351
|
Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, Carroll J, Hess DC. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res 2004; 1010:108-16. [PMID: 15126123 DOI: 10.1016/j.brainres.2004.02.072] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 12/21/2022]
Abstract
We monitored alterations in cerebral blood flow (CBF) and blood-brain barrier (BBB) permeability following middle cerebral artery occlusion (MCAo) and intrastriatal transplantation of mouse bone marrow stromal cells (BMSCs) or saline infusion in adult Sprague-Dawley rats. Laser Doppler and Evans Blue assay revealed that BMSC grafts dose-dependently restored CBF and BBB to near normal levels at a much earlier period (Days 4-5 post-MCAo) in transplanted stroke animals compared to stroke animals that received saline infusion (Days 11-14 post-MCAo). Xenografted BMSCs survived in the absence of immunosuppression, and elevated levels of transforming growth factor-beta superfamily of neurotrophic factors were detected in transplanted stroke animals. These data suggest that early restoration of CBF and BBB following transplantation of BMSCs could mediate the reported functional outcomes in stroke animals.
Collapse
Affiliation(s)
- Cesario V Borlongan
- Department of Neurology, Medical College of Georgia, 1120 15th Street, BI-3080, Augusta, GA 30912-3200, USA.
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Cuevas P, Carceller F, Garcia-Gómez I, Yan M, Dujovny M. Bone marrow stromal cell implantation for peripheral nerve repair. Neurol Res 2004; 26:230-2. [PMID: 15072644 DOI: 10.1179/016164104225013897] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell therapy using bone marrow stromal cells is a new promising therapy for regenerative medicine. Previous studies demonstrated that local bone marrow stromal cells implantation in the distal stump of transected sciatic nerve of rats promotes early functional recovery. The purpose of this study was to expand on the preliminary research by investigating the long-term efficacy of bone marrow stromal cells using the same experimental setting. Functional test and histological studies demonstrate that bone marrow stromal cell-treated rats exhibit significant improvement on a walking tract test at day 180 after surgery compared with control rats. Taken together, these data suggest that bone marrow stromal cell therapy is a safe and effective strategy for peripheral nerve injuries.
Collapse
Affiliation(s)
- Pedro Cuevas
- Departamento de Investigación, Servicio de Histología, Hospital Universitario Ramón y Cajal, Universidad de Alcalá de Henares, E-28034-Madrid-Spain.
| | | | | | | | | |
Collapse
|
353
|
Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, Carroll J, Hess DC. Intracerebral xenografts of mouse bone marrow cells in adult rats facilitate restoration of cerebral blood flow and blood–brain barrier. Brain Res 2004; 1009:26-33. [PMID: 15120580 DOI: 10.1016/j.brainres.2004.02.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2004] [Indexed: 11/23/2022]
Abstract
We examined in the present study alterations in cerebral blood flow (CBF) and blood-brain barrier (BBB) permeability following intrastriatal transplantation of mouse bone marrow stromal cells (BMSCs) or saline infusion in adult Sprague-Dawley rats. Laser Doppler revealed that transplanted animals exhibited near normal cerebral blood flow (CBF, 150 perfusion units) at a much earlier period post-transplantation (day 4) compared to animals that received saline infusion (day 12) (p's<0.05). Similarly, Evans Blue assay demonstrated that transplanted animals exhibited near complete BBB reconstitution at day 5 post-transplantation, whereas animals that received saline infusion continued to display a compromised BBB up to 11 days post-transplantation. Transplanted animals displayed a cell dose-dependent CBF and BBB restoration. Enzyme-linked immunosorbent assay (ELISA) of transplanted BMSCs revealed elevated levels of transforming growth factor-beta superfamily of neurotrophic factors. Moreover, despite the absence of immunosuppression in this cross-species transplantation, at least in the acute phase (12 days post-transplantation), surviving xenografts were detected during periods of restored CBF and BBB permeability. These observations suggest that restoration of CBF and BBB permeability accompanies the reported functional outcomes associated with intracerebral transplantation of BMSCs.
Collapse
Affiliation(s)
- Cesario V Borlongan
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912-3200, USA
| | | | | | | | | | | | | | | |
Collapse
|
354
|
Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 2004; 89:1358-67. [PMID: 15189338 DOI: 10.1111/j.1471-4159.2004.02406.x] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growing evidence from in vitro studies supports that valproic acid (VPA), an anti-convulsant and mood-stabilizing drug, has neuroprotective effects. The present study investigated whether VPA reduces brain damage and improves functional outcome in a transient focal cerebral ischemia model of rats. Subcutaneous injection of VPA (300 mg/kg) immediately after ischemia followed by repeated injections every 12 h, was found to markedly decrease infarct size and reduce ischemia-induced neurological deficit scores measured at 24 and 48 h after ischemic onset. VPA treatment also suppressed ischemia-induced neuronal caspase-3 activation in the cerebral cortex. VPA treatments resulted in a time-dependent increase in acetylated histone H3 levels in the cortex and striatum of both ipsilateral and contralateral brain hemispheres of middle cerebral artery occlusion (MCAO) rats, as well as in these brain areas of normal, non-surgical rats, supporting the in vitro finding that VPA is a histone deacetylase (HDAC) inhibitor. Similarly, heat shock protein 70 (HSP70) levels were time-dependently up-regulated by VPA in the cortex and striatum of both ipsilateral and contralateral sides of MCAO rats and in these brain areas of normal rats. Altogether, our results demonstrate that VPA is neuroprotective in the cerebral ischemia model and suggest that the protection mechanisms may involve HDAC inhibition and HSP induction.
Collapse
Affiliation(s)
- Ming Ren
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, MD 20892-1363, USA
| | | | | | | | | |
Collapse
|
355
|
Jendelová P, Herynek V, Urdzíková L, Glogarová K, Kroupová J, Andersson B, Bryja V, Burian M, Hájek M, Syková E. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 2004; 76:232-43. [PMID: 15048921 DOI: 10.1002/jnr.20041] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear magnetic resonance (MR) imaging provides a noninvasive method for studying the fate of transplanted cells in vivo. We studied, in animals with a cortical photochemical lesion or with a balloon-induced spinal cord compression lesion, the fate of implanted rat bone marrow stromal cells (MSCs) and mouse embryonic stem cells (ESCs) labeled with superparamagnetic iron oxide nanoparticles (Endorem). MSCs were colabeled with bromodeoxyuridine (BrdU), and ESCs were transfected with pEGFP-C1 (eGFP ESCs). Cells were either grafted intracerebrally into the contralateral hemisphere of the adult rat brain or injected intravenously. In vivo MR imaging was used to track their fate; Prussian blue staining and electron microscopy confirmed the presence of iron oxide nanoparticles inside the cells. During the first week postimplantation, grafted cells migrated to the lesion site and populated the border zone of the lesion. Less than 3% of MSCs differentiated into neurons and none into astrocytes; 5% of eGFP ESCs differentiated into neurons, whereas 70% of eGFP ESCs became astrocytes. The implanted cells were visible on MR images as a hypointense area at the injection site, in the corpus callosum and in the lesion. The hypointense signal persisted for more than 50 days. The presence of GFP-positive or BrdU-positive and nanoparticle-labeled cells was confirmed by histological staining. Our study demonstrates that both grafted MSCs and eGFP ESCs labeled with a contrast agent based on iron oxide nanoparticles migrate into the injured CNS. Iron oxide nanoparticles can therefore be used as a marker for the long-term noninvasive MR tracking of implanted stem cells.
Collapse
Affiliation(s)
- Pavla Jendelová
- Institute of Experimental Medicine Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Song S, Kamath S, Mosquera D, Zigova T, Sanberg P, Vesely DL, Sanchez-Ramos J. Expression of brain natriuretic peptide by human bone marrow stromal cells. Exp Neurol 2004; 185:191-7. [PMID: 14697330 DOI: 10.1016/j.expneurol.2003.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bone marrow stromal cells (BMSC) have been shown to generate neural cells under experimental conditions in vitro and following transplantation into animal models of stroke and traumatic CNS injury. Hastened recovery from the neurological deficit has not correlated with structural repair of the lesion in the stroke model. Secretory functions of BMSC, such as the elaboration of growth factors and cytokines, have been hypothesized to play a role in the enhanced recovery of neurological function. Using gene expression arrays, real time RT-PCR and radioimmunoassay, we have found that brain natriuretic peptide (BNP) is synthesized and released by BMSC at physiologically relevant levels in vitro. BNP, like its close homolog atrial natriuretic peptide (ANP), exerts powerful natriuretic, diuretic and vasodilatory effects. We speculate that transplanted BMSCs facilitate recovery from brain and spinal cord lesions by releasing BNP and other vasoactive factors that reduce edema, decrease intracranial pressure and improve cerebral perfusion.
Collapse
Affiliation(s)
- S Song
- Department of Neurology, Center for Aging and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
357
|
Jendelová P, Herynek V, DeCroos J, Glogarová K, Andersson B, Hájek M, Syková E. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 2004; 50:767-76. [PMID: 14523963 DOI: 10.1002/mrm.10585] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bone marrow stromal cells (MSCs) are pluripotent progenitor cells that have the capacity to migrate toward lesions and induce or facilitate site-dependent differentiation in response to environmental signals. In animals with a cortical photochemical lesion, the fate of rat MSCs colabeled with magnetic iron-oxide nanoparticles (Endorem) and bromodeoxyuridine (BrdU) was studied. MSCs were either grafted intracerebrally into the contralateral hemisphere of adult rat brain or injected intravenously. In vivo MRI was used to track their fate; Prussian blue staining and transmission electron microscopy (TEM) confirmed the presence of iron-oxide nanoparticles inside the cells. During the first week posttransplantation, the transplanted cells migrated to the lesion site and populated the border zone of the damaged cortical tissue. The implanted cells were visible on MR images as a hypointense area at the injection site and in the lesion. The hypointense signal persisted for more than 50 days. The presence of BrdU-positive and iron-containing cells was confirmed by subsequent histological staining. Three to 4 weeks after injection, <3% of MSCs around the lesion expressed the neuronal marker NeuN. Our study demonstrates that a commercially available contrast agent can be used as a marker for the long-term noninvasive MR tracking of implanted cells.
Collapse
Affiliation(s)
- Pavla Jendelová
- Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, and Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
358
|
Abstract
Several lines of evidence support the concept that pluripotent stem cells reside in the hematopoietic system of adults, but each has been questioned for valid reasons. Thus, the results reported to date after infusion of bone marrow stem cells, may be due to cell fusion, non-physiological de-differentiation and subsequent differentiation to lineages directed by the culture environment, microchimerism, or transdifferentiation. Several authors have suggested complex ways of investigating each of these possibilities, but in no case are any of the suggested protocols complete, nor will they rule out other possible causes of the results observed to date. Determining the nature, origin, and characteristics of adult cells is important and interesting, but the important question at this time is not what happens physiologically, but what we can do with these cells therapeutically. Research addressing therapeutic endpoints now takes a pivotal position in studies of nonembryonic stem cells.
Collapse
Affiliation(s)
- Eva Mezey
- National Institutes of Health, NINDS, Bethesda, MD 20892, USA.
| |
Collapse
|
359
|
Jin K, Mao XO, Batteur S, Sun Y, Greenberg DA. Induction of neuronal markers in bone marrow cells: differential effects of growth factors and patterns of intracellular expression. Exp Neurol 2004; 184:78-89. [PMID: 14637082 DOI: 10.1016/s0014-4886(03)00133-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bone marrow cells (BMC) can be induced to express neuronal phenotypic features in vitro, but the extent to which they can transdifferentiate to mature, functional neurons is uncertain. We examined the effects of different growth factors and combinations thereof on the expression of neuronal marker proteins in cultures of BMC enriched in marrow stromal cells. Patterns of neuronal marker expression varied depending on the growth factor or factors to which BMC cultures were exposed. Cultures treated for up to 5 weeks with epidermal growth factor, fibroblast growth factor-2, retinoic acid, and nerve growth factor displayed neuron-like cellular processes and expressed neuronal markers, including the neuronal nuclear antigen NeuN, microtubule-associated protein 2, tau, synaptophysin, alpha(1A) and alpha(1B) calcium channel subunits, NR2A glutamate receptor subunits, and gamma-aminobutyric acid. However, the intracellular distribution of these markers was distinct from their usual distribution in mature neurons. We conclude that a variety of growth factors can drive BMC toward a neuronal phenotype or phenotypes, but that morphological neuronal features and the ectopic expression of neuronal proteins and neurotransmitters may not equate with the ability to execute normal neuronal functions.
Collapse
Affiliation(s)
- Kunlin Jin
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | | | | | |
Collapse
|
360
|
Lee J, Kuroda S, Shichinohe H, Ikeda J, Seki T, Hida K, Tada M, Sawada KI, Iwasaki Y. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology 2003; 23:169-80. [PMID: 14570283 DOI: 10.1046/j.1440-1789.2003.00496.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is increasing evidence that bone marrow stromal cells (BMSC) have the potential to migrate into the injured neural tissue and to differentiate into the CNS cells, indicating the possibility of autograft transplantation therapy. The present study was aimed to clarify whether the mouse BMSC can migrate into the lesion and differentiate into the CNS cells when transplanted into the mice subjected to focal cerebral infarct or spinal cord injury. The BMSC were harvested from mice and characterized by flow cytometry. Then, the BMSC were labeled by bis-benzimide, a nuclear fluorescence dye, over 24 h, and were stereotactically transplanted into the brain or spinal cord of the mice. The cultured BMSC expressed low levels of CD45 and high levels of CD90 and Sca-1 on flow cytometry. A large number of grafted cells survived in the normal brain 4 weeks after transplantation, many of which were located close to the transplanted sites. They expressed the neuronal marker including NeuN, MAP2, and doublecortin on fluorescent immunohistochemistry. However, when the BMSC were transplanted into the ipsilateral striatum of the mice subjected to middle cerebral artery occlusion, many of the grafted cells migrated into the corpus callosum and injured cortex, and also expressed the neuronal markers 4 weeks after transplantation. In particular, NeuN was very useful to validate the differentiation of the grafted cells, because the marker was expressed in the nuclei and was overlapped with bis-benzimide. Similar results were obtained in the mice subjected to spinal cord injury. However, many of the transplanted BMSC expressed GFAP, an astrocytic protein, in injured spinal cord. The present results indicate that the mouse BMSC can migrate into the CNS lesion and differentiate into the neurons or astrocytes, and that bis-benzimide is a simple and useful marker to label the donor cells and to evaluate their migration and differentiation in the host neural tissues over a long period.
Collapse
Affiliation(s)
- JangBo Lee
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Garrido Colino C. [Current concepts in stem cell research]. An Pediatr (Barc) 2003; 59:552-8. [PMID: 14636520 DOI: 10.1016/s1695-4033(03)78779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In the last few years, advances in stem cell research have opened up new horizons in the treatment of human diseases and in regenerative medicine. It is not unusual to find news on stem cell research in newspapers and other media. This review describes some basic concepts in research needed to understand the medical literature on stem cells and to provide the information and bibliography necessary to be up to date in one of the subjects that has generated the greatest number of publications in the last few years.
Collapse
Affiliation(s)
- C Garrido Colino
- Pediatra EAP. Panaderas II. Area IX. Fuenlabrada. Madrid. España.
| |
Collapse
|
362
|
Affiliation(s)
- Shijie Song
- Department of Neurology, Center for Aging and Brain Repair, University of South Florida College of Medicine and James Haley VA Hospital, Tampa, FL 33612, USA
| | | |
Collapse
|
363
|
Kang SK, Jun ES, Bae YC, Jung JS. Interactions between human adipose stromal cells and mouse neural stem cells in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:141-9. [PMID: 14519500 DOI: 10.1016/s0165-3806(03)00224-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transplantation of adult mesenchymal stem cells (MSCs) into adult rat brain has been known to reduce functional deficits associated with stroke and traumatic brain injury. However, in injured brains, there is no evidence that transplanted MSCs replace lost host brain tissue. In this study, we determined in vitro interaction between human adipose tissue stromal cells (hATSCs), a kind of MSC, and neural stem cells (NSCs). hATSCs were isolated and proliferated from human adipose tissues, and NSCs from the subventricular zone of postnatal mice. When NSCs were cultured on mitomycin-treated hATSC monolayers, their proliferation was decreased, but neuronal differentiation was significantly induced. The percentage of neurons significantly increased in 7 days in cultures of NSCs on hATSCs feeder as compared to NSCs cultured on laminin-coated dishes. When the duration of the cultures was extended to 14 days, hATSCs supported the survival of neurons derived from NSCs. To determine the role of soluble factors from hATSCs, NSCs were cultured with hATSCs conditioned medium or co-cultured with permeable filter on which hATSCs were grown. Although proliferation of NSCs significantly decreased and glial differentiation increased under these experimental conditions, their neuronal differentiation was not affected, indicating that direct physical contact between hATSCs and NSCs is required for induction of neuronal differentiation. These data indicate that hATSCs may provide supportive roles on endogenous neural stem cells, when they are transplanted into damaged brain.
Collapse
Affiliation(s)
- Soo Kyung Kang
- Department of Physiology, College of Medicine, Pusan National University, 1 Ga, Ami-Dong, Suh-Gu, Pusan 602-739, South Korea
| | | | | | | |
Collapse
|
364
|
Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 2003; 73:778-86. [PMID: 12949903 DOI: 10.1002/jnr.10691] [Citation(s) in RCA: 427] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study investigates the induction of neurogenesis, reduction of apoptosis, and promotion of basic fibroblast growth factor (bFGF) expression as possible mechanisms by which treatment of stroke with bone marrow stromal cells (MSCs) improves neurological functional recovery. Additionally, for the first time, we treated cerebral ischemia in female rats with intraveneous administration of MSCs. Female rats were subjected to 2 hr of middle cerebral artery occlusion (MCAo), followed by an injection of 3 x 10(6) male (for Y chromosome labeling) rat MSCs or phosphate-buffered saline (PBS) into the tail vein 24 hr after MCAo. All animals received daily injection of bromodeoxyuridine (BrdU; 50 mg/kg, i.p.) for 13 days after treatment for identification of newly synthesized DNA. Animals were sacrificed at 14 days after MCAo. Behavioral tests (rotarod and adhesive-removal tests) were performed. In situ hybridization, immunohistochemistry, and terminal deoxynucleotidyltransferase (TdT)-mediated dUTP-biotin nick-end labeling (TUNEL) were performed to identify transplanted MSCs (Y chromosome), BrdU, bFGF, and apoptotic cells in the brain. Significant recovery of behavior was found in MSC-treated rats at 7 days in the somatosensory test and at 14 days in the motor test after MCAo compared with control, PBS-treated animals (P<.05). MSCs were found to survive and preferentially localize to the ipsilateral ischemic hemisphere. Significantly more BrdU-positive cells were located in the subventricular zone (P<.05), and significantly fewer apoptotic cells and more bFGF immunoreactive cell were found in the ischemic boundary area (P<.05) of MSC-treated rats than in PBS-treated animals. Here we demonstrate that intravenously administered male MSCs increase bFGF expression, reduce apoptosis, promote endogenous cellular proliferation, and improve functional recovery after stroke in female rats.
Collapse
Affiliation(s)
- Jieli Chen
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Affiliation(s)
- David Howells
- University of Melbourne and National Stroke Research Institute, Austin & Repatriation Medical Center, Level 7, Department of Medicine, Heidelberg, Victoria 3084, Australia.
| |
Collapse
|
366
|
Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, Hart C, Sanchez-Ramos J, Sanberg PR. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 2003; 73:296-307. [PMID: 12868063 DOI: 10.1002/jnr.10659] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human umbilical cord blood (hUCB) is a rich source of hematopoietic stem cells that have been used to reconstitute immune cells and blood lineages. Cells from another hematopoietic source, bone marrow, have been found to differentiate into neural cells and are effective in the treatment of stroke. In this study, we administered hUCB cells intravenously into the femoral vein or directly into the striatum and assessed which route of cell administration produced the greatest behavioral recovery in rats with permanent middle cerebral artery occlusion (MCAO). All animals were immunosuppressed with cyclosporine (CSA). When spontaneous activity was measured using the Digiscan automated system, it was found to be significantly less when hUCB was transplanted 24 hr after stroke compared with nontransplanted, stroked animals (P < 0.01). Furthermore, behavioral recovery was similar with both striatal and femoral hUCB delivery. This is in contrast to the step test, in which significant improvements were found only after femoral delivery of the hUCB cells. In the passive avoidance test, transplanted animals learned the task faster than nontransplanted animals (P < 0.05). Together, these results suggest that hUCB transplantation may be an effective treatment for brain injuries, such as stroke, or neurodegenerative disorders. In addition, intravenous delivery may be more effective than striatal delivery in producing long-term functional benefits to the stroked animal.
Collapse
Affiliation(s)
- A E Willing
- Department of Neurosurgery, Center for Aging and Brain Repair, University of South Florida, Tampa, Florida, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Abstract
Cerebral palsy is a group of brain diseases which produce chronic motor disability in children. The causes are quite varied and range from abnormalities of brain development to birth-related injuries to postnatal brain injuries. Due to the increased survival of very premature infants, the incidence of cerebral palsy may be increasing. While premature infants and term infants who have suffered neonatal hypoxic-ischaemic (HI) injury represent only a minority of the total cerebral palsy population, this group demonstrates easily identifiable clinical findings, and much of their injury is to oligodendrocytes and the cerebral white matter. While the use of stem cell therapy is promising, there are no controlled trials in humans with cerebral palsy and only a few trials in patients with other neurologic disorders. However, studies in animals with experimentally induced strokes or traumatic injuries have indicated that benefit is possible. The potential to do these transplants via injection into the vasculature rather than directly into the brain increases the likelihood of timely human studies. As a result, variables appropriate to human experiments with intravascular injection of cells, such as cell type, timing of the transplant and effect on function, need to be systematically performed in animal models with HI injury, with the hope of rapidly translating these experiments to human trials.
Collapse
Affiliation(s)
- John Bartley
- Department of Pediatrics of the Medical College of Georgia, Augusta, Georgia, USA
| | | |
Collapse
|
368
|
|
369
|
Beck H, Voswinckel R, Wagner S, Ziegelhoeffer T, Heil M, Helisch A, Schaper W, Acker T, Hatzopoulos AK, Plate KH. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. J Cereb Blood Flow Metab 2003; 23:709-17. [PMID: 12796719 DOI: 10.1097/01.wcb.0000065940.18332.8d] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bone marrow-derived cells participate in remodeling processes of many ischemia-associated diseases, which has raised hopes for the use of bone marrow as a source for cell-based therapeutic approaches. To study the participation of bone marrow-derived cells in a stroke model, bone marrow from C57BL/6-TgN(ACTbEGFP)1Osb mice that express green fluorescent protein (GFP) in all cells was transplanted into C57BL/6J mice. The recipient mice underwent permanent occlusion of the middle cerebral artery, and bone marrow-derived cells were tracked by fluorescence. The authors investigated the involvement of bone marrow-derived cells in repair processes 6 weeks and 6 months after infarction. Six weeks after occlusion of the artery, more than 90% of the GFP-positive cells in the infarct border zone were microglial cells. Very few GFP-positive cells expressed endothelial markers in the infarct/infarct border zone, and no bone marrow-derived cells transdifferentiated into astrocytes, neurons, or oligodendroglial cells at all time points investigated. The results indicate the need for additional experimental studies to determine whether therapeutic application of nonselected bone marrow will replenish brain cells beyond an increase in microglial engraftment.
Collapse
Affiliation(s)
- Heike Beck
- GSF-Research Center for Environment & Health, Institute for Clinical Molecular Biology and Tumor Genetics, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Zhong C, Qin Z, Zhong CJ, Wang Y, Shen XY. Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia. Neurosci Lett 2003; 342:93-6. [PMID: 12727326 DOI: 10.1016/s0304-3940(03)00255-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Organotypic hippocampal slice cultures prepared from newborn rats were maintained in vitro for 9 days. Cultures were then exposed to 30 min of combined oxygen-glucose deprivation (OGD). After OGD, the area covered by neurites was decreased. The dead cells of hippocampal slices in the ischemia group were 40.4% at day 3 and 41.6% at day 7 after OGD. The ultrastructure of the CA1 region of the slices was seriously damaged. While hippocampal slices were cultured in combination with bone marrow stromal cells (MSCs), the average area covered by neurites was comparatively increased. The dead cells were only 25.2% at day 3 and 27.1% at day 7 after coculture. The damage of the ultrastructure of the CA1 region in the coculture group was reduced significantly. Thus, in an in vitro model of simulated ischemia, MSCs can promote the outgrowth of neurites from hippocampal slices and alleviate cell damage. The neuroprotective effect might be mediated through diffusible neurotrophic factors secreted from MSCs.
Collapse
Affiliation(s)
- Chi Zhong
- Institute of Neurology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | | | | | | | | |
Collapse
|
371
|
Ren M, Senatorov VV, Chen RW, Chuang DM. Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc Natl Acad Sci U S A 2003; 100:6210-5. [PMID: 12732732 PMCID: PMC156351 DOI: 10.1073/pnas.0937423100] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Indexed: 01/22/2023] Open
Abstract
Lithium has long been a primary drug used to treat bipolar mood disorder, even though the drug's therapeutic mechanisms remain obscure. Recent studies demonstrate that lithium has neuroprotective effects against glutamate-induced excitotoxicity in cultured neurons and in vivo. The present study was undertaken to examine whether postinsult treatment with lithium reduces brain damage induced by cerebral ischemia. We found that s.c. injection of lithium dose dependently (0.5-3 mEq/kg) reduced infarct volume in the rat model of middle cerebral artery occlusionreperfusion. Infarct volume was reduced at a therapeutic dose of 1 mEq/kg even when administered up to 3 h after the onset of ischemia. Neurological deficits induced by ischemia were also reduced by daily administration of lithium over 1 week. Moreover, lithium treatment decreased the number of neurons showing DNA damage in the ischemic brain. These neuroprotective effects were associated with an up-regulation of cytoprotective heat shock protein 70 (HSP70) in the ischemic brain hemisphere as determined by immunohistochemistry and Western blotting analysis. Lithium-induced HSP70 up-regulation in the ischemic hemisphere was preceded by an increase in the DNA binding activity of heat shock factor 1, which regulates the transcription of HSP70. Physical variables and cerebral blood flow were unchanged by lithium treatment. Our results suggest that postinsult lithium treatment reduces both ischemia-induced brain damage and associated neurological deficits. Moreover, the heat shock response is likely to be involved in lithium's neuroprotective actions. Additionally, our studies indicate that lithium may have clinical utility for the treatment of patients with acute stroke.
Collapse
Affiliation(s)
- Ming Ren
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA
| | | | | | | |
Collapse
|
372
|
Harvey RL, Chopp M. The therapeutic effects of cellular therapy for functional recovery after brain injury. Phys Med Rehabil Clin N Am 2003; 14:S143-51. [PMID: 12625644 DOI: 10.1016/s1047-9651(02)00058-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The studies presented in this article suggest that marrow-derived cellular therapy may be an effective adjunct treatment for functional recovery after stroke. Cellular therapy can enhance the endogenous restorative mechanisms of the injured brain, assisting the tissue as it returns to a "developmental" state and supporting the process of neovascularization, neurogenesis, and neural reorganization. The advantages of using MSCs are that they can be given as an autologous graft, avoiding risks of rejection and graft-versus-host reactions, and that they can be given intravenously, minimizing complications. It is anticipated that cellular therapy, in combination with standard rehabilitation therapy and neural retraining, can improve functional outcomes following stroke.
Collapse
Affiliation(s)
- Richard L Harvey
- Feinberg School of Medicine, Northwestern University, and The Rehabilitation Institute of Chicago, 345 E Superior Street, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
373
|
Sugaya K. Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:1-30. [PMID: 14667041 DOI: 10.1016/s0074-7696(03)28001-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of stem cells for neuroreplacement therapy is no longer science fiction--it is science fact. We have succeeded in the development of neural and mesenchymal stem cell transplantation to produce neural cells in the brain. We have also seen improvement in cognitive function following stem cell transplantation in a memory-impaired aged animal model. These results promise a bright future for stem cell therapies in neurodegenerative diseases. Before we begin to think about clinical applications beyond the present preclinical studies, we have to consider the pathophysiological environment of individual diseases and weigh the factors that affect stem cell biology. Here, I not only review potential therapeutic applications of stem cell strategies in neurodegenerative diseases, but also discuss stem cell biology regarding factors that are altered under disease conditions.
Collapse
Affiliation(s)
- Kiminobu Sugaya
- Department of Psychiatry, University of Illinois at Chicago, The Psychiatric Institute, Chicago, Illinois 60612, USA
| |
Collapse
|
374
|
Abstract
Cell transplantation is an experimental approach to restore brain function in neurodegenerative disorders such as Parkinson's and Huntington's disease. Transplantation also represents a possible strategy to repair the brain after a stroke. Various cell types are under investigation in experimental stroke studies. This review discusses the different graft sources and presents preliminary data on the transplantation of neural progenitor cells after stroke in rats. Following transplantation, progenitor cells proliferated and differentiated into all the different brain cell types, including neurons, and they repopulated the ischemic infarct. These results suggest that cell transplantation may serve as a future restorative therapy for stroke and other neurologic disorders such as Parkinson's disease, Alzheimer's disease, trauma, and multiple sclerosis.
Collapse
Affiliation(s)
- Sean L Savitz
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
375
|
Cuevas P, Carceller F, Dujovny M, Garcia-Gómez I, Cuevas B, González-Corrochano R, Diaz-González D, Reimers D. Peripheral nerve regeneration by bone marrow stromal cells. Neurol Res 2002; 24:634-8. [PMID: 12392196 DOI: 10.1179/016164102101200564] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult bone marrow contains stem cells that have attracted interest through their possible use for cell therapy in neurological diseases. Bone marrow stromal cells (MSCs) were harvested from donor adult rats, cultured and pre-labeled with bromodeoxyuridine (BrdU) previously to be injected in the distal stump of transected sciatic nerve of the rats. Distal nerve stump of control rats received culture medium solution. MSCs-treated rats exhibit significant improvement on walking track test at days 18 and 33 compared to controls. Dual immunofluorescence labeling shows that BrdU reactive cells survive in the injected area of transected sciatic nerve at least 33 days after implantation, and almost 5% of BrdU cells express Schwann cell-like phenotype (S100 immunoreactivity). Because MSCs injected in a lesioned peripheral nerve can survive, migrate, differentiate in Schwann cells, and promote functional recovery, they may be an important source for cellular therapy in several neurological diseases.
Collapse
Affiliation(s)
- Pedro Cuevas
- Departamento de Investigación, Hospital Universitario Ramón y Cajal, Universidad de Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
376
|
Abstract
Under experimental conditions, tissue-specific stem cells have been shown to give rise to cell lineages not normally found in the organ or tissue of residence. Neural stem cells from fetal brain have been shown to give rise to blood cell lines and conversely, bone marrow stromal cells have been reported to generate skeletal and cardiac muscle, oval hepatocytes, as well as glia and neuron-like cells. This article reviews studies in which cells from postnatal bone marrow or umbilical cord blood were induced to proliferate and differentiate into glia and neurons, cellular lineages that are not their normal destiny. The review encompasses in vitro and in vivo studies with focus on experimental variables, such as the source and characterization of cells, cell-tracking methods, and markers of neural differentiation. The existence of stem/progenitor cells with previously unappreciated proliferation and differentiation potential in postnatal bone marrow and in umbilical cord blood opens up the possibility of using stem cells found in these tissues to treat degenerative, post-traumatic and hereditary diseases of the central nervous system.
Collapse
Affiliation(s)
- Juan R Sanchez-Ramos
- Center of Aging and Brain Repair, University of South Florida and James Haley VA Hospital Health Science Center, Tampa, Florida 33612, USA.
| |
Collapse
|
377
|
Abstract
Cell transplantation has emerged as an experimental approach to restore brain function after stroke. Various cell types including porcine fetal cells, stem cells, immortalized cell lines, and marrow stromal cells are under investigation in experimental and clinical stroke trials. This review discusses the unique advantages and limitations of the different graft sources and emphasizes the current, limited knowledge about their biology. The survival, integration, and efficacy of neural transplants in stroke patients will depend on the type, severity, chronicity, adequacy of circulation, and location of the stroke lesion.
Collapse
Affiliation(s)
- Sean I Savitz
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
378
|
Abstract
Stem cells isolated from adult mammalian tissues may provide new approaches for the autologous treatment of disease and tissue repair. Although the potential of adult stem cells has received much attention, it has also recently been brought into question. This article reviews the recent work describing the ability of non-hematopoietic stem cells derived from adult bone marrow to form neural derivatives and their potential for brain repair. Earlier transplantation experiments imply that grafted adult stem cells can differentiate into neural derivatives. Recent reports suggest, however, that such findings may be misleading and grafted cells acquiring different identities may merely be explained by their fusion with host cells and not the result of radical changes to their program of cellular differentiation. Nonetheless, in vitro studies have shown that neural development by bone-marrow-derived stem cells also appears possible. Understanding the molecular mechanisms that specify the neural lineage will lead to the development of tools for the targeted production of neural cell types in vitro that may ultimately provide a source of material to treat specific neurological deficits.
Collapse
Affiliation(s)
- Rebecca Stewart
- School of Biological and Biomedical Science, University of Durham, UK
| | | |
Collapse
|
379
|
Chen J, Li Y, Wang L, Lu M, Chopp M. Caspase inhibition by Z-VAD increases the survival of grafted bone marrow cells and improves functional outcome after MCAo in rats. J Neurol Sci 2002; 199:17-24. [PMID: 12084437 DOI: 10.1016/s0022-510x(02)00075-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Marrow stromal cells (MSCs) transplantation into brain has been employed to treat experimental ischemia. However, MSCs undergo apoptosis and few survive in the ischemic brain. We test the hypotheses that coadministration of bone marrow cells (BMCs) with a cell-permeable inhibitor of caspases, Z-Val-Ala-DL-Asp-fluoromethylketone (Z-VAD), into the ischemic boundary zone (IBZ) of brain promotes BMCs survival and improve outcome. Experimental groups consist of: 24 h after MCAo, either phosphate-buffered saline (PBS, n=4), dead BMC (n=4), fresh BMC (n=10), Z-VAD only (n=4), or BMC with Z-VAD (n=6) were intracerebrally injected. BMCs were harvested from donor adult rats labeled with bromodeoxyuridine (BrdU). Rats were subjected to an adhesive-removal somatosensory and motor-rotarod functional tests before MCAo and at 1 and 7 days after MCAo. Rats treated with a combination of Z-VAD and BMCs exhibited significant improvement in the adhesive-removal test at 7 days compared with the control group (combined MCAo+PBS and MCAo+dead BMC) (p<0.01), and the numbers of BrdU-BMC increased (p<0.05) and apoptotic cells decreased (p<0.05) compared with BMC alone transplantation. Our data suggest that intracerebral coadministration of BMC with Z-VAD enhances the survival of grafted BMC and improves neurological functional recovery after MCAo.
Collapse
Affiliation(s)
- Jieli Chen
- Department of Neurology, Henry Ford Health Sciences Center, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
380
|
Abstract
We describe our preclinical studies on the use of bone-marrow stromal cells (MSC; an uncharacterised mixed population of plastic-adherent cells) in the treatment of neural injury. These cells obtained from donor rats or human beings have been directly transplanted into brain or administered intra-arterially or intravenously. MSC selectively target injured tissue and promote functional recovery. Signals that target inflammatory cells to injured tissue probably direct MSC to injury sites. Although some MSC express proteins typical of neural cells, the possibility that benefit is derived by replacement of infarcted tissue with differentiated MSC is highly unlikely. MSC activate endogenous restorative responses in injured brain, which include angiogenesis, neurogenesis, and synaptogenesis. Given the robust therapeutic benefit of these cells in the treatment of experimental neural injury, and the fact that MSC have been used in the treatment of other human disease, there is justification for further preclinical studies leading to clinical trials for the treatment of neural injury such as stroke.
Collapse
Affiliation(s)
- Michael Chopp
- Department of Neurology, Henry Ford Health Sciences Center, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | |
Collapse
|
381
|
Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J. Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke. Stroke 2002; 33:1362-8. [PMID: 11988616 DOI: 10.1161/01.str.0000014925.09415.c3] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE After an ischemic event, bone marrow-derived cells may be involved in reparative processes. There is increasing evidence that bone marrow-derived stem cells may be a source of endothelial cells and organ-specific cells. Our objectives were to determine whether bone marrow-derived cells were a source of endothelial cells and neurons after cerebral ischemia. METHODS We transplanted bone marrow from male C57 BL/6-TgN (ACTbEGFP)1Osb mice, which express green fluorescent protein (GFP), into female C57 BL/6J mice. The recipient mice then underwent suture occlusion of the middle cerebral artery (MCA), and bone marrow- derived cells were tracked by GFP epifluorescence and Y chromosome probe. RESULTS Within 3 days and at 7 and 14 days after MCA occlusion, bone marrow-derived cells incorporated into the vasculature in the ischemic zone and expressed an endothelial cell phenotype. Few bone marrow-derived cells incorporated into the vasculature 24 hours after MCA occlusion. Some bone marrow-derived cells also expressed the neuronal marker NeuN at 7 and 14 days after ischemia. CONCLUSIONS Postnatal vasculogenesis occurs in the brain in the setting of a cerebral infarction. Bone marrow-derived cells are a source of endothelial cells and NeuN-expressing cells after cerebral infarction. This plasticity may be exploited in the future to enhance recovery after stroke.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/biosynthesis
- Bone Marrow Cells/cytology
- Bone Marrow Cells/metabolism
- Bone Marrow Transplantation
- Cell Differentiation
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Female
- Graft Survival
- Green Fluorescent Proteins
- Immunohistochemistry
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/therapy
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Neovascularization, Physiologic
- Neurons/cytology
- Neurons/metabolism
- Radiation Chimera
- Stem Cell Transplantation
- Stem Cells/cytology
- Stroke/complications
- Stroke/pathology
- Stroke/therapy
Collapse
Affiliation(s)
- David C Hess
- Department of Neurology, Medical College of Georgia, Augusta, Ga 30912, USA.
| | | | | | | | | | | |
Collapse
|
382
|
Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, Chopp M. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 2002; 7:113-7. [PMID: 12186702 DOI: 10.1080/10245330290028588] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bone marrow stromal cells (MSCs) administered intravenously are effective in reducing neurological deficits after stroke in the rodent. These cells appear to selectively migrate and express neural phenotypes in ischemic brain. To elucidate the mechanisms targeting MSC migration into the ischemic brain, we measured, using a microchemotaxis chamber, the effect of select chemotactic factors and cytokines expressed in injured brain, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha) and interleukin-8 (IL-8), on migration of human bone marrow stromal cells (hMSCs). In addition, we investigated whether tissue extracts prepared from rat ischemic brain at various times after middle cerebral artery occlusion (MCAo) induce migration of hMSCs. Our data indicate that MCP-1, MIP-1alpha and IL-8 enhance the migration of hMSCs. Ischemic brain tissue extracts at 24, 48 h and 1 week after ischemia significantly increase hMSC migration across the membrane compared to non-ischemic tissue (p<0.05). These data indicate that hMSCs are targeted by inflammatory chemotactic agents and cytokines and that ischemic brain attracts hMSCs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
383
|
Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 2002; 174:11-20. [PMID: 11869029 DOI: 10.1006/exnr.2001.7853] [Citation(s) in RCA: 564] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is now evidence to suggest that bone marrow mesenchymal stem cells (MSCs) not only differentiate into mesodermal cells, but can also adopt the fate of endodermal and ectodermal cell types. In this study, we addressed the hypotheses that human MSCs can differentiate into neural cells when implanted in the brain and restore sensorimotor function after experimental stroke. Purified human MSCs were grafted into the cortex surrounding the area of infarction 1 week after cortical brain ischemia in rats. Two and 6 weeks after transplantation animals were assessed for sensorimotor function and then sacrificed for histological examination. Ischemic rats that received human MSCs exhibited significantly improved functional performance in limb placement test. Histological analyses revealed that transplanted human MSCs expressed markers for astrocytes (GFAP(+)), oligodendroglia (GalC(+)), and neurons (beta III(+), NF160(+), NF200(+), hNSE(+), and hNF70(+)). The morphological features of the grafted cells, however, were spherical in nature with few processes. Therefore, it is unlikely that the functional recovery observed by the ischemic rats with human MSC grafts was mediated by the integration of new "neuronal" cells into the circuitry of the host brain. The observed functional improvement might have been mediated by proteins secreted by transplanted hMSCs, which could have upregulated host brain plasticity in response to experimental stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, University of Minnesota, 55455, USA
| | | | | | | | | | | |
Collapse
|
384
|
Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 2002; 19:408-18. [PMID: 11553849 DOI: 10.1634/stemcells.19-5-408] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mesenchymal stem cells (MSCs) isolated from the bone marrow of adult organisms are capable of differentiating into adipocytes, chondrocytes, myoblasts, osteoblasts, and hematopoiesis-supporting stroma. We recently demonstrated that MSCs also adopt glial cell fates when transplanted into the developing central nervous system and hence can produce tissue elements derived from a separate embryonic layer. Despite these remarkable properties, it has been difficult to establish specific criteria to characterize MSCs. Using a modified protocol for micro-serial analysis of gene expression, we cataloged 2,353 unique genes expressed by a single cell-derived colony of undifferentiated human MSCs. This analysis revealed that the MSC colony simultaneously expressed transcripts characteristic of various mesenchymal cell lineages including chondrocytes, myoblasts, osteoblasts, and hematopoiesis-supporting stroma. Therefore, the profile of expressed transcripts reflects the developmental potential of the cells. Additionally, the MSC colony expressed mRNAs characteristic of endothelial, epithelial and neuronal cell lineages, a combination that provides a unique molecular signature for the cells. Other expressed transcripts included various products involved in wound repair as well as several neurotrophic factors. A total of 268 novel transcripts were also identified, one of which is the most abundantly expressed mRNA in MSCs. This study represents the first extensive gene expression analysis of MSCs and as such reveals new insight into the biology, ontogeny, and in vivo function of the cells.
Collapse
Affiliation(s)
- N Tremain
- Center for Gene Therapy, Tulane University of the Health Sciences, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
385
|
Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neurosci Lett 2001; 316:67-70. [PMID: 11742717 DOI: 10.1016/s0304-3940(01)02384-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adult C57BL/6 mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Intrastriatal transplantation of bone marrow stromal cells (MSCs) was performed 1 week after MPTP administration. MSCs were harvested from donor adult mice, and then cultured and prelabeled with bromodeoxyuridine (BrdU). MPTP-Parkinson's disease (PD) mice treated with intrastriatal injection of phosphate-buffered saline (PBS), and normal non-MPTP mice were used as controls. MPTP-PD mice with MSC intrastriatal transplantation exhibit significant improvement on the rotarod test (P<0.05) at day 35 compared with PBS controls. Immunohistochemistry shows that BrdU reactive cells survive in the transplanted areas in the MPTP-PD striatum at least 4 weeks after administration. Scattered BrdU reactive cells express tyrosine hydroxylase (TH) immunoreactivity. Our findings suggest that MSCs injected intrastriatally survive, express dopaminergic protein TH immunoreactivity, and promote functional recovery.
Collapse
Affiliation(s)
- Y Li
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
386
|
Janson CG, Ramesh TM, During MJ, Leone P, Heywood J. Human intrathecal transplantation of peripheral blood stem cells in amyotrophic lateral sclerosis. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:913-5. [PMID: 11798518 DOI: 10.1089/152581601317211015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C G Janson
- Jefferson University, CNS Gene Therapy Center, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
387
|
Treatment of Traumatic Brain Injury in Female Rats with Intravenous Administration of Bone Marrow Stromal Cells. Neurosurgery 2001. [DOI: 10.1097/00006123-200111000-00031] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
388
|
Mahmood A, Lu D, Wang L, Li Y, Lu M, Chopp M. Treatment of Traumatic Brain Injury in Female Rats with Intravenous Administration of Bone Marrow Stromal Cells. Neurosurgery 2001. [DOI: 10.1227/00006123-200111000-00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
389
|
Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 2001; 189:49-57. [PMID: 11535233 DOI: 10.1016/s0022-510x(01)00557-3] [Citation(s) in RCA: 404] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We tested the hypothesis that bone marrow stromal cells (MSCs) transplanted into the ischemic boundary zone, survive, differentiate and improve functional recovery after middle cerebral artery occlusion (MCAo). MSCs were harvested from adult rats and cultured with or without nerve growth factor (NGF). For cellular identification, MSCs were prelabeled with bromodeoxyuridine (BrdU). Rats (n=24) were subjected to 2 h of MCAo, received grafts at 24 h and were euthanized at 14 days after MCAo. Test groups consisted of: (1) control-MCAo alone (n=8); (2) intracerebral transplantation of MSCs (n=8); (3) intracerebral transplantation of MSCs cultured with NGF (n=8). Immunohistochemistry was used to identify cells from MSCs. Behavioral tests (rotarod, adhesive-removal and modified neurological severity score [NSS]) were performed before and after MCAo. The data demonstrate that MSCs survive, migrate and differentiate into phenotypic neural cells. Significant recovery of somatosensory behavior (p<0.05) and NSS (p<0.05) were found in animals transplanted with MSCs compared with control animals. Animals that received MSCs cultured with NGF displayed significant recovery in motor (p<0.05), somatosensory (p<0.05) and NSS (p<0.05) behavioral tests compared with control animals. Our data suggest that intracerebral transplantation of MSCs may provide a powerful autoplastic therapy for stroke.
Collapse
Affiliation(s)
- J Chen
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
390
|
Manev H, Uz T, Manev R, Zhang Z. Neurogenesis and neuroprotection in the adult brain. A putative role for 5-lipoxygenase? Ann N Y Acad Sci 2001; 939:45-51. [PMID: 11462800 DOI: 10.1111/j.1749-6632.2001.tb03610.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) are two enzymes that are critical for the synthesis of eicosanoids, the inflammatory metabolites of arachidonic acid. Both 5-LOX and COX-2 are expressed in the brain, including in CNS neurons. The physiologic role of these proteins in neuronal functioning is not clear. In non-neuronal tissues these two enzymes often assume similar roles: in addition to their function in inflammation, 5-LOX and COX-2 appear to be associated with cell proliferation, that is, with tumor growth. High 5-LOX expression has been noticed in the proliferating brain or pancreatic tumor cells; reduction in tumor cell proliferation and/or destruction of tumor cells was achieved with 5-LOX inhibitors. Proliferation of immature neurons/neuroblasts is an important component of mitotic neurogenesis. We investigated the role of 5-LOX in proliferation using cultures of human neuronal precursor cells, NT2. We found that these cells express 5-LOX mRNA and we used 3H-thymidine incorporation as a measure of cell proliferation; this was reduced by treating the cultures with 5-LOX inhibitor AA-861. We propose that the 5-LOX pathway plays a crucial role in mitotic neurogenesis. Additional studies should explore whether 5-LOX may participate in neurogenesis related pathologies and whether it should be considered a target for procedures aimed at altering neurogenesis for therapeutic purposes.
Collapse
Affiliation(s)
- H Manev
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, MC912, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
391
|
Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32:1005-11. [PMID: 11283404 DOI: 10.1161/01.str.32.4.1005] [Citation(s) in RCA: 1365] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE We tested the hypothesis that intravenous infusion of bone marrow derived-marrow stromal cells (MSCs) enter the brain and reduce neurological functional deficits after stroke in rats. METHODS Rats (n=32) were subjected to 2 hours of middle cerebral artery occlusion (MCAO). Test groups consisted of MCAO alone (group 1, n=6); intravenous infusion of 1x10(6) MSCs at 24 hours after MCAO (group 2, n=6); or infusion of 3x10(6) MSCs (group 3, n=7). Rats in groups 1 to 3 were euthanized at 14 days after MCAO. Group 4 consisted of MCAO alone (n=6) and group 5, intravenous infusion of 3x10(6) MSCs at 7 days after MCAO (n=7). Rats in groups 4 and 5 were euthanized at 35 days after MCAO. For cellular identification, MSCs were prelabeled with bromodeoxyuridine. Behavioral tests (rotarod, adhesive-removal, and modified Neurological Severity Score [NSS]) were performed before and at 1, 7, 14, 21, 28, and 35 days after MCAO. Immunohistochemistry was used to identify MSCs or cells derived from MSCs in brain and other organs. RESULTS Significant recovery of somatosensory behavior and Neurological Severity Score (P<0.05) were found in animals infused with 3x10(6) MSCs at 1 day or 7 days compared with control animals. MSCs survive and are localized to the ipsilateral ischemic hemisphere, and a few cells express protein marker phenotypic neural cells. CONCLUSIONS MSCs delivered to ischemic brain tissue through an intravenous route provide therapeutic benefit after stroke. MSCs may provide a powerful autoplastic therapy for stroke.
Collapse
Affiliation(s)
- J Chen
- Henry Ford Health Sciences Center, Department of Neurology, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
392
|
McIntosh T. Bone marrow transplantation. J Neurosurg 2001; 94:683-5. [PMID: 11302678 DOI: 10.3171/jns.2001.94.4.0683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
393
|
Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 2001; 12:559-63. [PMID: 11234763 DOI: 10.1097/00001756-200103050-00025] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To measure effect of bone marrow stromal cells (MSCs) administered i.v. on rats subjected to traumatic brain injury (TBI), we injected MSCs labeled by BrdU into the tail vein 24 h after TBI and sacrificed rats 15 days later. The neurological severity score (NSS) and the Rotarod test were used to evaluate neurological function. The distribution of the donor cells in brain, heart, lung, kidney, liver and spleen were analyzed in recipient rats using immunohistochemical staining. MSCs injected i.v. significantly reduced motor and neurological deficits compared with control groups by day 15 after TBI. The cells preferentially entered and migrated into the parenchyma of the injured brain and expressed the neuronal marker NeuN and the astrocytic marker GFAP. MSCs were also found in other organs and primarily localized to the vascular structures, without any obvious adverse effects. Our data suggest that i.v. administration of MSCs may be useful in the treatment of TBI.
Collapse
Affiliation(s)
- D Lu
- Department of Neurosurgery, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
394
|
Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 2000; 99:492-9. [PMID: 10994853 DOI: 10.1097/tp.0000000000000535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The authors transplanted adult bone marrow nonhematopoietic cells into the striatum after embolic middle cerebral artery occlusion (MCAO). Mice (n = 23; C57BL/6J) were divided into four groups: (1) mice (n = 5) were subjected to MCAO and transplanted with bone marrow nonhematopoietic cells (prelabeled by bromodeoxyuridine, BrdU) into the ischemic striatum, (2) MCAO alone (n = 8), (3) MCAO with injection of phosphate buffered saline (n = 5), and (4) bone marrow nonhematopoietic cells injected into the normal striatum (n = 5). Mice were killed at 28 days after stroke. BrdU reactive cells survived and migrated a distance of approximately 2.2 mm from the grafting areas toward the ischemic areas. BrdU reactive cells expressed the neuronal specific protein NeuN in 1% of BrdU stained cells and the astrocytic specific protein glial fibrillary acidic protein (GFAP) in 8% of the BrdU stained cells. Functional recovery from a rotarod test (P < 0.05) and modified neurologic severity score tests (including motor, sensory, and reflex; P < 0.05) were significantly improved in the mice receiving bone marrow nonhematopoietic cells compared with MCAO alone. The current findings suggest that the intrastriatal transplanted bone marrow nonhematopoietic cells survived in the ischemic brain and improved functional recovery of adult mice even though infarct volumes did not change significantly. Bone marrow nonhematopoietic cells may provide a new avenue to promote recovery of injured brain.
Collapse
|