351
|
Li L, Zhao X. Characterization of the resistance class 1 integrons in Staphylococcus aureus isolates from milk of lactating dairy cattle in Northwestern China. BMC Vet Res 2018; 14:59. [PMID: 29482565 PMCID: PMC5827992 DOI: 10.1186/s12917-018-1376-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
Background Integrons are mobile DNA elements and they have an important role in acquisition and dissemination of antimicrobial resistance genes. However, there are limited data available on integrons of Staphylococcus aureus (S. aureus) from bovine mastitis, especially from Chinese dairy cows. To address this knowledge gap, bovine mastitis-inducing S. aureus isolates were investigated for the presence of integrons as well as characterization of gene cassettes. Integrons were detected using PCR reactions and then further characterized by a restriction fragment-length polymorphism analysis and amplicon sequencing. Results All 121 S. aureus isolates carried the class 1 integrase gene intI1, with no intI2 and intI3 genes detected. One hundred and three isolates were positive for the presence of 12 resistance genes, either alone or in combination with other gene cassettes. These resistance genes encoded resistance to trimethoprim (dhfrV, dfrA1, dfrA12), aminoglycosides (aadA1, aadA5, aadA4, aadA24, aacA4, aadA2, aadB), chloramphenicol (cmlA6) and quaternary ammonium compound (qacH) and were organized into 11 different gene cassettes arrangements (A-K). The gene cassette arrays dfrA1-aadA1 (D, 44.6%), aadA2 (K, 31.4%), dfrA12-orfX2-aadA2 (G, 27.3%) and aadA1 (A, 25.6%) were most prevalent. Furthermore, 74 isolates contained combinations of 2 to 4 gene cassette arrays. Finally, all of the integron/cassettes-positive isolates were resistant to aminoglycoside antibiotics. Conclusions This is the first study on the integrons and gene cassette arrays in S. aureus isolates from milk of mastitic cows from Northwestern China and provide the evidence for class 1 integron as possible antibiotic resistance determinants on dairy farms.
Collapse
Affiliation(s)
- Longping Li
- College of Animal Science and Technology, Northwest A&F University, YangLing, Shaanxi, People's Republic of China.,Life Science Research Center, Yulin University, Yulin, 719000, People's Republic of China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goat, Yulin University, Yulin, 719000, People's Republic of China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, YangLing, Shaanxi, People's Republic of China. .,Department of Animal Science, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
352
|
Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer. Genes (Basel) 2018; 9:genes9020106. [PMID: 29463055 PMCID: PMC5852602 DOI: 10.3390/genes9020106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance poses an important threat to global public health and has become a challenge to modern medicine. The occurrence of antibiotic-resistant bacteria in a broad range of foods has led to a growing concern about the impact that food may have as a reservoir of antibiotic resistance genes. Considering Minas Frescal Cheese (MFC)-a typical Brazilian white soft cheese-and its economic and cultural values, in this study, medically relevant antimicrobial-resistance genetic markers (AR genes) were screened, and the occurrence of integrons were evaluated in manufactured MFC using culture-independent approaches. Through a fingerprinting analysis, the tested MFCs were brand-clustered, indicating reproducibility along the production chain. A common core of resistance markers in all brands evaluated and related antimicrobials such as β-lactams, tetracyclines, quinolones, and sulfonamide was detected. Several other markers, including efflux pumps and aminoglycosides-resistance were distributed among brands. Class 1 and 2 integrons were observed, respectively, in 77% and 97% of the samples. The presence of AR genes is of special interest due to their clinical relevance. Taken together, the data may suggest that the production chain of MFC might contribute to the spread of putative drug-resistant bacteria, which could greatly impact human health. Furthermore, detection of class 1 and class 2 integrons in MFC has led to discussions about resistance gene spread in this traditional cheese, providing evidence of potential horizontal transfer of AR genes to human gut microbiota.
Collapse
|
353
|
Wolters B, Jacquiod S, Sørensen SJ, Widyasari-Mehta A, Bech TB, Kreuzig R, Smalla K. Bulk soil and maize rhizosphere resistance genes, mobile genetic elements and microbial communities are differently impacted by organic and inorganic fertilization. FEMS Microbiol Ecol 2018; 94:4867966. [DOI: 10.1093/femsec/fiy027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/15/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Birgit Wolters
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11–12, 38104 Braunschweig, Germany
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Arum Widyasari-Mehta
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Tina B Bech
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Robert Kreuzig
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11–12, 38104 Braunschweig, Germany
| |
Collapse
|
354
|
Zhang M, Chen L, Ye C, Yu X. Co-selection of antibiotic resistance via copper shock loading on bacteria from a drinking water bio-filter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:132-141. [PMID: 29059628 DOI: 10.1016/j.envpol.2017.09.084] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Heavy metal contamination of source water frequently occurred in developing countries as a result of accidents. To address the problems, most of the previous studies have focused on engineering countermeasures. In this study, we investigated the effects of heavy metals, particularly copper, on the development of antibiotic resistance by establishing a copper shock loading test. Results revealed that co-selection occurred rapidly within 6 h. Copper, at the levels of 10 and 100 mg/L, significantly increased bacterial resistance to the antibiotics tested, including rifampin, erythromycin, kanamycin, and a few others. A total of 117 antimicrobial-resistance genes were detected from 12 types of genes, and the relative abundance of most genes (particularly mobile genetic elements intⅠand transposons) was markedly enriched by at least one fold. Furthermore, the copper shock loading altered the bacterial community. Numerous heavy metal and antibiotic resistant strains were screened out and enriched. These strains are expected to enhance the overall level of resistance. More noticeably, the majority of the co-selected antibiotic resistance could sustain for at least 20 h in the absence of copper and antimicrobial drugs. Resistance to vancomycin, erythromycin and lincomycin even could remain for 7 days. The prominent selection pressure by the copper shock loading implies that a real accident most likely poses similar impacts on the water environment. An accidental release of heavy metals would not only cause harm to the ecological environment, but also contribute to the development of bacterial antibiotic resistance. Broader concerns should be raised about the biological risks caused by sudden releases of pollutants by accidents.
Collapse
Affiliation(s)
- Menglu Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Lihua Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
355
|
Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2018; 41:276-301. [PMID: 28369412 DOI: 10.1093/femsre/fux010] [Citation(s) in RCA: 928] [Impact Index Per Article: 132.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Biofilms are surface-attached groups of microbial cells encased in an extracellular matrix that are significantly less susceptible to antimicrobial agents than non-adherent, planktonic cells. Biofilm-based infections are, as a result, extremely difficult to cure. A wide range of molecular mechanisms contribute to the high degree of recalcitrance that is characteristic of biofilm communities. These mechanisms include, among others, interaction of antimicrobials with biofilm matrix components, reduced growth rates and the various actions of specific genetic determinants of antibiotic resistance and tolerance. Alone, each of these mechanisms only partially accounts for the increased antimicrobial recalcitrance observed in biofilms. Acting in concert, however, these defences help to ensure the survival of biofilm cells in the face of even the most aggressive antimicrobial treatment regimens. This review summarises both historical and recent scientific data in support of the known biofilm resistance and tolerance mechanisms. Additionally, suggestions for future work in the field are provided.
Collapse
|
356
|
Maravić A, Šamanić I, Šprung M, Fredotović Ž, Ilić N, Dragičević J, Puizina J. Broad-spectrum resistance of Pseudomonas aeruginosa from shellfish: infrequent acquisition of novel resistance mechanisms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:81. [PMID: 29335824 DOI: 10.1007/s10661-018-6471-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Pseudomonas aeruginosa is one the most common multidrug-resistant pathogens worldwide. It has been previously detected in marine shellfish, but its antibiotic resistance in such environment has not been explored. By combining PCR detection of acquired genes, and resistance-nodulation-cell division (RND) efflux studying, we investigated the multifactorial resistance traits of 108 P. aeruginosa isolates recovered from wild-growing Mediterranean mussels (Mytilus galloprovincialis) in Croatia. Eleven different resistance profiles were found, with the main mechanism being the overexpression of intrinsic efflux pump(s), particularly MexAB-OprM. Several acquired resistance determinants were detected, including the β-lactamase gene blaTEM-116, sulfamethoxazole resistance gene sul1, and the class 1 integron gene cassette carrying the streptomycin resistance gene aadA7. This study evidenced the multiple resistance in P. aeruginosa in shellfish from human-impacted marine environment, pointing to the underestimated role of the marine habitat for maintenance of multiresistant P. aeruginosa and, consequently, the potential risk for human and environmental health.
Collapse
Affiliation(s)
- Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia.
| | - Ivica Šamanić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| | - Nada Ilić
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| | - Josipa Dragičević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| | - Jasna Puizina
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| |
Collapse
|
357
|
Halaji M, Rezaei A, Zalipoor M, Faghri J. Investigation of Class I, II, and III Integrons Among Acinetobacter Baumannii Isolates from Hospitalized Patients in Isfahan, Iran. Oman Med J 2018; 33:37-42. [PMID: 29467997 DOI: 10.5001/omj.2018.07] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objectives This study aimed to determine the prevalence of class I, II, and III integrons among clinical Acinetobacter baumannii isolates collected from hospitalized patients. Methods This cross-sectional study was conducted at two teaching hospitals in Isfahan, Iran, from October 2015 to October 2016. A total of 147 non-duplicate A. baumannii isolates were collected from clinical specimens and identified as A. baumannii using standard microbiological methods and confirmed by genotyping. Antimicrobial susceptibility was determined using disc diffusion method, and the presence of integron genes was performed using the polymerase chain reaction. Results Out of 147 confirmed A. baumannii isolates, 97.3% of isolates were extensive drug-resistant (XDR) and 2.7% were multidrug-resistant (MDR). Class I and II integrons were detected in 63.9% and 78.2% of the A. baumannii, respectively. Class III integron was not detected in any of the isolates. Conclusion Our results show a high prevalence of classes I and II integrons which may play a key role in the acquisition of MDR and XDR phenotype among A. baumannii isolates in our region. Therefore, use of appropriate infection control in clinical settings and implementation of treatment strategies is necessary for our hospitals.
Collapse
Affiliation(s)
- Mehrdad Halaji
- Department of Microbiology, School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aliakbar Rezaei
- Department of Microbiology, School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Zalipoor
- Department of Microbiology, School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamshid Faghri
- Department of Microbiology, School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
358
|
Madueño L, Paul C, Junier T, Bayrychenko Z, Filippidou S, Beck K, Greub G, Bürgmann H, Junier P. A historical legacy of antibiotic utilization on bacterial seed banks in sediments. PeerJ 2018; 6:e4197. [PMID: 29312823 PMCID: PMC5756452 DOI: 10.7717/peerj.4197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
The introduction of antibiotics for both medical and non-medical purposes has had a positive effect on human welfare and agricultural output in the past century. However, there is also an important ecological legacy regarding the use of antibiotics and the consequences of increased levels of these compounds in the environment as a consequence of their use and disposal. This legacy was investigated by quantifying two antibiotic resistance genes (ARG) conferring resistance to tetracycline (tet(W)) and sulfonamide (sul1) in bacterial seed bank DNA in sediments. The industrial introduction of antibiotics caused an abrupt increase in the total abundance of tet(W) and a steady increase in sul1. The abrupt change in tet(W) corresponded to an increase in relative abundance from ca. 1960 that peaked around 1976. This pattern of accumulation was highly correlated with the abundance of specific members of the seed bank community belonging to the phylum Firmicutes. In contrast, the relative abundance of sul1 increased after 1976. This correlated with a taxonomically broad spectrum of bacteria, reflecting sul1 dissemination through horizontal gene transfer. The accumulation patterns of both ARGs correspond broadly to the temporal scale of medical antibiotic use. Our results show that the bacterial seed bank can be used to look back at the historical usage of antibiotics and resistance prevalence.
Collapse
Affiliation(s)
- Laura Madueño
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Christophe Paul
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Thomas Junier
- Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Zhanna Bayrychenko
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Sevasti Filippidou
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Karin Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| |
Collapse
|
359
|
Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev 2018; 42:4563583. [PMID: 29069382 PMCID: PMC5812547 DOI: 10.1093/femsre/fux053] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/19/2017] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance and its wider implications present us with a growing healthcare crisis. Recent research points to the environment as an important component for the transmission of resistant bacteria and in the emergence of resistant pathogens. However, a deeper understanding of the evolutionary and ecological processes that lead to clinical appearance of resistance genes is still lacking, as is knowledge of environmental dispersal barriers. This calls for better models of how resistance genes evolve, are mobilized, transferred and disseminated in the environment. Here, we attempt to define the ecological and evolutionary environmental factors that contribute to resistance development and transmission. Although mobilization of resistance genes likely occurs continuously, the great majority of such genetic events do not lead to the establishment of novel resistance factors in bacterial populations, unless there is a selection pressure for maintaining them or their fitness costs are negligible. To enable preventative measures it is therefore critical to investigate under what conditions and to what extent environmental selection for resistance takes place. In addition, understanding dispersal barriers is not only key to evaluate risks, but also to prevent resistant pathogens, as well as novel resistance genes, from reaching humans.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden
| |
Collapse
|
360
|
Tomova A, Ivanova L, Buschmann AH, Godfrey HP, Cabello FC. Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an Aquacultural Area. MICROBIAL ECOLOGY 2018. [PMID: 28642992 DOI: 10.1007/s00248-017-1016-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Antimicrobial usage in aquaculture selects for antimicrobial-resistant microorganisms in the marine environment. The relevance of this selection to terrestrial animal and human health is unclear. Quinolone-resistance genes qnrA, qnrB, and qnrS were chromosomally located in four randomly chosen quinolone-resistant marine bacteria isolated from an aquacultural area with heavy quinolone usage. In quinolone-resistant uropathogenic clinical isolates of Escherichia coli from a coastal area bordering the same aquacultural region, qnrA was chromosomally located in two E. coli isolates, while qnrB and qnrS were located in small molecular weight plasmids in two other E. coli isolates. Three quinolone-resistant marine bacteria and three quinolone-resistant E. coli contained class 1 integrons but without physical association with PMQR genes. In both marine bacteria and uropathogenic E. coli, class 1 integrons had similar co-linear structures, identical gene cassettes, and similarities in their flanking regions. In a Marinobacter sp. marine isolate and in one E. coli clinical isolate, sequences immediately upstream of the qnrS gene were homologous to comparable sequences of numerous plasmid-located qnrS genes while downstream sequences were different. The observed commonality of quinolone resistance genes and integrons suggests that aquacultural use of antimicrobials might facilitate horizontal gene transfer between bacteria in diverse ecological locations.
Collapse
Affiliation(s)
- Alexandra Tomova
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Larisa Ivanova
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | | | - Henry P Godfrey
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Felipe C Cabello
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
361
|
Mokhtari H, Eslami G, Zandi H, Dehghan-Banadkouki A, Vakili M. Evaluating the Frequency of aac(6')-IIa, ant(2″)-I, intl1, and intl2 Genes in Aminoglycosides Resistant Klebsiella pneumoniae Isolates Obtained from Hospitalized Patients in Yazd, Iran. Avicenna J Med Biotechnol 2018; 10:115-119. [PMID: 29849989 PMCID: PMC5960057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen that could be resistant to many antimicrobial agents. Resistance genes can be carried among gram-negative bacteria by integrons. Enzymatic inactivation is the most important mechanism of resistance to aminoglycosides. In this study, the frequencies of two important resistance gene aac(6')-IIa and ant(2″)-I, and genes coding integrase I and II, in K. pneumoniae isolates resistant to aminoglycosides were evaluated. METHODS In this cross-sectional study, an attempt was made to assess the antibiotic susceptibility of 130 K. pneumoniae isolates obtained from different samples of patients hospitalized in training hospitals of Yazd evaluated by disk diffusion method. The frequencies of aac(6')-IIa, ant(2″)-I, intl1, and intl2 genes were determined by PCR method. Data were analyzed by chi-square method using SPSS software (Ver. 16). RESULTS our results showed that resistance to gentamicin, tobramycin, kanamycin, and amikacin were 34.6, 33.8, 43.8, and 14.6%, respectively. The frequencies of aac (6')-IIa, ant(2″)-I, intl1, and intl2 genes were 44.6, 27.7, 90, and 0%, respectively. CONCLUSION This study showed there are high frequencies of genes coding aminoglycosides resistance in K. pneumoniae isolates. Hence, it is very important to monitor and inhibit the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Hesam Mokhtari
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Department of Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hengameh Zandi
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran,Corresponding author: Hengameh Zandi, Ph.D., Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Tel: +98 41 33364665 Fax: +98 35 38203414 E-mail:
| | - Amin Dehghan-Banadkouki
- Department of Pathobiology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Vakili
- Department of Public Medicine, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
362
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 DOI: 10.3389/fmicb.2018.02928/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
363
|
Martini MC, Quiroga MP, Pistorio M, Lagares A, Centrón D, Del Papa MF. Novel environmental class 1 integrons and cassette arrays recovered from an on-farm bio-purification plant. FEMS Microbiol Ecol 2017; 94:4781311. [DOI: 10.1093/femsec/fix190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/27/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- María Carla Martini
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - María Paula Quiroga
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Paraguay 2155, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - Antonio Lagares
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - Daniela Centrón
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Paraguay 2155, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Del Papa
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| |
Collapse
|
364
|
Razavi M, Marathe NP, Gillings MR, Flach CF, Kristiansson E, Joakim Larsson DG. Discovery of the fourth mobile sulfonamide resistance gene. MICROBIOME 2017; 5:160. [PMID: 29246178 PMCID: PMC5732528 DOI: 10.1186/s40168-017-0379-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Over the past 75 years, human pathogens have acquired antibiotic resistance genes (ARGs), often from environmental bacteria. Integrons play a major role in the acquisition of antibiotic resistance genes. We therefore hypothesized that focused exploration of integron gene cassettes from microbial communities could be an efficient way to find novel mobile resistance genes. DNA from polluted Indian river sediments were amplified using three sets of primers targeting class 1 integrons and sequenced by long- and short-read technologies to maintain both accuracy and context. RESULTS Up to 89% of identified open reading frames encode known resistance genes, or variations thereof (> 1000). We identified putative novel ARGs to aminoglycosides, beta-lactams, trimethoprim, rifampicin, and chloramphenicol, including several novel OXA variants, providing reduced susceptibility to carbapenems. One dihydropteroate synthase gene, with less than 34% amino acid identity to the three known mobile sulfonamide resistance genes (sul1-3), provided complete resistance when expressed in Escherichia coli. The mobilized gene, here named sul4, is the first mobile sulfonamide resistance gene discovered since 2003. Analyses of adjacent DNA suggest that sul4 has been decontextualized from a set of chromosomal genes involved in folate synthesis in its original host, likely within the phylum Chloroflexi. The presence of an insertion sequence common region element could provide mobility to the entire integron. Screening of 6489 metagenomic datasets revealed that sul4 is already widespread in seven countries across Asia and Europe. CONCLUSIONS Our findings show that exploring integrons from environmental communities with a history of antibiotic exposure can provide an efficient way to find novel, mobile resistance genes. The mobilization of a fourth sulfonamide resistance gene is likely to provide expanded opportunities for sulfonamide resistance to spread, with potential impacts on both human and animal health.
Collapse
Affiliation(s)
- Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P. Marathe
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael R. Gillings
- Department of Biological Sciences, Genes to Geoscience Research Centre, Macquarie University, Sydney, New South Wales Australia
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
365
|
Michael CA, Franks AE, Labbate M. The antimicrobial resistance crisis: management through gene monitoring. Open Biol 2017; 6:rsob.160236. [PMID: 27831476 PMCID: PMC5133444 DOI: 10.1098/rsob.160236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials.
Collapse
Affiliation(s)
- Carolyn A Michael
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.,ithree institute, University of Technology Sydney, Sydney 2007, Australia
| |
Collapse
|
366
|
Bacteriome genetic structures of urban deposits are indicative of their origin and impacted by chemical pollutants. Sci Rep 2017; 7:13219. [PMID: 29038457 PMCID: PMC5643393 DOI: 10.1038/s41598-017-13594-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
Urban activities generate surface deposits over impervious surfaces that can represent ecological and health hazards. Bacteriome genetic structures of deposits washed off during rainfall events, over an urban industrial watershed, were inferred from 16 S rRNA gene (rrs) sequences generated by high throughput sequencing. Deposits were sampled over a 4 year-period from a detention basin (DB). Major shifts, matching key management practices, in the structure of these urban bacteriomes, were recorded. Correlation analyses of rrs similarities between samples and their respective concentrations in chemical pollutants, markers of human fecal contaminations (HF183) and antimicrobial resistances (integrons), were performed. Harsher environmental constraints building up in the older deposits led to an increase number of rrs reads from extremophiles such as Acidibacter and Haliangium. Deposits accumulating in the decantation pit of the DB showed an increase in rrs reads from warm blooded intestinal tract bacteria such as Bacteroides and Prevotella. This enrichment matched higher concentrations of Bacteroides HF183 genotypes normally restricted to humans. Bacteriomes of urban deposits appeared good indicators of human-driven environmental changes. Their composition was found representative of their origin. Soil particles and rain appeared to be major contributors of the inferred bacterial taxa recovered from recent deposits.
Collapse
|
367
|
Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents 2017; 51:167-176. [PMID: 29038087 DOI: 10.1016/j.ijantimicag.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 01/03/2023]
Abstract
Integrons are versatile gene acquisition systems that allow efficient capturing of exogenous genes and ensure their expression. Various classes of integrons possessing a wide variety of gene cassettes are ubiquitously distributed in enteric bacteria worldwide. The epidemiology of integrons associated multidrug resistance in Enterobacteriaceae is rapidly evolving. In the past two decades, the incidence of integrons in enteric bacteria has increased drastically with evolution of multiple gene cassettes, novel gene arrangements and complex chromosomal integrons such as Salmonella genomic islands. This review focuses on the distribution, versatility, spread and global trends of integrons among important members of the Enterobacteriaceae, including Escherichia coli, Klebsiella, Shigella and Salmonella, which are known to cause infections globally. Such a comprehensive understanding of integron-associated antibiotic resistance, their role in the spread of such resistance traits and their clinical relevance especially with regard to each genus individually is paramount to contain the global spread of antibiotic resistance.
Collapse
|
368
|
Carr CE, Marky LA. Melting Behavior of a DNA Four-Way Junction Using Spectroscopic and Calorimetric Techniques. J Am Chem Soc 2017; 139:14443-14455. [DOI: 10.1021/jacs.7b06429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carolyn E. Carr
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luis A. Marky
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
369
|
Allen RC, Engelstädter J, Bonhoeffer S, McDonald BA, Hall AR. Reversing resistance: different routes and common themes across pathogens. Proc Biol Sci 2017; 284:20171619. [PMID: 28954914 PMCID: PMC5627214 DOI: 10.1098/rspb.2017.1619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/23/2017] [Indexed: 11/12/2022] Open
Abstract
Resistance spreads rapidly in pathogen or pest populations exposed to biocides, such as fungicides and antibiotics, and in many cases new biocides are in short supply. How can resistance be reversed in order to prolong the effectiveness of available treatments? Some key parameters affecting reversion of resistance are well known, such as the fitness cost of resistance. However, the population biological processes that actually cause resistance to persist or decline remain poorly characterized, and consequently our ability to manage reversion of resistance is limited. Where do susceptible genotypes that replace resistant lineages come from? What is the epidemiological scale of reversion? What information do we need to predict the mechanisms or likelihood of reversion? Here, we define some of the population biological processes that can drive reversion, using examples from a wide range of taxa and biocides. These processes differ primarily in the origin of revertant genotypes, but also in their sensitivity to factors such as coselection and compensatory evolution that can alter the rate of reversion, and the likelihood that resistance will re-emerge upon re-exposure to biocides. We therefore argue that discriminating among different types of reversion allows for better prediction of where resistance is most likely to persist.
Collapse
Affiliation(s)
- Richard C Allen
- Institute of Integrative Biology, ETH Zürich, CH-8092 Zurich, Switzerland
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Bruce A McDonald
- Institute of Integrative Biology, ETH Zürich, CH-8092 Zurich, Switzerland
| | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, CH-8092 Zurich, Switzerland
| |
Collapse
|
370
|
Wang D, Zhu J, Zhou K, Chen J, Yin Z, Feng J, Ma L, Zhou D. Genetic characterization of novel class 1 Integrons In0, In1069 and In1287 to In1290, and the inference of In1069-associated integron evolution in Enterobacteriaceae. Antimicrob Resist Infect Control 2017; 6:84. [PMID: 28852475 PMCID: PMC5567636 DOI: 10.1186/s13756-017-0241-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022] Open
Abstract
Background This study aims to characterize genetically related class 1 integrons In1069, In893 and In1287 to In1290, and to further propose a scheme of stepwise integration or excision of individual gene cassettes (GCs) to generation of these integron variations. Methods Six of 139 non-redundant Enterobacteriaceae strains were studied by bacterial antimicrobial susceptibility testing, detection of carbapenemase activity, and integron sequencing and sequence comparison. Results Six novel class 1 integrons, In0, In1069, and In1287 to In1290, together with the previously characterized In893, were determined from the above strains. An unusual blaKPC-2-carrying In0 and the blaIMP-30-carrying In1069 coexists in a single isolate of Escherichia coli. In0 contains a PcH1 promoter and a truncated aacA4’-3 gene cassette (GCaacA4’-3), as well as a blaKPC-2-containing region of Tn6296 integrated between PcH1 and GCaacA4’-3. In1069 carries GCblaIMP-30 and GCaacA4’-3 in this order. The other five integrons, In893 and In1287 to In1290, are genetically related to In1069, and all possess a core GCaacA4’-3. The integration or excision of one or more individual gene cassettes, such as GCblaIMP-30, GCaadA16, GCcatB3, GCarr3 and GCdfrA27, upstream or downstream of GCaacA4’-3 generates various gene cassettes arrays among these five integrons. Conclusions These findings provide the insight into stepwise and parallel evolution of In1069-associated integron variations likely under antibiotic selection pressure in clinical settings. Electronic supplementary material The online version of this article (doi:10.1186/s13756-017-0241-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongguo Wang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital affiliated with Taizhou University and the Institute of Molecular Diagnostics of Taizhou University, 381 Zhongshan Eastern Road, Taizhou, Zhejiang, 318000 China
| | - Jianfeng Zhu
- Department of Clinical Laboratory Medicine, Yinzhou No. 2 Hospital of Ningbo, 1 Qianhe Road, Ningbo, Zhejiang, 315100 China
| | - Kaiyu Zhou
- Department of the Neurosurgery, Taizhou Municipal Hospital affiliated to Medical College of Taizhou University, 381 Zhongshan Eastern Road, Taizhou, Zhejiang, 318000 China
| | - Jiayu Chen
- Basic Department, Medical College of Shaoxing University, 508 Huancheng western Road, Shaoxing, Zhejiang, 312099 China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071 China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071 China
| | - Liman Ma
- Department of Laboratory medicine, Medical College of Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang, 318000 China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071 China
| |
Collapse
|
371
|
Khosravi AD, Motahar M, Abbasi Montazeri E. The frequency of class1 and 2 integrons in Pseudomonas aeruginosa strains isolated from burn patients in a burn center of Ahvaz, Iran. PLoS One 2017; 12:e0183061. [PMID: 28813520 PMCID: PMC5557579 DOI: 10.1371/journal.pone.0183061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/28/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen with the ability to cause severe nosocomial infections and remains a major problem in burn patients. This organism shows a remarkable antimicrobial resistance and is often resistant to multiple antibiotics. Integron genes as mobile genetic elements are playing an important role in the spread of P. aeruginosa antibiotic resistance. This study was aimed to investigate the occurrence of class 1, and 2 integron genes (int1, int2), among P. aeruginosa strains isolated from patients with burn infections. METHODS In total 93 clinical isolates of P. aeruginosa were screened. The antimicrobial susceptibilities of 9 common antimicrobial agents were tested against the isolates using disk diffusion method. PCR amplification was performed on extracted DNAs for the detection of int1, and int2 genes using the set of specific primers. RESULTS The majority of P. aeruginosa isolates were from wound infection (69.9%). In disk diffusion method, most isolates showed remarkable resistance to tested antibiotics with highest against gentamicin (94.62%) and ciprofloxacin (93.55%). PCR amplification revealed that 89(95.7%) of P. aeruginosa strains carried int1, but none of them harbored int2 genes. The distribution of int1 gene was highest in blood (100%), followed by wound isolates (95.38%). CONCLUSIONS We demonstrated a high antimicrobial resistance among P. aeruginosa isolates in our setting. int1 was prevalent and seems to play an important role in multidrug resistance among the isolates. So, performance of antibiotic surveillance programs is necessary for choosing the appropriate therapy and management of infection control practices.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Moloudsadat Motahar
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- * E-mail:
| | - Effat Abbasi Montazeri
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
372
|
Jové T, Da Re S, Tabesse A, Gassama-Sow A, Ploy MC. Gene Expression in Class 2 Integrons Is SOS-Independent and Involves Two Pc Promoters. Front Microbiol 2017; 8:1499. [PMID: 28861047 PMCID: PMC5559693 DOI: 10.3389/fmicb.2017.01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
Abstract
Integrons are powerful bacterial genetic elements that permit the expression and dissemination of antibiotic-resistance gene cassettes. They contain a promoter Pc that allows the expression of gene cassettes captured through site-specific recombination catalyzed by IntI, the integron-encoded integrase. Class 1 and 2 integrons are found in both clinical and environmental settings. The regulation of intI and of Pc promoters has been extensively studied in class 1 integrons and the regulatory role of the SOS response on intI expression has been shown. Here we investigated class 2 integrons. We characterized the PintI2 promoter and showed that intI2 expression is not regulated via the SOS response. We also showed that, unlike class 1 integrons, class 2 integrons possess not one but two active Pc promoters that are located within the attI2 region that seem to contribute equally to gene cassette expression. Class 2 integrons mostly encode an inactive truncated integrase, but the rare class 2 integrons that encode an active integrase are associated with less efficient Pc2 promoter variants. We propose an evolutionary model for class 2 integrons in which the absence of repression of the integrase gene expression led to mutations resulting in either inactive integrase or Pc variants of weaker activity, thereby reducing the potential fitness cost of these integrons.
Collapse
Affiliation(s)
- Thomas Jové
- INSERM, CHU Limoges, UMR 1092, Université LimogesLimoges, France
| | - Sandra Da Re
- INSERM, CHU Limoges, UMR 1092, Université LimogesLimoges, France
| | - Aurore Tabesse
- INSERM, CHU Limoges, UMR 1092, Université LimogesLimoges, France
| | - Amy Gassama-Sow
- Unité de Bactériologie Expérimentale, Institut Pasteur de DakarDakar, Senegal
| | | |
Collapse
|
373
|
Novikova O, Belfort M. Mobile Group II Introns as Ancestral Eukaryotic Elements. Trends Genet 2017; 33:773-783. [PMID: 28818345 DOI: 10.1016/j.tig.2017.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023]
Abstract
The duality of group II introns, capable of carrying out both self-splicing and retromobility reactions, is hypothesized to have played a profound role in the evolution of eukaryotes. These introns likely provided the framework for the emergence of eukaryotic retroelements, spliceosomal introns and other key components of the spliceosome. Group II introns are found in all three domains of life and are therefore considered to be exceptionally successful mobile genetic elements. Initially identified in organellar genomes, group II introns are found in bacteria, chloroplasts, and mitochondria of plants and fungi, but not in nuclear genomes. Although there is no doubt that prokaryotic and organellar group II introns are evolutionary related, there are remarkable differences in survival strategies between them. Furthermore, an evolutionary relationship of group II introns to eukaryotic retroelements, including telomeres, and spliceosomes is unmistakable.
Collapse
Affiliation(s)
- Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
374
|
Gillings MR. Class 1 integrons as invasive species. Curr Opin Microbiol 2017; 38:10-15. [DOI: 10.1016/j.mib.2017.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 02/05/2023]
|
375
|
Flach CF, Pal C, Svensson CJ, Kristiansson E, Östman M, Bengtsson-Palme J, Tysklind M, Larsson DGJ. Does antifouling paint select for antibiotic resistance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:461-468. [PMID: 28284638 DOI: 10.1016/j.scitotenv.2017.01.213] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
There is concern that heavy metals and biocides contribute to the development of antibiotic resistance via co-selection. Most antifouling paints contain high amounts of such substances, which risks turning painted ship hulls into highly mobile refuges and breeding grounds for antibiotic-resistant bacteria. The objectives of this study were to start investigate if heavy-metal based antifouling paints can pose a risk for co-selection of antibiotic-resistant bacteria and, if so, identify the underlying genetic basis. Plastic panels with one side painted with copper and zinc-containing antifouling paint were submerged in a Swedish marina and biofilms from both sides of the panels were harvested after 2.5-4weeks. DNA was isolated from the biofilms and subjected to metagenomic sequencing. Biofilm bacteria were cultured on marine agar supplemented with tetracycline, gentamicin, copper sulfate or zinc sulfate. Biofilm communities from painted surfaces displayed lower taxonomic diversity and enrichment of Gammaproteobacteria. Bacteria from these communities showed increased resistance to both heavy metals and tetracycline but not to gentamicin. Significantly higher abundance of metal and biocide resistance genes was observed, whereas mobile antibiotic resistance genes were not enriched in these communities. In contrast, we found an enrichment of chromosomal RND efflux system genes, including such with documented ability to confer decreased susceptibility to both antibiotics and biocides/heavy metals. This was paralleled by increased abundances of integron-associated integrase and ISCR transposase genes. The results show that the heavy metal-based antifouling paint exerts a strong selection pressure on marine bacterial communities and can co-select for certain antibiotic-resistant bacteria, likely by favoring species and strains carrying genes that provide cross-resistance. Although this does not indicate an immediate risk for promotion of mobile antibiotic resistance, the clear increase of genes involved in mobilizing DNA provides a foundation for increased opportunities for gene transfer in such communities, which might also involve yet unknown resistance mechanisms.
Collapse
Affiliation(s)
- Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
| | - Chandan Pal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Carl Johan Svensson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Marcus Östman
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
376
|
Harvey PJ, Taylor MP, Handley HK, Foster S, Gillings MR, Asher AJ. Chemical, biological, and DNA markers for tracing slaughterhouse effluent. ENVIRONMENTAL RESEARCH 2017; 156:534-541. [PMID: 28432993 DOI: 10.1016/j.envres.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Agricultural practices, if not managed correctly, can have a negative impact on receiving environments via waste disposal and discharge. In this study, a chicken slaughter facility on the rural outskirts of Sydney, Australia, has been identified as a possible source of persistent effluent discharge into a peri-urban catchment. Questions surrounding the facility's environmental management practices go back more than four decades. Despite there having never been a definitive determination of the facility's impact on local stream water quality, the New South Wales Environment Protection Authority (NSW EPA) has implemented numerous pollution reduction requirements to manage noise and water pollution at the slaughter facility. However, assessment of compliance remains complicated by potential additional sources of pollution in the catchment. To unravel this long-standing conundrum related to water pollution we apply a forensic, multiple lines of evidence approach to delineate the origin of the likely pollution source(s). Water samples collected between 2014 and 2016 from irrigation pipes and a watercourse exiting the slaughter facility had elevated concentrations of ammonia (max: 63,000µg/L), nitrogen (max: 67,000µg/L) and phosphorus (max: 39,000µg/L), which were significantly higher than samples from adjacent streams that did not receive direct runoff from the facility. Arsenic, sometimes utilised in growth promoting compounds, was detected in water discharging from the facility up to ~4 times (max 3.84µg/L) local background values (<0.5µg/L), with inorganic As(∑V+III) being the dominant species. The spatial association of elevated water pollution to the facility could not unequivocally distinguish a source and consequently DNA analysis of a suspected pollution discharge event was undertaken. Analysis of catchment runoff from several local streams showed that only water sampled at the downstream boundary of the facility tested positive for chicken DNA, with traces of duck DNA being absent, which was a potential confounder given that wild ducks are present in the area. Further, PCR analysis showed that only the discharge water emanating from the slaughter facility tested positive for a generalized marker of anthropogenic pollution, the clinical class 1 integron-integrase gene. The environmental data collected over a three-year period demonstrates that the slaughter facility is indisputably the primary source of water-borne pollution in the catchment. Moreover, application of DNA and PCR for confirming pollution sources demonstrates its potential for application by regulators in fingerprinting pollution sources.
Collapse
Affiliation(s)
- P J Harvey
- Department of Earth and Planetary Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - M P Taylor
- Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - H K Handley
- Department of Earth and Planetary Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - S Foster
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Bruce, ACT 2601, Australia
| | - M R Gillings
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - A J Asher
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
377
|
Abstract
Antibiotic resistance is a global public health issue of growing proportions. All antibiotics are susceptible to resistance. The evidence is now clear that the environment is the single largest source and reservoir of resistance. Soil, aquatic, atmospheric, animal-associated, and built ecosystems are home to microbes that harbor antibiotic resistance elements and the means to mobilize them. The diversity and abundance of resistance in the environment is consistent with the ancient origins of antibiotics and a variety of studies support a long natural history of associated resistance. The implications are clear: Understanding the evolution of resistance in the environment, its diversity, and mechanisms is essential to the management of our existing and future antibiotic resources.
Collapse
Affiliation(s)
- Matthew D Surette
- M.G. DeGroote Institute for Infectious Disease Research and.,Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8N 4K1;
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research and.,Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8N 4K1;
| |
Collapse
|
378
|
Rehman MU, Zhang H, Huang S, Iqbal MK, Mehmood K, Luo H, Li J. Characteristics of Integrons and Associated Gene Cassettes in Antibiotic-Resistant Escherichia coli
Isolated from Free-Ranging Food Animals in China. J Food Sci 2017. [DOI: 10.1111/1750-3841.13795] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mujeeb Ur Rehman
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
| | - Hui Zhang
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
| | - Shucheng Huang
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
| | - Muhammad Kashif Iqbal
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
| | - Khalid Mehmood
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
- Univ. College of Veterinary & Animal Sciences; Islamia Univ. of Bahawalpur; 63100 Punjab Pakistan
| | - Houqiang Luo
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
| | - Jiakui Li
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
- Laboratory of Detection and Monitoring of Highland Animal Diseases; Tibet Agricultural and Animal Husbandry College; Linzhi 860000 Tibet P.R. China
| |
Collapse
|
379
|
Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K, Tong Y, Weber T, Sommer MOA, Lee SY. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun 2017; 8:15784. [PMID: 28589945 PMCID: PMC5467266 DOI: 10.1038/ncomms15784] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/27/2017] [Indexed: 12/25/2022] Open
Abstract
It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens, that appear to be closely related to actinobacterial ARGs known to confer resistance against clinically important antibiotics. Furthermore, we identify two potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial pathogens. Based on this bioinformatic evidence, we propose and experimentally test a 'carry-back' mechanism for the transfer, involving conjugative transfer of a carrier sequence from proteobacteria to actinobacteria, recombination of the carrier sequence with the actinobacterial ARG, followed by natural transformation of proteobacteria with the carrier-sandwiched ARG. Our results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism.
Collapse
Affiliation(s)
- Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Mostafa M. Hashim Ellabaan
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Christian Munck
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Morten O. A. Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
380
|
Ghaly TM, Chow L, Asher AJ, Waldron LS, Gillings MR. Evolution of class 1 integrons: Mobilization and dispersal via food-borne bacteria. PLoS One 2017; 12:e0179169. [PMID: 28586403 PMCID: PMC5460862 DOI: 10.1371/journal.pone.0179169] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/24/2017] [Indexed: 11/18/2022] Open
Abstract
Class 1 integrons have played a major role in the global dissemination of antibiotic resistance. Reconstructing the history of class 1 integrons might help us control further spread of antibiotic resistance by understanding how human activities influence microbial evolution. Here we describe a class 1 integron that represents an intermediate stage in the evolutionary history of clinical integrons. It was embedded in a series of nested transposons, carried on an IncP plasmid resident in Enterobacter, isolated from the surface of baby spinach leaves. Based on the structure of this integron, we present a modified hypothesis for integron assembly, where the ancestral clinical class 1 integron was captured from a betaproteobacterial chromosome to form a Tn402-like transposon. This transposon then inserted into a plasmid-borne Tn21-like ancestor while in an environmental setting, possibly a bacterium resident in the phyllosphere. We suggest that the qacE gene cassette, conferring resistance to biocides, together with the mercury resistance operon carried by Tn21, provided a selective advantage when this bacterium made its way into the human commensal flora via food. The integron characterized here was located in Tn6007, which along with Tn6008, forms part of the larger Tn6006 transposon, itself inserted into another transposable element to form the Tn21-like transposon, Tn6005. This element has previously been described from the human microbiota, but with a promoter mutation that upregulates integron cassette expression. This element we describe here is from an environmental bacterium, and supports the hypothesis that the ancestral class 1 integron migrated into anthropogenic settings via foodstuffs. Selection pressures brought about by early antimicrobial agents, including mercury, arsenic and disinfectants, promoted its initial fixation, the acquisition of promoter mutations, and subsequent dissemination into various species and pathogens.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail:
| | - Louise Chow
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Amy J. Asher
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Liette S. Waldron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Michael R. Gillings
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
381
|
Xu Y, Niu Y, Sun F, Yang Y, Luo W, Wang Z. The novel Pseudomonas putida plasmid p12969-2 harbors an In127-carrying multidrug-resistant region. Future Microbiol 2017; 12:573-584. [PMID: 28660784 DOI: 10.2217/fmb-2016-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: This study aims to characterize a multidrug-resistant (MDR) plasmid p12969-2 coexistent with the previously reported one p12969-DIM in clinical Pseudomonas putida. Materials & methods: The complete sequence of p12969-2 was determined using next-generation sequencing technology. Results: p12969-2 contains a 29.2 kb MDR region, which carries In127 harboring three resistance genes aadA2, qacED1 and sul1. The MDR region is derived from the connection of Tn5041D and Tn5045, which is facilitated by two copies of miniature inverted-repeat transposable element. Conclusion & future perspective: p12969-2 represents a novel lineage with the highest but limited nucleotide sequence similarity with the plasmid pGRT1 that does not carry any of the resistance genes. This is the first report of coexistence of two MDR plasmids in P. putida.
Collapse
Affiliation(s)
- Yang Xu
- Department of Gynaecology & Obstetrics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Yong Niu
- Criminal Investigation Bureau, Ministry of Public Security, Beijing 100741, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Ying Yang
- Department of Gynaecology & Obstetrics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhe Wang
- Department of Oncology & Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
382
|
Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa. Int J Antimicrob Agents 2017; 50:210-218. [PMID: 28554735 DOI: 10.1016/j.ijantimicag.2017.02.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/22/2017] [Indexed: 01/07/2023]
Abstract
Genetic determinants of antibiotic resistance (AR) have been extensively investigated. High-throughput sequencing allows for the assessment of the relationship between genotype and phenotype. A panel of 672 Pseudomonas aeruginosa strains was analysed, including representatives of globally disseminated multidrug-resistant and extensively drug-resistant clones; genomes and multiple antibiograms were available. This panel was annotated for AR gene presence and polymorphism, defining a resistome in which integrons were included. Integrons were present in >70 distinct cassettes, with In5 being the most prevalent. Some cassettes closely associated with clonal complexes, whereas others spread across the phylogenetic diversity, highlighting the importance of horizontal transfer. A resistome-wide association study (RWAS) was performed for clinically relevant antibiotics by correlating the variability in minimum inhibitory concentration (MIC) values with resistome data. Resistome annotation identified 147 loci associated with AR. These loci consisted mainly of acquired genomic elements and intrinsic genes. The RWAS allowed for correct identification of resistance mechanisms for meropenem, amikacin, levofloxacin and cefepime, and added 46 novel mutations. Among these, 29 were variants of the oprD gene associated with variation in meropenem MIC. Using genomic and MIC data, phenotypic AR was successfully correlated with molecular determinants at the whole-genome sequence level.
Collapse
|
383
|
Poole K. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Trends Microbiol 2017; 25:820-832. [PMID: 28526548 DOI: 10.1016/j.tim.2017.04.010] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
384
|
Paraoan CEM, Rivera WL, Vital PG. Detection of Class I and II integrons for the assessment of antibiotic and multidrug resistance among Escherichia coli isolates from agricultural irrigation waters in Bulacan, Philippines. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:306-313. [PMID: 28277085 DOI: 10.1080/03601234.2017.1281647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Contaminated irrigation water may greatly affect not only the quality of produce but also the people exposed to it. In this study, agricultural irrigation waters in Bulacan, Philippines were assessed and found to be contaminated with Escherichia coli (E. coli) ranging from 0.58 to 4.51 log10 CFU/mL. A total of 79 isolates of E. coli were confirmed through polymerase chain reaction (PCR) amplifying the uidA gene and were tested for phenotypic resistance using 10 antimicrobials through the Kirby-Bauer disc diffusion method. Forty-six isolates (58.22%) were noted to be multidrug resistant (MDR) with high resistance rate to cephalothin, tetracycline, streptomycin, ampicillin, trimethoprim, nalidixic acid, and chloramphenicol. Moreover, this study also examined the prevalence of Class I and II integrons accounting to 67.39% and 17.39%, respectively, of the MDR E. coli strains using multiplex PCR. The results imply that the agricultural water used in Bulacan is contaminated with the fecal material of man or other animals present in the area, and the presence of MDR bacteria, which pose a potential threat to individuals in these areas, is alarming. In addition, detection of integrons could be a good marker for the identification of MDR isolates. Lastly, this study could develop strategies for the proper management of farming sites leading to the detection of food-borne pathogens and prevention of infectious diseases.
Collapse
Affiliation(s)
- Cielo Emar M Paraoan
- a Institute of Biology, College of Science, University of the Philippines , Diliman, Quezon City , Philippines
| | - Windell L Rivera
- a Institute of Biology, College of Science, University of the Philippines , Diliman, Quezon City , Philippines
- b Natural Sciences Research Institute, University of the Philippines , Diliman, Quezon City , Philippines
| | - Pierangeli G Vital
- a Institute of Biology, College of Science, University of the Philippines , Diliman, Quezon City , Philippines
- b Natural Sciences Research Institute, University of the Philippines , Diliman, Quezon City , Philippines
| |
Collapse
|
385
|
Oliveira-Pinto C, Diamantino C, Oliveira PL, Reis MP, Costa PS, Paiva MC, Nardi RMD, Magalhães PP, Chartone-Souza E, Nascimento AMA. Occurrence and characterization of class 1 integrons in Escherichia coli from healthy individuals and those with urinary infection. J Med Microbiol 2017; 66:577-583. [DOI: 10.1099/jmm.0.000468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Clarisse Oliveira-Pinto
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Cristiane Diamantino
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia L Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia S Costa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Magna C Paiva
- Campus Dona Lindu, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - Regina M. D Nardi
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Paula P Magalhães
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Edmar Chartone-Souza
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Andréa M. A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
386
|
Integron-Associated DfrB4, a Previously Uncharacterized Member of the Trimethoprim-Resistant Dihydrofolate Reductase B Family, Is a Clinically Identified Emergent Source of Antibiotic Resistance. Antimicrob Agents Chemother 2017; 61:AAC.02665-16. [PMID: 28242670 DOI: 10.1128/aac.02665-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/11/2017] [Indexed: 01/01/2023] Open
Abstract
Whole-genome sequencing of trimethoprim-resistant Escherichia coli clinical isolates identified a member of the trimethoprim-resistant type II dihydrofolate reductase gene family (dfrB). The dfrB4 gene was located within a class I integron flanked by multiple resistance genes. This arrangement was previously reported in a 130.6-kb multiresistance plasmid. The DfrB4 protein conferred a >2,000-fold increased trimethoprim resistance on overexpression in E. coli Our results are consistent with the finding that dfrB4 contributes to clinical trimethoprim resistance.
Collapse
|
387
|
Petit F, Clermont O, Delannoy S, Servais P, Gourmelon M, Fach P, Oberlé K, Fournier M, Denamur E, Berthe T. Change in the Structure of Escherichia coli Population and the Pattern of Virulence Genes along a Rural Aquatic Continuum. Front Microbiol 2017; 8:609. [PMID: 28458656 PMCID: PMC5394106 DOI: 10.3389/fmicb.2017.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the diversity of the Escherichia coli population, focusing on the occurrence of pathogenic E. coli, in surface water draining a rural catchment. Two sampling campaigns were carried out in similar hydrological conditions (wet period, low flow) along a river continuum, characterized by two opposite density gradients of animals (cattle and wild animals) and human populations. While the abundance of E. coli slightly increased along the river continuum, the abundance of both human and ruminant-associated Bacteroidales markers, as well as the number of E. coli multi-resistant to antibiotics, evidenced a fecal contamination originating from animals at upstream rural sites, and from humans at downstream urban sites. A strong spatial modification of the structure of the E. coli population was observed. At the upstream site close to a forest, a higher abundance of the B2 phylogroup and Escherichia clade strains were observed. At the pasture upstream site, a greater proportion of both E and B1 phylogroups was detected, therefore suggesting a fecal contamination of mainly bovine origin. Conversely, in downstream urban sites, A, D, and F phylogroups were more abundant. To assess the occurrence of intestinal pathogenic strains, virulence factors [afaD, stx1, stx2, eltB (LT), estA (ST), ipaH, bfpA, eae, aaiC and aatA] were screened among 651 E. coli isolates. Intestinal pathogenic strains STEC O174:H21 (stx2) and EHEC O26:H11 (eae, stx1) were isolated in water and sediments close to the pasture site. In contrast, in the downstream urban site aEPEC/EAEC and DAEC of human origin, as well as extra-intestinal pathogenic E. coli belonging to clonal group A of D phylogroup, were sampled. Even if the estimated input of STEC (Shiga toxin-producing E. coli) - released in water at the upstream pasture site - at the downstream site was low, we show that STEC could persist in sediment. These results show that, the run-off of small cattle farms contributed, as much as the wastewater effluent, in the dissemination of pathogenic E. coli in both water and sediments, even if the microbiological quality of the water was good or to average quality according to the French water index.
Collapse
Affiliation(s)
- Fabienne Petit
- Normandie Université, UniRouen, UniCaen, CNRS UMR M2CRouen, France.,Sorbonne Universités, UPMC, CNRS, EPHE, UMR 7619 METISParis, France
| | - Olivier Clermont
- INSERM UMR1137, IAME, Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Sabine Delannoy
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Platform, Maisons-AlfortFrance
| | - Pierre Servais
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la PlaineBruxelles, Belgium
| | - Michèle Gourmelon
- Institut Français de Recherche pour l'Exploitation de la Mer, RBE-SG2M-LSEMPlouzané, France
| | - Patrick Fach
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Platform, Maisons-AlfortFrance
| | - Kenny Oberlé
- Normandie Université, UniRouen, UniCaen, CNRS UMR M2CRouen, France
| | | | - Erick Denamur
- INSERM UMR1137, IAME, Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Thierry Berthe
- Normandie Université, UniRouen, UniCaen, CNRS UMR M2CRouen, France
| |
Collapse
|
388
|
Jiang X, Yin Z, Yin X, Fang H, Sun Q, Tong Y, Xu Y, Zhang D, Feng J, Chen W, Song Y, Wang J, Chen S, Zhou D. Sequencing of blaIMP-Carrying IncN2 Plasmids, and Comparative Genomics of IncN2 Plasmids Harboring Class 1 Integrons. Front Cell Infect Microbiol 2017; 7:102. [PMID: 28424761 PMCID: PMC5371602 DOI: 10.3389/fcimb.2017.00102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
This work presents the complete nucleotide sequences of p0801-IMP from Klebsiella pneumoniae, p7121-IMP from K. oxytoca, and p17285-IMP from Citrobacter freundii, which are recovered from three different cases of nosocomial infection. These three plasmids represent the first fully sequenced blaIMP-carrying IncN2 plasmids. Further comparative genomics analysis of all the five integron-carrying IncN2 plasmids p0801-IMP, p7121-IMP, p17285-IMP, pJIE137, and p34983-59.134kb indicates that they possess conserved IncN2 backbones with limited genetic variations with respect to gene content and organization. Four class 1 integrons (blaIMP-1-carrying In1223 in p0801-IMP/p7121-IMP, blaIMP-8-carrying In655 in p17285-IMP, In27 in pJIE137, and In1130 in p34983-59.134kb), two insertion sequence-based transposition units (ISEcp1-orfRA1-14 in p17285-IMP, and ISEcp1-blaCTX-M-62-Δorf477-orfRA1-14 in pJIE137), and a novel Tn1696-related transposon Tn6325 carrying In1130 in p34983-59.134kb are indentified in the plasmid accessory regions. In1223 and In655 represent ancestral Tn402-associated integrons, while In27 and In1130 belong to complex class 1 integrons. The relatively small IncN2 backbones are able to integrate different mobile elements which carry various resistance markers, promoting the accumulation and spread of antimicrobial resistance genes among enterobacterial species.
Collapse
Affiliation(s)
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Xiuyun Yin
- Department of Clinical Laboratory, The 307th Hospital of the People's Liberation ArmyBeijing, China
| | - Haihong Fang
- Anhui Medical UniversityHefei, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Qiang Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical UniversityHefei, China
| | - Defu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China.,College of Food Science and Project Engineering, Bohai UniversityJinzhou, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Yajun Song
- Anhui Medical UniversityHefei, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Shuiping Chen
- Department of Clinical Laboratory, The 307th Hospital of the People's Liberation ArmyBeijing, China
| | - Dongsheng Zhou
- Anhui Medical UniversityHefei, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| |
Collapse
|
389
|
Zhi XY, Jiang Z, Yang LL, Huang Y. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach. Mol Phylogenet Evol 2017; 107:246-255. [DOI: 10.1016/j.ympev.2016.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
|
390
|
Dos Santos DFK, Istvan P, Quirino BF, Kruger RH. Functional Metagenomics as a Tool for Identification of New Antibiotic Resistance Genes from Natural Environments. MICROBIAL ECOLOGY 2017; 73:479-491. [PMID: 27709246 DOI: 10.1007/s00248-016-0866-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/19/2016] [Indexed: 05/26/2023]
Abstract
Antibiotic resistance has become a major concern for human and animal health, as therapeutic alternatives to treat multidrug-resistant microorganisms are rapidly dwindling. The problem is compounded by low investment in antibiotic research and lack of new effective antimicrobial drugs on the market. Exploring environmental antibiotic resistance genes (ARGs) will help us to better understand bacterial resistance mechanisms, which may be the key to identifying new drug targets. Because most environment-associated microorganisms are not yet cultivable, culture-independent techniques are essential to determine which organisms are present in a given environmental sample and allow the assessment and utilization of the genetic wealth they represent. Metagenomics represents a powerful tool to achieve these goals using sequence-based and functional-based approaches. Functional metagenomic approaches are particularly well suited to the identification new ARGs from natural environments because, unlike sequence-based approaches, they do not require previous knowledge of these genes. This review discusses functional metagenomics-based ARG research and describes new possibilities for surveying the resistome in environmental samples.
Collapse
Affiliation(s)
| | - Paula Istvan
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Betania Ferraz Quirino
- Embrapa-Agroenergia, Brasília, DF, Brazil
- Universidade Católica de Brasília, Genomic Sciences and Biotechnology Program, Brasília, DF, Brazil
| | | |
Collapse
|
391
|
Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol 2017; 2:16270. [DOI: 10.1038/nmicrobiol.2016.270] [Citation(s) in RCA: 608] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022]
|
392
|
Abraham S, O'Dea M, Page SW, Trott DJ. Current and future antimicrobial resistance issues for the Australian pig industry. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antimicrobial use and antimicrobial resistance (AMR) in intensive pig production and its potential impacts to human and animal health are very much under the spotlight, both internationally, and within Australia. While the majority of AMR of medical importance is associated with the exclusive use of antimicrobials in humans, resistance in zoonotic foodborne pathogens such as Salmonella and Campylobacter, and livestock commensal bacteria such as Escherichia coli and Enterococcus spp., is under increased scrutiny. This is primarily due to the current reliance on many of the same drug classes as used in human medicine for treatment and control of bacterial diseases of livestock. Furthermore, the development of multidrug resistance in pathogens such as enterotoxigenic E. coli may drive off-label use of critically important drug classes such as 3rd-generation cephalosporins. This could lead to the emergence and amplification of resistance genes of potential public health significance in both pathogens and commensal bacteria. Livestock-associated and community-associated methicillin-resistant Staphylococcus aureus has also recently been detected in Australian pigs as a result of human-to-animal transmission and are a potential public health issue for in-contact piggery workers. Australia is in a unique position compared with many of its international trading partners due to its isolation, ban on importation of livestock and conservative approach to antimicrobial registration, including reservation of the fluoroquinolone class for use in humans and companion animals only. Cross-sectional AMR surveys of pathogens and commensals in healthy pigs have identified only low frequency of resistance to critically important drug classes. Nevertheless, resistance to critically important antimicrobials has emerged and careful antimicrobial stewardship is required to ensure that these low levels do not increase. In this report, we review AMR of significance to the Australian pig industry and identify potential prevention and control measures.
Collapse
|
393
|
Zhou X, Qiao M, Wang FH, Zhu YG. Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:701-710. [PMID: 27752947 DOI: 10.1007/s11356-016-7854-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/05/2016] [Indexed: 05/23/2023]
Abstract
The application of manure-based commercial organic fertilizers (COFs) is becoming increasingly extensive because of the expanding market for organic food. The present study examined the effects of repeated applications of chicken or swine manure-based COFs on the fate of antibiotics and antibiotic resistance genes (ARGs) in soil by conducting a soil microcosm experiment. Application of COFs significantly increased antibiotics residues, as well as the relative abundance of ARGs and the integrase gene of class 1 integrons (intΙ1) in soil. Two months after each application, antibiotics and ARGs dissipated in amended soils, but they still remained at an elevated level, compared with the control. And, the accumulation of antibiotics was found due to repeated COF applications. However, the relative abundance of ARGs in most COF-amended soils did not differ significantly between the first application and the repeated application. The results imply that 2 months are not sufficient for ARGs to approach background levels, and that animal manure must be treated more effectively prior to using it in agriculture ecosystems.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Feng-Hua Wang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
394
|
Goudarzi M, Heidary M, Azad M, Fazeli M, Goudarzi H. Evaluation of antimicrobial susceptibility and integron carriage in Helicobacter pylori isolates from patients. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2016; 9:S47-S52. [PMID: 28224028 PMCID: PMC5310800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
AIM The purpose of this study was to determine the antibiotic susceptibility pattern and distribution of integron in H. pylori isolates collected from patients referred to private health care centers in Tehran, Iran. BACKGROUND Antibiotic resistance is the main reason for failure of Helicobacter pylori therapy. Integrons as genetic reservoirs play main roles in the dissemination of antimicrobial resistance gene. METHODS During a 12-month cross-sectional study period, 65 H. pylori isolates were recovered from 124 biopsy specimens. Isolates were subjected to susceptibility testing using by Epsilometer test according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guideline. PCR was used to detect different types of integrons. RESULTS Antimicrobial susceptibility testing revealed that 73.8% of isolates were resistant to metronidazole, 43.1% to clarithromycin, 29.2% to tetracycline, 27.7% to amoxicillin, 23.1% to rifampicin and 13.4% to levofloxacin. Frequency of multidrug resistance among H. pylori isolates was 26.1%. The most predominant resistance profiles among our isolates were included resistance to clarithromycin and metronidazole (20%). Class 1 and 2 integrons were detected in 8 (12.3%) and 15 (23.1%) of the isolates, respectively. CONCLUSIONS The high prevalence of multidrug resistance and frequency of class 2 integron in this survey can be a warning for clinicians. Continuous surveillance is necessary for the development of new treatment protocols to prevent the treatment failures and also further spread of resistant isolates.
Collapse
Affiliation(s)
- Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Medical Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maryam Fazeli
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
395
|
Bengtsson-Palme J, Hammarén R, Pal C, Östman M, Björlenius B, Flach CF, Fick J, Kristiansson E, Tysklind M, Larsson DGJ. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:697-712. [PMID: 27542633 DOI: 10.1016/j.scitotenv.2016.06.228] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 05/20/2023]
Abstract
Sewage treatment plants (STPs) have repeatedly been suggested as "hotspots" for the emergence and dissemination of antibiotic-resistant bacteria. A critical question still unanswered is if selection pressures within STPs, caused by residual antibiotics or other co-selective agents, are sufficient to specifically promote resistance. To address this, we employed shotgun metagenomic sequencing of samples from different steps of the treatment process in three Swedish STPs. In parallel, concentrations of selected antibiotics, biocides and metals were analyzed. We found that concentrations of tetracycline and ciprofloxacin in the influent were above predicted concentrations for resistance selection, however, there was no consistent enrichment of resistance genes to any particular class of antibiotics in the STPs, neither for biocide and metal resistance genes. The most substantial change of the bacterial communities compared to human feces occurred already in the sewage pipes, manifested by a strong shift from obligate to facultative anaerobes. Through the treatment process, resistance genes against antibiotics, biocides and metals were not reduced to the same extent as fecal bacteria. The OXA-48 gene was consistently enriched in surplus and digested sludge. We find this worrying as OXA-48, still rare in Swedish clinical isolates, provides resistance to carbapenems, one of our most critically important classes of antibiotics. Taken together, metagenomics analyses did not provide clear support for specific antibiotic resistance selection. However, stronger selective forces affecting gross taxonomic composition, and with that resistance gene abundances, limit interpretability. Comprehensive analyses of resistant/non-resistant strains within relevant species are therefore warranted.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Rickard Hammarén
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
| | - Chandan Pal
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Marcus Östman
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Berndt Björlenius
- Division of Industrial Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
396
|
Stark JS, Corbett PA, Dunshea G, Johnstone G, King C, Mondon JA, Power ML, Samuel A, Snape I, Riddle M. The environmental impact of sewage and wastewater outfalls in Antarctica: An example from Davis station, East Antarctica. WATER RESEARCH 2016; 105:602-614. [PMID: 27693972 DOI: 10.1016/j.watres.2016.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 05/12/2023]
Abstract
We present a comprehensive scientific assessment of the environmental impacts of an Antarctic wastewater ocean outfall, at Davis station in East Antarctica. We assessed the effectiveness of current wastewater treatment and disposal requirements under the Protocol on Environmental Protection to the Antarctic Treaty. Macerated wastewater has been discharged from an outfall at Davis since the failure of the secondary treatment plant in 2005. Water, sediment and wildlife were tested for presence of human enteric bacteria and antibiotic resistance mechanisms. Epibiotic and sediment macrofaunal communities were tested for differences between sites near the outfall and controls. Local fish were examined for evidence of histopathological abnormalities. Sediments, fish and gastropods were tested for uptake of sewage as measured by stable isotopes of N and C. Escherichia coli carrying antibiotic resistance determinants were found in water, sediments and wildlife (the filter feeding bivalve Laternula eliptica). Fish (Trematomus bernacchii) within close proximity to the outfall had significantly more severe and greater occurrences of histopathological abnormalities than at controls, consistent with exposure to sewage. There was significant enrichment of 15N in T. bernacchii and the predatory gastropod Neobuccinum eatoni around the outfall, providing evidence of uptake of sewage. There were significant differences between epibiotic and sediment macrofaunal communities at control and outfall sites (<1.5 km), when sites were separated into groups of similar habitat types. Benthic community composition was also strongly related to habitat and environmental drivers such as sea ice. The combined evidence indicated that the discharge of wastewater from the Davis outfall is causing environmental impacts. These findings suggest that conditions in Antarctic coastal locations, such as Davis, are unlikely to be conducive to initial dilution and rapid dispersal of wastewater as required under the Protocol on Environmental Protection to the Antarctic Treaty. Current minimum requirements for wastewater treatment and disposal in Antarctica are insufficient to ameliorate these risks and are likely to lead to accumulation of contaminants and introduction of non-native microbes and associated genetic elements. This new understanding suggests that modernised approaches to the treatment and disposal of wastewater are required in Antarctica. The most effective solution is advanced levels of wastewater treatment, which are now possible, feasible and a high priority for installation. As a direct outcome of the study, a new advanced treatment system is being installed at Davis, effectively avoiding environmental risks.
Collapse
Affiliation(s)
- Jonathan S Stark
- Antarctic Conservation and Management Theme, Australian Antarctic Division, Channel Hwy, Kingston, 7050, TAS, Australia.
| | - Patricia A Corbett
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Warrnambool Campus, P.O. Box 423, Warrnambool, VIC 3280, Australia
| | - Glenn Dunshea
- Ecological Marine Services Pty. Ltd., 2/3 Thomsen St, Millbank, QLD 4670, Australia
| | - Glenn Johnstone
- Antarctic Conservation and Management Theme, Australian Antarctic Division, Channel Hwy, Kingston, 7050, TAS, Australia
| | - Catherine King
- Antarctic Conservation and Management Theme, Australian Antarctic Division, Channel Hwy, Kingston, 7050, TAS, Australia
| | - Julie A Mondon
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Warrnambool Campus, P.O. Box 423, Warrnambool, VIC 3280, Australia
| | - Michelle L Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Angelingifta Samuel
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT 2601, Australia
| | - Ian Snape
- Antarctic Conservation and Management Theme, Australian Antarctic Division, Channel Hwy, Kingston, 7050, TAS, Australia
| | - Martin Riddle
- Antarctic Conservation and Management Theme, Australian Antarctic Division, Channel Hwy, Kingston, 7050, TAS, Australia
| |
Collapse
|
397
|
Suhartono S, Savin M. Conjugative transmission of antibiotic-resistance from stream water Escherichia coli as related to number of sulfamethoxazole but not class 1 and 2 integrase genes. Mob Genet Elements 2016; 6:e1256851. [PMID: 28090382 DOI: 10.1080/2159256x.2016.1256851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/22/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022] Open
Abstract
A conjugation assay was used to determine the effects of phenotypic resistance to one to up to 5 antibiotics, sampling site of origin, presence or absence of class 1 and/or class 2 integrase (intI) genes (intI1 and intI2), and the number of sulfamethoxazole resistance (sul) and trimethoprim resistance (dfr) genes on the transfer frequencies of plasmids from environmental, antibiotic-resistant Escherichia coli. Of 51 sulfamethoxazole and trimethoprim-resistant E. coli isolates conferring at least one mob gene (mobP51, mobF11, mobF12, mobQ11, mobQ12 , or mobQu ), 38 produced transconjugants with an overall mean frequency of 1.60 × 10-3 transconjugants/ donors (T/D) or 5.89 × 10-3 transconjugants/recipients (T/R). The presence or absence of intI1 and intI2 and the presence or absence of different targeted dfr genes (dfrA1, dfrA8, dfrA12, dfrA14, dfrA17, and/or dfrB3) were not statistically related to plasmid transfer frequencies as determined by ANOVA (P ≥ 0.05). However, E. coli isolates recovered 2 km downstream of wastewater treatment plant effluent input, and those possessing resistance to 3 antibiotics had significantly greater plasmid transfer frequency than their counterparts when calculated as T/D (ANOVA followed by Fisher's least significant difference means comparison, P < 0.05). Greater plasmid transfer frequency calculated as T/D was also measured for E. coli possessing 3 compared to a single sul gene. The in-vitro frequency suggests that horizontal gene transfer of conjugative mediated-antibiotic (sul) resistance genes may be significant among resistant, stream bacteria.
Collapse
Affiliation(s)
- Suhartono Suhartono
- Cell and Molecular Biology, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA; Department of Biology, Faculty of Sciences, Syiah Kuala University, Banda Aceh, Indonesia
| | - Mary Savin
- Cell and Molecular Biology, Department of Crop, Soil, and Environmental Sciences, University of Arkansas , Fayetteville, AR, USA
| |
Collapse
|
398
|
Patel S. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance. INFECTION GENETICS AND EVOLUTION 2016; 45:151-164. [DOI: 10.1016/j.meegid.2016.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
|
399
|
Farkas A, Crăciunaş C, Chiriac C, Szekeres E, Coman C, Butiuc-Keul A. Exploring the Role of Coliform Bacteria in Class 1 Integron Carriage and Biofilm Formation During Drinking Water Treatment. MICROBIAL ECOLOGY 2016; 72:773-782. [PMID: 27079455 DOI: 10.1007/s00248-016-0758-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
This study investigates the role of coliforms in the carriage of class 1 integron and biocide resistance genes in a drinking water treatment plant and explores the relationship between the carriage of such genes and the biofouling abilities of the strain. The high incidence of class 1 integron and biocide resistance genes (33.3 % of the isolates) highlights the inherent risk of genetic contamination posed by coliform populations during drinking water treatment. The association between the presence of intI1 gene and qac gene cassettes, especially qacH, was greater in biofilm cells. In coliforms recovered from biofilms, a higher frequency of class 1 integron elements and higher diversity of genetic patterns occurred, compared to planktonic cells. The coliform isolates under the study proved to mostly carry non-classical class 1 integrons lacking the typical qacEΔ1/sul1 genes or a complete tni module, but bearing the qacH gene. No link was found between the carriage of integron genes and the biofouling degree of the strain, neither in aerobic or in anaerobic conditions. Coliform bacteria isolated from established biofilms rather adhere in oxygen depleted environments, while the colonization ability of planktonic cells is not significantly affected by oxygen availability.
Collapse
Affiliation(s)
- Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania.
| | - Cornelia Crăciunaş
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
| | - Cecilia Chiriac
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Cristian Coman
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
| |
Collapse
|
400
|
Koczura R, Mokracka J, Taraszewska A, Łopacinska N. Abundance of Class 1 Integron-Integrase and Sulfonamide Resistance Genes in River Water and Sediment Is Affected by Anthropogenic Pressure and Environmental Factors. MICROBIAL ECOLOGY 2016; 72:909-916. [PMID: 27599709 PMCID: PMC5080314 DOI: 10.1007/s00248-016-0843-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/17/2016] [Indexed: 05/22/2023]
Abstract
In this study, we determined the presence of class 1 integron-integrase gene in culturable heterotrophic bacteria isolated from river water and sediment sampled upstream and downstream of a wastewater treatment plant effluent discharge. Moreover, we quantified intI1 and sulfonamide resistance genes (sul1 and sul2) in the water and sediment using qPCR. There was no correlation between the results from water and sediment samples, which suggests integron-containing bacteria are differentially retained in these two environmental compartments. The discharge of treated wastewater significantly increased the frequency of intI1 among culturable bacteria and the gene copy number in river water, and increased the number of sul1 genes in the sediment. We also observed seasonal differences in the frequency of the class 1 integron-integrase gene among culturable heterotrophs as well as intI1 copy number in water, but not in sediment. The results suggest that the abundance of class 1 integrons in aquatic habitat depends on anthropogenic pressure and environmental factors.
Collapse
Affiliation(s)
- Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland.
| | - Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Agata Taraszewska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Natalia Łopacinska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| |
Collapse
|