nonhuman peptides and proteins in human milk and give a better understanding of how human milk plays a role in allergy prevention.
Collapse
Affiliation(s)
- Jing Zhu
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Luc Garrigues
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Henk Van den Toorn
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Bernd Stahl
- Danone
Nutricia Research, 3584
CT Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
352
|
Roumeliotis TI, Weisser H, Choudhary JS. Evaluation of a Dual Isolation Width Acquisition Method for Isobaric Labeling Ratio Decompression. J Proteome Res 2019; 18:1433-1440. [PMID: 30576155 PMCID: PMC6399672 DOI: 10.1021/acs.jproteome.8b00870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Isobaric labeling is a highly precise
approach for protein quantification. However, due to the isolation
interference problem, isobaric tagging suffers from ratio underestimation
at the MS2 level. The use of narrow isolation widths is a rational
approach to alleviate the interference problem; however, this approach
compromises proteome coverage. We reasoned that although a very narrow
isolation window will result in loss of peptide fragment ions, the
reporter ion signals will be retained for a significant portion of
the spectra. On the basis of this assumption, we have designed a dual
isolation width acquisition (DIWA) method, in which each precursor
is first fragmented with HCD using a standard isolation width for
peptide identification and preliminary quantification, followed by
a second MS2 HCD scan using a much narrower isolation width for the
acquisition of quantitative spectra with reduced interference. We
leverage the quantification obtained by the “narrow”
scans to build linear regression models and apply these to decompress
the fold-changes measured at the “standard” scans. We
evaluate the DIWA approach using a nested two species/gene knockout
TMT-6plex experimental design and discuss the perspectives of this
approach.
Collapse
Affiliation(s)
- Theodoros I Roumeliotis
- The Institute of Cancer Research , Chester Beatty Laboratories, London SW3 6JB , U.K.,Wellcome Sanger Institute , Wellcome Genome Campus , Cambridge CB10 1SA , U.K
| | - Hendrik Weisser
- STORM Therapeutics Limited, Moneta Building , Babraham Research Campus , Cambridge CB22 3AT , U.K.,Wellcome Sanger Institute , Wellcome Genome Campus , Cambridge CB10 1SA , U.K
| | - Jyoti S Choudhary
- The Institute of Cancer Research , Chester Beatty Laboratories, London SW3 6JB , U.K.,Wellcome Sanger Institute , Wellcome Genome Campus , Cambridge CB10 1SA , U.K
| |
Collapse
|
353
|
Lee PC, Wildt DE, Comizzoli P. Proteomic analysis of germinal vesicles in the domestic cat model reveals candidate nuclear proteins involved in oocyte competence acquisition. Mol Hum Reprod 2019; 24:14-26. [PMID: 29126204 DOI: 10.1093/molehr/gax059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/04/2017] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Do nuclear proteins in the germinal vesicle (GV) contribute to oocyte competence acquisition during folliculogenesis? SUMMARY ANSWER Proteomic analysis of GVs identified candidate proteins for oocyte competence acquisition, including a key RNA processing protein-heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1). WHAT IS KNOWN ALREADY The domestic cat GV, which is physiologically similar to the human GV, gains the intrinsic ability to resume meiosis and support early embryo development during the pre-antral-to-antral follicle transition. However, little is known about nuclear proteins that contribute to this developmental process. STUDY DESIGN SIZE, DURATION GVs were enriched from pre-antral (incompetent) and antral (competent) follicles from 802 cat ovaries. Protein lysates were subjected to quantitative proteomic analysis to identify differentially expressed proteins in GVs from the two follicular categories. PARTICIPANTS/MATERIALS, SETTING, METHODS Two biological replicates (from independent pools of ovaries) of pre-antral versus antral samples were labeled by tandem mass tags and then assessed by liquid chromatography-tandem mass spectrometry. Proteomic data were analyzed according to gene ontology and a protein-protein interaction network. Immunofluorescent staining and protein inhibition assays were used for validation. MAIN RESULTS AND THE ROLE OF CHANCE A total of 174 nuclear proteins was identified, with 54 being up-regulated and 22 down-regulated (≥1.5-fold) after antrum formation. Functional protein analysis through gene ontology over-representation tests revealed that changes in molecular network within the GVs during this transitional phase were related to chromatin reorganization, gene transcription, and maternal RNA processing and storage. Protein inhibition assays verified that hnRNPA2B1, a key nuclear protein identified, was required for oocyte meiotic maturation and subsequent blastocyst formation. LARGE SCALE DATA Data are available via ProteomeXchange with identifier PXD007211. LIMITATIONS REASONS FOR CAUTION Proteins identified by proteomic comparison may (i) be involved in processes other than competence acquisition during the pre-antral-to-antral transition or (ii) be co-expressed in other macrostructures besides the GV. Expressional and functional validations should be performed for candidate proteins before downstream application. WIDER IMPLICATIONS OF THE FINDINGS Collective results generated a blueprint to better understand the molecular mechanisms involved in GV competence acquisition and identified potential nuclear competence markers for human fertility preservation. STUDY FUNDING AND COMPETING INTEREST(S) Funded by the National Center for Research Resources (R01 RR026064), a component of the National Institutes of Health (NIH) and currently by the Office of Research Infrastructure Programs/Office of the Director (R01 OD010948). The authors declare that there is no conflict of interest.
Collapse
Affiliation(s)
- P-C Lee
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - D E Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - P Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| |
Collapse
|
354
|
Pei Z, Wu K, Li Z, Li C, Zeng L, Li F, Pei N, Liu H, Zhang SL, Song YZ, Zhang X, Xu J, Fan XY, Wang J. Pharmacologic ascorbate as a pro-drug for hydrogen peroxide release to kill mycobacteria. Biomed Pharmacother 2019; 109:2119-2127. [PMID: 30551469 DOI: 10.1016/j.biopha.2018.11.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Tuberculosis is one of the most highly fatal diseases worldwide, and one-third of the world's population has been infected with Mycobacterium tuberculosis (M. tuberculosis). A previous study showed that M. tuberculosis was highly susceptible to being killed by ascorbate (i.e. vitamin C, VC), but the molecular mechanisms of the bactericidal activity of VC against M. tuberculosis are still not well understood. EXPERIMENTAL APPROACH We assayed the effects of VC as an anti-tuberculosis drug against mycobacteria (i.e. M. bovis BCG or M. tuberculosis H37Rv) in macrophages (i.e. RAW 264.7 cells). Relative global protein expression changes in 5 mM VC-treated and control samples of H37Rv were investigated by Tandem mass tag (TMT)-based quantitative proteomic analysis. qRT-PCR was also used to measure the differential expression of six intracellular stress response mycobacteria genes. KEY RESULTS Quantitative proteomic analysis showed that 11 peptide components including rip3, fdxA, Rv2028c, mtp, LH57_00670, hspX, pfkB, Rv1824, Rv1813c, LH57_08410 and Rv2030c were up-regulated and 17 peptide components were down-regulated in 5 mM VC-treated H37Rv compared with the control samples. qRT-PCR also verified that VC could induce the expression of six genes (hsp, fdxD, furA, devR, hspX, and dnaB) in BCG and H37Rv. We also found that exosomes from RAW 264.7 cells treated with pharmacologic VC could kill M. bovis BCG in vitro. CONCLUSION AND IMPLICATIONS Our results demonstrated that the bactericidal activity of VC against mycobacteria, as a pro-drug for hydrogen peroxide formation (H2O2), was dependent on reactive oxygen species production and the activated oxidative stress pathway, which suggested that pharmaceutical VC and exosomes from macrophages treated with VC could be used as potential anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Zenglin Pei
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Kang Wu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chaoqun Li
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ling Zeng
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Feng Li
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ning Pei
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Hongmei Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Shu-Lin Zhang
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China; Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Zheng Song
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Jianqing Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China
| | - Xiao-Yong Fan
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China; TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China.
| | - Jin Wang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, China.
| |
Collapse
|
355
|
Takáč T, Pechan T, Šamajová O, Šamaj J. Proteomic Analysis of Arabidopsis pldα 1 Mutants Revealed an Important Role of Phospholipase D Alpha 1 in Chloroplast Biogenesis. FRONTIERS IN PLANT SCIENCE 2019; 10:89. [PMID: 30833950 PMCID: PMC6388422 DOI: 10.3389/fpls.2019.00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/21/2019] [Indexed: 05/13/2023]
Abstract
Phospholipase D alpha 1 (PLDα1) is a phospholipid hydrolyzing enzyme playing multiple regulatory roles in stress responses of plants. Its signaling activity is mediated by phosphatidic acid (PA) production, capacity to bind, and modulate G-protein complexes or by interaction with other proteins. This work presents a quantitative proteomic analysis of two T-DNA insertion pldα1 mutants of Arabidopsis thaliana. Remarkably, PLDα1 knockouts caused differential regulation of many proteins forming protein complexes, while PLDα1 might be required for their stability. Almost one third of differentially abundant proteins (DAPs) in pldα1 mutants are implicated in metabolism and RNA binding. Latter functional class comprises proteins involved in translation, RNA editing, processing, stability, and decay. Many of these proteins, including those regulating chloroplast protein import and protein folding, share common functions in chloroplast biogenesis and leaf variegation. Consistently, pldα1 mutants showed altered level of TIC40 (a major regulator of protein import into chloroplast), differential accumulation of photosynthetic protein complexes and changed chloroplast sizes as revealed by immunoblotting, blue-native electrophoresis, and microscopic analyses, respectively. Our proteomic analysis also revealed that genetic depletion of PLDα1 also affected proteins involved in cell wall architecture, redox homeostasis, and abscisic acid signaling. Taking together, PLDα1 appears as a protein integrating cytosolic and plastidic protein translations, plastid protein degradation, and protein import into chloroplast in order to regulate chloroplast biogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Tomáš Takáč
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
| | - Olga Šamajová
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
| | - Jozef Šamaj
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czechia
- *Correspondence: Jozef Šamaj
| |
Collapse
|
356
|
Martien JI, Hebert AS, Stevenson DM, Regner MR, Khana DB, Coon JJ, Amador-Noguez D. Systems-Level Analysis of Oxygen Exposure in Zymomonas mobilis: Implications for Isoprenoid Production. mSystems 2019; 4:e00284-18. [PMID: 30801024 PMCID: PMC6372839 DOI: 10.1128/msystems.00284-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/07/2019] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis is an aerotolerant anaerobe and prolific ethanologen with attractive characteristics for industrial bioproduct generation. However, there is currently insufficient knowledge of the impact that environmental factors have on flux through industrially relevant biosynthetic pathways. Here, we examined the effect of oxygen exposure on metabolism and gene expression in Z. mobilis by combining targeted metabolomics, mRNA sequencing, and shotgun proteomics. We found that exposure to oxygen profoundly influenced metabolism, inducing both transient metabolic bottlenecks and long-term metabolic remodeling. In particular, oxygen induced a severe but temporary metabolic bottleneck in the methyl erythritol 4-phosphate pathway for isoprenoid biosynthesis caused by oxidative damage to the iron-sulfur cofactors of the final two enzymes in the pathway. This bottleneck was resolved with minimal changes in expression of isoprenoid biosynthetic enzymes. Instead, it was associated with pronounced upregulation of enzymes related to iron-sulfur cluster maintenance and biogenesis (i.e., flavodoxin reductase and the suf operon). We also detected major changes in glucose utilization in the presence of oxygen. Specifically, we observed increased gluconate production following exposure to oxygen, accounting for 18% of glucose uptake. Our results suggest that under aerobic conditions, electrons derived from the oxidation of glucose to gluconate are diverted to the electron transport chain, where they can minimize oxidative damage by reducing reactive oxygen species such as H2O2. This model is supported by the simultaneous upregulation of three membrane-bound dehydrogenases, cytochrome c peroxidase, and a cytochrome bd oxidase following exposure to oxygen. IMPORTANCE Microbially generated biofuels and bioproducts have the potential to provide a more environmentally sustainable alternative to fossil-fuel-derived products. In particular, isoprenoids, a diverse class of natural products, are chemically suitable for use as high-grade transport fuels and other commodity molecules. However, metabolic engineering for increased production of isoprenoids and other bioproducts is limited by an incomplete understanding of factors that control flux through biosynthetic pathways. Here, we examined the native regulation of the isoprenoid biosynthetic pathway in the biofuel producer Zymomonas mobilis. We leveraged oxygen exposure as a means to perturb carbon flux, allowing us to observe the formation and resolution of a metabolic bottleneck in the pathway. Our multi-omics analysis of this perturbation enabled us to identify key auxiliary enzymes whose expression correlates with increased production of isoprenoid precursors, which we propose as potential targets for future metabolic engineering.
Collapse
Affiliation(s)
- Julia I. Martien
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Genome Center of Wisconsin, Madison, Wisconsin, USA
| | - David M. Stevenson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Matthew R. Regner
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Daven B. Khana
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
357
|
Zavřel T, Faizi M, Loureiro C, Poschmann G, Stühler K, Sinetova M, Zorina A, Steuer R, Červený J. Quantitative insights into the cyanobacterial cell economy. eLife 2019; 8:42508. [PMID: 30714903 PMCID: PMC6391073 DOI: 10.7554/elife.42508] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/01/2019] [Indexed: 01/27/2023] Open
Abstract
Phototrophic microorganisms are promising resources for green biotechnology. Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic growth is still insufficiently understood. We provide a quantitative analysis of light-limited, light-saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using a reproducible cultivation setup. We report key physiological parameters, including growth rate, cell size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were quantified to monitor proteome allocation as a function of growth rate. Among other physiological acclimations, we identify an upregulation of the translational machinery and downregulation of light harvesting components with increasing light intensity and growth rate. The resulting growth laws are discussed in the context of a coarse-grained model of phototrophic growth and available data obtained by a comprehensive literature search. Our insights into quantitative aspects of cyanobacterial acclimations to different growth rates have implications to understand and optimize photosynthetic productivity.
Collapse
Affiliation(s)
- Tomáš Zavřel
- Laboratory of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| | - Marjan Faizi
- Institut für Biologie, Fachinstitut für Theoretische BiologieHumboldt-Universität zu BerlinBerlinGermany
| | - Cristina Loureiro
- Department of Applied PhysicsPolytechnic University of ValenciaValenciaSpain
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
| | - Maria Sinetova
- Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussian Federation
| | - Anna Zorina
- Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussian Federation
| | - Ralf Steuer
- Institut für Biologie, Fachinstitut für Theoretische BiologieHumboldt-Universität zu BerlinBerlinGermany
| | - Jan Červený
- Laboratory of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| |
Collapse
|
358
|
Ren Z, Qi D, Pugh N, Li K, Wen B, Zhou R, Xu S, Liu S, Jones AR. Improvements to the Rice Genome Annotation Through Large-Scale Analysis of RNA-Seq and Proteomics Data Sets. Mol Cell Proteomics 2019; 18:86-98. [PMID: 30293062 PMCID: PMC6317475 DOI: 10.1074/mcp.ra118.000832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/31/2018] [Indexed: 01/22/2023] Open
Abstract
Rice (Oryza sativa) is one of the most important worldwide crops. The genome has been available for over 10 years and has undergone several rounds of annotation. We created a comprehensive database of transcripts from 29 public RNA sequencing data sets, officially predicted genes from Ensembl plants, and common contaminants in which to search for protein-level evidence. We re-analyzed nine publicly accessible rice proteomics data sets. In total, we identified 420K peptide spectrum matches from 47K peptides and 8,187 protein groups. 4168 peptides were initially classed as putative novel peptides (not matching official genes). Following a strict filtration scheme to rule out other possible explanations, we discovered 1,584 high confidence novel peptides. The novel peptides were clustered into 692 genomic loci where our results suggest annotation improvements. 80% of the novel peptides had an ortholog match in the curated protein sequence set from at least one other plant species. For the peptides clustering in intergenic regions (and thus potentially new genes), 101 loci were identified, for which 43 had a high-confidence hit for a protein domain. Our results can be displayed as tracks on the Ensembl genome or other browsers supporting Track Hubs, to support re-annotation of the rice genome.
Collapse
Affiliation(s)
- Zhe Ren
- From the ‡BGI-Shenzhen, Shenzhen 518083, China
| | - Da Qi
- From the ‡BGI-Shenzhen, Shenzhen 518083, China
| | - Nina Pugh
- §Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Kai Li
- From the ‡BGI-Shenzhen, Shenzhen 518083, China
| | - Bo Wen
- ‖Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030;; ¶Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030
| | - Ruo Zhou
- From the ‡BGI-Shenzhen, Shenzhen 518083, China
| | - Shaohang Xu
- From the ‡BGI-Shenzhen, Shenzhen 518083, China
| | - Siqi Liu
- From the ‡BGI-Shenzhen, Shenzhen 518083, China;.
| | - Andrew R Jones
- §Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK;.
| |
Collapse
|
359
|
Zhao X, Song X, Bai X, Tan Z, Ma X, Guo J, Zhang Z, Du Q, Huang Y, Tong D. microRNA-222 Attenuates Mitochondrial Dysfunction During Transmissible Gastroenteritis Virus Infection. Mol Cell Proteomics 2019; 18:51-64. [PMID: 30257878 PMCID: PMC6317483 DOI: 10.1074/mcp.ra118.000808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/13/2018] [Indexed: 12/30/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of Coronaviridae family. Our previous research showed that TGEV infection could induce mitochondrial dysfunction and upregulate miR-222 level. Therefore, we presumed that miR-222 might be implicated in regulating mitochondrial dysfunction induced by TGEV infection. To verify the hypothesis, the effect of miR-222 on mitochondrial dysfunction was tested and we showed that miR-222 attenuated TGEV-induced mitochondrial dysfunction. To investigate the underlying molecular mechanism of miR-222 in TGEV-induced mitochondrial dysfunction, a quantitative proteomic analysis of PK-15 cells that were transfected with miR-222 mimics and infected with TGEV was performed. In total, 4151 proteins were quantified and 100 differentially expressed proteins were obtained (57 upregulated, 43 downregulated), among which thrombospondin-1 (THBS1) and cluster of differentiation 47 (CD47) were downregulated. THBS1 was identified as the target of miR-222. Knockdown of THBS1 and CD47 decreased mitochondrial Ca2+ level and increased mitochondrial membrane potential (MMP) level. Reversely, overexpression of THBS1 and CD47 elevated mitochondrial Ca2+ level and reduced mitochondrial membrane potential (MMP) level. Together, our data establish a significant role of miR-222 in regulating mitochondrial dysfunction in response to TGEV infection.
Collapse
Affiliation(s)
- Xiaomin Zhao
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiangjun Song
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaoyuan Bai
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhanhang Tan
- §Huyi District Center for Animal Disease Control and Prevention, Xi'an, Shaanxi 710300, P.R. China
| | - Xuelian Ma
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jianxiong Guo
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhichao Zhang
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qian Du
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yong Huang
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dewen Tong
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China;.
| |
Collapse
|
360
|
Martinez MA, Woodcroft BJ, Ignacio Espinoza JC, Zayed AA, Singleton CM, Boyd JA, Li YF, Purvine S, Maughan H, Hodgkins SB, Anderson D, Sederholm M, Temperton B, Bolduc B, Saleska SR, Tyson GW, Rich VI, Saleska SR, Tyson GW, Rich VI. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. Syst Appl Microbiol 2019; 42:54-66. [DOI: 10.1016/j.syapm.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
|
361
|
Grabowski P, Rappsilber J. A Primer on Data Analytics in Functional Genomics: How to Move from Data to Insight? Trends Biochem Sci 2019; 44:21-32. [PMID: 30522862 PMCID: PMC6318833 DOI: 10.1016/j.tibs.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
High-throughput methodologies and machine learning have been central in developing systems-level perspectives in molecular biology. Unfortunately, performing such integrative analyses has traditionally been reserved for bioinformaticians. This is now changing with the appearance of resources to help bench-side biologists become skilled at computational data analysis and handling large omics data sets. Here, we show an entry route into the field of omics data analytics. We provide information about easily accessible data sources and suggest some first steps for aspiring computational data analysts. Moreover, we highlight how machine learning is transforming the field and how it can help make sense of biological data. Finally, we suggest good starting points for self-learning and hope to convince readers that computational data analysis and programming are not intimidating.
Collapse
Affiliation(s)
- Piotr Grabowski
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
362
|
Erich K, Reinle K, Müller T, Munteanu B, Sammour DA, Hinsenkamp I, Gutting T, Burgermeister E, Findeisen P, Ebert MP, Krijgsveld J, Hopf C. Spatial Distribution of Endogenous Tissue Protease Activity in Gastric Carcinoma Mapped by MALDI Mass Spectrometry Imaging. Mol Cell Proteomics 2019; 18:151-161. [PMID: 30293968 PMCID: PMC6317471 DOI: 10.1074/mcp.ra118.000980] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/23/2018] [Indexed: 12/30/2022] Open
Abstract
Aberrant protease activity has been implicated in the etiology of various prevalent diseases including neurodegeneration and cancer, in particular metastasis. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has recently been established as a key technology for bioanalysis of multiple biomolecular classes such as proteins, lipids, and glycans. However, it has not yet been systematically explored for investigation of a tissue's endogenous protease activity. In this study, we demonstrate that different tissues, spray-coated with substance P as a tracer, digest this peptide with different time-course profiles. Furthermore, we reveal that distinct cleavage products originating from substance P are generated transiently and that proteolysis can be attenuated by protease inhibitors in a concentration-dependent manner. To show the translational potential of the method, we analyzed protease activity of gastric carcinoma in mice. Our MSI and quantitative proteomics results reveal differential distribution of protease activity - with strongest activity being observed in mouse tumor tissue, suggesting the general applicability of the workflow in animal pharmacology and clinical studies.
Collapse
Affiliation(s)
- Katrin Erich
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;; §Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Kevin Reinle
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Torsten Müller
- ¶German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany;; ‡‡Heidelberg University, Medical Faculty, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Bogdan Munteanu
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Denis A Sammour
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;; §Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Isabel Hinsenkamp
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Tobias Gutting
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Elke Burgermeister
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Peter Findeisen
- **Institute of Clinical Chemistry, University Medical Center Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Matthias P Ebert
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Jeroen Krijgsveld
- ¶German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany;; ‡‡Heidelberg University, Medical Faculty, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Carsten Hopf
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;; §Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;.
| |
Collapse
|
363
|
Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol 2018; 21:190-202. [PMID: 30598531 DOI: 10.1038/s41556-018-0256-3] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/20/2018] [Indexed: 11/08/2022]
Abstract
Cytotoxic chemotherapy is an effective treatment for invasive breast cancer. However, experimental studies in mice also suggest that chemotherapy has pro-metastatic effects. Primary tumours release extracellular vesicles (EVs), including exosomes, that can facilitate the seeding and growth of metastatic cancer cells in distant organs, but the effects of chemotherapy on tumour-derived EVs remain unclear. Here we show that two classes of cytotoxic drugs broadly employed in pre-operative (neoadjuvant) breast cancer therapy, taxanes and anthracyclines, elicit tumour-derived EVs with enhanced pro-metastatic capacity. Chemotherapy-elicited EVs are enriched in annexin A6 (ANXA6), a Ca2+-dependent protein that promotes NF-κB-dependent endothelial cell activation, Ccl2 induction and Ly6C+CCR2+ monocyte expansion in the pulmonary pre-metastatic niche to facilitate the establishment of lung metastasis. Genetic inactivation of Anxa6 in cancer cells or Ccr2 in host cells blunts the pro-metastatic effects of chemotherapy-elicited EVs. ANXA6 is detected, and potentially enriched, in the circulating EVs of breast cancer patients undergoing neoadjuvant chemotherapy.
Collapse
|
364
|
Berges M, Michel AM, Lassek C, Nuss AM, Beckstette M, Dersch P, Riedel K, Sievers S, Becher D, Otto A, Maaß S, Rohde M, Eckweiler D, Borrero-de Acuña JM, Jahn M, Neumann-Schaal M, Jahn D. Iron Regulation in Clostridioides difficile. Front Microbiol 2018; 9:3183. [PMID: 30619231 PMCID: PMC6311696 DOI: 10.3389/fmicb.2018.03183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen Clostridioides difficile were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (15 μM) the C. difficile fur mutant displayed a growth deficiency compared to wild type C. difficile cells. Several iron and siderophore transporter genes were induced by Fur during low iron (0.2 μM) conditions. The major adaptation to low iron conditions was observed for the central energy metabolism. Most ferredoxin-dependent amino acid fermentations were significantly down regulated (had, etf, acd, grd, trx, bdc, hbd). The substrates of these pathways phenylalanine, leucine, glycine and some intermediates (phenylpyruvate, 2-oxo-isocaproate, 3-hydroxy-butyryl-CoA, crotonyl-CoA) accumulated, while end products like isocaproate and butyrate were found reduced. Flavodoxin (fldX) formation and riboflavin biosynthesis (rib) were enhanced, most likely to replace the missing ferredoxins. Proline reductase (prd), the corresponding ion pumping RNF complex (rnf) and the reaction product 5-aminovalerate were significantly enhanced. An ATP forming ATPase (atpCDGAHFEB) of the F0F1-type was induced while the formation of a ATP-consuming, proton-pumping V-type ATPase (atpDBAFCEKI) was decreased. The [Fe-S] enzyme-dependent pyruvate formate lyase (pfl), formate dehydrogenase (fdh) and hydrogenase (hyd) branch of glucose utilization and glycogen biosynthesis (glg) were significantly reduced, leading to an accumulation of glucose and pyruvate. The formation of [Fe-S] enzyme carbon monoxide dehydrogenase (coo) was inhibited. The fur mutant showed an increased sensitivity to vancomycin and polymyxin B. An intensive remodeling of the cell wall was observed, Polyamine biosynthesis (spe) was induced leading to an accumulation of spermine, spermidine, and putrescine. The fur mutant lost most of its flagella and motility. Finally, the CRISPR/Cas and a prophage encoding operon were downregulated. Fur binding sites were found upstream of around 20 of the regulated genes. Overall, adaptation to low iron conditions in C. difficile focused on an increase of iron import, a significant replacement of iron requiring metabolic pathways and the restructuring of the cell surface for protection during the complex adaptation phase and was only partly directly regulated by Fur.
Collapse
Affiliation(s)
- Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika-Marisa Michel
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Christian Lassek
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Aaron M Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Katharina Riedel
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Andreas Otto
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Denitsa Eckweiler
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Martina Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
365
|
Shender V, Arapidi G, Butenko I, Anikanov N, Ivanova O, Govorun V. Peptidome profiling dataset of ovarian cancer and non-cancer proximal fluids: Ascites and blood sera. Data Brief 2018; 22:557-562. [PMID: 30627607 PMCID: PMC6321966 DOI: 10.1016/j.dib.2018.12.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/03/2022] Open
Abstract
Despite a large number of proteomic studies of biological fluids from ovarian cancer patients, there is a lack of sensitive screening methods in clinical practice (Kim et al., 2016) (DOI:https://doi.org/10.1111/cas.12987[1]). Low molecular weight endogenous peptides more easily diffuse across endothelial barriers than proteins and can be more relevant biomarker candidates (Meo et al., 2016) (DOI:https://doi.org/10.18632/oncotarget.8931[2], (Bery et al., 2014) DOI:https://doi.org/10.1186/1559-0275-11-13[3], (Huang et al., 2018) DOI:https://doi.org/10.1097/IGC.0000000000001166[4]). Detailed peptidomic analysis of 26 ovarian cancer and 15 non-cancer samples of biological fluids (ascites and sera) were performed using TripleTOF 5600+ mass-spectrometer. Prior to LC-MS/MS analysis, peptides were extracted from biological fluids using anion exchange sorbent with subsequent peptide desorption from the surface of highly abundant proteins. In total, we identified 4874 peptides; 3123 peptides were specific for the ovarian cancer samples. The mass-spectrometry peptidomics data presented in this data article have been deposited to the ProteomeXchange Consortium (Deutsch et al., 2017) (DOI:https://doi.org/10.1093/nar/gkw936[5]) via the PRIDE partner repository with the dataset identifier PXD009382 and https://doi.org/10.6019/PXD009382, http://www.ebi.ac.uk/pride/archive/projects/PXD009382.
Collapse
Affiliation(s)
- Victoria Shender
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation
| | - Georgij Arapidi
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation.,Moscow Institute of Physics and Technology (State University), Institutskii Per. 9, Moscow Region, Dolgoprudny 141700, Russian Federation
| | - Ivan Butenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation.,Moscow Institute of Physics and Technology (State University), Institutskii Per. 9, Moscow Region, Dolgoprudny 141700, Russian Federation
| | - Nikolay Anikanov
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation
| | - Olga Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation.,Moscow Institute of Physics and Technology (State University), Institutskii Per. 9, Moscow Region, Dolgoprudny 141700, Russian Federation
| |
Collapse
|
366
|
A quantitative proteomic analysis of cofilin phosphorylation in myeloid cells and its modulation using the LIM kinase inhibitor Pyr1. PLoS One 2018; 13:e0208979. [PMID: 30550596 PMCID: PMC6294390 DOI: 10.1371/journal.pone.0208979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/28/2018] [Indexed: 01/10/2023] Open
Abstract
LIM kinases are located at a strategic crossroad, downstream of several signaling pathways and upstream of effectors such as microtubules and the actin cytoskeleton. Cofilin is the only LIM kinases substrate that is well described to date, and its phosphorylation on serine 3 by LIM kinases controls cofilin actin-severing activity. Consequently, LIM kinases inhibition leads to actin cytoskeleton disorganization and blockade of cell motility, which makes this strategy attractive in anticancer treatments. LIMK has also been reported to be involved in pathways that are deregulated in hematologic malignancies, with little information regarding cofilin phosphorylation status. We have used proteomic approaches to investigate quantitatively and in detail the phosphorylation status of cofilin in myeloid tumor cell lines of murine and human origin. Our results show that under standard conditions, only a small fraction (10 to 30% depending on the cell line) of cofilin is phosphorylated (including serine 3 phosphorylation). In addition, after a pharmacological inhibition of LIM kinases, a residual cofilin phosphorylation is observed on serine 3. Interestingly, this 2D gel based proteomic study identified new phosphorylation sites on cofilin, such as threonine 63, tyrosine 82 and serine 108.
Collapse
|
367
|
Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways. Cell Syst 2018; 7:613-626.e5. [PMID: 30553726 DOI: 10.1016/j.cels.2018.10.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/12/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Transcriptional and translational feedback loops in fungi and animals drive circadian rhythms in transcript levels that provide output from the clock, but post-transcriptional mechanisms also contribute. To determine the extent and underlying source of this regulation, we applied newly developed analytical tools to a long-duration, deeply sampled, circadian proteomics time course comprising half of the proteome. We found a quarter of expressed proteins are clock regulated, but >40% of these do not arise from clock-regulated transcripts, and our analysis predicts that these protein rhythms arise from oscillations in translational rates. Our data highlighted the impact of the clock on metabolic regulation, with central carbon metabolism reflecting both transcriptional and post-transcriptional control and opposing metabolic pathways showing peak activities at different times of day. The transcription factor CSP-1 plays a role in this metabolic regulation, contributing to the rhythmicity and phase of clock-regulated proteins.
Collapse
|
368
|
Aslebagh R, Channaveerappa D, Arcaro KF, Darie CC. Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis 2018; 39:653-665. [PMID: 29193311 DOI: 10.1002/elps.201700123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Detection of breast cancer (BC) in young women is challenging because mammography, the most common tool for detecting BC, is not effective on the dense breast tissue characteristic of young women. In addition to the limited means for detecting their BC, young women face a transient increased risk of pregnancy-associated BC. As a consequence, reproductively active women could benefit significantly from a tool that provides them with accurate risk assessment and early detection of BC. One potential method for detection of BC is biochemical monitoring of proteins and other molecules in bodily fluids such as serum, nipple aspirate, ductal lavage, tear, urine, saliva and breast milk. Of all these fluids, only breast milk provides access to a large volume of breast tissue, in the form of exfoliated epithelial cells, and to the local breast environment, in the form of molecules in the milk. Thus, analysis of breast milk is a non-invasive method with significant potential for assessing BC risk. Here we analyzed human breast milk by mass spectrometry (MS)-based proteomics to build a biomarker signature for early detection of BC. Ten milk samples from eight women provided five paired-groups (cancer versus control) for analysis of dysregulatedproteins: two within woman comparisons (milk from a diseased breast versus a healthy breast of the same woman) and three across women comparisons (milk from a woman with cancer versus a woman without cancer). Despite a wide range in the time between milk donation and cancer diagnosis (cancer diagnosis occurred from 1 month before to 24 months after milk donation), the levels of some proteins differed significantly between cancer and control in several of the five comparison groups. These pilot data are supportive of the idea that molecular analysis of breast milk will identify proteins informative for early detection and accurate assessment of BC risk, and warrant further research. Data are available via ProteomeXchange with identifier PXD007066.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Devika Channaveerappa
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Kathleen F Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
369
|
Bandini G, Leon DR, Hoppe CM, Zhang Y, Agop-Nersesian C, Shears MJ, Mahal LK, Routier FH, Costello CE, Samuelson J. O-Fucosylation of thrombospondin-like repeats is required for processing of microneme protein 2 and for efficient host cell invasion by Toxoplasma gondii tachyzoites. J Biol Chem 2018; 294:1967-1983. [PMID: 30538131 DOI: 10.1074/jbc.ra118.005179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/10/2018] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that causes disseminated infections that can produce neurological damage in fetuses and immunocompromised individuals. Microneme protein 2 (MIC2), a member of the thrombospondin-related anonymous protein (TRAP) family, is a secreted protein important for T. gondii motility, host cell attachment, invasion, and egress. MIC2 contains six thrombospondin type I repeats (TSRs) that are modified by C-mannose and O-fucose in Plasmodium spp. and mammals. Here, using MS analysis, we found that the four TSRs in T. gondii MIC2 with protein O-fucosyltransferase 2 (POFUT2) acceptor sites are modified by a dHexHex disaccharide, whereas Trp residues within three TSRs are also modified with C-mannose. Disruption of genes encoding either POFUT2 or the putative GDP-fucose transporter (NST2) resulted in loss of MIC2 O-fucosylation, as detected by an antibody against the GlcFuc disaccharide, and in markedly reduced cellular levels of MIC2. Furthermore, in 10-15% of the Δpofut2 or Δnst2 vacuoles, MIC2 accumulated earlier in the secretory pathway rather than localizing to micronemes. Dissemination of tachyzoites in human foreskin fibroblasts was reduced for these knockouts, which both exhibited defects in attachment to and invasion of host cells comparable with the Δmic2 phenotype. These results, indicating that O-fucosylation of TSRs is required for efficient processing of MIC2 and for normal parasite invasion, are consistent with the recent demonstration that Plasmodium falciparum Δpofut2 strain has decreased virulence and also support a conserved role for this glycosylation pathway in quality control of TSR-containing proteins in eukaryotes.
Collapse
Affiliation(s)
- Giulia Bandini
- From the Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Deborah R Leon
- the Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Carolin M Hoppe
- the Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| | - Yue Zhang
- the Department of Chemistry, Biomedical Chemistry Institute, New York University, New York, New York 10003, and
| | - Carolina Agop-Nersesian
- From the Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Melanie J Shears
- the Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Lara K Mahal
- the Department of Chemistry, Biomedical Chemistry Institute, New York University, New York, New York 10003, and
| | - Françoise H Routier
- the Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| | - Catherine E Costello
- the Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - John Samuelson
- From the Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
370
|
Paik YK, Lane L, Kawamura T, Chen YJ, Cho JY, LaBaer J, Yoo JS, Domont G, Corrales F, Omenn GS, Archakov A, Encarnación-Guevara S, Lui S, Salekdeh GH, Cho JY, Kim CY, Overall CM. Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function. J Proteome Res 2018; 17:4042-4050. [PMID: 30269496 PMCID: PMC6693327 DOI: 10.1021/acs.jproteome.8b00383] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An important goal of the Human Proteome Organization (HUPO) Chromosome-centric Human Proteome Project (C-HPP) is to correctly define the number of canonical proteins encoded by their cognate open reading frames on each chromosome in the human genome. When identified with high confidence of protein evidence (PE), such proteins are termed PE1 proteins in the online database resource, neXtProt. However, proteins that have not been identified unequivocally at the protein level but that have other evidence suggestive of their existence (PE2-4) are termed missing proteins (MPs). The number of MPs has been reduced from 5511 in 2012 to 2186 in 2018 (neXtProt 2018-01-17 release). Although the annotation of the human proteome has made significant progress, the "parts list" alone does not inform function. Indeed, 1937 proteins representing ∼10% of the human proteome have no function either annotated from experimental characterization or predicted by homology to other proteins. Specifically, these 1937 "dark proteins" of the so-called dark proteome are composed of 1260 functionally uncharacterized but identified PE1 proteins, designated as uPE1, plus 677 MPs from categories PE2-PE4, which also have no known or predicted function and are termed uMPs. At the HUPO-2017 Annual Meeting, the C-HPP officially adopted the uPE1 pilot initiative, with 14 participating international teams later committing to demonstrate the feasibility of the functional characterization of large numbers of dark proteins (CP), starting first with 50 uPE1 proteins, in a stepwise chromosome-centric organizational manner. The second aim of the feasibility phase to characterize protein (CP) functions of 50 uPE1 proteins, termed the neXt-CP50 initiative, is to utilize a variety of approaches and workflows according to individual team expertise, interest, and resources so as to enable the C-HPP to recommend experimentally proven workflows to the proteome community within 3 years. The results from this pilot will not only be the cornerstone of a larger characterization initiative but also enhance understanding of the human proteome and integrated cellular networks for the discovery of new mechanisms of pathology, mechanistically informative biomarkers, and rational drug targets.
Collapse
Affiliation(s)
- Young-Ki Paik
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Lydie Lane
- CALIPHO group, Swiss Institute of Bioinformatics & Department of Microbiology and Molecular medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0032 Japan
| | - Yu-Ju Chen
- Institute of Chemistry Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei 115 Taiwan
| | - Je-Yoel Cho
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul University, 1 Gwanak-, Gwanak-gu, 151-742 Seoul, South Korea
| | - Joshua LaBaer
- McAllister Ave. Arizona State University, Tempe, Arizona, 85287-5001, USA
| | - Jong Shin Yoo
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Korea
| | - Gilberto Domont
- Federal University of Rio de Janeiro Institute of Chemistry, Rio de Janeiro, RJ Brazil
| | - Fernando Corrales
- Functional Proteomics Laboratory National Center of Biotechnology, CSIC 28049 Madrid, Spain
| | - Gilbert S. Omenn
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | | | | | - Siqi Lui
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, 1665659911, Tehran, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Jin-Young Cho
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Christopher M. Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, and Biochemistry & Molecular Biology, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
371
|
Nagy I, Sun N, Varga S, Boicu M, Zinzula L, Kukolya J. Proteomics Analysis of Thermoplasma Quinone Droplets. Proteomics 2018; 19:e1800317. [PMID: 30520262 DOI: 10.1002/pmic.201800317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/30/2018] [Indexed: 11/11/2022]
Abstract
A novel type of lipid droplet/lipoprotein (LD/LP) particle from Thermoplasma acidophilum has been identified recently, and based on biochemical evidences, it was named Thermoplasma Quinone Droplet (TaQD). The major components of TaQDs are menaquinones, and to some extent polar lipids, and the 153 amino acid long Ta0547 vitellogenin-N domain protein. In this paper, the aim is to identify TaQD proteome components with 1D-SDS-PAGE/LC-MS/MS and cross reference them with Edman degradation. TaQD samples isolated with three different purification methods-column chromatography, immunoprecipitation, and LD ultracentrifugation-are analyzed. Proteins Ta0093, Ta0182, Ta0337, Ta0437, Ta0438, Ta0547, and Ta1223a are identified as constituents of the TaQD proteome. The majority of these proteins is uncharacterized and has low molecular weight, and none of them is predicted to take part in lipid metabolism. Bioinformatics analyses does not predict any interaction between these proteins, however, there are indications of interactions with proteins taking part in lipid metabolism. Whether if TaQDs provide platform for lipid metabolism and the interactions between TaQD proteins and lipid metabolism proteins occur in the reality remain for further studies.
Collapse
Affiliation(s)
- István Nagy
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried (Planegg), Germany
| | - Na Sun
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried (Planegg), Germany
| | - Sándor Varga
- Department of Applied and Environmental Microbiology, National Agricultural Research and Innovation Centre, H-1022, Budapest, Hungary
| | - Marius Boicu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried (Planegg), Germany
| | - Luca Zinzula
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried (Planegg), Germany
| | - József Kukolya
- Department of Applied and Environmental Microbiology, National Agricultural Research and Innovation Centre, H-1022, Budapest, Hungary
| |
Collapse
|
372
|
Laumont CM, Vincent K, Hesnard L, Audemard É, Bonneil É, Laverdure JP, Gendron P, Courcelles M, Hardy MP, Côté C, Durette C, St-Pierre C, Benhammadi M, Lanoix J, Vobecky S, Haddad E, Lemieux S, Thibault P, Perreault C. Noncoding regions are the main source of targetable tumor-specific antigens. Sci Transl Med 2018; 10:10/470/eaau5516. [DOI: 10.1126/scitranslmed.aau5516] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
Tumor-specific antigens (TSAs) represent ideal targets for cancer immunotherapy, but few have been identified thus far. We therefore developed a proteogenomic approach to enable the high-throughput discovery of TSAs coded by potentially all genomic regions. In two murine cancer cell lines and seven human primary tumors, we identified a total of 40 TSAs, about 90% of which derived from allegedly noncoding regions and would have been missed by standard exome-based approaches. Moreover, most of these TSAs derived from nonmutated yet aberrantly expressed transcripts (such as endogenous retroelements) that could be shared by multiple tumor types. Last, we demonstrated that, in mice, the strength of antitumor responses after TSA vaccination was influenced by two parameters that can be estimated in humans and could serve for TSA prioritization in clinical studies: TSA expression and the frequency of TSA-responsive T cells in the preimmune repertoire. In conclusion, the strategy reported herein could considerably facilitate the identification and prioritization of actionable human TSAs.
Collapse
|
373
|
de Lamo FJ, Constantin ME, Fresno DH, Boeren S, Rep M, Takken FLW. Xylem Sap Proteomics Reveals Distinct Differences Between R Gene- and Endophyte-Mediated Resistance Against Fusarium Wilt Disease in Tomato. Front Microbiol 2018; 9:2977. [PMID: 30564219 PMCID: PMC6288350 DOI: 10.3389/fmicb.2018.02977] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
Resistance (R) genes and endophytic organisms can both protect plants against pathogens. Although the outcome of both processes is the same, little is known about the commonalities and differences between both immune responses. Here we set out to phenotypically characterize both responses in the tomato-Fusarium pathosystem, and to identify markers to distinguish these responses at the molecular level. As endophyte Fusarium oxysporum (Fo) strain Fo47 was employed, which confers protection against various pathogens, including the vascular wilt fungus F. oxysporum f.sp. lycopersici (Fol). As R-gene conferring Fol resistance, the I-2 gene of tomato (Solanum lycopersicum) was used. Fol colonizes the xylem vessels of susceptible and I-2 resistant tomato plants, but only causes disease in the former. Fol was found to colonize the vasculature of endophyte-colonized plants, and could be isolated from stems of non-diseased plants co-inoculated with Fo47 and Fol. Because the xylem vessels form the main interface between plant and pathogen, the xylem sap proteomes during R gene- and Endophyte-Mediated Resistance (RMR and EMR) were compared using label-free quantitative nLC-MS/MS. Surprisingly, both proteomes were remarkably similar to the mock, revealing only one or two differentially accumulated proteins in the respective resistant interactions. Whereas in I-2 plants the accumulation of the pathogenesis-related protein PR-5x was strongly induced by Fol, the endophyte triggered induction of both NP24, another PR-5 isoform, and of a β-glucanase in the presence of Fol. Notably, over 54% of the identified xylem sap proteins have a predicted intracellular localization, which implies that these might be present in exosomes. In conclusion, whereas both resistance mechanisms permit the pathogen to colonize the vasculature, this does not result in disease and this resistance coincides with specific induction of two distinct PR-5 isoforms and a β-glucanase.
Collapse
Affiliation(s)
- Francisco J. de Lamo
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Maria E. Constantin
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - David H. Fresno
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
374
|
Kovalchik KA, Colborne S, Spencer SE, Sorensen PH, Chen DDY, Morin GB, Hughes CS. RawTools: Rapid and Dynamic Interrogation of Orbitrap Data Files for Mass Spectrometer System Management. J Proteome Res 2018; 18:700-708. [PMID: 30462513 DOI: 10.1021/acs.jproteome.8b00721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optimizing the quality of proteomics data collected from a mass spectrometer (MS) requires careful selection of acquisition parameters and proper assessment of instrument performance. Software tools capable of extracting a broad set of information from raw files, including meta, scan, quantification, and identification data, are needed to provide guidance for MS system management. In this work, direct extraction and utilization of these data is demonstrated using RawTools, a standalone tool for extracting meta and scan data directly from raw MS files generated on Thermo Orbitrap instruments. RawTools generates summarized and detailed plain text outputs after parsing individual raw files, including scan rates and durations, duty cycle characteristics, precursor and reporter ion quantification, and chromatography performance. RawTools also contains a diagnostic module that includes an optional "preview" database search for facilitating informed decision-making related to optimization of MS performance based on a variety of metrics. RawTools has been developed in C# and utilizes the Thermo RawFileReader library and thus can process raw MS files with high speed and high efficiency on all major operating systems (Windows, MacOS, Linux). To demonstrate the utility of RawTools, the extraction of meta and scan data from both individual and large collections of raw MS files was carried out to identify problematic characteristics of instrument performance. Taken together, the combined rich feature-set of RawTools with the capability for interrogation of MS and experiment performance makes this software a valuable tool for proteomics researchers.
Collapse
Affiliation(s)
- Kevin A Kovalchik
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada.,Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Shane Colborne
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Sandra Elizabeth Spencer
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Poul H Sorensen
- Department of Molecular Oncology , British Columbia Cancer Research Centre , Vancouver , British Columbia V5Z 1L3 , Canada
| | - David D Y Chen
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada.,Department of Medical Genetics , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Christopher S Hughes
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada.,Department of Molecular Oncology , British Columbia Cancer Research Centre , Vancouver , British Columbia V5Z 1L3 , Canada
| |
Collapse
|
375
|
Wolf A, Liesinger L, Spoerk S, Schittmayer M, Lang-Loidolt D, Birner-Gruenberger R, Tomazic PV. Olfactory cleft proteome does not reflect olfactory performance in patients with idiopathic and postinfectious olfactory disorder: A pilot study. Sci Rep 2018; 8:17554. [PMID: 30510230 PMCID: PMC6277379 DOI: 10.1038/s41598-018-35776-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/09/2018] [Indexed: 01/15/2023] Open
Abstract
Technical advances including liquid chromatography-tandem mass spectrometry and its data analysis enable detailed proteomic analysis of the nasal mucus. Alterations of the nasal mucus proteome may provoke substantial changes of the nasal physiology and have already been associated with rhinologic diseases such as allergic rhinitis. This study was conducted as a pilot study to map the olfactory cleft proteome using current techniques for proteomic analysis. Furthermore, we aimed to investigate proteomic changes as potential biomarkers in patients suffering from idiopathic and postinfectious olfactory disorders compared to healthy controls. Seven patients with idiopathic hyposmia and anosmia, seven patients with postinfectious hyposmia and anosmia and seven healthy controls were included in this study. In total, 1117 different proteins were detected in at least five patients in at least one group. Results of this study did not reveal significant differences regarding the proteomic composition of the olfactory cleft mucus between patients versus healthy controls. Among proteins involved in olfactory perception the G protein family was detected but also found unchanged between groups. Investigation of protein composition by liquid chromatography-tandem mass spectrometry enabled us to perform an in-depth analysis of the olfactory cleft mucus proteome regarding the diversity of different proteins in individual patients. However untargeted proteomics of the olfactory cleft mucus may not be an applicable approach to develop biomarkers for olfactory disorders. Targeted analyses of distinct proteins known to be involved in olfactory perception but not detected by our approach, e.g. odorant binding proteins, may provide more information regarding pathophysiology of olfactory diseases.
Collapse
Affiliation(s)
- Axel Wolf
- Department of Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036, Graz, Austria
| | - Laura Liesinger
- Gottfried Schatz Research Center, Medical University of Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
| | - Stefan Spoerk
- Gottfried Schatz Research Center, Medical University of Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
| | - Matthias Schittmayer
- Gottfried Schatz Research Center, Medical University of Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
| | - Doris Lang-Loidolt
- Department of Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036, Graz, Austria
| | - Ruth Birner-Gruenberger
- Gottfried Schatz Research Center, Medical University of Graz, Stiftingtalstrasse 24, 8010, Graz, Austria.
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria.
| | - Peter V Tomazic
- Department of Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036, Graz, Austria.
| |
Collapse
|
376
|
Schmelter C, Funke S, Treml J, Beschnitt A, Perumal N, Manicam C, Pfeiffer N, Grus FH. Comparison of Two Solid-Phase Extraction (SPE) Methods for the Identification and Quantification of Porcine Retinal Protein Markers by LC-MS/MS. Int J Mol Sci 2018; 19:E3847. [PMID: 30513899 PMCID: PMC6321002 DOI: 10.3390/ijms19123847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 01/08/2023] Open
Abstract
Proper sample preparation protocols represent a critical step for liquid chromatography-mass spectrometry (LC-MS)-based proteomic study designs and influence the speed, performance and automation of high-throughput data acquisition. The main objective of this study was to compare two commercial solid-phase extraction (SPE)-based sample preparation protocols (comprising SOLAµTM HRP SPE spin plates from Thermo Fisher Scientific and ZIPTIP® C18 pipette tips from Merck Millipore) for analytical performance, reproducibility, and analysis speed. The house swine represents a promising animal model for studying human eye diseases including glaucoma and provides excellent requirements for the qualitative and quantitative MS-based comparison in terms of ocular proteomics. In total six technical replicates of two protein fractions [extracted with 0.1% dodecyl-ß-maltoside (DDM) or 1% trifluoroacetic acid (TFA)] of porcine retinal tissues were subjected to in-gel trypsin digestion and purified with both SPE-based workflows (N = 3) prior to LC-MS analysis. On average, 550 ± 70 proteins (1512 ± 199 peptides) and 305 ± 48 proteins (806 ± 144 peptides) were identified from DDM and TFA protein fractions, respectively, after ZIPTIP® C18 purification, and SOLAµTM workflow resulted in the detection of 513 ± 55 proteins (1347 ± 180 peptides) and 300 ± 33 proteins (722 ± 87 peptides), respectively (FDR < 1%). Venn diagram analysis revealed an average overlap of 65 ± 2% (DDM fraction) and 69 ± 4% (TFA fraction) in protein identifications between both SPE-based methods. Quantitative analysis of 25 glaucoma-related protein markers also showed no significant differences (P > 0.05) regarding protein recovery between both SPE methods. However, only glaucoma-associated marker MECP2 showed a significant (P = 0.02) higher abundance in ZIPTIP®-purified replicates in comparison to SOLAµTM-treated study samples. Nevertheless, this result was not confirmed in the verification experiment using in-gel trypsin digestion of recombinant MECP2 (P = 0.24). In conclusion, both SPE-based purification methods worked equally well in terms of analytical performance and reproducibility, whereas the analysis speed and the semi-automation of the SOLAµTM spin plates workflow is much more convenient in comparison to the ZIPTIP® C18 method.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Sebastian Funke
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Jana Treml
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Anja Beschnitt
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Caroline Manicam
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Franz H Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|
377
|
Busche T, Hillion M, Van Loi V, Berg D, Walther B, Semmler T, Strommenger B, Witte W, Cuny C, Mellmann A, Holmes MA, Kalinowski J, Adrian L, Bernhardt J, Antelmann H. Comparative Secretome Analyses of Human and Zoonotic Staphylococcus aureus Isolates CC8, CC22, and CC398. Mol Cell Proteomics 2018; 17:2412-2433. [PMID: 30201737 PMCID: PMC6283302 DOI: 10.1074/mcp.ra118.001036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 12/24/2022] Open
Abstract
The spread of methicillin-resistant Staphylococcus aureus (MRSA) in the community, hospitals and in livestock is mediated by highly diverse virulence factors that include secreted toxins, superantigens, enzymes and surface-associated adhesins allowing host adaptation and colonization. Here, we combined proteogenomics, secretome and phenotype analyses to compare the secreted virulence factors in selected S. aureus isolates of the dominant human- and livestock-associated genetic lineages CC8, CC22, and CC398. The proteogenomic comparison revealed 2181 core genes and 1306 accessory genes in 18 S. aureus isolates reflecting the high genome diversity. Using secretome analysis, we identified 869 secreted proteins with 538 commons in eight isolates of CC8, CC22, and CC398. These include 64 predicted extracellular and 37 cell surface proteins that account for 82.4% of total secretome abundance. Among the top 10 most abundantly secreted virulence factors are the major autolysins (Atl, IsaA, Sle1, SAUPAN006375000), lipases and lipoteichoic acid hydrolases (Lip, Geh, LtaS), cytolytic toxins (Hla, Hlb, PSMβ1) and proteases (SspB). The CC398 isolates showed lower secretion of cell wall proteins, but higher secretion of α- and β-hemolysins (Hla, Hlb) which correlated with an increased Agr activity and strong hemolysis. CC398 strains were further characterized by lower biofilm formation and staphyloxanthin levels because of decreased SigB activity. Overall, comparative secretome analyses revealed CC8- or CC22-specific enterotoxin and Spl protease secretion as well as Agr- and SigB-controlled differences in exotoxin and surface protein secretion between human-specific and zoonotic lineages of S. aureus.
Collapse
Affiliation(s)
- Tobias Busche
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany; Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | - Mélanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - David Berg
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Birgit Walther
- Robert Koch Institute, Advanced Light and Electron Microscopy, D-13353 Berlin, Germany; Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, D-14153 Berlin, Germany
| | - Torsten Semmler
- Robert Koch Institute, Advanced Light and Electron Microscopy, D-13353 Berlin, Germany
| | | | - Wolfgang Witte
- Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Christiane Cuny
- Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, D-48149 Münster, Germany
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, D-13355 Berlin, Germany
| | - Jörg Bernhardt
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany; Institute for Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
378
|
Hoegl A, Nodwell MB, Kirsch VC, Bach NC, Pfanzelt M, Stahl M, Schneider S, Sieber SA. Mining the cellular inventory of pyridoxal phosphate-dependent enzymes with functionalized cofactor mimics. Nat Chem 2018; 10:1234-1245. [PMID: 30297752 PMCID: PMC6252082 DOI: 10.1038/s41557-018-0144-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/03/2018] [Indexed: 02/01/2023]
Abstract
Pyridoxal phosphate (PLP) is an enzyme cofactor required for the chemical transformation of biological amines in many central cellular processes. PLP-dependent enzymes (PLP-DEs) are ubiquitous and evolutionarily diverse, making their classification based on sequence homology challenging. Here we present a chemical proteomic method for reporting on PLP-DEs using functionalized cofactor probes. We synthesized pyridoxal analogues modified at the 2'-position, which are taken up by cells and metabolized in situ. These pyridoxal analogues are phosphorylated to functional cofactor surrogates by cellular pyridoxal kinases and bind to PLP-DEs via an aldimine bond which can be rendered irreversible by NaBH4 reduction. Conjugation to a reporter tag enables the subsequent identification of PLP-DEs using quantitative, label-free mass spectrometry. Using these probes we accessed a significant portion of the Staphylococcus aureus PLP-DE proteome (73%) and annotate uncharacterized proteins as novel PLP-DEs. We also show that this approach can be used to study structural tolerance within PLP-DE active sites and to screen for off-targets of the PLP-DE inhibitor D-cycloserine.
Collapse
Affiliation(s)
- Annabelle Hoegl
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching, Germany
| | - Matthew B Nodwell
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching, Germany
| | - Volker C Kirsch
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching, Germany
| | - Nina C Bach
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching, Germany
| | - Martin Pfanzelt
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching, Germany
| | - Matthias Stahl
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching, Germany
| | - Sabine Schneider
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching, Germany
| | - Stephan A Sieber
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Garching, Germany.
| |
Collapse
|
379
|
Krilis M, Qi M, Qi J, Wong JWH, Guymer R, Liew G, Hunyor AP, Madigan M, McCluskey P, Weaver J, Krilis SA, Giannakopoulos B. Dual roles of different redox forms of complement factor H in protecting against age related macular degeneration. Free Radic Biol Med 2018; 129:237-246. [PMID: 30253188 DOI: 10.1016/j.freeradbiomed.2018.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/22/2022]
Abstract
Complement Factor H (CFH) is an important inhibitor of the alternate complement pathway in Bruch's membrane (BM), located between the choriocapillaris and the retinal pigment epithelium. Furthermore dysfunction of its activity as occurs with certain polymorphisms is associated with an increased risk of age related macular degeneration (AMD). The retina is a site of high generation of reactive oxygen species (ROS) and dysfunction of redox homeostasis in this milieu also contributes to AMD pathogenesis. In this study we wanted to explore if CFH exists in distinct redox forms and whether these species have unique protective biological functions. CFH can be reduced by the naturally occurring thioredoxin - 1 in CFH domains 1-4, 17-20. We found a duality of function between the oxidised and reduced forms of CFH. The oxidised form was more efficient in binding to C3b and lipid peroxidation by-products that are known to accumulate in the retinae and activate the alternate complement pathway. Oxidised CFH enhances Factor I mediated cleavage of C3 and C3b whereas the reduced form loses this activity. In the setting of oxidative stress (hydrogen peroxide)-mediated death of human retinal pigment epithelial cells as can occur in AMD, the free thiol form of CFH offers a protective function compared to the oxidised form. We found for the first time using a novel ELISA system we have developed for free thiol CFH, that both redox forms of CFH are found in the human plasma. Furthermore there is a distinct ratio of these redox forms in plasma depending if an individual has early or late AMD, with individuals with early AMD having higher levels of the free thiol form compared to late AMD.
Collapse
Affiliation(s)
- Matthew Krilis
- Save Sight Institute, University of Sydney and Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, Australia
| | - Miao Qi
- Department of Infectious Diseases, Immunology and Sexual Health St George Hospital 2, South Street, Kogarah, Sydney, NSW, Australia; Faculty of Medicine, St George and Sutherland Clinical School, University of New South Wales, St George Hospital, Sydney, NSW, Australia
| | - Jian Qi
- Department of Infectious Diseases, Immunology and Sexual Health St George Hospital 2, South Street, Kogarah, Sydney, NSW, Australia; Faculty of Medicine, St George and Sutherland Clinical School, University of New South Wales, St George Hospital, Sydney, NSW, Australia
| | - Jason W H Wong
- Prince of Wales Clinical School and Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gerald Liew
- Westmead Institute for Medical Research University of Sydney, NSW, Australia
| | - Alex P Hunyor
- Save Sight Institute, University of Sydney and Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, Australia
| | - Michele Madigan
- Save Sight Institute, University of Sydney and Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, Australia; School of Optometry and Visual Science, University of New South Wales, Sydney, NSW, Australia
| | - Peter McCluskey
- Save Sight Institute, University of Sydney and Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, Australia
| | - James Weaver
- Faculty of Medicine, St George and Sutherland Clinical School, University of New South Wales, St George Hospital, Sydney, NSW, Australia; Department of Cardiology, St George Hospital, Sydney, New South Wales, Australia
| | - Steven A Krilis
- Department of Infectious Diseases, Immunology and Sexual Health St George Hospital 2, South Street, Kogarah, Sydney, NSW, Australia; Faculty of Medicine, St George and Sutherland Clinical School, University of New South Wales, St George Hospital, Sydney, NSW, Australia
| | - Bill Giannakopoulos
- Department of Infectious Diseases, Immunology and Sexual Health St George Hospital 2, South Street, Kogarah, Sydney, NSW, Australia; Faculty of Medicine, St George and Sutherland Clinical School, University of New South Wales, St George Hospital, Sydney, NSW, Australia; Department of Rheumatology, St George Hospital, Belgrave Street, Kogarah, Sydney, NSW, Australia.
| |
Collapse
|
380
|
Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M, Hollinshead MS, McWhinnie A, Esposito L, Fernando R, Skelton H, Reimann F, Gribble FM, Sharkey A, Marsh SGE, O'Rahilly S, Hemberger M, Burton GJ, Moffett A. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 2018; 564:263-267. [PMID: 30487605 PMCID: PMC7220805 DOI: 10.1038/s41586-018-0753-3] [Citation(s) in RCA: 442] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022]
Abstract
The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models1. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries2. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria3. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G+ extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment.
Collapse
Affiliation(s)
- Margherita Y Turco
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Russell S Hamilton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Malwina Prater
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | | | - Laura Esposito
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ridma Fernando
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Helen Skelton
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Andrew Sharkey
- Department of Pathology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| | - Stephen O'Rahilly
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
381
|
Lafont E, Draber P, Rieser E, Reichert M, Kupka S, de Miguel D, Draberova H, von Mässenhausen A, Bhamra A, Henderson S, Wojdyla K, Chalk A, Surinova S, Linkermann A, Walczak H. TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. Nat Cell Biol 2018; 20:1389-1399. [PMID: 30420664 PMCID: PMC6268100 DOI: 10.1038/s41556-018-0229-6] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
The linear-ubiquitin chain assembly complex (LUBAC) modulates signalling via various immune receptors. In tumour necrosis factor (TNF) signalling, linear (also known as M1) ubiquitin enables full gene activation and prevents cell death. However, the mechanisms underlying cell death prevention remain ill-defined. Here, we show that LUBAC activity enables TBK1 and IKKε recruitment to and activation at the TNF receptor 1 signalling complex (TNFR1-SC). While exerting only limited effects on TNF-induced gene activation, TBK1 and IKKε are essential to prevent TNF-induced cell death. Mechanistically, TBK1 and IKKε phosphorylate the kinase RIPK1 in the TNFR1-SC, thereby preventing RIPK1-dependent cell death. This activity is essential in vivo, as it prevents TNF-induced lethal shock. Strikingly, NEMO (also known as IKKγ), which mostly, but not exclusively, binds the TNFR1-SC via M1 ubiquitin, mediates the recruitment of the adaptors TANK and NAP1 (also known as AZI2). TANK is constitutively associated with both TBK1 and IKKε, while NAP1 is associated with TBK1. We discovered a previously unrecognized cell death checkpoint that is mediated by TBK1 and IKKε, and uncovered an essential survival function for NEMO, whereby it enables the recruitment and activation of these non-canonical IKKs to prevent TNF-induced cell death.
Collapse
Affiliation(s)
- Elodie Lafont
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Peter Draber
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Rieser
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Matthias Reichert
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Sebastian Kupka
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Diego de Miguel
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Helena Draberova
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technical University Dresden, Dresden, Germany
| | - Amandeep Bhamra
- Proteomics Research Core Facility, UCL Cancer Institute, University College London, London, UK
| | - Stephen Henderson
- Bill Lyons Informatics Centre (BLIC), UCL Cancer Institute, University College London, London, UK
| | - Katarzyna Wojdyla
- Proteomics Research Core Facility, UCL Cancer Institute, University College London, London, UK
| | - Avigayil Chalk
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Silvia Surinova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Proteomics Research Core Facility, UCL Cancer Institute, University College London, London, UK
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technical University Dresden, Dresden, Germany
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
382
|
Proteomic profiling of senescent human diploid fibroblasts treated with gamma-tocotrienol. Altern Ther Health Med 2018; 18:314. [PMID: 30497457 PMCID: PMC6267793 DOI: 10.1186/s12906-018-2383-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Replicative senescence of human diploid fibroblasts (HDFs) has been used as a model to study mechanisms of cellular aging. Gamma-tocotrienol (γT3) is one of the members of vitamin E family which has been shown to increase proliferation of senescent HDFs. However, the modulation of protein expressions by γT3 in senescent HDFs remains to be elucidated. Therefore, this study aimed to determine the differentially expressed proteins (DEPs) in young and senescent HDFs; and in vehicle- and γT3-treated senescent HDFs using label-free quantitative proteomics. METHODS Whole proteins were extracted and digested in-gel with trypsin. Peptides were detected by Orbitrap liquid chromatography mass spectrometry. Mass spectra were identified and quantitated by MaxQuant software. The data were further filtered and analyzed statistically using Perseus software to identify DEPs. Functional annotations of DEPs were performed using Panther Classification System. RESULTS A total of 1217 proteins were identified in young and senescent cells, while 1218 proteins in vehicle- and γT3-treated senescent cells. 11 DEPs were found in young and senescent cells which included downregulation of platelet-derived growth factor (PDGF) receptor beta and upregulation of tubulin beta-2A chain protein expressions in senescent cells. 51 DEPs were identified in vehicle- and γT3-treated senescent cells which included upregulation of 70 kDa heat shock protein, triosephosphate isomerase and malate dehydrogenase protein expressions in γT3-treated senescent cells. CONCLUSIONS PDGF signaling and cytoskeletal structure may be dysregulated in senescent HDFs. The pro-proliferative effect of γT3 on senescent HDFs may be mediated through the stimulation of cellular response to stress and carbohydrate metabolism. The expressions and roles of these proteins in relation to cellular senescence are worth further investigations. Data are available via ProteomeXchange with identifier PXD009933.
Collapse
|
383
|
VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat Commun 2018; 9:4976. [PMID: 30478310 PMCID: PMC6255874 DOI: 10.1038/s41467-018-07309-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Intrinsic apoptosis is critical to prevent tumor formation and is engaged by many anti-cancer agents to eliminate tumor cells. BAX and BAK, the two essential mediators of apoptosis, are thought to be regulated through similar mechanisms and act redundantly to drive apoptotic cell death. From an unbiased genome-wide CRISPR/Cas9 screen, we identified VDAC2 (voltage-dependent anion channel 2) as important for BAX, but not BAK, to function. Genetic deletion of VDAC2 abrogated the association of BAX and BAK with mitochondrial complexes containing VDAC1, VDAC2, and VDAC3, but only inhibited BAX apoptotic function. Deleting VDAC2 phenocopied the loss of BAX in impairing both the killing of tumor cells by anti-cancer agents and the ability to suppress tumor formation. Together, our studies show that efficient BAX-mediated apoptosis depends on VDAC2, and reveal a striking difference in how BAX and BAK are functionally impacted by their interactions with VDAC2.
Collapse
|
384
|
Jersie-Christensen RR, Lanigan LT, Lyon D, Mackie M, Belstrøm D, Kelstrup CD, Fotakis AK, Willerslev E, Lynnerup N, Jensen LJ, Cappellini E, Olsen JV. Quantitative metaproteomics of medieval dental calculus reveals individual oral health status. Nat Commun 2018; 9:4744. [PMID: 30459334 PMCID: PMC6246597 DOI: 10.1038/s41467-018-07148-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
The composition of ancient oral microbiomes has recently become accessible owing to advanced biomolecular methods such as metagenomics and metaproteomics, but the utility of metaproteomics for such analyses is less explored. Here, we use quantitative metaproteomics to characterize the dental calculus associated with the remains of 21 humans retrieved during the archeological excavation of the medieval (ca. 1100-1450 CE) cemetery of Tjærby, Denmark. We identify 3671 protein groups, covering 220 bacterial species and 81 genera across all medieval samples. The metaproteome profiles of bacterial and human proteins suggest two distinct groups of archeological remains corresponding to health-predisposed and oral disease-susceptible individuals, which is supported by comparison to the calculus metaproteomes of healthy living individuals. Notably, the groupings identified by metaproteomics are not apparent from the bioarchaeological analysis, illustrating that quantitative metaproteomics has the potential to provide additional levels of molecular information about the oral health status of individuals from archeological contexts.
Collapse
Affiliation(s)
- Rosa R Jersie-Christensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Liam T Lanigan
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - David Lyon
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Meaghan Mackie
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Daniel Belstrøm
- Periodontology and Microbiology, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Nørre Allé 20, 2200, Copenhagen N, Denmark
| | - Christian D Kelstrup
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Anna K Fotakis
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Niels Lynnerup
- Laboratory of Biological Anthropology, Institute of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Frederik V's Vej 11, 2100, Copenhagen Ø, Denmark
| | - Lars J Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Enrico Cappellini
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
| |
Collapse
|
385
|
Van den Eynden J, Umapathy G, Ashouri A, Cervantes-Madrid D, Szydzik J, Ruuth K, Koster J, Larsson E, Guan J, Palmer RH, Hallberg B. Phosphoproteome and gene expression profiling of ALK inhibition in neuroblastoma cell lines reveals conserved oncogenic pathways. Sci Signal 2018; 11:11/557/eaar5680. [PMID: 30459281 DOI: 10.1126/scisignal.aar5680] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is a clinical target of major interest in cancer. Mutations and rearrangements in ALK trigger the activation of the encoded receptor and its downstream signaling pathways. ALK mutations have been identified in both familial and sporadic neuroblastoma cases as well as in 30 to 40% of relapses, which makes ALK a bona fide target in neuroblastoma therapy. Tyrosine kinase inhibitors (TKIs) that target ALK are currently in clinical use for the treatment of patients with ALK-positive non-small cell lung cancer. However, monotherapy with the ALK inhibitor crizotinib has been less encouraging in neuroblastoma patients with ALK alterations, raising the question of whether combinatorial therapy would be more effective. In this study, we established both phosphoproteomic and gene expression profiles of ALK activity in neuroblastoma cells exposed to first- and third-generation ALK TKIs, to identify the underlying molecular mechanisms and identify relevant biomarkers, signaling networks, and new therapeutic targets. This analysis has unveiled various important leads for novel combinatorial treatment strategies for patients with neuroblastoma and an increased understanding of ALK signaling involved in this disease.
Collapse
Affiliation(s)
- Jimmy Van den Eynden
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.,Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000 Ghent, Belgium
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Arghavan Ashouri
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | | | - Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Kristina Ruuth
- Institution for Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.,Children's Hospital affiliated with Zhengzhou University, 450018 Zhengzhou, China
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
386
|
Hoernes TP, Faserl K, Juen MA, Kremser J, Gasser C, Fuchs E, Shi X, Siewert A, Lindner H, Kreutz C, Micura R, Joseph S, Höbartner C, Westhof E, Hüttenhofer A, Erlacher MD. Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions. Nat Commun 2018; 9:4865. [PMID: 30451861 PMCID: PMC6242847 DOI: 10.1038/s41467-018-07321-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/25/2018] [Indexed: 01/16/2023] Open
Abstract
The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Elisabeth Fuchs
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Xinying Shi
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0314, USA
| | - Aaron Siewert
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0314, USA
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS UPR9002/University of Strasbourg, Strasbourg, 67084, France
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
387
|
Cominetti O, Núñez Galindo A, Corthésy J, Valsesia A, Irincheeva I, Kussmann M, Saris WHM, Astrup A, McPherson R, Harper ME, Dent R, Hager J, Dayon L. Obesity shows preserved plasma proteome in large independent clinical cohorts. Sci Rep 2018; 8:16981. [PMID: 30451909 PMCID: PMC6242904 DOI: 10.1038/s41598-018-35321-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022] Open
Abstract
Holistic human proteome maps are expected to complement comprehensive profile assessment of health and disease phenotypes. However, methodologies to analyze proteomes in human tissue or body fluid samples at relevant scale and performance are still limited in clinical research. Their deployment and demonstration in large enough human populations are even sparser. In the present study, we have characterized and compared the plasma proteomes of two large independent cohorts of obese and overweight individuals using shotgun mass spectrometry (MS)-based proteomics. Herein, we showed, in both populations from different continents of about 500 individuals each, the concordance of plasma protein MS measurements in terms of variability, gender-specificity, and age-relationship. Additionally, we replicated several known and new associations between proteins, clinical and molecular variables, such as insulin and glucose concentrations. In conclusion, our MS-based analyses of plasma samples from independent human cohorts proved the practical feasibility and efficiency of a large and unified discovery/replication approach in proteomics, which was also recently coined “rectangular” design.
Collapse
Affiliation(s)
- Ornella Cominetti
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | - John Corthésy
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,Nutrition Analytics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Armand Valsesia
- Nutrition and Metabolic Health, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Irina Irincheeva
- Nutrition and Metabolic Health, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,Clinical Trial Unit, University of Bern, Bern, Switzerland
| | - Martin Kussmann
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wim H M Saris
- NUTRIM, School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ruth McPherson
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert Dent
- Ottawa Hospital Weight Management Clinic, The Ottawa Hospital, Ottawa, Canada
| | - Jörg Hager
- Nutrition and Metabolic Health, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Loïc Dayon
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
| |
Collapse
|
388
|
Monoyios A, Hummel K, Nöbauer K, Patzl M, Schlosser S, Hess M, Bilic I. An Alliance of Gel-Based and Gel-Free Proteomic Techniques Displays Substantial Insight Into the Proteome of a Virulent and an Attenuated Histomonas meleagridis Strain. Front Cell Infect Microbiol 2018; 8:407. [PMID: 30505807 PMCID: PMC6250841 DOI: 10.3389/fcimb.2018.00407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022] Open
Abstract
The unicellular protozoan Histomonas meleagridis is notorious for being the causative agent of histomonosis, which can cause high mortality in turkeys and substantial production losses in chickens. The complete absence of commercially available curative strategies against the disease renders the devising of novel approaches a necessity. A fundamental step toward this objective is to understand the flagellate's virulence and attenuation mechanisms. For this purpose we have previously conducted a comparative proteomic analysis of an in vitro cultivated virulent and attenuated histomonad parasite using two-dimensional electrophoresis and MALDI-TOF/TOF. The current work aimed to substantially extend the knowledge of the flagellate's proteome by applying 2D-DIGE and sequential window acquisition of all theoretical mass spectra (SWATH) MS as tools on the two well-defined strains. In the gel-based experiments, 49 identified protein spots were found to be differentially expressed, of which 37 belonged to the in vitro cultivated virulent strain and 12 to the attenuated one. The most frequently identified proteins in the virulent strain take part in cytoskeleton formation, carbohydrate metabolism and adaptation to stress. However, post-translationally modified or truncated ubiquitous cellular proteins such as actin and GAPDH were identified as upregulated in multiple gel positions. This indicated their contribution to processes not related to cytoskeleton and carbohydrate metabolism, such as fibronectin or plasminogen binding. Proteins involved in cell division and cytoskeleton organization were frequently observed in the attenuated strain. The findings of the gel-based studies were supplemented by the gel-free SWATH MS analysis, which identified and quantified 42 significantly differentially regulated proteins. In this case proteins with peptidase activity, metabolic proteins and actin-regulating proteins were the most frequent findings in the virulent strain, while proteins involved in hydrogenosomal carbohydrate metabolism dominated the results in the attenuated one.
Collapse
Affiliation(s)
- Andreas Monoyios
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karin Hummel
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katharina Nöbauer
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martina Patzl
- Department for Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sarah Schlosser
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ivana Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
389
|
Tarimo BB, Law HCH, Tao D, Pastrana-Mena R, Kanzok SM, Buza JJ, Dinglasan RR. Paraquat-Mediated Oxidative Stress in Anopheles gambiae Mosquitoes Is Regulated by An Endoplasmic Reticulum (ER) Stress Response. Proteomes 2018; 6:47. [PMID: 30424486 PMCID: PMC6313908 DOI: 10.3390/proteomes6040047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Paraquat is a potent superoxide (O₂-)-inducing agent that is capable of inducing an oxidative imbalance in the mosquito midgut. This oxidative imbalance can super-stress the malaria parasite, leading to arrested development in the mosquito midgut and reduced transmission. While several studies have explored the effect of paraquat on malaria parasites, a fundamental understanding of the mosquito response to this compound remains unknown. Here, we quantified the mosquito midgut proteomic response to a paraquat-laced sugar meal, and found that An. gambiae midguts were enriched in proteins that are indicative of cells under endoplasmic reticulum (ER) stress. We also carried out qRT-PCR analyses for nine prominent thioredoxin (Trx) and glutathione (GSH)-dependent genes in mosquito midguts post P. falciparum blood meal ingestion to evaluate the concordance between transcripts and proteins under different oxidative stress conditions. Our data revealed an absence of significant upregulation in the Trx and GSH-dependent genes following infected blood meal ingestion. These data suggest that the intrinsic tolerance of the mosquito midgut to paraquat-mediated oxidative stress is through an ER stress response. These data indicate that mosquitoes have at least two divergent pathways of managing the oxidative stress that is induced by exogenous compounds, and outline the potential application of paraquat-like drugs to act selectively against malaria parasite development in mosquito midguts, thereby blocking mosquito-to-human transmission.
Collapse
Affiliation(s)
- Brian B Tarimo
- School of Life Science and Bioengineering, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Health and Biomedical Sciences, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
| | - Henry Chun Hin Law
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Rebecca Pastrana-Mena
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Stefan M Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.
| | - Joram J Buza
- Department of Health and Biomedical Sciences, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
| | - Rhoel R Dinglasan
- School of Life Science and Bioengineering, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
390
|
Yao Z, Sun L, Wang Y, Lin L, Guo Z, Li D, Lin W, Lin X. Quantitative Proteomics Reveals Antibiotics Resistance Function of Outer Membrane Proteins in Aeromonas hydrophila. Front Cell Infect Microbiol 2018; 8:390. [PMID: 30460208 PMCID: PMC6232253 DOI: 10.3389/fcimb.2018.00390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022] Open
Abstract
Outer membrane proteins (OMPs) play essential roles in antibiotic resistance, particularly in Gram-negative bacteria; however, they still have many unidentified functions regarding their behavior in response to antibiotic stress. In the current work, quantitative tandem mass tag labeling-based mass spectrometry was used to compare the outer membrane related proteins between an oxytetracycline-resistant (OXY-R) and its original control stain (OXY-O) in Aeromonas hydrophila. Consequently, a total of 261 commonly altered proteins in two biological repeats were identified including 29 proteins that increased and 28 that decreased. Gene ontology analysis showed that the expression of transport proteins was significantly reduced, and translation-related proteins were downregulated in the OXY-R strain. After using western blotting to validate selected altered proteins, eight OMP-related genes were knocked out and their roles in antibiotic resistance were further evaluated. The survival assays showed that some mutants such as ΔAHA_4281, ΔAHA_2766, ΔAHA_2282, ΔAHA_1181, and ΔAHA_1280 affected the susceptibility of A. hydrophila to antimicrobials. Moreover, the minimum inhibitory concentration assay showed that these candidate mutants also respond differently to other types of antibiotics. Our results reveal several novel outer membrane related proteins of A. hydrophila that play important roles in antibiotic resistance, and as such, may be helpful for screening studies to identify novel drug targets.
Collapse
Affiliation(s)
- Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China.,Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Ling Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Dong Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| |
Collapse
|
391
|
Doblmann J, Dusberger F, Imre R, Hudecz O, Stanek F, Mechtler K, Dürnberger G. apQuant: Accurate Label-Free Quantification by Quality Filtering. J Proteome Res 2018; 18:535-541. [PMID: 30351950 DOI: 10.1021/acs.jproteome.8b00113] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Label-free quantification of shotgun proteomics data is a frequently used strategy, offering high dynamic range, sensitivity, and the ability to compare a high number of samples without additional labeling effort. Here, we present a bioinformatics approach that significantly improves label-free quantification results. We employ Percolator to assess the quality of quantified peptides. This allows to extract accurate and reliable quantitative results based on false discovery rate. Benchmarking our approach on previously published public data shows that it considerably outperforms currently available algorithms. apQuant is available free of charge as a node for Proteome Discoverer.
Collapse
Affiliation(s)
- Johannes Doblmann
- Research Institute of Molecular Pathology (IMP) , Vienna Biocenter (VBC) , Campus-Vienna-Biocenter 1 , 1030 Vienna , Austria
| | - Frederico Dusberger
- Research Institute of Molecular Pathology (IMP) , Vienna Biocenter (VBC) , Campus-Vienna-Biocenter 1 , 1030 Vienna , Austria
| | - Richard Imre
- Research Institute of Molecular Pathology (IMP) , Vienna Biocenter (VBC) , Campus-Vienna-Biocenter 1 , 1030 Vienna , Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) , Vienna Biocenter (VBC) , Dr. Bohr-Gasse 3 , 1030 Vienna , Austria
| | - Otto Hudecz
- Research Institute of Molecular Pathology (IMP) , Vienna Biocenter (VBC) , Campus-Vienna-Biocenter 1 , 1030 Vienna , Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) , Vienna Biocenter (VBC) , Dr. Bohr-Gasse 3 , 1030 Vienna , Austria
| | - Florian Stanek
- Research Institute of Molecular Pathology (IMP) , Vienna Biocenter (VBC) , Campus-Vienna-Biocenter 1 , 1030 Vienna , Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP) , Vienna Biocenter (VBC) , Campus-Vienna-Biocenter 1 , 1030 Vienna , Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) , Vienna Biocenter (VBC) , Dr. Bohr-Gasse 3 , 1030 Vienna , Austria
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP) , Vienna Biocenter (VBC) , Campus-Vienna-Biocenter 1 , 1030 Vienna , Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) , Vienna Biocenter (VBC) , Dr. Bohr-Gasse 3 , 1030 Vienna , Austria.,Gregor Mendel Institute of Molecular Plant Biology (GMI) , Vienna Biocenter (VBC) , Dr. Bohr-Gasse 3 , 1030 Vienna , Austria
| |
Collapse
|
392
|
Sahebekhtiari N, Fernandez-Guerra P, Nochi Z, Carlsen J, Bross P, Palmfeldt J. Deficiency of the mitochondrial sulfide regulator ETHE1 disturbs cell growth, glutathione level and causes proteome alterations outside mitochondria. Biochim Biophys Acta Mol Basis Dis 2018; 1865:126-135. [PMID: 30391543 DOI: 10.1016/j.bbadis.2018.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/14/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023]
Abstract
The mitochondrial enzyme ETHE1 is a persulfide dioxygenase essential for cellular sulfide detoxification, and its deficiency causes the severe and complex inherited metabolic disorder ethylmalonic encephalopathy (EE). In spite of well-described clinical symptoms of the disease, detailed cellular and molecular characterization is still ambiguous. Cellular redox regulation has been described to be influenced in ETHE1 deficient cells, and to clarify this further we applied image cytometry and detected decreased levels of reduced glutathione (GSH) in cultivated EE patient fibroblast cells. Cell growth initiation of the EE patient cells was impaired, whereas cell cycle regulation was not. Furthermore, Seahorse metabolic analyzes revealed decreased extracellular acidification, i. e. decreased lactate formation from glycolysis, in the EE patient cells. TMT-based large-scale proteomics was subsequently performed to broadly elucidate cellular consequences of the ETHE1 deficiency. More than 130 proteins were differentially regulated, of which the majority were non-mitochondrial. The proteomics data revealed a link between ETHE1-deficiency and down-regulation of several ribosomal proteins and LIM domain proteins important for cellular maintenance, and up-regulation of cell surface glycoproteins. Furthermore, several proteins of endoplasmic reticulum (ER) were perturbed including proteins influencing disulfide bond formation (e.g. protein disulfide isomerases and peroxiredoxin 4) and calcium-regulated proteins. The results indicate that decreased level of reduced GSH and alterations in proteins of ribosomes, ER and of cell adhesion lie behind the disrupted cell growth of the EE patient cells.
Collapse
Affiliation(s)
- Navid Sahebekhtiari
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Zahra Nochi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| |
Collapse
|
393
|
Au DT, Ying Z, Hernández-Ochoa EO, Fondrie WE, Hampton B, Migliorini M, Galisteo R, Schneider MF, Daugherty A, Rateri DL, Strickland DK, Muratoglu SC. LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca 2+ Signaling and Expression of Cytoskeleton-Related Proteins. Arterioscler Thromb Vasc Biol 2018; 38:2651-2664. [PMID: 30354243 PMCID: PMC6214382 DOI: 10.1161/atvbaha.118.311197] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 09/12/2018] [Indexed: 01/12/2023]
Abstract
Objective- Mutations affecting contractile-related proteins in the ECM (extracellular matrix), microfibrils, or vascular smooth muscle cells can predispose the aorta to aneurysms. We reported previously that the LRP1 (low-density lipoprotein receptor-related protein 1) maintains vessel wall integrity, and smLRP1-/- mice exhibited aortic dilatation. The current study focused on defining the mechanisms by which LRP1 regulates vessel wall function and integrity. Approach and Results- Isometric contraction assays demonstrated that vasoreactivity of LRP1-deficient aortic rings was significantly attenuated when stimulated with vasoconstrictors, including phenylephrine, thromboxane receptor agonist U-46619, increased potassium, and L-type Ca2+ channel ligand FPL-64176. Quantitative proteomics revealed proteins involved in actin polymerization and contraction were significantly downregulated in aortas of smLRP1-/- mice. However, studies with calyculin A indicated that although aortic muscle from smLRP1-/- mice can contract in response to calyculin A, a role for LRP1 in regulating the contractile machinery is not revealed. Furthermore, intracellular calcium imaging experiments identified defects in calcium release in response to a RyR (ryanodine receptor) agonist in smLRP1-/- aortic rings and cultured vascular smooth muscle cells. Conclusions- These results identify a critical role for LRP1 in modulating vascular smooth muscle cell contraction by regulating calcium signaling events that potentially protect against aneurysm development.
Collapse
MESH Headings
- Actin Cytoskeleton/drug effects
- Actin Cytoskeleton/genetics
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/ultrastructure
- Animals
- Aorta/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Female
- Gene Expression Regulation
- Low Density Lipoprotein Receptor-Related Protein-1
- Male
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Tissue Culture Techniques
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Dianaly T. Au
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erick O. Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - William E. Fondrie
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brian Hampton
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Rebeca Galisteo
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Martin F. Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Debra L. Rateri
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Selen C. Muratoglu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
394
|
Jin M, Lu J, Chen Z, Nguyen SH, Mao L, Li J, Yuan Z, Guo J. Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. ENVIRONMENT INTERNATIONAL 2018; 120:421-430. [PMID: 30125859 DOI: 10.1016/j.envint.2018.07.046] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/28/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Antibiotic resistance poses a great threat to global public health. Overuse of antibiotics is generally considered as the major factor contributing to it. However, little is known about whether non-antibiotic drugs could play potential roles in the emergence of antibiotic resistance. OBJECTIVE We aimed to investigate whether antidepressant fluoxetine induces multiple antibiotic resistances and reveal underlying mechanisms. METHODOLOGY Escherichia coli K12 was exposed to different concentrations of fluoxetine (0, 0.5, 5, 50 and 100 mg/L) and the resistant strains were isolated by plating on antibiotic containing plates. Resistant strains were randomly selected to determine the increase of minimum inhibition concentration (MIC) of multiple antibiotics. Genome-wide DNA sequencing was performed on cells cultured in lysogeny broth (LB) without any fluoxetine or antibiotics exposure. RNA sequencing and proteomic profiling of isolated mutants grown in LB with 100 mg/L fluoxetine were analyzed to reveal the underlying mechanisms. RESULTS Exposure of Escherichia coli to fluoxetine at 5-100 mg/L after repeated subculture in LB for 30 days promoted its mutation frequency resulting in increased resistance against the antibiotics chloramphenicol, amoxicillin and tetracycline. This increase was up to 5.0 × 107 fold in a dose-time pattern. Isolated mutants with resistance to one of these antibiotics also exhibited multiple resistances against fluoroquinolone, aminoglycoside, β-lactams, tetracycline and chloramphenicol. According to global transcriptional and proteomic analyses, the AcrAB-TolC pump together with the YadG/YadH transporter, a Tsx channel and the MdtEF-TolC pump have been triggered to export the antibiotics to the exterior of the cell. Whole-genome DNA analysis of the mutants further revealed that ROS-mediated mutagenesis (e.g., deletion, insertion, and substitution) of DNA-binding transcriptional regulators (e.g., marR, rob, sdiA, cytR and crp) to up-regulate the expression of efflux pumps, may further enhance the antibiotic efflux. CONCLUSIONS Our findings for the first time demonstrated that the exposure to antidepressant fluoxetine induces multiple antibiotic resistance in E. coli via the ROS-mediated mutagenesis.
Collapse
Affiliation(s)
- Min Jin
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Ji Lu
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhaoyu Chen
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Son Hoang Nguyen
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Likai Mao
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
395
|
Storey AJ, Wang HP, Protacio RU, Davidson MK, Tackett AJ, Wahls WP. Chromatin-mediated regulators of meiotic recombination revealed by proteomics of a recombination hotspot. Epigenetics Chromatin 2018; 11:64. [PMID: 30373637 PMCID: PMC6205778 DOI: 10.1186/s13072-018-0233-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/20/2018] [Indexed: 11/14/2022] Open
Abstract
Background Meiotic recombination hotspots control the frequency and distribution of Spo11 (Rec12)-initiated recombination in the genome. Recombination occurs within and is regulated in part by chromatin structure, but relatively few of the many chromatin remodeling factors and histone posttranslational modifications (PTMs) have been interrogated for a role in the process. Results We developed a chromatin affinity purification and mass spectrometry-based approach to identify proteins and histone PTMs that regulate recombination hotspots. Small (4.2 kbp) minichromosomes (MiniCs) bearing the fission yeast ade6-M26 hotspot or a basal recombination control were purified approximately 100,000-fold under native conditions from meiosis; then, associated proteins and histone PTMs were identified by mass spectrometry. Proteins and PTMs enriched at the hotspot included known regulators (Atf1, Pcr1, Mst2, Snf22, H3K14ac), validating the approach. The abundance of individual histones varied dynamically during meiotic progression in hotspot versus basal control MiniCs, as did a subset of 34 different histone PTMs, implicating these as potential regulators. Measurements of basal and hotspot recombination in null mutants confirmed that additional, hotspot-enriched proteins are bona fide regulators of hotspot activation within the genome. These chromatin-mediated regulators include histone H2A-H2B and H3-H4 chaperones (Nap1, Hip1/Hir1), subunits of the Ino80 complex (Arp5, Arp8), a DNA helicase/E3 ubiquitin ligase (Rrp2), components of a Swi2/Snf2 family remodeling complex (Swr1, Swc2), and a nucleosome evictor (Fft3/Fun30). Conclusions Overall, our findings indicate that a remarkably diverse collection of chromatin remodeling factors and histone PTMs participate in designating where meiotic recombination occurs in the genome, and they provide new insight into molecular mechanisms of the process. Electronic supplementary material The online version of this article (10.1186/s13072-018-0233-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Hsin-Ping Wang
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA.
| |
Collapse
|
396
|
Pereira ASA, Amaral MS, Vasconcelos EJR, Pires DS, Asif H, daSilva LF, Morales-Vicente DA, Carneiro VC, Angeli CB, Palmisano G, Fantappie MR, Pierce RJ, Setubal JC, Verjovski-Almeida S. Inhibition of histone methyltransferase EZH2 in Schistosoma mansoni in vitro by GSK343 reduces egg laying and decreases the expression of genes implicated in DNA replication and noncoding RNA metabolism. PLoS Negl Trop Dis 2018; 12:e0006873. [PMID: 30365505 PMCID: PMC6221359 DOI: 10.1371/journal.pntd.0006873] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/07/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Background The possibility of emergence of praziquantel-resistant Schistosoma parasites and the lack of other effective drugs demand the discovery of new schistosomicidal agents. In this context the study of compounds that target histone-modifying enzymes is extremely promising. Our aim was to investigate the effect of inhibition of EZH2, a histone methyltransferase that is involved in chromatin remodeling processes and gene expression control; we tested different developmental forms of Schistosoma mansoni using GKS343, a selective inhibitor of EZH2 in human cells. Methodology/Principal findings Adult male and female worms and schistosomula were treated with different concentrations of GSK343 for up to two days in vitro. Western blotting showed a decrease in the H3K27me3 histone mark in all three developmental forms. Motility, mortality, pairing and egg laying were employed as schistosomicidal parameters for adult worms. Schistosomula viability was evaluated with propidium iodide staining and ATP quantification. Adult worms showed decreased motility when exposed to GSK343. Also, an approximate 40% reduction of egg laying by GSK343-treated females was observed when compared with controls (0.1% DMSO). Scanning electron microscopy showed the formation of bulges and bubbles throughout the dorsal region of GSK343-treated adult worms. In schistosomula the body was extremely contracted with the presence of numerous folds, and growth was markedly slowed. RNA-seq was applied to identify the metabolic pathways affected by GSK343 sublethal doses. GSK343-treated adult worms showed significantly altered expression of genes related to transmembrane transport, cellular homeostasis and egg development. In females, genes related to DNA replication and noncoding RNA metabolism processes were downregulated. Schistosomula showed altered expression of genes related to cell adhesion and membrane synthesis pathways. Conclusions/Significance The results indicated that GSK343 presents in vitro activities against S. mansoni, and the characterization of EZH2 as a new potential molecular target establishes EZH2 inhibitors as part of a promising new group of compounds that could be used for the development of schistosomicidal agents. Schistosomiasis is a chronic and debilitating disease caused by a trematode of the genus Schistosoma. The current strategy for the control of the disease involves treatment with praziquantel, the only available drug. The development of new drugs is therefore a top priority. Drugs that inhibit histone modifying enzymes have been used in cancer, altering gene expression, replication, repair and DNA recombination. Schistosoma parasites have some characteristics similar to malignant tumors, such as intense cell division and high levels of metabolic activity. Here we evaluate in Schistosoma mansoni the effect of GSK343, an inhibitor of the histone methyltransferase EZH2 that had been shown to arrest or reduce the growth of human cancer cells. We show that GSK343 causes damage to the parasite tegument and reduces egg laying in vitro, concomitant with a decrease in levels of H3K27me3, the histone mark put in place by EZH2. RNA-seq and proteomic analyses of treated parasites showed changes in the expression of hundreds of genes involved in important metabolic processes. In females, a marked decrease was observed in the expression of genes related to processes such as DNA replication and noncoding RNA metabolism. In conclusion, the histone methyltransferase EZH2 seems to be a promising novel drug target against schistosomiasis.
Collapse
Affiliation(s)
- Adriana S. A. Pereira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Murilo S. Amaral
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
| | - Elton J. R. Vasconcelos
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - David S. Pires
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
| | - Huma Asif
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
| | - Lucas F. daSilva
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - David A. Morales-Vicente
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Vitor C. Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Claudia B. Angeli
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Laboratório de Glicoproteômica, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Laboratório de Glicoproteômica, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marcelo R. Fantappie
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Raymond J. Pierce
- Centre d'Infection et d'Immunité de Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - João C. Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
- * E-mail:
| |
Collapse
|
397
|
Wu Y, Li J, Qin X, Sun S, Xiao Z, Dong X, Shahid MS, Yin D, Yuan J. Proteome and microbiota analysis reveals alterations of liver-gut axis under different stocking density of Peking ducks. PLoS One 2018; 13:e0198985. [PMID: 30365498 PMCID: PMC6203259 DOI: 10.1371/journal.pone.0198985] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023] Open
Abstract
This study aimed to determine the impact of stocking density on the liver proteome and cecal microbiota of Peking ducks. A total of 1,200 21-day-old ducks were randomly assigned to 5 stocking density groups of 5, 6, 7, 8 and 9 ducks/m2, with 6 replicates for each group. At 40 days of age, duck serum and pectorals were collected for biochemical tests; liver and cecal contents of ducks were gathered for proteome and microbiota analysis, respectively. Serum MDA increased while pectorals T-AOC reduced linearly with enhancing stocking density. Duck lipid metabolism was altered under different stocking density as well. Serum LDL-C increased linearly with increasing stocking density. Proteome analysis revealed fatty acid biosynthesis proteins such as acyl-CoA synthetase family member 2 and fatty acid oxidation related proteins including acyl-CoA dehydrogenase long chain and acyl-coenzyme A oxidase were enriched in high stocking density group. Additionally, high stocking density increased oxidative response associated proteins such as DDRGK domain containing 1. Furthermore, increasing stocking density diminished proteins of anti-oxidant capacity including regucalcin and catalase. 16S rDNA analysis revealed that higher stocking density was accompanied with decreased microbial diversity, as well as depletion of anti-inflammatory bacterial taxa, including Bacteroidales, Butyricimonas and Alistipe. Besides, reduced bile acid metabolism-associated bacteria such as Ruminococcaceae, Clostridiales and Desulfovibrionaceae were found in the high-density group. Both proteome and 16S rDNA results showed inflammation and chronic liver disease trend in the high-density group, which suggests the involvement of the liver-gut axis in oxidative stress.
Collapse
Affiliation(s)
- Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xin Qin
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Shiqiang Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhibin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoyu Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Suhaib Shahid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dafei Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
398
|
Bundgaard L, Stensballe A, Elbæk KJ, Berg LC. Mapping of equine mesenchymal stromal cell surface proteomes for identification of specific markers using proteomics and gene expression analysis: an in vitro cross-sectional study. Stem Cell Res Ther 2018; 9:288. [PMID: 30359315 PMCID: PMC6202851 DOI: 10.1186/s13287-018-1041-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background Stem cells have great potential for tissue regeneration, but before stem cell populations can be used in the clinic, it is crucial that the stem cells have been definitely characterized by a set of specific markers. Although there have been attempts to identify a set of immunophenotypic markers to characterize equine mesenchymal stromal cells (MSCs), immunophenotyping of equine MSCs is still challenging due to the limited availability of suitable antibodies of high quality and consistent performance across different laboratories. The aim of this study was to evaluate a strategy for mapping the equine MSCs surface proteome by use of biotin-enrichment and mass spectrometry (MS) analysis and mine the proteome for potential equine MSCs surface markers belonging to the cluster of differentiation protein group. Gene expression analysis was used for verification. Methods Equine MSCs derived from bone marrow (BM) (n = 3) and adipose tissue (AT) (n = 3) were expanded to P3 and either used for (1) cell differentiation into mesodermal lineages (chondrogenic and osteogenic), (2) enrichment of the MSCs surface proteins by biotinylation followed by in-gel digest of the isolated proteins and nanoLC-MS/MS analysis to unravel the enriched cell surface proteome, and (3) RNA isolation and quantitative real-time reverse transcriptase PCR analysis of the CD29, CD44, CD90, CD105, CD166, CD34, CD45, and CD79a gene expression. Results A total of 1239 proteins at 1% FDR were identified by MS analysis of the enriched MSCs surface protein samples. Of these proteins, 939 were identified in all six biological samples. The identified proteins included 19 proteins appointed to the cluster of differentiation classification system as potential cell surface targets. The protein and gene expression pattern was positive for the commonly used positive MSCs markers CD29, CD44, CD90, CD105, and CD166, and lacked the negative MSCs markers CD34, CD45, and CD79a. Conclusions The findings of this study show that enrichment of the MSCs surface proteome by biotinylation followed by MS analysis is a valuable alternative to immunophenotyping of surface markers, when suitable antibodies are not available. Further, they support gene expression analysis as a valuable control analysis to verify the data.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, DK-2630, Taastrup, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg Ø, Denmark
| | - Kirstine Juul Elbæk
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg Ø, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, DK-2630, Taastrup, Denmark
| |
Collapse
|
399
|
Structural dynamics of the E6AP/UBE3A-E6-p53 enzyme-substrate complex. Nat Commun 2018; 9:4441. [PMID: 30361475 PMCID: PMC6202321 DOI: 10.1038/s41467-018-06953-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
Deregulation of the ubiquitin ligase E6AP is causally linked to the development of human disease, including cervical cancer. In complex with the E6 oncoprotein of human papillomaviruses, E6AP targets the tumor suppressor p53 for degradation, thereby contributing to carcinogenesis. Moreover, E6 acts as a potent activator of E6AP by a yet unknown mechanism. However, structural information explaining how the E6AP-E6-p53 enzyme-substrate complex is assembled, and how E6 stimulates E6AP, is largely missing. Here, we develop and apply different crosslinking mass spectrometry-based approaches to study the E6AP-E6-p53 interplay. We show that binding of E6 induces conformational rearrangements in E6AP, thereby positioning E6 and p53 in the immediate vicinity of the catalytic center of E6AP. Our data provide structural and functional insights into the dynamics of the full-length E6AP-E6-p53 enzyme-substrate complex, demonstrating how E6 can stimulate the ubiquitin ligase activity of E6AP while facilitating ubiquitin transfer from E6AP onto p53.
Collapse
|
400
|
Magagnotti C, Zerbini G, Fermo I, Carletti RM, Bonfanti R, Vallone F, Andolfo A. Identification of nephropathy predictors in urine from children with a recent diagnosis of type 1 diabetes. J Proteomics 2018; 193:205-216. [PMID: 30366120 DOI: 10.1016/j.jprot.2018.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
Despite research progresses, the chance to accurately predict the risk for diabetic nephropathy (DN) is still poor. So far, the first evidence of DN is micro-albuminuria, which is detected only 10-20 years after the onset of diabetes. Our goal is to develop new predictive tools of nephropathy starting from urine, which can be easily obtained using noninvasive procedures and it is directly related to kidney. Since it is reasonable to suppose that, in predisposed patients, the mechanisms leading to nephropathy start acting since the diabetes onset, urine from children with recent diagnosis of type 1 diabetes was subjected to proteomic analysis in comparison to age-matched controls. Targeted confirmation was performed on children with a longer history of diabetes using Western Blotting and applying a urinary lipidomic approach. To definitively understand whether the observed alterations could be related to diabetic nephropathy, urine from diabetic adults with or without albuminuria was also examined. For the first time, lipid metabolisms of prostaglandin and ceramide, which are significantly and specifically modified in association with DN, are shown to be already altered in children with a recent diabetes diagnosis. Future studies on larger cohorts are needed to improve the validity and generalizability of these findings. Data are available via ProteomeXchange with identifier PXD011183 Submission details: Project Name: Urinary proteomics by 2DE and LC-MS/MS. Project accession: PXD011183 Project DOI: https://doi.org/10.6019/PXD011183 SIGNIFICANCE: Nephropathy is a very common diabetic complication. Once established, its progression can only be slowed down but full control or remission is achieved in very few cases, thus posing a large burden on worldwide health. The first evidence of diabetic nephropathy (DN) is micro-albuminuria, but only 30% of patients with micro-albuminuria progress to proteinuria, while in some patients it spontaneously reverts to normo-albuminuria. Thus, there is clear need for biomarkers that can accurately predict the risk to develop DN. Herein, by applying proteomic and lipidomic approaches on urine samples, we show that alteration of prostaglandin and ceramide metabolisms specifically occurs in association with DN. Interestingly, we demonstrate that the modification of these metabolic pathways is an early event in diabetic patients, suggesting the identified changed proteins as possible predictive biomarkers of diabetes-induced renal function decline.
Collapse
Affiliation(s)
- Cinzia Magagnotti
- ProMiFa, Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute (DRI), San Raffaele Scientific Institute, Milan, Italy
| | - Isabella Fermo
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Rose Mary Carletti
- Molecular Medicine Program, Department of Experimental Oncology, European Institute of Oncology, Italy; IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Riccardo Bonfanti
- Childhood Diabetes Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Fabiana Vallone
- ProMiFa, Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- ProMiFa, Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|