351
|
Samuels Y, Diaz LA, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 2005; 7:561-73. [PMID: 15950905 DOI: 10.1016/j.ccr.2005.05.014] [Citation(s) in RCA: 736] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/06/2005] [Accepted: 05/20/2005] [Indexed: 02/07/2023]
Abstract
PIK3CA is mutated in diverse human cancers, but the functional effects of these mutations have not been defined. To evaluate the consequences of PIK3CA alterations, the two most common mutations were inactivated by gene targeting in colorectal cancer (CRC) cells. Biochemical analyses of these cells showed that mutant PIK3CA selectively regulated the phosphorylation of AKT and the forkhead transcription factors FKHR and FKHRL1. PIK3CA mutations had little effect on growth under standard conditions, but reduced cellular dependence on growth factors. PIK3CA mutations resulted in attenuation of apoptosis and facilitated tumor invasion. Treatment with the PI3K inhibitor LY294002 abrogated PIK3CA signaling and preferentially inhibited growth of PIK3CA mutant cells. These data have important implications for therapy of cancers harboring PIK3CA alterations.
Collapse
Affiliation(s)
- Yardena Samuels
- The Sidney Kimmel Comprehensive Cancer Center and The Howard Hughes Medical Institute, The Johns Hopkins University Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Chung TW, Moon SK, Chang YC, Ko JH, Lee YC, Cho G, Kim SH, Kim JG, Kim CH. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J 2005; 18:1670-81. [PMID: 15522912 DOI: 10.1096/fj.04-2126com] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Our previous studies have clearly shown that the angiogenic enzymes, matrix metalloproteinase (MMP) -2/9, are directly involved in human hepatic tumorigenesis and metastasis and suggest that the MMP-2/9 inhibitors, which have dual inhibitory activities on enzyme activity and transcription, represent the best candidates for achieving tumor regression. Many anti-cancer drugs have strong cellular cytotoxicity and side effects, indicating that strong anti-cancer drugs that have no or minimal cytotoxicity and side effects need to be developed. The specific aim of the present study was to develop powerful anti-cancer drugs with specific tumor regression and anti-metastatic potential having the dual inhibitory activities of specific MMP-2 and -9 enzyme activities and gene transcription at the molecular level. Caffeic acid (CA), a strong and selective MMP-9 activity and transcription inhibitor, was isolated from the plant Euonymus alatus and its derivative, caffeic acid phenethyl ester (CAPE), was synthesized. CA and CAPE selectively inhibited MMP-2 and -9 but not -1, -3, -7, or cathepsin K. Treatment of HepG2 cells with CA (100 microg/mL) and CAPE (5 microg/mL) suppressed phorbol 12-myristate 13-acetate (PMA) -induced MMP-9 expression by inhibiting the function of NF-kappaB, but not AP-1. We confirmed that CA and CAPE suppressed the growth of HepG2 tumor xenografts in nude mice in vivo. The subcutaneous and oral administrations of CA and CAPE significantly reduced the liver metastasis. These results confirm the therapeutic potential of the compounds and suggest that the anti-metastatic and anti-tumor effects of CA and CAPE are mediated through the selective suppression of MMP-9 enzyme activity and transcriptional down-regulation by the dual inhibition of NF-kappaB as well as MMP-9 catalytic activity.
Collapse
Affiliation(s)
- Tae-Wook Chung
- National Research Laboratory for Glycobiology and Department of Biochemistry and Molecular Biology, Dongguk University College of Oriental Medicine, Kyungju, Kyungbuk, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Tanimura S, Kadomoto R, Tanaka T, Zhang YJ, Kouno I, Kohno M. Suppression of tumor cell invasiveness by hydrolyzable tannins (plant polyphenols) via the inhibition of matrix metalloproteinase-2/-9 activity. Biochem Biophys Res Commun 2005; 330:1306-13. [PMID: 15823585 DOI: 10.1016/j.bbrc.2005.03.116] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Indexed: 01/22/2023]
Abstract
Elevated expression of matrix metalloproteinases (MMPs), especially that of MMP-2 and MMP-9, is associated with increased metastatic potential in many tumor cells. Recently, green tea polyphenol epigallocatechin-3-O-gallate (EGCG) has been shown to inhibit the MMP-2/-9 activity as well as the invasiveness of tumor cells. In this study, we have examined the inhibitory effect of hydrolyzable tannins (plant polyphenols) on the tumor cell invasion. Our results demonstrate that beta-d-glucose whose hydroxy groups are substituted entirely with galloyl group and further some of them are cross-linked to form hexahydroxydiphenoyl group, for example, suppresses the invasiveness of tumor cells much more potently than EGCG via direct inhibition of the MMP-2/-9 activity. Among those examined, 1,2,4-tri-O-galloyl-3,6-hexahydroxydiphenoyl-beta-d-glucose (punicafolin) inhibits the invasion of HT1080 fibrosarcoma cells most potently. These hydrolyzable tannins would provide new leads for the development of potent inhibitors against tumor metastasis.
Collapse
Affiliation(s)
- Susumu Tanimura
- Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | | | | | |
Collapse
|
354
|
Lee HC, Park IC, Park MJ, An S, Woo SH, Jin HO, Chung HY, Lee SJ, Gwak HS, Hong YJ, Yoo DH, Rhee CH, Hong SI. Sulindac and its metabolites inhibit invasion of glioblastoma cells via down-regulation of Akt/PKB and MMP-2. J Cell Biochem 2005; 94:597-610. [PMID: 15546138 DOI: 10.1002/jcb.20312] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-steroidal anti-inflammatory drug (NSAID), sulindac has chemopreventive and anti-tumorigenic properties, however, the molecular mechanism of this inhibitory action has not been clearly defined. The Akt/protein kinase B, serine/threonine kinase is well known as an important mediator of many cell survival signaling pathways. In the present study, we demonstrate that down-regulation of Akt is a major effect of anti-invasiveness property of sulindac and its metabolites in glioblastoma cells. Myristoylated Akt (MyrAkt) transfected U87MG glioblastoma cells showed increase invasiveness, whereas DN-Akt transfected cells showed decrease invasiveness indicating that Akt potently promoted glioblastoma cell invasion. MMP-2 promoter and enzyme activity were up-regulated in Akt kinase activity dependent manner. Sulindac and its metabolites down-regulated Akt phosphorylation, inhibited MMP-2 production, and significantly inhibited invasiveness of human glioblastoma cells. In addition, sulindac and LY294002, a selective inhibitor of phosphoinositide 3-kinase (PI3K), synergistically inhibited the invasion of glioblastoma cells. Furthermore, only celecoxib showed Akt phosphorylation reduction and an anti-invasivness in glioblastoma cells, whereas aspirin, ketoprofen, ketorolac, and naproxen did not. In conclusion, our results provide evidence that down-regulation of Akt pathway and MMP-2 may be one of the mechanisms by which sulindac and its metabolites inhibit glioblastoma cell invasion.
Collapse
Affiliation(s)
- Hyung-Chahn Lee
- Laboratory of Cell Biology, Department of Laboratory Medicine and Clinical Pathology, Korea Cancer Center Hospital, Seoul 139-240, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Gao B. Alcohol and Hepatitis Virus Interactions in Liver Pathology. COMPREHENSIVE HANDBOOK OF ALCOHOL RELATED PATHOLOGY 2005:819-832. [DOI: 10.1016/b978-012564370-2/50066-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
356
|
Andl CD, Mizushima T, Oyama K, Bowser M, Nakagawa H, Rustgi AK. EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1227-37. [PMID: 15284024 DOI: 10.1152/ajpgi.00253.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The epidermal growth factor receptor (EGFR) activates several signaling cascades in response to epidermal growth factor stimulation. One of these signaling events involves tyrosine phosphorylation of signal transducer and activator of transcription (STAT), whereas another involves activation of the phosphatidylinositol 3-OH kinase pathway. Two possibilities for STAT activation exist: a janus kinase (JAK)-dependent and a JAK-independent mechanism. Herein, we demonstrate that EGFR overexpression in primary esophageal keratinocytes activates STAT in a JAK-dependent fashion with the functional consequence of enhanced cell migration, which can be abolished by use of a JAK-specific inhibitor, AG-490. We determined the mechanisms underlying the signal transduction pathway responsible for increased cell migration. Stimulation of EGFR induces Tyr701 phosphorylation of STAT1 and initiates complex formation of STAT1 and STAT3 with JAK1 and JAK2. Thereafter, the STATs translocate to the nucleus within 15 min. In addition, we found that activation of this signaling pathway results in matrix metalloproteinase-1 (MMP-1) activity. By contrast, Akt activation does not impact the EGFR-STATs-JAKs complex formation and nuclear translocation of the STATs with subsequent MMP-1 activity, although Akt activation may contribute to cell migration through an independent mechanism. Taken together, we find that the recruitment of the STAT-JAK complex by EGFR is responsible for keratinocyte migration that, in turn, might be mediated by MMP-1 activation.
Collapse
Affiliation(s)
- Claudia D Andl
- Gastroenterology Division, Department of Medicine, Abramson Cancer Center and Family Cancer Research Institute, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
357
|
Fuhler GM, Knol GJ, Drayer AL, Vellenga E. Impaired interleukin-8- and GROα-induced phosphorylation of extracellular signal-regulated kinase result in decreased migration of neutrophils from patients with myelodysplasia. J Leukoc Biol 2004; 77:257-66. [PMID: 15561756 DOI: 10.1189/jlb.0504306] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Patients with myelodysplasia suffer from recurrent bacterial infections as a result of differentiation defects of the myeloid lineage and a disturbed functioning of neutrophilic granulocytes. Important physiological activators of neutrophils are the cytokines interleukin-8/CXC chemokine ligand 8 (IL-8/CXCL8), which activates CXC chemokine receptor 1 and 2 (CXCR1 and CXCR2), and growth-related oncogene (GROalpha)/CXCL1, which stimulates only CXCR2. In this study, we show that migration toward IL-8/GROalpha gradients is decreased in myelodysplastic syndrome (MDS) neutrophils compared with healthy donors. We investigated the signal transduction pathways involved in IL-8/GROalpha-induced migration and showed that specific inhibitors for extracellular signal-regulated kinase (ERK)1/2 and phosphatidylinositol-3 kinase (PI-3K) abrogated neutrophil migration toward IL-8/GROalpha. In accordance with these results, we subsequently showed that IL-8/GROalpha-stimulated activation of ERK1/2 was substantially diminished in MDS neutrophils. Activation of the PI-3K downstream target protein kinase B/Akt was disturbed in MDS neutrophils when cells were activated with IL-8 but normal upon GROalpha stimulation. IL-8 stimulation resulted in higher migratory behavior and ERK1/2 activation than GROalpha stimulation, suggesting a greater importance of CXCR1. We then investigated IL-8-induced activation of the small GTPase Rac implicated in ERK1/2-dependent migration and found that it was less efficient in neutrophils from MDS patients compared with healthy donors. In contrast, IL-8 triggered a normal activation of the GTPases Ras and Ral, indicating that the observed defects were not a result of a general disturbance in CXCR1/2 signaling. In conclusion, our results demonstrate a disturbed CXCR1- and CXCR2-induced neutrophil chemotaxis in MDS patients, which might be the consequence of decreased Rac-ERK1/2 and PI-3K activation within these cells.
Collapse
Affiliation(s)
- Gwenny M Fuhler
- Division of Hematology, Department of Medicine, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | |
Collapse
|
358
|
Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E. Implication of the MAGI‐1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J 2004; 19:115-7. [PMID: 15629897 DOI: 10.1096/fj.04-1942fje] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We recently established the critical role of the lipid phosphatase activity of the PTEN tumor suppressor in stabilizing cell-cell contacts and suppressing invasiveness. To delineate the effector systems involved, we investigated the interaction of PTEN with E-cadherin junctional complexes in kidney and colonic epithelial cell lines. PTEN and the p85 regulatory subunit of phosphatidylinositol 3-OH kinase (PI3K) co-immunoprecipitated with E-cadherin and catenins. By using a yeast two-hybrid assay, we demonstrated that PTEN interacted indirectly with beta-catenin by binding the scaffolding protein MAGI-1b. This model was corroborated in various ways in mammalian cells. Ectopic expression of MAGI-1b potentiated the interaction of PTEN with junctional complexes, promoted E-cadherin-dependent cell-cell aggregation, and reverted the Src-induced invasiveness of kidney MDCKts-src cells. In this model, MAGI-1b slightly decreased the activity of AKT, a downstream effector of PI3K. By using dominant-negative and constitutively active AKT expression vectors, we demonstrated that this kinase was included in the pathways involved in Src-induced destabilization of junctional complexes and was necessary and sufficient to trigger invasiveness. We propose that the recruitment of PTEN at adherens junctions by MAGI-1b and the local down-regulation of phosphatidylinositol-3,4,5-trisphosphate pools and downstream effector systems at the site of cell-cell contacts are focal points for restraining both disruption of junctional complexes and induction of tumor cell invasion.
Collapse
|
359
|
Hsieh HL, Yen MH, Jou MJ, Yang CM. Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal 2004; 16:1163-76. [PMID: 15240011 DOI: 10.1016/j.cellsig.2004.03.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2004] [Revised: 03/12/2004] [Accepted: 03/15/2004] [Indexed: 11/21/2022]
Abstract
Bradykinin (BK), an inflammatory mediator, has been shown to increase the expression of proteins such as matrix metalloproteinases (MMPs) on brain cells and contributes to the pathophysiology of inflammatory responses. However, the mechanisms regulating MMP-9 expression by BK in rat brain astrocytes-1 (RBA-1) remain unclear. Here we report that the mitogen-activated protein kinase (MAPK) and NF-kappaB pathways participate in the induction of MMP-9 expression induced by BK in RBA cells. Zymographic, Western blotting, and RT-PCR analyses showed that BK increased expression of MMP-9 mRNA and protein in a time- and concentration-dependent manner. BK-induced MMP-9 mRNA and protein expression was inhibited by MEK1/2 inhibitor PD98059, PI3-K inhibitor LY294002, and NF-kappaB inhibitor helenalin. In accordance with these findings, BK-induced phosphorylation of p42/p44 MAPK and Akt and activation of NF-kappaB was attenuated by prior treatment with PD98059, LY294002, and helenalin, respectively. The effects of BK on MMP-9 expression and p42/p44 MAPK and Akt phosphorylation were inhibited by B(2) receptor antagonist Hoe 140, indicating the involvement of B(2) receptors revealed by [(3)H]-BK binding assay. Furthermore, BK-stimulated translocation of NF-kappaB into the nucleus was revealed by Western blotting and immnofluorescence staining and blocked by Hoe140, PD98059, LY294002, and helenalin. Taken together, these results suggest that in RBA cells, activation of p42/p44 MAPK and Akt cascades mediated through NF-kappaB pathway are essential for BK-induced MMP-9 gene expression. This study may provide insights into the regulation of MMP-9 production in CNS, which may occur in vivo in pathological situations such as CNS inflammation and brain astrocytoma.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
360
|
Jordan NJ, Gee JMW, Barrow D, Wakeling AE, Nicholson RI. Increased Constitutive Activity of PKB/Akt in Tamoxifen Resistant Breast Cancer MCF-7 Cells. Breast Cancer Res Treat 2004; 87:167-80. [PMID: 15377841 DOI: 10.1023/b:brea.0000041623.21338.47] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The tamoxifen-resistant (TAM-R) MCF-7 breast cancer cell line has been used as a model to identify the signalling pathways that enable resistant cancer cells to grow independently of steroid hormones. In TAM-R cells, peptide growth factor signalling pathways appear to be important in modified cell behaviour, growth and survival. The PI3 kinase signalling components Akt1 and Akt2 are expressed at similar levels by both parental wild-type MCF-7 and TAM-R cells, but Akt1 phosphorylation is significantly increased in TAM-R cells grown under basal conditions. High levels of basal Akt, GSK3 alpha / beta and p70S6 kinase phosphorylation are all inhibited by the PI3 kinase inhibitor, LY 294002. The ligands for the EGFR/erbB1 receptor, EGF (epidermal growth factor) and TGF alpha (transforming growth factor- alpha ) demonstrate an increased ability to activate Akt in TAM-R compared with parental MCF-7 cells and it is proposed that the preferred autocrine or paracrine activation of Akt occurs via the erbB heterodimer EGFR/erbB2 in TAM-R cells. Akt phosphorylation is reduced by gefitinib ("Iressa"/ZD1839). The results suggest that the PI3 kinase pathway plays a role in proliferation of TAM-R cells and is important in the increased EGF induced membrane ruffling detected in the resistant cells. Increased Akt1 activation may contribute to the aggressive phenotype of tamoxifen resistant ER (oestrogen receptor) positive breast cancers.
Collapse
Affiliation(s)
- Nicola J Jordan
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3XF, UK.
| | | | | | | | | |
Collapse
|
361
|
Jiang K, Sun J, Cheng J, Djeu JY, Wei S, Sebti S. Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis. Mol Cell Biol 2004; 24:5565-76. [PMID: 15169915 PMCID: PMC419878 DOI: 10.1128/mcb.24.12.5565-5576.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although recent evidence supports a tumor-suppressive role for the GTPase RhoB, little is known about its regulation by signal transduction pathways. Here we demonstrate that Ras downregulates RhoB expression by a phosphatidylinositol 3-kinase (PI3K)- and Akt- but not Mek-dependent mechanism. Furthermore, genetic and pharmacological blockade of PI3K/Akt results in upregulation of RhoB expression. We also provide evidence for the importance of the downregulation of RhoB in oncogenesis by demonstrating that RhoB antagonizes Ras/PI3K/Akt malignancy. Ectopic expression of RhoB, but not the close relative RhoA, inhibits Ras, PI3K, and Akt induction of transformation, migration, and invasion and induces apoptosis and anoikis. Finally, RhoB inhibits melanoma metastasis to the lung in a mouse model. These studies identify suppression of RhoB as a mechanism by which the Ras/PI3K/Akt pathway induces tumor survival, transformation, invasion, and metastasis.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Down-Regulation
- Female
- Fluorouracil/pharmacology
- Genes, ras
- MAP Kinase Signaling System/drug effects
- Melanoma, Experimental/genetics
- Melanoma, Experimental/prevention & control
- Melanoma, Experimental/secondary
- Mice
- Mice, Inbred C57BL
- NIH 3T3 Cells
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic/drug effects
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Transcription, Genetic
- ras Proteins/metabolism
- rhoB GTP-Binding Protein/genetics
- rhoB GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Kun Jiang
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, and Department of Interdisciplinary Oncology, University of South Florida, Tampa, 33612, USA
| | | | | | | | | | | |
Collapse
|
362
|
Rieger-Christ KM, Lee P, Zagha R, Kosakowski M, Moinzadeh A, Stoffel J, Ben-Ze'ev A, Libertino JA, Summerhayes IC. Novel expression of N-cadherin elicits in vitro bladder cell invasion via the Akt signaling pathway. Oncogene 2004; 23:4745-53. [PMID: 15122336 DOI: 10.1038/sj.onc.1207629] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Novel N-cadherin expression has been linked to the invasive phenotype in bladder tumors yet a primary role for N-cadherin in invasion has not been defined in this model. To address this, N-cadherin was stably transfected into E-cadherin expressing bladder carcinoma cells. This resulted in an enhanced invasive capacity in in vitro assays that was blocked by incubation with an N-cadherin function-blocking antibody in a dose-dependent manner. Analysis of the signaling pathway(s) implicated in N-cadherin-mediated invasion in bladder carcinoma cell lines revealed no correlation between MAPK signaling and invasion, in the presence or absence of fibroblast growth factor 2. Also, while MAPK and p38 kinase inhibitors did not alter the invasive behavior of these cells, an increase in the phosphorylation of Akt at serine-473 was detected in N-cadherin transfectants, suggestive of N-cadherin-mediated Akt activation in bladder cell invasion. Incubation of N-cadherin transfectants with either PI3 kinase or Akt inhibitors resulted in a significant decrease in the invasive capacity of these cells. Exposure of cells to PP2, a src family kinase inhibitor, also decreased the invasive potential of N-cadherin transfectants and resulted in reduced phosphorylation of Akt. The involvement of Akt signaling in bladder cell invasion was also supported by the inhibition of bladder cell invasion by cells constitutively expressing an activated Akt kinase, using the PI3 kinase and Akt inhibitors and PP2. These results suggest that activation of PI3/AKT kinase following N-cadherin expression contributes to the increased invasive potential of bladder carcinoma cells.
Collapse
Affiliation(s)
- Kimberly M Rieger-Christ
- Cell and Molecular Biology Laboratory, RE Wise MD Research and Education Institute, 31 Mall Road, Burlington, MA 01805, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Vasko V, Saji M, Hardy E, Kruhlak M, Larin A, Savchenko V, Miyakawa M, Isozaki O, Murakami H, Tsushima T, Burman KD, De Micco C, Ringel MD. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet 2004; 41:161-70. [PMID: 14985374 PMCID: PMC1735712 DOI: 10.1136/jmg.2003.015339] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Akt activation is involved in the pathogenesis of inherited thyroid cancer in Cowden's syndrome and in sporadic thyroid cancers. In cell culture, Akt regulates thyroid cell growth and survival; but recent data suggest that Akt also regulates cell motility in non-thyroid cell lines. We therefore sought to evaluate the role of Akt in thyroid cancer progression. METHODS We evaluated 46 thyroid cancer, 20 thyroid follicular adenoma, and adjacent normal tissues samples by immunohistochemistry for activated Akt (pAkt), Akt 1, 2, and 3, and p27 expression. Immunoblots were performed in 14 samples. RESULTS Akt activation was identified in 10/10 follicular cancers, 26/26 papillary cancers, and 2/10 follicular variant of papillary cancers, but in only 4/66 normal tissue samples and 2/10 typical benign follicular adenomas. Immunoactive pAkt was greatest in regions of capsular invasion; and was localised to the nucleus in follicular cancers and the cytoplasm in papillary cancers, except for invasive regions of papillary cancers where it localised to both compartments. Immunoactive Akt 1, but not Akt 2 or Akt 3, correlated with pAkt localisation, and nuclear pAkt was associated with cytoplasmic expression of p27. In vitro studies using human thyroid cancer cells demonstrated that nuclear translocation of Akt 1 and pAkt were associated with cytoplasmic p27 and cell invasion and migration. Cell migration and the localisation of Akt 1, pAkt, and p27 were inhibited by PI3 kinase, but not MEK inhibition. DISCUSSION These data suggest an important role for nuclear activation of Akt 1 in thyroid cancer progression.
Collapse
Affiliation(s)
- V Vasko
- Ohio State University School of Medicine and Arthur G. James Cancer Center, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Lee BC, Lee TH, Avraham S, Avraham HK. Involvement of the Chemokine Receptor CXCR4 and Its Ligand Stromal Cell-Derived Factor 1α in Breast Cancer Cell Migration Through Human Brain Microvascular Endothelial Cells. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.327.2.6] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
In this study, we have characterized the signaling pathways mediated by CXCR4 in breast cancer cells and its role in breast cancer cell invasion and migration. Stromal cell-derived factor 1α (SDF-1α; CXCL12) stimulation of breast cancer cells resulted in phosphoinositide 3-kinase (PI-3K) activation, AKT phosphorylation, and activation of the FKHRL1 transcription factor. In addition, SDF-1α induced activation of the focal adhesion kinase (FAK) as well as the migration of breast cancer cells. Expression of SDF-1α, the ligand of CXCR4, was about 2-fold higher in microdissected human breast epithelial cancer cells as compared with normal epithelial cells. Immunohistochemical analysis indicated that SDF-1α expression is consistently higher in primary breast tumor cells than in normal breast epithelial cells. Furthermore, SDF-1α induced blood vessel instability, through increased vascular permeability, resulting in the penetration of breast tumor cells through the human brain microvascular endothelial cells (HBMEC). Notably, the migration of breast cancer cells was inhibited by the PI-3K inhibitor, Wortmannin, and the Ca2+ inhibitor BAPTA/AM, indicating that transendothelial breast cancer cell migration induced by SDF-1α is mediated by activation of the PI-3K/AKT pathway and Ca2+-mediated signaling. Blockade of the CXCR4/SDF1 signaling pathway with anti-CXCR4 antibody also decreased transendothelial breast cancer cell migration as well as vascular permeability. This study focuses on novel interactions between highly relevant signaling pathways in breast cancer cells and brain microvascular endothelial cells and may provide insights into the molecular mechanisms of CXCR4/SDF-1α-mediated breast cancer metastasis to the brain.
Collapse
Affiliation(s)
- Byeong-Chel Lee
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Tae-Hee Lee
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Shalom Avraham
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Hava Karsenty Avraham
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
365
|
Suzuki A, Lu J, Kusakai GI, Kishimoto A, Ogura T, Esumi H. ARK5 is a tumor invasion-associated factor downstream of Akt signaling. Mol Cell Biol 2004; 24:3526-35. [PMID: 15060171 PMCID: PMC381626 DOI: 10.1128/mcb.24.8.3526-3535.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AMP-activated protein kinases (AMPKs) are a class of serine/threonine protein kinases that are activated by an increase in intracellular AMP concentration. They are a sensitive indicator of cellular energy status and have been found to promote tumor cell survival during nutrient starvation. We recently identified a novel AMPK catalytic subunit family member, ARK5, whose activation is directly regulated by Akt, which, in turn, has been reported to be a key player in tumor malignancy. In this study, we attempted to determine whether ARK5 is involved in tumor malignancy under regulation by Akt. Matrigel invasion assays demonstrated that both overexpressed and endogenous ARK5 showed strong activity dependent on Akt. In addition, ARK5 expression induced activation of matrix metalloproteinase 2 (MMP-2) and MMP-9 following new expression of membrane type 1 MMP (MT1-MMP), and the MT1-MMP expression induced by ARK5 was initiated by rapamycin-sensitive signaling. In nude mice, ARK5 expression was associated with a significant increase in tumor growth and significant suppression of necrosis in tumor tissue. Interestingly, only the ARK5-overexpressing PANC-1 cell line (P/ARK) tumor showed invasion and metastasis in nude mice, although Akt was activated in tumors derived from both P/ARK and its parental cell line. We report that a novel AMPK catalytic subunit family member, ARK5, plays a key role in tumor malignancy downstream of Akt.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Investigative Treatment Division, National Cancer Center Research Institute East, Kashiwa, Chiba 277-8577, Japan
| | | | | | | | | | | |
Collapse
|
366
|
Arsham AM, Plas DR, Thompson CB, Simon MC. Akt and Hypoxia-Inducible Factor-1 Independently Enhance Tumor Growth and Angiogenesis. Cancer Res 2004; 64:3500-7. [PMID: 15150104 DOI: 10.1158/0008-5472.can-03-2239] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent reports have suggested that phosphatidylinositol 3-kinase/Akt signaling can induce angiogenesis and tumor growth by activating the hypoxia-inducible factor-1 (HIF-1). However, the absence of specific biochemical inhibitors of HIF-1 signaling has prevented a direct test of the requirement for HIF-1 activity in Akt-dependent tumorigenesis. To genetically test the relationship between HIF-1 and Akt, activated Akt was expressed in a hepatoma cell line lacking HIF-1. Akt expression was associated with a dramatic increase in tumor size, despite the absence of HIF-1. Tumor size was not further increased in cells with reconstituted HIF-1 activity, indicating that the effects of Akt on tumorigenesis were not limited by the absence of HIF-1. Increased tumor size in Akt-expressing, HIF-deficient cells was associated with vascular endothelial growth factor secretion and tumor vascularization. In addition to vascular endothelial growth factor production, Akt also conferred a cell-autonomous competitive advantage to tumor cells in an in vivo competition experiment. Thus, Akt has potent, HIF-1-independent oncogenic and angiogenic activities.
Collapse
Affiliation(s)
- Andrew M Arsham
- Committee on Genetics, University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
367
|
Chung TW, Lee YC, Kim CH. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J 2004; 18:1123-5. [PMID: 15132991 DOI: 10.1096/fj.03-1429fje] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) X protein (HBx) has been shown to be essential for the development of hepatocellular carcinoma (HCC). Recently, we have found that HBx causes the progression of liver cancer through down-expression of PTEN, known as a tumor suppressor gene (1). The prognosis for HCC depends mainly on the clinicopathological characteristic regarding invasion and metastasis. The expression of matrix metalloproteinase (MMP)-9 has been implicated as playing an important role in HCC invasion and metastasis. We previously reported that HBV infection increased the invasiveness of hepatocytes and HCC cells through the transcriptional activation of MMP-9 (2). The HBx was shown to activate the mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI-3K) signal cascade, which is essential for activation of transcription factors such as activating protein (AP)-1 and nuclear factor (NF)-kappaB. In this study, we show that the HBx protein stimulates the activities of the PI-3K-Akt/ protein kinase B (PKB) as well as extracellular signal-regulated kinase 1/2 (ERK 1/2) in HBx-transfected cells. Furthermore, we have shown that enhanced expression of MMP-9 in HBx-transfected cells mediated by not only activation of AP-1 transcriptional activity through ERKs pathway but also activation of NF-kappaB transcriptional activity through PI-3K-AKT/PKB pathway, and was associated with the invasive potential. However, treatment with U0126 (known as the ERKs inhibitor) or wortmannin (known as the PI-3K inhibitor), but not SB203580 (known as the p38 MAPK inhibitor), markedly inhibited the expression of MMP-9 induced by HBx in HBx-transfected cells. Seemingly, the invasiveness of HBx-transfected cells was decreased by treating with U0126 or wortmannin, but not SB203580. These results clearly suggest that the HBx contributed to the transcriptional regulation of MMP-9 through the ERKs and PI-3K-AKT/PKB pathway, and increased an invasive potential of cells.
Collapse
Affiliation(s)
- Tae-Wook Chung
- National Research Laboratories for Glycobiology, Ministry of Science and Technolgoy, and Department of Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University, Kyungju, South Korea
| | | | | |
Collapse
|
368
|
Roberts MS, Woods AJ, Dale TC, Van Der Sluijs P, Norman JC. Protein kinase B/Akt acts via glycogen synthase kinase 3 to regulate recycling of alpha v beta 3 and alpha 5 beta 1 integrins. Mol Cell Biol 2004; 24:1505-15. [PMID: 14749368 PMCID: PMC344170 DOI: 10.1128/mcb.24.4.1505-1515.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein kinase B (PKB)/Akt is known to promote cell migration, and this may contribute to the enhanced invasiveness of malignant cells. To elucidate potential mechanisms by which PKB/Akt promotes the migration phenotype, we have investigated its role in the endosomal transport and recycling of integrins. Whereas the internalization of alpha v beta 3 and alpha 5 beta 1 integrins and their transport to the recycling compartment were independent of PKB/Akt, the return of these integrins (but not internalized transferrin) to the plasma membrane was regulated by phosphatidylinositol 3-kinases and PKB/Akt. The blockade of integrin recycling and cell spreading on integrin ligands effected by inhibition of PKB/Akt was reversed by inhibition of glycogen synthase kinase 3 (GSK-3). Moreover, expression of nonphosphorylatable active GSK-3 beta mutant GSK-3 beta-A9 suppressed recycling of alpha 5 beta 1 and alpha v beta 3 and reduced cell spreading on ligands for these integrins, indicating that PKB/Akt promotes integrin recycling by phosphorylating and inactivating GSK-3. We propose that the ability of PKB/Akt to act via GSK-3 to promote the recycling of matrix receptors represents a key mechanism whereby integrin function and cell migration can be regulated by growth factors.
Collapse
Affiliation(s)
- Marnie S Roberts
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | |
Collapse
|
369
|
Wu X, Obata T, Khan Q, Highshaw RA, De Vere White R, Sweeney C. The phosphatidylinositol-3 kinase pathway regulates bladder cancer cell invasion. BJU Int 2004; 93:143-50. [PMID: 14678387 DOI: 10.1111/j.1464-410x.2004.04574.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To investigate the role of the phosphatidylinositol (PI)-3 kinase pathway in the invasion of bladder cancer cell lines, and to assess the activation of this pathway in primary human bladder tumours. MATERIALS AND METHODS Human bladder cancer cells were treated with pathway specific inhibitors or were transfected with PI-3 kinase pathway components. The invasion of cultured bladder cancer cells was analysed by an invasion assay. Bladder cancer cells lines and primary human bladder tumours were analysed for pathway activation by western blotting. RESULTS A specific inhibitor of PI-3 kinase enzyme activity, Ly294002, potently suppressed the invasive properties of three highly invasive bladder tumour cell lines. Restoration of the PTEN gene to invasive UM-UC-3 bladder tumour cells or expression of a dominant-negative version of the PI-3 kinase target, Akt, also potently inhibited invasion, indicating a central role for the PI-3 kinase/Akt pathway in this process. In addition, 55% of primary tumours from patients with bladder cancer had markedly high levels of phosphorylated Akt. CONCLUSION Pharmacological or biochemical inhibition of the PI-3 kinase pathway drastically reduced the invasive capacity of bladder cancer cell lines; over half of primary human bladder tumours had high Akt phosphorylation, suggesting that the aberrant activation of this pathway may contribute to the invasion of a significant subset of bladder cancers.
Collapse
Affiliation(s)
- X Wu
- UC Davis Cancer Center, Sacramento, CA, USA
| | | | | | | | | | | |
Collapse
|
370
|
Nicholson KM, Streuli CH, Anderson NG. Autocrine signalling through erbB receptors promotes constitutive activation of protein kinase B/Akt in breast cancer cell lines. Breast Cancer Res Treat 2004; 81:117-28. [PMID: 14572154 DOI: 10.1023/a:1025765215765] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The protein kinase PKB/Akt plays a pivotal role in promoting cell survival and proliferation. This study investigated the regulation of PKB/Akt activity in breast cancer cells. In primary invasive breast cancers PKB/Akt exhibited elevated phosphorylation at regulatory site Ser473 in 80% of cases, using immunohistochemistry. The degree of phospho-PKB/Akt immunoreactivity was positively correlated with the extent of its nuclear accumulation. Moderate/strong staining was seen in 31% of the samples but was absent in tumour-associated normal breast epithelia. To examine the mechanisms of PKB/Akt activation, we studied its phosphorylation in a panel of breast cancer cell lines. PKB/Akt was constitutively phosphorylated on both regulatory sites (Thr308 and Ser473) in the absence of serum growth factors in 7 of 8 lines but not in two cell lines derived from normal breast epithelia. Further analysis revealed that constitutive PKB/Akt phosphorylation was associated with loss of PTEN phosphatase expression (CAL51, MDA-MB-468, BT549 cells) and constitutive activation of erbB2 (SKBR3, BT474 cells). In two further breast cancer lines (T47D and HS578T) PKB/Akt phosphorylation was dependent upon autocrine factors acting primary through the epidermal growth factor receptor (EGFR) and erbB2. Conditioned medium from HS578T cells stimulated EGFR-dependent PKB/Akt phosphorylation in normal breast cells. These results demonstrate that PKB/Akt is frequently activated in breast cancer through diverse mechanisms, including autocrine signalling via erbB receptors.
Collapse
Affiliation(s)
- K M Nicholson
- Division of Cancer Studies, School of Medicine, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
371
|
Normanno N, De Luca A, Bianco C, Maiello MR, Carriero MV, Rehman A, Wechselberger C, Arra C, Strizzi L, Sanicola M, Salomon DS. Cripto-1 overexpression leads to enhanced invasiveness and resistance to anoikis in human MCF-7 breast cancer cells. J Cell Physiol 2004; 198:31-9. [PMID: 14584041 DOI: 10.1002/jcp.10375] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cripto-1 (CR-1) is an epidermal growth factor (EGF)-CFC protein that has been shown to signal through nodal/Alk-4, PI3K/Akt, and/or ras/raf/MEK/MAPK pathways in mammalian cells, and that is frequently expressed in human primary breast carcinomas. In the present study, the human estrogen receptor positive, MCF-7 breast cancer cell line, that expresses low levels of endogenous CR-1, was transfected with a CR-1 expression vector. MCF-7 CR-1 cells expressed high levels of a 25 kDa recombinant CR-1 protein that was not detected in MCF-7 cells transfected with a control vector (MCF-7 neo). Overexpression of CR-1 did not induce an estrogen independent phenotype in MCF-7 cells. In fact, MCF-7 CR-1 cells showed a response to exogenous estrogens that was similar to MCF-7 neo cells, and failed to grow in immunosuppressed mice in absence of estrogen stimulation. However, MCF-7 CR-1 cells showed a rate of proliferation in serum free conditions, and an ability to form colonies in soft-agar that were higher as compared with MCF-7 neo cells. More importantly, overexpression of CR-1 enhanced the resistance to anoikis and the invasion ability of MCF-7 cells. MCF-7 CR-1 cells showed levels of activation of both Akt and Smad-2 that were significantly higher as compared with MCF-7 neo. These findings suggest that CR-1 overexpression might be associated with the progression towards a more aggressive phenotype in breast carcinoma, through the activation of both Akt and Smad-2 signalling pathways.
Collapse
Affiliation(s)
- Nicola Normanno
- Division of Haematological Oncology and Department of Experimental Oncology, INT-Fondazione Pascale, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Liu LT, Peng JP, Chang HC, Hung WC. RECK is a target of Epstein-Barr virus latent membrane protein 1. Oncogene 2004; 22:8263-70. [PMID: 14614450 DOI: 10.1038/sj.onc.1207157] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) has been suggested to be involved in tumor metastasis. However, the molecular mechanism of LMP1-induced metastasis is largely unknown. In this study, we investigated the effect of LMP1 on the expression of RECK, a metastasis suppressor gene, in an EBV-negative nasopharyngeal carcinoma (NPC) cell line. Our data demonstrated that LMP1 induced downregulation of RECK via transcription repression in TW04 cells. In addition, we found that LMP1 acted via an Sp1 site to inhibit RECK promoter activity. We next studied the signaling pathway that mediated the effect of LMP1 on RECK expression. Our results showed that LMP1 potently stimulated the activity of extracellular signal-regulated kinases (ERKs) and inhibition of ERK activity by PD98059 antagonized LMP1-induced downregulation of RECK. Conversely, the c-Jun N-terminal kinase inhibitor SP600125 and p38(HOG) kinase inhibitor SB203580 had little effect. We also found that the expression of LMP1 increased the invasive ability of TW04 cells. The importance of RECK in LMP1-induced invasiveness was supported by three observations. First, restoration of RECK expression by PD98059 reduced LMP1-induced release of active MMP-9. Second, suppression of PD98059-induced RECK expression by small interference RNA abolished the inhibitory action of PD98059 on LMP1-induced invasiveness. Third, coexpression of RECK with LMP1 in TW04 cells effectively suppressed cell invasiveness induced by LMP1. Taken together, these results suggest that LMP1 inhibits RECK expression via the ERK/Sp1 signaling pathway and this inhibition is a critical step for LMP1-induced tumor metastasis.
Collapse
Affiliation(s)
- Li-Teh Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
373
|
Pu P, Kang C, Li J, Jiang H. Antisense and Dominant-Negative AKT2 cDNA Inhibits Glioma Cell Invasion. Tumour Biol 2004; 25:172-8. [PMID: 15557754 DOI: 10.1159/000081099] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 05/30/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to explore the potential role of AKT2 in glioma cell invasion. Therefore, dominant-negative (DN-AKT2) and antisense AKT2 constructs (AS-AKT2) were transfected into rat C6 glioma cells with elevated endogenous AKT2 expression. In situ hybridization and Western blot analysis were used to identify AKT2 expression. Spheroid culturing was used to assess cell migration and invasion in Matrigel from spheroids. Cell motility and invasion were also evaluated by scratch and Transwell invasion assays, respectively. The secretion of matrix metalloproteinases (MMPs), MMP2 and MMP9, was determined by gelatin zymography. AKT2 expression was inhibited in C6 cells transfected with AS-AKT2 but did not significantly change in cells transfected with DN-AKT2. The cell migration distance from spheroids or the number of cells migrating into the acellular space created by scratching was reduced in cells transfected with DN-AKT2 or AS-AKT2 compared to the control cells. The invasive distance of cells from the spheroids in Matrigel sandwich and the number of invading cells through the Matrigel were also decreased in the DN-AKT2- and AS-AKT2-transfected cells. Gelatin zymography showed that the production of MMP2 and MMP9 was inhibited in transfected cells. In conclusion, AKT2 plays an important role in glioma cell motility and invasion. Therapy based on AKT inhibition may complement currently available treatment to control glioma cell invasion.
Collapse
Affiliation(s)
- Peiyu Pu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neurooncology, Tianjin Neurological Institute, Tianjin, People's Republic of China.
| | | | | | | |
Collapse
|
374
|
Abstract
Metastasis in breast cancer significantly increases morbidity and mortality. The 5-year survival rate reduces from 90% for localised disease to about 20% once metastasis has taken place. The phosphoinositide 3-kinase/Akt signalling pathway has an important role in cell motility, invasion and metastasis. However, the precise contribution of the Akt kinase family members, Akt1, Akt2 and Akt3, in mediating these processes is unclear. The possibility that they have distinct functions in tumour progression is particularly interesting.
Collapse
Affiliation(s)
- Noan-Minh Chau
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, UK
| | - Margaret Ashcroft
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, UK
| |
Collapse
|
375
|
Steinle JJ, Meininger CJ, Chowdhury U, Wu G, Granger HJ. Role of ephrin B2 in human retinal endothelial cell proliferation and migration. Cell Signal 2003; 15:1011-7. [PMID: 14499344 DOI: 10.1016/s0898-6568(03)00072-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study was designed to determine the presence of Eph B4 or ephrin B2 in human retinal endothelial cells (REC) and their signal transduction. Human retinal endothelial cells were stimulated with an Eph B4/Fc chimera and probed for phosphorylation of phosphatidylinositol-3-kinase (PI3K), Src, and mitogen-activated protein kinase (MAPK) pathways. Proliferation and migration were investigated after Eph B4/Fc stimulation in the presence of various pathway inhibitors. Human retinal endothelial cells express ephrin B2, with little expression of Eph B4. Treatment with EphB4/Fc chimera resulted in activation of PI3K, Src, and MAPK pathways. Eph B4-stimulated endothelial cell proliferation was mediated via PI3K, nitric oxide synthase, and extracellular signal-regulated kinase 1/2 (ERK1/2). Blockade of Src-PI3K pathways produced significant attenuation of Eph B4/Fc-stimulated migration. These results demonstrate for the first time that ephrin B2 is present in human retinal endothelial cells. Additionally, it appears that vascular growth may be modulated in the retina through activation of the PI3K pathway and its downstream components.
Collapse
Affiliation(s)
- Jena J Steinle
- Cardiovascular Research Institute and Department of Medical Physiology, College of Medicine, The Texas A&M University System Health Science Center, 702 SW HK Dodgen Loop, Medical Research Building, Room 202A, Temple, TX 76504, USA.
| | | | | | | | | |
Collapse
|
376
|
Steinle JJ, Granger HJ. Nerve growth factor regulates human choroidal, but not retinal, endothelial cell migration and proliferation. Auton Neurosci 2003; 108:57-62. [PMID: 14614965 DOI: 10.1016/s1566-0702(03)00151-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously shown that sympathetic denervation results in significant blood vessel growth of the choroid and retina. The mechanism of this growth remains unclear. Since sympathetic denervation can result in increased nerve growth factor (NGF) levels, it was the goal of this study to determine if choroidal and retinal endothelial cells in culture would respond to nerve growth factor and if nerve growth factor promote endothelial cell migration and proliferation, two components of angiogenesis. Western blotting with phospho-specific antibodies, cell migration, and cell proliferation assays were employed to determine NGF effects on both choroidal and retinal cell growth. NGF treatment produced phosphorylation of TrkA in choroidal and retinal endothelial cells. NGF stimulation resulted in activation of ERK1/2, Akt, and Src in choroidal endothelial cells, while little phosphorylation was noted following NGF treatment in retinal endothelial cells. NGF increased choroidal endothelial cell migration by 50% over control and this was inhibited by pretreatment with LY294002 (PI3K inhibitor), Akt inhibitor, and MMP2/9 inhibitor. KT5823, PD98059, and PP2 did not affect choroidal cell migration. NGF also produced a 47% increase in choroidal endothelial cell proliferation, which was blocked by PP2, LY294002, Akt inhibitor, KT5823, and PD98059. NGF stimulation did not alter retinal endothelial cell migration or proliferation. Thus, it appears that increased NGF levels that may be noted after sympathectomy are capable of producing some aspects of vascular remodeling via different signaling cascades in choroidal endothelial cells in culture.
Collapse
Affiliation(s)
- Jena J Steinle
- Cardiovascular Research Institute and Department of Medical Physiology, College of Medicine, The Texas A&M University System Health Science Center, Temple, TX 76504, USA.
| | | |
Collapse
|
377
|
Duxbury MS, Waseem T, Ito H, Robinson MK, Zinner MJ, Ashley SW, Whang EE. Ghrelin promotes pancreatic adenocarcinoma cellular proliferation and invasiveness. Biochem Biophys Res Commun 2003; 309:464-8. [PMID: 12951072 DOI: 10.1016/j.bbrc.2003.08.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ghrelin, a newly described potent orexigenic peptide, may have therapeutic potential in patients with cachexia. We assessed whether pancreatic adenocarcinoma, commonly associated with marked cachexia, is a ghrelin-responsive malignancy. Pancreatic adenocarcinoma cells were exposed to ghrelin (0-100 nM). Proliferation was determined by MTT assay. Ghrelin, ghrelin 1a and 1b receptor expression and Akt phosphorylation were assessed. The effects of ghrelin (+/- its antagonist D-Lys-GHRP6, or the PI3-K inhibitor Wortmannin) on cellular motility and invasiveness were quantified by Matrigel Boyden chamber assay. All cell lines expressed ghrelin 1a and 1b receptor transcript and protein, but only PANC1 weakly expressed ghrelin transcript. Ten nanomolar ghrelin increased proliferation, motility, invasiveness, and Akt phosphorylation in all cell lines. Proliferation was affected dose-dependently, being suppressed at higher ghrelin concentrations. D-Lys-GHRP6 suppressed ghrelin-induced proliferation, invasion, and Akt phosphorylation. Wortmannin abolished the effects of ghrelin on motility and invasiveness. Pancreatic adenocarcinoma is a ghrelin-responsive malignancy.
Collapse
Affiliation(s)
- Mark S Duxbury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
378
|
Tanimura S, Asato K, Fujishiro SH, Kohno M. Specific blockade of the ERK pathway inhibits the invasiveness of tumor cells: down-regulation of matrix metalloproteinase-3/-9/-14 and CD44. Biochem Biophys Res Commun 2003; 304:801-6. [PMID: 12727228 DOI: 10.1016/s0006-291x(03)00670-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Elevated expression of matrix metalloproteinases (MMPs) is associated with increased metastatic potential in many tumor cells. As activation of the ERK pathway has been linked to the expression of MMP-9, we examined a possible correlation between ERK activation, MMP-9 expression, and invasive phenotype in human tumor cells. Activation state of the ERK pathway in tumor cells was well correlated with the invasive phenotype, which was determined by the ability of cells to invade through reconstituted extracellular matrix. Elevated expression of MMP-9 as well as of MMP-3, MMP-14, and CD44 was observed in tumor cells in which constitutive activation of the ERK pathway is detected. Blockade of the ERK pathway by treatment with PD184352, a specific and powerful inhibitor of mitogen-activated protein (MAP) kinase/ERK kinase (MEK), suppressed the expression of MMP-3, MMP-9, MMP-14, and CD44, and inhibited markedly the invasiveness of tumor cells. These results imply that, in addition to anti-proliferative effects, specific blockade of the ERK pathway is expected to result in anti-metastatic effects in tumor cells.
Collapse
Affiliation(s)
- Susumu Tanimura
- Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, J.apan
| | | | | | | |
Collapse
|
379
|
Ward JA, Huang L, Guo H, Ghatak S, Toole BP. Perturbation of hyaluronan interactions inhibits malignant properties of glioma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1403-9. [PMID: 12707023 PMCID: PMC1851198 DOI: 10.1016/s0002-9440(10)64273-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Malignant progression of gliomas is characterized by acquisition of inappropriate growth and invasive properties. In vitro, these malignant properties are reflected in, and measured by, the ability to grow in an anchorage-independent manner and to invade artificial extracellular matrices. The results of numerous studies have suggested that the extracellular and pericellular matrix polysaccharide, hyaluronan, plays an important role in these attributes of malignant cancer cells. However, with respect to glioma cells, most studies have addressed the effect of exogenously added hyaluronan rather than the function of endogenous tumor cell-associated hyaluronan. In this study we manipulate hyaluronan-glioma cell interactions by two methods. The first is administration of small hyaluronan oligosaccharides that compete for endogenous hyaluronan polymer interactions, resulting in attenuation of hyaluronan-induced signaling. The second is overexpression of soluble hyaluronan-binding proteins that act as a competitive sink for interaction with endogenous hyaluronan, again leading to attenuated signaling. We find that both treatments inhibit anchorage-independent growth, as measured by colony formation in soft agar, and invasiveness, as measured by penetration of reconstituted basement membrane matrices. Based on our findings, we conclude that endogenous hyaluronan interactions are essential for these two fundamental malignant properties of glioma cells.
Collapse
Affiliation(s)
- Jeanine A Ward
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
380
|
Tai YT, Podar K, Mitsiades N, Lin B, Mitsiades C, Gupta D, Akiyama M, Catley L, Hideshima T, Munshi NC, Treon SP, Anderson KC. CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 2003; 101:2762-9. [PMID: 12433678 DOI: 10.1182/blood-2002-09-2813] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow and their egress into peripheral blood with progression to plasma cell leukemia. Our previous study defined a functional role of CD40 activation in MM cell homing and migration. In this study, we examine signaling events mediating CD40-induced MM cell migration. We show that cross-linking CD40, using either soluble CD40L (sCD40L) or anti-CD40 monoclonal antibody (mAb), induces phosphatidylinositol 3-kinase (PI3K) activity and activates its downstream effector AKT in MM.1S cells. CD40 activation also activates the MAP kinase (MEK) pathway, evidenced by phosphorylation of extracellular signal-regulated mitogen-activated protein kinase (ERK), but not c-jun amino-terminal kinase (JNK) or p38, in a dose- and time-dependent manner. Using pharmacologic inhibitors of PI3K and MEK, as well as adenoviruses expressing dominant-negative and constitutively expressed AKT, we demonstrate that PI3K and AKT activities are required for CD40-induced MM cell migration. In contrast, inhibition of ERK/MEK phosphorylation only partially (10%-15%) prevents migration, suggesting only a minor role in regulation of CD40-mediated MM migration. We further demonstrate that CD40 induces nuclear factor (NF)-kappa B activation as a downstream target of PI3K/AKT signaling, and that inhibition of NF-kappa B signaling using specific inhibitors PS1145 and SN50 completely abrogates CD40-induced MM migration. Finally, we demonstrate that urokinase plasminogen activator (uPA), an NF-kappa B target gene, is induced by CD40; and conversely, that uPA induction via CD40 is blocked by PI3K and NF-kappa B inhibitors. Our data therefore indicate that CD40-induced MM cell migration is primarily mediated via activation of PI3K/AKT/NF-kappa B signaling, and further suggest that novel therapies targeting this pathway may inhibit MM cell migration associated with progressive MM.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Navarro A, Anand-Apte B, Tanabe Y, Feldman G, Larner AC. A PI-3 kinase-dependent, Stat1-independent signaling pathway regulates interferon-stimulated monocyte adhesion. J Leukoc Biol 2003; 73:540-5. [PMID: 12660229 DOI: 10.1189/jlb.1002508] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Type I interferon (IFN)-alpha/beta and type II IFN-gamma induce the expression of early response genes through activation of the Janus tyrosine kinase/signal transducer and activator of transcription (Stat) pathway. Although IFNs regulate a variety of other signaling cascades, little is known about how they contribute to the biological activities of these cytokines. In this study, we demonstrate that IFN-beta or IFN-gamma induces the phosphorylation of the serine/threonine kinase Akt in primary human peripheral blood monocytes. Abrogation of the IFN-stimulated Akt activation by phosphatidylinositol-3 kinase (PI-3K) inhibitors prevents IFN-induced adhesion in these cells, and IFN activation of the Stat1-dependent guanylate-binding protein (GBP) gene is not affected. Importantly, Stat1-deficient bone marrow macrophages displayed a similar level of IFN-gamma-stimulated adhesion compared with macrophages derived from wild-type littermates. These findings demonstrate for the first time that IFN stimulation of a PI-3K signaling cascade modulates the ability of these cytokines to regulate monocyte adhesion, and this process does not require the expression of Stat1, a primary mediator of IFN-gamma signaling.
Collapse
Affiliation(s)
- Angels Navarro
- Department of Immunology, Lerner Research Institute, Ohio, USA
| | | | | | | | | |
Collapse
|
382
|
Abstract
BACKGROUND Alcoholism and chronic hepatitis C (HCV) infection are common causes of liver disease worldwide. Hepatitis C virus and alcohol use frequently coexist, and together lead to more rapid progression of liver disease. GOALS To critically review the literature pertaining to the combined effects of alcohol and HCV, focusing primarily on how alcohol influences the natural history, pathogenesis, and treatment of HCV liver disease. STUDY A thorough review of the English literature was conducted, using a MEDLINE-based computerized literature search and review of cited references. RESULTS Hepatitis C virus is prevalent in unselected alcoholic populations (14-36%) and in alcoholic individuals with liver disease (< or =51%). Hepatitis C virus-infected individuals who drink alcohol in excess have more severe histologic injury, more rapid disease progression, and a higher frequency of cirrhosis and hepatocellular carcinoma. Alcohol use also appears to decrease response rates to interferon therapy. The mechanisms of interaction between alcohol and HCV are not fully understood, but they likely include the effects of alcohol on the host immune system and the virus and on other factors possibly related to HCV liver disease and hepatic carcinogenesis. CONCLUSIONS Alcohol use and HCV infection frequently coexist. Although there is ample evidence that alcohol use adversely affects the natural history of HCV liver disease, how the two interact is not well understood. Patients with chronic HCV should be encouraged to avoid alcohol; however, the threshold above which alcohol results in accelerated liver disease remains to be determined.
Collapse
Affiliation(s)
- Renuka Bhattacharya
- Department of Medicine, Division of Gastroenterology University of Washington Seattle, Washington 98104, USA.
| | | |
Collapse
|
383
|
Zhang D, Brodt P. Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling. Oncogene 2003; 22:974-82. [PMID: 12592384 DOI: 10.1038/sj.onc.1206197] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The membrane type 1 matrix metalloproteinase (MT1-MMP) has been identified as a major activator of MMP-2 - a process involving the formation of a trimolecular complex with TIMP-2. We previously identified the IGF-I receptor as a positive regulator of MMP-2 synthesis. Here, we investigated the role of IGF-IR in the regulation of MT1-MMP. Highly invasive Lewis lung carcinoma subline H-59 cells express MT1-MMP and utilize it to activate their major extracellular matrix degrading proteinase-MMP-2. These cells were transiently transfected with a plasmid vector expressing a luciferase reporter gene downstream of the mouse MT1-MMP promoter. IGF-I treatment increased luciferase activity in the transfected cells by up to 10-fold and augmented endogenous MT1-MMP mRNA and protein synthesis by up to 2-3-fold, relative to controls. MT1-MMP induction and invasion were blocked by the PI 3-kinase inhibitors LY294002 and wortmannin and by rapamycin, but not by the MEK inhibitor PD98059. Overexpression of a dominant negative Akt mutant or of the tumor suppressor phosphatase and tensin homologue, PTEN, in these cells also caused a significant reduction in MT1-MMP expression and invasion. The results demonstrate that IGF-IR controls tumor cell invasion by coordinately regulating MMP-2 expression and its MT1-MMP-mediated activation and identify PI 3-kinase/Akt/mTOR signaling as critical to this regulation.
Collapse
MESH Headings
- Amino Acid Substitution
- Androstadienes/pharmacology
- Animals
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Chromones/pharmacology
- Collagen
- Drug Combinations
- Enzyme Induction/drug effects
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Insulin-Like Growth Factor I/pharmacology
- Insulin-Like Growth Factor I/physiology
- Laminin
- Matrix Metalloproteinase 14
- Matrix Metalloproteinase 2/physiology
- Matrix Metalloproteinases, Membrane-Associated
- Metalloendopeptidases/biosynthesis
- Metalloendopeptidases/genetics
- Mice
- Morpholines/pharmacology
- Neoplasm Invasiveness/physiopathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- PTEN Phosphohydrolase
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/physiology
- Phosphorylation/drug effects
- Point Mutation
- Promoter Regions, Genetic
- Protein Kinases/physiology
- Protein Processing, Post-Translational/drug effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Proteoglycans
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-akt
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Receptor, IGF Type 1/drug effects
- Receptor, IGF Type 1/physiology
- Recombinant Fusion Proteins/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
- Wortmannin
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Surgery, McGill University Health Center, The Royal Victoria Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
384
|
Squires MS, Hudson EA, Howells L, Sale S, Houghton CE, Jones JL, Fox LH, Dickens M, Prigent SA, Manson MM. Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem Pharmacol 2003; 65:361-76. [PMID: 12527329 DOI: 10.1016/s0006-2952(02)01517-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Following observations that curcumin inhibited proliferation (IC(50)=1-5 microM), invasiveness and progression through S/G2/M phases of the cell cycle in the non-tumourigenic HBL100 and tumourigenic MDA-MB-468 human breast cell lines, it was noted that apoptosis was much more pronounced in the tumour line. Therefore, the ability of curcumin to modulate signalling pathways which might contribute to cell survival was investigated. After pre-treatment of cells for 20 min, curcumin (40 microM) inhibited EGF-stimulated phosphorylation of the EGFR in MDA-MB-468 cells and phosphorylation of extracellular signal regulated kinases (ERKs) 1 and 2, as well as ERK activity and levels of nuclear c-fos in both cell lines. At a lower dose (10 microM), it also inhibited the ability of anisomycin to activate JNK, resulting in decreased c-jun phosphorylation, although it did not inhibit JNK activity directly. In contrast, the activation of p38 mitogen activated protein kinase (MAPK) by anisomycin was not inhibited. Curcumin inhibited basal phosphorylation of Akt/protein kinase B (PKB) in both cell lines, but more consistently and to a greater extent in the MDA-MB-468 cells. The MAPK kinase (MKK) inhibitor U0126 (10 microM), while preventing ERK phosphorylation in MDA-MB-468 cells, did not induce apoptosis. The PI3K inhibitor LY294002 (50 microM) inhibited PKB phosphorylation in both cells lines, but only induced apoptosis in the MDA-MB-468 line. These results suggest that while curcumin has several different molecular targets within the MAPK and PI3K/PKB signalling pathways that could contribute to inhibition of proliferation and induction of apoptosis, inhibition of basal activity of Akt/PKB, but not ERK, may facilitate apoptosis in the tumour cell line.
Collapse
Affiliation(s)
- Matthew S Squires
- Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester, Leicester LE1 7RH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Zhu WH, MacIntyre A, Nicosia RF. Regulation of angiogenesis by vascular endothelial growth factor and angiopoietin-1 in the rat aorta model: distinct temporal patterns of intracellular signaling correlate with induction of angiogenic sprouting. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:823-30. [PMID: 12213710 PMCID: PMC1867259 DOI: 10.1016/s0002-9440(10)64242-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) promote the spontaneous angiogenic response of freshly cut rat aortic rings. When VEGF and Ang-1 were tested in cultures of 14-day-old rings, which are quiescent and unable to spontaneously produce neovessels, only VEGF was capable of inducing an angiogenic response. Ang-1 failed to initiate angiogenesis in this system, but significantly potentiated VEGF-induced neovessel sprouting. Potential differences in cell signaling triggered by VEGF and Ang-1 were evaluated in cultures of quiescent rings. VEGF induced biphasic and prolonged (15 minutes and 4 to 24 hours) phosphorylation of p44/42 MAPK and Akt, while the effect of Ang-1 was transient and monophasic (15 minutes). Both VEGF and Ang-1 induced rapid, monophasic (15 minutes) phosphorylation of p38 MAPK. When VEGF and Ang-1 were administered together, the second peak of VEGF-induced p44/42 MAPK phosphorylation was markedly reduced. The effect of the VEGF/Ang-1 combination on AKT phosphorylation was, instead, additive over time, and sustained over a 24-hour period. The VEGF/Ang-1 combination caused an additive effect also on p38 MAPK phosphorylation at 1 hour. Confocal microscopy of VEGF-, Ang-1, or VEGF/Ang-1-stimulated aortic rings double stained at time points of maximal phosphorylation for cell markers and signal transduction proteins demonstrated phosphorylated p44/42 MAPK, p38 MAPK, and Akt predominantly in endothelial cells. Experiments with specific inhibitors demonstrated that p44/42 MAPK and Akt, but not p38 MAPK, are necessary for neovessel sprouting. These results identify p44/42 MAPK and Akt as critical intracellular mediators of angiogenesis, whose transient phosphorylation is, however, not sufficient for the initiation of this process. The observation that sustained phosphorylation of these signaling pathways, particularly of Akt, correlates with induction of angiogenesis suggests that the duration of phosphorylation signals influences critical cellular events required for the induction of angiogenic sprouting.
Collapse
Affiliation(s)
- Wen-Hui Zhu
- Department of Pathology, University of Washington, Seattle, USA
| | | | | |
Collapse
|
386
|
Lindberg LE, Hedjazifar S, Baeckström D. c-erbB2-induced disruption of matrix adhesion and morphogenesis reveals a novel role for protein kinase B as a negative regulator of alpha(2)beta(1) integrin function. Mol Biol Cell 2002; 13:2894-908. [PMID: 12181354 PMCID: PMC117950 DOI: 10.1091/mbc.e02-02-0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Overexpression of the growth factor receptor subunit c-erbB2, leading to its ligand-independent homodimerization and activation, has been implicated in the pathogenesis of mammary carcinoma. Here, we have examined the effects of c-erbB2 on the adhesive properties of a mammary epithelial cell line, HB2/tnz34, in which c-erbB2 homodimerization can be induced by means of a transfected hybrid "trk-neu" construct. trk-neu consists of the extracellular domain of the trkA nerve growth factor (NGF) receptor fused to the transmembrane and cytoplasmic domains of c-erbB2, allowing NGF-induced c-erbB2 homodimer signaling. Both spreading and adhesion on collagen surfaces were impaired on c-erbB2 activation in HB2/tnz34 cells. Antibody-mediated stimulation of alpha(2)beta(1) integrin function restored adhesion, suggesting a direct role for c-erbB2 in integrin inactivation. Using pharmacological inhibitors and transient transfections, we identified signaling pathways required for suppression of integrin function by c-erbB2. Among these was the MEK-ERK pathway, previously implicated in integrin inactivation. However, we could also show that downstream of phosphoinositide-3-kinase (PI3K), protein kinase B (PKB) acted as a previously unknown, potent inhibitor of integrin function and mediator of the disruptive effects of c-erbB2 on adhesion and morphogenesis. The integrin-linked kinase, previously identified as a PKB coactivator, was also found to be required for integrin inactivation by c-erbB2. In addition, the PI3K-dependent mTOR/S6 kinase pathway was shown to mediate c-erbB2-induced inhibition of adhesion (but not spreading) independently of PKB. Overexpression of MEK1 or PKB suppressed adhesion without requirement for c-erbB2 activation, suggesting that these two pathways partake in integrin inhibition by targeting common downstream effectors. These results demonstrate a major novel role for PI3K and PKB in regulation of integrin function.
Collapse
|
387
|
Affiliation(s)
- Key-Sun Kim
- Life Sciences Division, KIST, Cheongyang Box 131, Seoul 130-650, Korea.
| |
Collapse
|
388
|
Abstract
The serine/threonine kinase Akt has been intensely studied for its role in growth factor-mediated cell survival for the past 5 years. On the other hand, the ongoing research effort has recently uncovered novel regulatory mechanisms and downstream effectors of Akt that demonstrate the involvement of Akt in other cellular functions such as cell cycle progression, angiogenesis, and cancer cell invasion/metastasis. Furthermore, recent studies using whole model organisms suggest additional roles for Akt in important diseases such as aging and diabetes. The following review addresses these recent advances in the understanding of Akt function.
Collapse
Affiliation(s)
- Dohoon Kim
- National Creative Research Initiatives Center for Cell Growth Regulation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | |
Collapse
|