351
|
Hua L, Yong C, Zhanquan Z, Boqiang L, Guozheng Q, Shiping T. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. FOOD QUALITY AND SAFETY 2018. [DOI: 10.1093/fqsafe/fyy016] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Li Hua
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
| | - Chen Yong
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
| | - Zhang Zhanquan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Li Boqiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Qin Guozheng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Tian Shiping
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| |
Collapse
|
352
|
Lopes A, Ferreira Filho E, Moreira L. An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol 2018; 125:632-645. [DOI: 10.1111/jam.13923] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/20/2018] [Accepted: 05/14/2018] [Indexed: 12/01/2022]
Affiliation(s)
- A.M. Lopes
- Laboratory of Enzymology; Department of Cellular Biology; University of Brasília; Brasilia DF Brazil
| | - E.X. Ferreira Filho
- Laboratory of Enzymology; Department of Cellular Biology; University of Brasília; Brasilia DF Brazil
| | - L.R.S. Moreira
- Laboratory of Enzymology; Department of Cellular Biology; University of Brasília; Brasilia DF Brazil
| |
Collapse
|
353
|
Wu Y, Xu L, Yin Z, Dai Q, Gao X, Feng H, Voegele RT, Huang L. Two members of the velvet family, VmVeA and VmVelB, affect conidiation, virulence and pectinase expression in Valsa mali. MOLECULAR PLANT PATHOLOGY 2018; 19:1639-1651. [PMID: 29127722 PMCID: PMC6638101 DOI: 10.1111/mpp.12645] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/28/2017] [Accepted: 11/09/2017] [Indexed: 05/26/2023]
Abstract
Velvet protein family members are important fungal-specific regulators which are involved in conidial development, secondary metabolism and virulence. To gain a broader insight into the physiological functions of the velvet protein family of Valsa mali, which causes a highly destructive canker disease on apple, we conducted a functional analysis of two velvet protein family members (VmVeA and VmVelB) via a gene replacement strategy. Deletion mutants of VmVeA and VmVelB showed increased melanin production, conidiation and sensitivity to abiotic stresses, but exhibited reduced virulence on detached apple leaves and twigs. Further studies demonstrated that the regulation of conidiation by VmVeA and VmVelB was positively correlated with the melanin synthesis transcription factor VmCmr1. More importantly, transcript levels of pectinase genes were shown to be decreased in deletion mutants compared with those of the wild-type during infection. However, the expression of other cell wall-degrading enzyme genes, including cellulase, hemi-cellulase and ligninase genes, was not affected in the deletion mutants. Furthermore, the determination of pectinase activity and immunogold labelling of pectin demonstrated that the capacity for pectin degradation was attenuated as a result of deletions of VmVeA and VmVelB. Finally, the interaction of VmVeA with VmVelB was identified through co-immunoprecipitation assays. VmVeA and VmVelB play critical roles in conidiation and virulence, probably via the regulation of the melanin synthesis transcription factor VmCmr1 and their effect on pectinase gene expression in V. mali, respectively.
Collapse
Affiliation(s)
- Yuxing Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Zhiyuan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Qingqing Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Xiaoning Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Ralf T. Voegele
- Institut für Phytomedizin, Universität Hohenheim70599 StuttgartGermany
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| |
Collapse
|
354
|
Shirsath LP, Patil SP, Patil UK. Incidence of leaf spot disease on cotton caused by Curvularia verruculosa and role of its hydrolytic enzymes in pathogenesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:711-714. [PMID: 30042625 PMCID: PMC6041237 DOI: 10.1007/s12298-018-0557-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 05/29/2023]
Abstract
The finding described in this study is the first report of leaf spot disease of cotton caused by Curvularia verruculosa surveyed in the state of Maharashtra (India). The isolated phytopathogenic fungal strain was identified using morphological characteristics and molecular identification of ITS gene sequence (MF784436) and D1D2 region of LSU gene (KY978073). The ability of fungal strain to secrete hydrolytic enzymes viz., pectinase, xylanase, protease, cellulase and lipase was detected. The secretion profile of hydrolytic enzymes by C. verruculosa was also examined in planta and in vitro. The secretion of cellulase, xylanase and protease was found to be inducible on cotton-stalk powder containing media; while secretion of pectinase and lipase was constitutive in glucose containing medium. The hydrolytic enzymes secretion during etiological progression of disease was detected on cotton leaves at regular interval of 24 h up to 10 days. A significant correlation (P < 0.05) was observed between hydrolytic enzymes secretion and disease severity index. The increased level of hydrolytic enzymes in infected plant sample indicates their role in disease progression. The newly documented fungal phytopathogen Curvularia verruculosa was deposited at National Fungal Culture Collection of India, Pune with accession number of NFCCI-4119.
Collapse
Affiliation(s)
- Leena P. Shirsath
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, District - Dhule, Maharashtra 425405 India
| | - Sandip P. Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, District - Dhule, Maharashtra 425405 India
| | - Ulhas K. Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, District - Dhule, Maharashtra 425405 India
| |
Collapse
|
355
|
Lorrain C, Marchal C, Hacquard S, Delaruelle C, Pétrowski J, Petre B, Hecker A, Frey P, Duplessis S. The Rust Fungus Melampsora larici-populina Expresses a Conserved Genetic Program and Distinct Sets of Secreted Protein Genes During Infection of Its Two Host Plants, Larch and Poplar. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:695-706. [PMID: 29336199 DOI: 10.1094/mpmi-12-17-0319-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanisms required for broad-spectrum or specific host colonization of plant parasites are poorly understood. As a perfect illustration, heteroecious rust fungi require two alternate host plants to complete their life cycles. Melampsora larici-populina infects two taxonomically unrelated plants, larch, on which sexual reproduction is achieved, and poplar, on which clonal multiplication occurs, leading to severe epidemics in plantations. We applied deep RNA sequencing to three key developmental stages of M. larici-populina infection on larch: basidia, pycnia, and aecia, and we performed comparative transcriptomics of infection on poplar and larch hosts, using available expression data. Secreted protein was the only significantly overrepresented category among differentially expressed M. larici-populina genes between the basidial, the pycnial, and the aecial stages, highlighting their probable involvement in the infection process. Comparison of fungal transcriptomes in larch and poplar revealed a majority of rust genes were commonly expressed on the two hosts and a fraction exhibited host-specific expression. More particularly, gene families encoding small secreted proteins presented striking expression profiles that highlight probable candidate effectors specialized on each host. Our results bring valuable new information about the biological cycle of rust fungi and identify genes that may contribute to host specificity.
Collapse
Affiliation(s)
- Cécile Lorrain
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Clémence Marchal
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Stéphane Hacquard
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Christine Delaruelle
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Jérémy Pétrowski
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Benjamin Petre
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
- 2 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, U.K
| | - Arnaud Hecker
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Pascal Frey
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Sébastien Duplessis
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| |
Collapse
|
356
|
Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T. The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal 2018; 11:11/536/eaao3070. [PMID: 29945884 DOI: 10.1126/scisignal.aao3070] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell walls surround all plant cells, and their composition and structure are modified in a tightly controlled, adaptive manner to meet sometimes opposing functional requirements during growth and development. The plant cell wall integrity (CWI) maintenance mechanism controls these functional modifications, as well as responses to cell wall damage (CWD). We investigated how the CWI system mediates responses to CWD in Arabidopsis thaliana CWD induced by cell wall-degrading enzymes or an inhibitor of cellulose biosynthesis elicited similar, turgor-sensitive stress responses. Phenotypic clustering with 27 genotypes identified a core group of receptor-like kinases (RLKs) and ion channels required for the activation of CWD responses. A genetic analysis showed that the RLK FEI2 and the plasma membrane-localized mechanosensitive Ca2+ channel MCA1 functioned downstream of the RLK THE1 in CWD perception. In contrast, pattern-triggered immunity (PTI) signaling components, including the receptors for plant elicitor peptides (AtPeps) PEPR1 and PEPR2, repressed responses to CWD. CWD induced the expression of PROPEP1 and PROPEP3, which encode the precursors of AtPep1 and AtPep3, and the release of PROPEP3 into the growth medium. Application of AtPep1 and AtPep3 repressed CWD-induced phytohormone accumulation in a concentration-dependent manner. These results suggest that AtPep-mediated signaling suppresses CWD-induced defense responses controlled by the CWI mechanism. This suppression was alleviated when PTI signaling downstream of PEPR1 and PEPR2 was impaired. Defense responses controlled by the CWI maintenance mechanism might thus compensate to some extent for the loss of PTI signaling elements.
Collapse
Affiliation(s)
- Timo Engelsdorf
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Nora Gigli-Bisceglia
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Manikandan Veerabagu
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Joseph F McKenna
- Department of Biology, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Lauri Vaahtera
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Frauke Augstein
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| |
Collapse
|
357
|
Marton K, Flajšman M, Radišek S, Košmelj K, Jakše J, Javornik B, Berne S. Comprehensive analysis of Verticillium nonalfalfae in silico secretome uncovers putative effector proteins expressed during hop invasion. PLoS One 2018; 13:e0198971. [PMID: 29894496 PMCID: PMC5997321 DOI: 10.1371/journal.pone.0198971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
The vascular plant pathogen Verticillium nonalfalfae causes Verticillium wilt in several important crops. VnaSSP4.2 was recently discovered as a V. nonalfalfae virulence effector protein in the xylem sap of infected hop. Here, we expanded our search for candidate secreted effector proteins (CSEPs) in the V. nonalfalfae predicted secretome using a bioinformatic pipeline built on V. nonalfalfae genome data, RNA-Seq and proteomic studies of the interaction with hop. The secretome, rich in carbohydrate active enzymes, proteases, redox proteins and proteins involved in secondary metabolism, cellular processing and signaling, includes 263 CSEPs. Several homologs of known fungal effectors (LysM, NLPs, Hce2, Cerato-platanins, Cyanovirin-N lectins, hydrophobins and CFEM domain containing proteins) and avirulence determinants in the PHI database (Avr-Pita1 and MgSM1) were found. The majority of CSEPs were non-annotated and were narrowed down to 44 top priority candidates based on their likelihood of being effectors. These were examined by spatio-temporal gene expression profiling of infected hop. Among the highest in planta expressed CSEPs, five deletion mutants were tested in pathogenicity assays. A deletion mutant of VnaUn.279, a lethal pathotype specific gene with sequence similarity to SAM-dependent methyltransferase (LaeA), had lower infectivity and showed highly reduced virulence, but no changes in morphology, fungal growth or conidiation were observed. Several putative secreted effector proteins that probably contribute to V. nonalfalfae colonization of hop were identified in this study. Among them, LaeA gene homolog was found to act as a potential novel virulence effector of V. nonalfalfae. The combined results will serve for future characterization of V. nonalfalfae effectors, which will advance our understanding of Verticillium wilt disease.
Collapse
Affiliation(s)
- Kristina Marton
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Flajšman
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Katarina Košmelj
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Branka Javornik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sabina Berne
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
358
|
Xu M, Gao X, Chen J, Yin Z, Feng H, Huang L. The feruloyl esterase genes are required for full pathogenicity of the apple tree canker pathogen Valsa mali. MOLECULAR PLANT PATHOLOGY 2018; 19:1353-1363. [PMID: 28960871 PMCID: PMC6638109 DOI: 10.1111/mpp.12619] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 05/10/2023]
Abstract
Apple Valsa canker, caused by the fungus Valsa mali, is one of the most destructive diseases of apple trees in East Asia. Feruloyl esterases (ferulic acid esterases, FAEs), which belong to a subclass of carboxylic esterases, can cleave ester bonds that crosslink hydroxycinnamic acids and arabinoxylans or certain pectins in plant cell walls. However, a pathogenic role of FAE has not been demonstrated in plant-pathogenic fungi. In this study, the FAE gene family, including one type A, one type B, three type C and two type D FAE genes, was identified in V. mali. Five of the seven FAE genes had highly elevated transcript levels in V. mali-apple tree bark interactions compared with mycelia grown in axenic culture. Signal peptides of the VmFAEs were confirmed using yeast signal sequence trap assays. To examine whether FAEs are required for the pathogenicity of V. mali, seven single- and six double-gene deletion mutants were generated. Compared with the wild-type, three of the seven FAE single-deletion mutants showed significantly reduced pathogenicity and three of the six FAE double-deletion mutants exhibited greater reductions in pathogenicity, suggesting the joint action of FAEs in the V. mali-apple tree interaction. Most of the FAE mutants that exhibited a significant reduction in pathogenicity had significantly lower FAE activity than the wild-type fungus. These results indicate that secreted FAEs are required for the full pathogenicity of the phytopathogenic fungus V. mali.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Xiaoning Gao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Jiliang Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Zhiyuan Yin
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShaanxi 712100China
| |
Collapse
|
359
|
Frommhagen M, Westphal AH, van Berkel WJH, Kabel MA. Distinct Substrate Specificities and Electron-Donating Systems of Fungal Lytic Polysaccharide Monooxygenases. Front Microbiol 2018; 9:1080. [PMID: 29896168 PMCID: PMC5987398 DOI: 10.3389/fmicb.2018.01080] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are powerful enzymes that oxidatively cleave glycosidic bonds in polysaccharides. The ability of these copper enzymes to boost the degradation of lignocellulose has greatly stimulated research efforts and biocatalytic applications within the biorefinery field. Initially found as oxidizing recalcitrant substrates, such as chitin and cellulose, it is now clear that LPMOs cleave a broad range of oligo- and poly-saccharides and make use of various electron-donating systems. Herein, substrate specificities and electron-donating systems of fungal LPMOs are summarized. A closer look at LPMOs as part of the fungal enzyme machinery might provide insights into their role in fungal growth and plant-pathogen interactions to further stimulate the search for novel LPMO applications.
Collapse
Affiliation(s)
- Matthias Frommhagen
- Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
360
|
Chen Y, Zhang S, Lin H, Sun J, Lin Y, Wang H, Lin M, Shi J. Phomopsis longanae Chi-Induced Changes in Activities of Cell Wall-Degrading Enzymes and Contents of Cell Wall Components in Pericarp of Harvested Longan Fruit and Its Relation to Disease Development. Front Microbiol 2018; 9:1051. [PMID: 29875756 PMCID: PMC5974112 DOI: 10.3389/fmicb.2018.01051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
The main goal of this study was to investigate the influences of Phomopsis longanae Chi infection on activities of cell wall-degrading enzymes (CWDEs), and contents of cell wall components in pericarp of harvested “Fuyan” longan (Dimocarpus longan Lour. cv. Fuyan) fruit and its relation to disease development. The results showed that, compared with the control samples, P. longanae-inoculated longans showed higher fruit disease index, lower content of pericarp cell wall materials (CWMs), as well as lower contents of pericarp cell wall components (chelate-soluble pectin (CSP), sodium carbonate-soluble pectin, hemicelluloses, and cellulose), but higher content of pericarp water-soluble pectin (WSP). In addition, the inoculation treatment with P. longanae significantly promoted the activities of CWDEs including pectinesterase, polygalacturonase, β-galactosidase, and cellulase. The results suggested that the P. longanae stimulated-disease development of harvested longans was due to increase in activities of pericarp CWDEs, which might accelerate the disassembly of pericarp cell wall components. In turn, resulting in the degradation of pericarp cell wall, reduction of pericarp mechanical strength, and subsequently leading to the breakdown of longan pericarp tissues. Eventually resulting in development of disease development and fruit decay in harvested longans during storage at 28°C.
Collapse
Affiliation(s)
- Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shen Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO, United States
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
361
|
Ye X, Zhong Z, Liu H, Lin L, Guo M, Guo W, Wang Z, Zhang Q, Feng L, Lu G, Zhang F, Chen Q. Whole genome and transcriptome analysis reveal adaptive strategies and pathogenesis of Calonectria pseudoreteaudii to Eucalyptus. BMC Genomics 2018; 19:358. [PMID: 29747580 PMCID: PMC5946483 DOI: 10.1186/s12864-018-4739-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/30/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Leaf blight caused by Calonectria spp. is one of the most destructive diseases to affect Eucalyptus nurseries and plantations. These pathogens mainly attack Eucalyptus, a tree with a diversity of secondary metabolites employed as defense-related phytoalexins. To unravel the fungal adaptive mechanisms to various phytoalexins, we examined the genome of C. pseudoreteaudii, which is one of the most aggressive pathogens in southeast Asia. RESULTS A 63.7 Mb genome with 14,355 coding genes of C. pseudoreteaudii were assembled. Genomic comparisons identified 1785 species-specific gene families in C. pseudoreteaudii. Most of them were not annotated and those annotated genes were enriched in peptidase activity, pathogenesis, oxidoreductase activity, etc. RNA-seq showed that 4425 genes were differentially expressed on the eucalyptus(the resistant cultivar E. grandis×E.camaldulensis M1) tissue induced medium. The annotation of GO term and KEGG pathway indicated that some of the differential expression genes were involved in detoxification and transportation, such as genes encoding ABC transporters, degrading enzymes of aromatic compounds and so on. CONCLUSIONS Potential genomic determinants of phytoalexin detoxification were identified in C. pseudoreteaudii by comparison with 13 other fungi. This pathogen seems to employ membrane transporters and degradation enzymes to detoxify Eucalyptus phytoalexins. Remarkably, the Calonectria genome possesses a surprising number of secondary metabolism backbone enzyme genes involving toxin biosynthesis. It is also especially suited for cutin and lignin degradation. This indicates that toxin and cell wall degrading enzymes may act important roles in the establishment of Calonectria leaf blight. This study provides further understanding on the mechanism of pathogenesis in Calonectria.
Collapse
Affiliation(s)
- Xiaozhen Ye
- 0000 0004 1760 2876grid.256111.0Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,0000 0004 1760 2876grid.256111.0Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhenhui Zhong
- 0000 0004 1760 2876grid.256111.0State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hongyi Liu
- 0000 0004 1760 2876grid.256111.0Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lianyu Lin
- 0000 0004 1760 2876grid.256111.0State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Mengmeng Guo
- 0000 0004 1760 2876grid.256111.0Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wenshuo Guo
- 0000 0004 1760 2876grid.256111.0Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zonghua Wang
- 0000 0004 1760 2876grid.256111.0State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qinghua Zhang
- 0000 0004 1760 2876grid.256111.0Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lizhen Feng
- 0000 0004 1760 2876grid.256111.0Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Guodong Lu
- 0000 0004 1760 2876grid.256111.0State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Feiping Zhang
- 0000 0004 1760 2876grid.256111.0Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Quanzhu Chen
- 0000 0004 1760 2876grid.256111.0Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
362
|
Schmoll M. Regulation of plant cell wall degradation by light in Trichoderma. Fungal Biol Biotechnol 2018; 5:10. [PMID: 29713489 PMCID: PMC5913809 DOI: 10.1186/s40694-018-0052-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Trichoderma reesei (syn. Hypocrea jecorina) is the model organism for industrial production of plant cell wall degradating enzymes. The integration of light and nutrient signals for adaptation of enzyme production in T. reesei emerged as an important regulatory mechanism to be tackled for strain improvement. Gene regulation specific for cellulase inducing conditions is different in light and darkness with substantial regulation by photoreceptors. Genes regulated by light are clustered in the genome, with several of the clusters overlapping with CAZyme clusters. Major cellulase transcription factor genes and at least 75% of glycoside hydrolase encoding genes show the potential of light dependent regulation. Accordingly, light dependent protein complex formation occurs within the promoters of cellulases and their regulators. Additionally growth on diverse carbon sources is different between light and darkness and dependent on the presence of photoreceptors in several cases. Thereby, also light intensity plays a regulatory role, with cellulase levels dropping at higher light intensities dependent in the strain background. The heterotrimeric G-protein pathway is the most important nutrient signaling pathway in the connection with light response and triggers posttranscriptional regulation of cellulase expression. All G-protein alpha subunits impact cellulase regulation in a light dependent manner. The downstream cAMP pathway is involved in light dependent regulation as well. Connections between the regulatory pathways are mainly established via the photoreceptor ENV1. The effect of photoreceptors on plant cell wall degradation also occurs in the model filamentous fungus Neurospora crassa. In the currently proposed model, T. reesei senses the presence of plant biomass in its environment by detection of building blocks of cellulose and hemicellulose. Interpretation of the respective signals is subsequently adjusted to the requirements in light and darkness (or on the surface versus within the substrate) by an interconnection of nutrient signaling with light response. This review provides an overview on the importance of light, photoreceptors and related signaling pathways for formation of plant cell wall degrading enzymes in T. reesei. Additionally, the relevance of light dependent gene regulation for industrial fermentations with Trichoderma as well as strategies for exploitation of the observed effects are discussed.
Collapse
Affiliation(s)
- Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| |
Collapse
|
363
|
Velho AC, Mondino P, Stadnik MJ. Extracellular enzymes of Colletotrichum fructicola isolates associated to Apple bitter rot and Glomerella leaf spot. Mycology 2018; 9:145-154. [PMID: 30123670 PMCID: PMC6059057 DOI: 10.1080/21501203.2018.1464525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/10/2018] [Indexed: 11/23/2022] Open
Abstract
Colletotrichum fructicola causes two important diseases on apple in Southern Brazil, bitter rot (ABR) and Glomerella leaf spot (GLS). In this pathosystem, the Colletotrichum ability to cause different symptoms could be related to differences of extracellular enzymes produced by the fungi. Thus, the objectives of this study were to compare the production of these enzymes between ABR- and GLS-isolate in vitro and to evaluate their involvement on infected apple leaves with C. fructicola. In agar plate enzymatic assay, ABR- showed significantly higher amylolytic and pectolytic activity than GLS-isolate. In contrast, for lipolytic and proteolytic no significant differences were observed between isolates. In culture broth, ABR-isolate also had higher activity of pectin lyase (PNL), polygalacturonase (PG) and laccase (LAC). Notably, LAC was significantly five-fold higher in ABR- than GLS-isolate. On the other hand, in infected apple leaves no significant difference was observed between isolates for PNL, PG and LAC. Although differences in extracellular enzymes of ABR- and GLS-isolate have not been observed in vivo, these results contributed to highlight the importance to investigate such enzymes in depth.
Collapse
Affiliation(s)
- Aline Cristina Velho
- Laboratory of Plant Pathology, Agricultural Science Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pedro Mondino
- Department of Plant Protection, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Marciel J. Stadnik
- Laboratory of Plant Pathology, Agricultural Science Center, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
364
|
Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang D, Miao Y, Rahimi MJ, Grujic M, Cai F, Pourmehdi S, Salim KA, Pretzer C, Kopchinskiy AG, Henrissat B, Kuo A, Hundley H, Wang M, Aerts A, Salamov A, Lipzen A, LaButti K, Barry K, Grigoriev IV, Shen Q, Kubicek CP. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet 2018; 14:e1007322. [PMID: 29630596 PMCID: PMC5908196 DOI: 10.1371/journal.pgen.1007322] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/19/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023] Open
Abstract
Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass. Individual fungi rely on particular host organisms or substrates for their nutrition. Therefore, the genomes of fungi feeding on plant biomass necessarily contain genes encoding plant cell wall-degrading enzymes, while animal parasites may depend on proteolytic activity. Molds in the genus Trichoderma (Ascomycota) display a unique nutritional versatility. They can feed on other fungi, attack animals, and degrade plant debris. The later property is so efficient that one species (T. reesei) is commercially used for the production of cellulolytic enzymes required for making biofuels and other industry. In this work, we have investigated the evolution of proteins required for plant cell wall degradation in nine Trichoderma genomes and found an unprecedented number of lateral gene transfer (LGT) events for genes encoding these enzymes. Interestingly, the transfers specifically occurred from Ascomycota molds that feed on plants. We detected no cases of LGT from other fungi (e.g., mushrooms or wood-rotting fungi from Basidiomycota) that are frequent hosts of Trichoderma. Therefore, we propose that LGT may be linked to the ability of Trichoderma to parasitize on related organisms. This is a characteristic ecological trait that distinguishes Trichoderma from other mycoparasitic fungi. In this report, we demonstrate that the lateral transfer of genes may result in a profound nutritional expansion and contribute to the emergence of a generalist capable of feeding on organic matter of any origin.
Collapse
Affiliation(s)
- Irina S. Druzhinina
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
- * E-mail: (ISD); (QS)
| | - Komal Chenthamara
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Jian Zhang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Lea Atanasova
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Dongqing Yang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Mohammad J. Rahimi
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Marica Grujic
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Feng Cai
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shadi Pourmehdi
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Kamariah Abu Salim
- Environmental and Life Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Carina Pretzer
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Alexey G. Kopchinskiy
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Hope Hundley
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Andrea Aerts
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, United States of America
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
- * E-mail: (ISD); (QS)
| | - Christian P. Kubicek
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
365
|
Zeng Z, Sun H, Vainio EJ, Raffaello T, Kovalchuk A, Morin E, Duplessis S, Asiegbu FO. Intraspecific comparative genomics of isolates of the Norway spruce pathogen (Heterobasidion parviporum) and identification of its potential virulence factors. BMC Genomics 2018; 19:220. [PMID: 29580224 PMCID: PMC5870257 DOI: 10.1186/s12864-018-4610-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/20/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Heterobasidion parviporum is an economically most important fungal forest pathogen in northern Europe, causing root and butt rot disease of Norway spruce (Picea abies (L.) Karst.). The mechanisms underlying the pathogenesis and virulence of this species remain elusive. No reference genome to facilitate functional analysis is available for this species. RESULTS To better understand the virulence factor at both phenotypic and genomic level, we characterized 15 H. parviporum isolates originating from different locations across Finland for virulence, vegetative growth, sporulation and saprotrophic wood decay. Wood decay capability and latitude of fungal origins exerted interactive effects on their virulence and appeared important for H. parviporum virulence. We sequenced the most virulent isolate, the first full genome sequences of H. parviporum as a reference genome, and re-sequenced the remaining 14 H. parviporum isolates. Genome-wide alignments and intrinsic polymorphism analysis showed that these isolates exhibited overall high genomic similarity with an average of at least 96% nucleotide identity when compared to the reference, yet had remarkable intra-specific level of polymorphism with a bias for CpG to TpG mutations. Reads mapping coverage analysis enabled the classification of all predicted genes into five groups and uncovered two genomic regions exclusively present in the reference with putative contribution to its higher virulence. Genes enriched for copy number variations (deletions and duplications) and nucleotide polymorphism were involved in oxidation-reduction processes and encoding domains relevant to transcription factors. Some secreted protein coding genes based on the genome-wide selection pressure, or the presence of variants were proposed as potential virulence candidates. CONCLUSION Our study reported on the first reference genome sequence for this Norway spruce pathogen (H. parviporum). Comparative genomics analysis gave insight into the overall genomic variation among this fungal species and also facilitated the identification of several secreted protein coding genes as putative virulence factors for the further functional analysis. We also analyzed and identified phenotypic traits potentially linked to its virulence.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Hui Sun
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Emmanuelle Morin
- INRA UMR 1136 Interactions Arbres Micro-organismes, INRA Centre Grand Est Nancy, Champenoux, France
| | - Sébastien Duplessis
- INRA UMR 1136 Interactions Arbres Micro-organismes, INRA Centre Grand Est Nancy, Champenoux, France
- UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
366
|
Lopez D, Ribeiro S, Label P, Fumanal B, Venisse JS, Kohler A, de Oliveira RR, Labutti K, Lipzen A, Lail K, Bauer D, Ohm RA, Barry KW, Spatafora J, Grigoriev IV, Martin FM, Pujade-Renaud V. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors. Front Microbiol 2018; 9:276. [PMID: 29551995 PMCID: PMC5840194 DOI: 10.3389/fmicb.2018.00276] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector-based classification was found to be highly consistent with the phylogenomic trees. Identification of lineage-specific effectors is a key step toward understanding C. cassiicola virulence and host specialization mechanisms.
Collapse
Affiliation(s)
- David Lopez
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Sébastien Ribeiro
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France.,CIRAD, UMR AGAP, Clermont-Ferrand, France.,AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Philippe Label
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Boris Fumanal
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Jean-Stéphane Venisse
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Annegret Kohler
- Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine "Interaction Arbres/Microorganismes", Champenoux, France
| | | | - Kurt Labutti
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Kathleen Lail
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Diane Bauer
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Robin A Ohm
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States.,Department of Microbiology, Utrecht University, Utrecht, Netherlands
| | - Kerrie W Barry
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Joseph Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Francis M Martin
- Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine "Interaction Arbres/Microorganismes", Champenoux, France
| | - Valérie Pujade-Renaud
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France.,CIRAD, UMR AGAP, Clermont-Ferrand, France.,AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
367
|
Reem NT, Chen HY, Hur M, Zhao X, Wurtele ES, Li X, Li L, Zabotina O. Comprehensive transcriptome analyses correlated with untargeted metabolome reveal differentially expressed pathways in response to cell wall alterations. PLANT MOLECULAR BIOLOGY 2018; 96:509-529. [PMID: 29502299 DOI: 10.1007/s11103-018-0714-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.
Collapse
Affiliation(s)
- Nathan T Reem
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA
| | - Han-Yi Chen
- Plants for Human Health Institute, North Carolina State University, Kannapolis, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, USA
| | - Manhoi Hur
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, USA
| | - Xuefeng Zhao
- Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, USA
- Information Technology, College of Liberal Arts and Sciences, Iowa State University, Ames, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, USA
| | - Xu Li
- Plants for Human Health Institute, North Carolina State University, Kannapolis, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, USA
| | - Ling Li
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, USA
- Department of Biological Sciences, Mississippi State University, Starkville, USA
| | - Olga Zabotina
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA.
| |
Collapse
|
368
|
Lai MW, Liou RF. Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica. Curr Genet 2018; 64:931-943. [PMID: 29470644 DOI: 10.1007/s00294-018-0814-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
Abstract
Plant cell walls are pivotal battlegrounds between microbial pathogens and their hosts. To penetrate the cell wall and thereby to facilitate infection, microbial pathogens are equipped with a wide array of cell wall-degrading enzymes to depolymerize the polysaccharides in the cell wall. However, many of these enzymes and their role in the pathogenesis of microbial pathogens are not characterized, especially those from Oomycetes. In this study, we analyzed the function of four putative endo-beta-1,4-xylanase-encoding genes (ppxyn1-ppxyn4) from Phytophthora parasitica, an oomycete plant pathogen known to cause severe disease in a wide variety of plant species. All four genes belong to the glycoside hydrolase family 10 (GH10). Recombinant proteins of ppxyn1, ppxyn2, and ppxyn4 obtained from the yeast Pichia pastoris showed degrading activities toward birch wood xylan, but they behaved differently in terms of the conditions for optimal activity, thermostability, and durability. Quantitative RT-PCR revealed upregulated expression of all four genes, especially ppxyn1 and ppxyn2, during plant infection. In contrast, ppxyn3 was highly expressed in cysts and its close homolog, ppxyn4, in germinating cysts. To uncover the role of ppxyn1 and ppxyn2 in the pathogenesis of P. parasitica, we generated silencing transformants for these two genes by double-stranded RNA-mediated gene silencing. Silencing ppxyn1 and ppxyn2 reduced the virulence of P. parasitica toward tobacco (Nicotiana benthamiana) and tomato plants. These results demonstrate the crucial role of xylanase-encoding ppxyn1 and ppxyn2 in the infection process of P. parasitica.
Collapse
Affiliation(s)
- Ming-Wei Lai
- Department of Plant Pathology and Microbiology, National Taiwan University, #1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Ruey-Fen Liou
- Department of Plant Pathology and Microbiology, National Taiwan University, #1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| |
Collapse
|
369
|
Fan R, Cockerton HM, Armitage AD, Bates H, Cascant-Lopez E, Antanaviciute L, Xu X, Hu X, Harrison RJ. Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry. PLoS One 2018; 13:e0191824. [PMID: 29451893 PMCID: PMC5815587 DOI: 10.1371/journal.pone.0191824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/11/2018] [Indexed: 01/07/2023] Open
Abstract
Verticillium dahliae infection of strawberry (Fragaria x ananassa) is a major cause of disease-induced wilting in soil-grown strawberries across the world. To understand what components of the pathogen are affecting disease expression, the presence of the known effector VdAve1 was screened in a sample of Verticillium dahliae isolates. Isolates from strawberry were found to contain VdAve1 and were divided into two major clades, based upon their vegetative compatibility groups (VCG); no UK strawberry isolates contained VdAve1. VC clade was strongly related to their virulence levels. VdAve1-containing isolates pathogenic on strawberry were found in both clades, in contrast to some recently published findings. On strawberry, VdAve1-containing isolates had significantly higher virulence during early infection, which diminished in significance as the infection progressed. Transformation of a virulent non-VdAve1 containing isolate, with VdAve1 was found neither to increase nor decrease virulence when inoculated on a susceptible strawberry cultivar. There are therefore virulence factors that are epistatic to VdAve1 and potentially multiple independent routes to high virulence on strawberry in V. dahliae lineages. Genome sequencing a subset of isolates across the two VCGs revealed that isolates were differentiated at the whole genome level and contained multiple changes in putative effector content, indicating that different clonal VCGs may have evolved different strategies for infecting strawberry, leading to different virulence levels in pathogenicity tests. It is therefore important to consider both clonal lineage and effector complement as the adaptive potential of each lineage will differ, even if they contain the same race determining effector.
Collapse
Affiliation(s)
- Rong Fan
- NIAB-EMR, East Malling, Kent, United Kingdom
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling, China
| | | | | | - Helen Bates
- NIAB-EMR, East Malling, Kent, United Kingdom
| | | | - Laima Antanaviciute
- NIAB-EMR, East Malling, Kent, United Kingdom
- University of Reading, Reading, United Kingdom
| | - Xiangming Xu
- NIAB-EMR, East Malling, Kent, United Kingdom
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Richard J. Harrison
- NIAB-EMR, East Malling, Kent, United Kingdom
- University of Reading, Reading, United Kingdom
| |
Collapse
|
370
|
Liu J, Sui Y, Chen H, Liu Y, Liu Y. Proteomic Analysis of Kiwifruit in Response to the Postharvest Pathogen, Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2018; 9:158. [PMID: 29497428 PMCID: PMC5818428 DOI: 10.3389/fpls.2018.00158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/29/2018] [Indexed: 05/29/2023]
Abstract
Gray mold, caused by the fungus Botrytis cinerea, is the most significant postharvest disease of kiwifruit. In the present study, iTRAQ with LC-ESI-MS/MS was used to identify the kiwifruit proteins associated with the response to B. cinerea. A total of 2,487 proteins in kiwifruit were identified. Among them, 292 represented differentially accumulated proteins (DAPs), with 196 DAPs having increased, and 96 DAPs having decreased in accumulation in B. cinerea-inoculated vs. water-inoculated, control kiwifruits. DAPs were associated with penetration site reorganization, cell wall degradation, MAPK cascades, ROS signaling, and PR proteins. In order to examine the corresponding transcriptional levels of the DAPs, RT-qPCR was conducted on a subset of 9 DAPs. In addition, virus-induced gene silencing was used to examine the role of myosin 10 in kiwifruit, a gene modulating host penetration resistance to fungal infection, in response to B. cinerea infection. The present study provides new insight on the understanding of the interaction between kiwifruit and B. cinerea.
Collapse
Affiliation(s)
- Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, College of Forestry and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, College of Forestry and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Huizhen Chen
- College of Food Science and Engineering, Hefei University of Technology, Hefei, China
- College of Biology Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Yiqing Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, College of Forestry and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Yongsheng Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
371
|
Gui YJ, Zhang WQ, Zhang DD, Zhou L, Short DPG, Wang J, Ma XF, Li TG, Kong ZQ, Wang BL, Wang D, Li NY, Subbarao KV, Chen JY, Dai XF. A Verticillium dahliae Extracellular Cutinase Modulates Plant Immune Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:260-273. [PMID: 29068240 DOI: 10.1094/mpmi-06-17-0136-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cutinases have been implicated as important enzymes during the process of fungal infection of aerial plant organs. The function of cutinases in the disease cycle of fungal pathogens that invade plants through the roots has been less studied. Here, functional analysis of 13 cutinase (carbohydrate esterase family 5 domain-containing) genes (VdCUTs) in the highly virulent vascular wilt pathogen Verticillium dahliae Vd991 was performed. Significant sequence divergence in cutinase family members was observed in the genome of V. dahliae Vd991. Functional analyses demonstrated that only VdCUT11, as purified protein, induced cell death and triggered defense responses in Nicotiana benthamiana, cotton, and tomato plants. Virus-induced gene silencing showed that VdCUT11 induces plant defense responses in Nicotiana benthamania in a BAK1 and SOBIR-dependent manner. Furthermore, coinfiltration assays revealed that the carbohydrate-binding module family 1 protein (VdCBM1) suppressed VdCUT11-induced cell death and other defense responses in N. benthamiana. Targeted deletion of VdCUT11 in V. dahliae significantly compromised virulence on cotton plants. The cutinase VdCUT11 is an important secreted enzyme and virulence factor that elicits plant defense responses in the absence of VdCBM1.
Collapse
Affiliation(s)
- Yue-Jing Gui
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Wen-Qi Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dan-Dan Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Lei Zhou
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dylan P G Short
- 2 Department of Plant Pathology, University of California, Davis, U.S.A
| | - Jie Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Xue-Feng Ma
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Ting-Gang Li
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Zhi-Qiang Kong
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Bao-Li Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dan Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Nan-Yang Li
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | | | - Jie-Yin Chen
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Xiao-Feng Dai
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| |
Collapse
|
372
|
Mandal S, Rajarammohan S, Kaur J. Alternaria brassicae interactions with the model Brassicaceae member Arabidopsis thaliana closely resembles those with Mustard ( Brassica juncea). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:51-59. [PMID: 29398838 PMCID: PMC5787117 DOI: 10.1007/s12298-017-0486-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/04/2017] [Accepted: 11/07/2017] [Indexed: 05/18/2023]
Abstract
Alternaria leaf blight, a disease of oilseed Brassicas is caused by a necrotrophic phytopathogenic fungus Alternaria brassicae. The details of its pathogenesis and defence responses elicited in the host upon infection have not been thoroughly investigated. Here, Arabidopsis accession Gre-0 was identified to be highly susceptible to A. brassicae. A comparative histopathological analysis for disease progression and plant responses to A. brassicae in Arabidopsis and Brassica juncea revealed significant similarities between the two compatible pathosystems. Interestingly, in both the compatible hosts, ROS accumulation, cell death and callose deposition correlated with the development of the disease. Based on our results we propose that Arabidopsis-Alternaria brassicae can be an apt model pathosystem since it emulates the dynamics of the pathogen interaction with its natural host- Brassicas. The existing genetic diversity in Arabidopsis can be a starting point to screen for variation in responses to Alternaria leaf blight. Furthermore, several tools available for Arabidopsis can facilitate the dissection of genetic and molecular basis of resistance.
Collapse
Affiliation(s)
- Sayanti Mandal
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021 India
| | | | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021 India
| |
Collapse
|
373
|
Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:614-636. [PMID: 29266460 DOI: 10.1111/tpj.13807] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Collapse
Affiliation(s)
- Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
374
|
Félix C, Libório S, Nunes M, Félix R, Duarte AS, Alves A, Esteves AC. Lasiodiplodia theobromae as a Producer of Biotechnologically Relevant Enzymes. Int J Mol Sci 2018; 19:ijms19020029. [PMID: 29360737 PMCID: PMC5855540 DOI: 10.3390/ijms19020029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
Phytopathogenic fungi are known to produce several types of enzymes usually involved in plant cell wall degradation and pathogenesis. The increasing of global temperature may induce fungi, such as Lasiodiplodia theobromae (L. theobromae), to alter its behavior. Nonetheless, there is only limited information regarding the effect of temperature on L. theobromae production of enzymes. The need for new, thermostable enzymes, that are biotechnologically relevant, led us to investigate the effect of temperature on the production of several extracellular enzymatic activities by different L. theobromae strains. Fungi were grown at 25 °C, 30 °C and 37 °C and the enzymatic activities were detected by plate assays, quantified by spectrophotometric methods and characterized by zymography. The thermostability (25–80 °C) of the enzymes produced was also tested. Strains CAA019, CBS339.90, LA-SOL3, LA-SV1 and LA-MA-1 produced amylases, gelatinases, caseinases, cellulases, lipases, laccases, xylanases, pectinases and pectin liases. Temperature modulated the expression of the enzymes, and this effect was more visible when fungi were grown at 37 °C than at lower temperatures. Contrary to proteolytic and endoglucanolytic activities, whose highest activities were detected when fungi were grown at 30 °C, lipolytic activity was not detected at this growth temperature. Profiles of proteases and endoglucanases of fungi grown at different temperatures were characterized by zymography. Enzymes were shown to be more thermostable when fungi were grown at 30 °C. Proteases were active up to 50 °C and endoglucanases up to 70 °C. Lipases were the least stable, with activities detected up to 45 °C. The enzymatic profiles detected for L. theobromae strains tested showed to be temperature and strain-dependent, making this species a good target for biotechnological applications.
Collapse
Affiliation(s)
- Carina Félix
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sofia Libório
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana Nunes
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Rafael Félix
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana S Duarte
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur Alves
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana C Esteves
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
375
|
Fogelqvist J, Tzelepis G, Bejai S, Ilbäck J, Schwelm A, Dixelius C. Analysis of the hybrid genomes of two field isolates of the soil-borne fungal species Verticillium longisporum. BMC Genomics 2018; 19:14. [PMID: 29298673 PMCID: PMC5753508 DOI: 10.1186/s12864-017-4407-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Brassica plant species are attacked by a number of pathogens; among them, the ones with a soil-borne lifestyle have become increasingly important. Verticillium stem stripe caused by Verticillium longisporum is one example. This fungal species is thought to be of a hybrid origin, having a genome composed of combinations of lineages denominated A and D. In this study we report the draft genomes of 2 V. longisporum field isolates sequenced using the Illumina technology. Genomic characterization and lineage composition, followed by selected gene analysis to facilitate the comprehension of its genomic features and potential effector categories were performed. RESULTS The draft genomes of 2 Verticillium longisporum single spore isolates (VL1 and VL2) have an estimated ungapped size of about 70 Mb. The total number of protein encoding genes identified in VL1 was 20,793, whereas 21,072 gene models were predicted in VL2. The predicted genome size, gene contents, including the gene families coding for carbohydrate active enzymes were almost double the numbers found in V. dahliae and V. albo-atrum. Single nucleotide polymorphisms (SNPs) were frequently distributed in the two genomes but the distribution of heterozygosity and depth was not independent. Further analysis of potential parental lineages suggests that the V. longisporum genome is composed of two parts, A1 and D1, where A1 is more ancient than the parental lineage genome D1, the latter being more closer related to V. dahliae. Presence of the mating-type genes MAT1-1-1 and MAT1-2-1 in the V. longisporum genomes were confirmed. However, the MAT genes in V. dahliae, V. albo-atrum and V. longisporum have experienced extensive nucleotide changes at least partly explaining the present asexual nature of these fungal species. CONCLUSIONS The established draft genome of V. longisporum is comparatively large compared to other studied ascomycete fungi. Consequently, high numbers of genes were predicted in the two V. longisporum genomes, among them many secreted proteins and carbohydrate active enzyme (CAZy) encoding genes. The genome is composed of two parts, where one lineage is more ancient than the part being more closely related to V. dahliae. Dissimilar mating-type sequences were identified indicating possible ancient hybridization events.
Collapse
Affiliation(s)
- Johan Fogelqvist
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007, Uppsala, Sweden
| | - Georgios Tzelepis
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007, Uppsala, Sweden
| | - Sarosh Bejai
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007, Uppsala, Sweden
| | - Jonas Ilbäck
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007, Uppsala, Sweden
- Present Address: National Food Agency, P.O. Box 622, 75126, Uppsala, Sweden
| | - Arne Schwelm
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007, Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007, Uppsala, Sweden.
| |
Collapse
|
376
|
Yang Y, Zhang Y, Li B, Yang X, Dong Y, Qiu D. A Verticillium dahliae Pectate Lyase Induces Plant Immune Responses and Contributes to Virulence. FRONTIERS IN PLANT SCIENCE 2018; 9:1271. [PMID: 30271415 PMCID: PMC6146025 DOI: 10.3389/fpls.2018.01271] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/14/2018] [Indexed: 05/13/2023]
Abstract
Verticillium dahliae is a wide-host-range fungal pathogen that causes soil-borne disease in hundreds of dicotyledonous hosts. In search of V. dahliae Vd991 cell death-inducing proteins, we identified a pectate lyase (VdPEL1) that exhibited pectin hydrolytic activity, which could induce strong cell death in several plants. Purified VdPEL1 triggered defense responses and conferred resistance to Botrytis cinerea and V. dahliae in tobacco and cotton plants. Our results demonstrated that the mutant VdPEL1rec lacking the enzymatic activity lacked functions to induce both cell death and plant resistance, implying that the enzymatic activity was necessary. In addition, VdPEL1 was strongly induced in V. dahliae infected Nicotiana benthamiana and cotton roots, and VdPEL1 deletion strains severely compromised the virulence of V. dahliae. Our data suggested that VdPEL1 contributed to V. dahliae virulence and induced plant defense responses. These findings provide a new insight for the function of pectate lyase in the host-pathogen interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Dewen Qiu
- *Correspondence: Yijie Dong, Dewen Qiu,
| |
Collapse
|
377
|
Wang Y, Hao X, Lu Q, Wang L, Qian W, Li N, Ding C, Wang X, Yang Y. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H 2O 2 have crucial roles in the resistance of tea plant ( Camellia sinensis (L.) O. Kuntze) to anthracnose. HORTICULTURE RESEARCH 2018; 5:18. [PMID: 29619229 PMCID: PMC5878829 DOI: 10.1038/s41438-018-0025-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 02/02/2018] [Indexed: 05/04/2023]
Abstract
Anthracnose causes severe losses of tea production in China. Although genes and biological processes involved in anthracnose resistance have been reported in other plants, the molecular response to anthracnose in tea plant is unknown. We used the susceptible tea cultivar Longjing 43 and the resistant cultivar Zhongcha 108 as materials and compared transcriptome changes in the leaves of both cultivars following Colletotrichum fructicola inoculation. In all, 9015 and 8624 genes were differentially expressed between the resistant and susceptible cultivars and their controls (0 h), respectively. In both cultivars, the differentially expressed genes (DEGs) were enriched in 215 pathways, including responses to sugar metabolism, phytohormones, reactive oxygen species (ROS), biotic stimuli and signalling, transmembrane transporter activity, protease activity and signalling receptor activity, but DEG expression levels were higher in Zhongcha 108 than in Longjing 43. Moreover, functional enrichment analysis of the DEGs showed that hydrogen peroxide (H2O2) metabolism, cell death, secondary metabolism, and carbohydrate metabolism are involved in the defence of Zhongcha 108, and 88 key genes were identified. Protein-protein interaction (PPI) network demonstrated that putative mitogen-activated protein kinase (MAPK) cascades are activated by resistance (R) genes and mediate downstream defence responses. Histochemical analysis subsequently validated the strong hypersensitive response (HR) and H2O2 accumulation that occurred around the hyphal infection sites in Zhongcha 108. Overall, our results indicate that the HR and H2O2 are critical mechanisms in tea plant defence against anthracnose and may be activated by R genes via MAPK cascades.
Collapse
Affiliation(s)
- Yuchun Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Xinyuan Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Qinhua Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Lu Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Wenjun Qian
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Nana Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Changqing Ding
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Yajun Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| |
Collapse
|
378
|
Nogueira-Lopez G, Greenwood DR, Middleditch M, Winefield C, Eaton C, Steyaert JM, Mendoza-Mendoza A. The Apoplastic Secretome of Trichoderma virens During Interaction With Maize Roots Shows an Inhibition of Plant Defence and Scavenging Oxidative Stress Secreted Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:409. [PMID: 29675028 PMCID: PMC5896443 DOI: 10.3389/fpls.2018.00409] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/14/2018] [Indexed: 05/04/2023]
Abstract
In Nature, almost every plant is colonized by fungi. Trichoderma virens is a biocontrol fungus which has the capacity to behave as an opportunistic plant endophyte. Even though many plants are colonized by this symbiont, the exact mechanisms by which Trichoderma masks its entrance into its plant host remain unknown, but likely involve the secretion of different families of proteins into the apoplast that may play crucial roles in the suppression of plant immune responses. In this study, we investigated T. virens colonization of maize roots under hydroponic conditions, evidencing inter- and intracellular colonization by the fungus and modifications in root morphology and coloration. Moreover, we show that upon host penetration, T. virens secretes into the apoplast an arsenal of proteins to facilitate inter- and intracellular colonization of maize root tissues. Using a gel-free shotgun proteomics approach, 95 and 43 secretory proteins were identified from maize and T. virens, respectively. A reduction in the maize secretome (36%) was induced by T. virens, including two major groups, glycosyl hydrolases and peroxidases. Furthermore, T. virens secreted proteins were mainly involved in cell wall hydrolysis, scavenging of reactive oxygen species and secondary metabolism, as well as putative effector-like proteins. Levels of peroxidase activity were reduced in the inoculated roots, suggesting a strategy used by T. virens to manipulate host immune responses. The results provide an insight into the crosstalk in the apoplast which is essential to maintain the T. virens-plant interaction.
Collapse
Affiliation(s)
| | - David R. Greenwood
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher Winefield
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Carla Eaton
- Bio-Protection Research Centre, New Zealand and Institute of Fundamental Sciences, Massey University, Wellington, New Zealand
| | | | - Artemio Mendoza-Mendoza
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- *Correspondence: Artemio Mendoza-Mendoza
| |
Collapse
|
379
|
Wang Y, Wang Y. Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:6-12. [PMID: 29090656 DOI: 10.1094/mpmi-07-17-0177-fi] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The apoplastic space between the plant cell wall and the plasma membrane constitutes a major battleground for plant-pathogen interactions. To survive in harsh conditions in the plant apoplast, pathogens must cope with various immune responses. During infection, plant pathogens secrete an arsenal of effector proteins into the apoplast milieu, some of which are detected by the plant surveillance system and, thus, activate plant innate immunity. Effectors that evade plant perception act in modulating plant apoplast immunity to favor successful pathogen infection. The concerted actions of apoplastic effectors often determine the outcomes of plant-pathogen interactions. In this review, we summarize current advances on the understanding of apoplastic effectors and highlight the strategies employed by pathogens to counter host apoplastic defense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
380
|
García N, González MA, González C, Brito N. Simultaneous Silencing of Xylanase Genes in Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2017; 8:2174. [PMID: 29312413 PMCID: PMC5743704 DOI: 10.3389/fpls.2017.02174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/12/2017] [Indexed: 05/30/2023]
Abstract
The endo-β-1,4-xylanase BcXyn11A is one of several plant cell-wall degrading enzymes that the phytopathogenic fungus Botrytis cinerea secretes during interaction with its hosts. In addition to its enzymatic activity, this protein also acts as an elicitor of the defense response in plants and has been identified as a virulence factor. In the present work, other four endoxylanase coding genes (Bcxyn11B, Bcxyn11C, Bcxyn10A, and Bcxyn10B) were identified in the B. cinerea genome and the expression of all five genes was analyzed by Q-RT- PCR in vitro and in planta. A cross-regulation between xylanase genes was identified analyzing their expression pattern in the ΔBcxyn11A mutant strain and a putative BcXyn11A-dependt induction of Bcxyn10B gene was found. In addition, multiple knockdown strains were obtained for the five endoxylanase genes by transformation of B. cinerea with a chimeric DNA construct composed of 50-nt sequences from the target genes. The silencing of each xylanase gene was analyzed in axenic cultures and during infection and the results showed that the efficiency of the multiple silencing depends on the growth conditions and on the cross-regulation between them. Although the simultaneous silencing of the five genes was observed by Q-RT-PCR when the silenced strains were grown on medium supplemented with tomato extract, the endoxylanase activity measured in the supernatants was reduced only by 40%. Unexpectedly, the silenced strains overexpressed the Bcxyn11A and Bcxyn11C genes during the infection of tomato leaves, making difficult the analysis of the role of the endo-β-1,4-xylanases in the virulence of the fungus.
Collapse
|
381
|
Contrasting carbon metabolism in saprotrophic and pathogenic microascalean fungi from Protea trees. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
382
|
Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci U S A 2017; 114:E9403-E9412. [PMID: 28973917 PMCID: PMC5676915 DOI: 10.1073/pnas.1710455114] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most land plants live in association with arbuscular mycorrhizal (AM) fungi and rely on this symbiosis to scavenge phosphorus (P) from soil. The ability to establish this partnership has been lost in some plant lineages like the Brassicaceae, which raises the question of what alternative nutrition strategies such plants have to grow in P-impoverished soils. To understand the contribution of plant-microbiota interactions, we studied the root-associated fungal microbiome of Arabis alpina (Brassicaceae) with the hypothesis that some of its components can promote plant P acquisition. Using amplicon sequencing of the fungal internal transcribed spacer 2, we studied the root and rhizosphere fungal communities of A. alpina growing under natural and controlled conditions including low-P soils and identified a set of 15 fungal taxa consistently detected in its roots. This cohort included a Helotiales taxon exhibiting high abundance in roots of wild A. alpina growing in an extremely P-limited soil. Consequently, we isolated and subsequently reintroduced a specimen from this taxon into its native P-poor soil in which it improved plant growth and P uptake. The fungus exhibited mycorrhiza-like traits including colonization of the root endosphere and P transfer to the plant. Genome analysis revealed a link between its endophytic lifestyle and the expansion of its repertoire of carbohydrate-active enzymes. We report the discovery of a plant-fungus interaction facilitating the growth of a nonmycorrhizal plant under native P-limited conditions, thus uncovering a previously underestimated role of root fungal microbiota in P cycling.
Collapse
Affiliation(s)
- Juliana Almario
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Ganga Jeena
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Jörg Wunder
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Gregor Langen
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Alga Zuccaro
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - George Coupland
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany;
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
383
|
Zhang Y, Ma LJ. Deciphering Pathogenicity of Fusarium oxysporum From a Phylogenomics Perspective. ADVANCES IN GENETICS 2017; 100:179-209. [PMID: 29153400 DOI: 10.1016/bs.adgen.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fusarium oxysporum is a large species complex of both plant and human pathogens that attack a diverse array of species in a host-specific manner. Comparative genomic studies have revealed that the host-specific pathogenicity of the F. oxysporum species complex (FOSC) was determined by distinct sets of supernumerary (SP) chromosomes. In contrast to common vertical transfer, where genetic materials are transmitted via cell division, SP chromosomes can be transmitted horizontally between phylogenetic lineages, explaining the polyphyletic nature of the host-specific pathogenicity of the FOSC. The existence of a diverse array of SP chromosomes determines the broad host range of this species complex, while the conserved core genome maintains essential house-keeping functions. Recognition of these SP chromosomes enables the functional and structural compartmentalization of F. oxysporum genomes. In this review, we examine the impact of this group of cross-kingdom pathogens on agricultural productivity and human health. Focusing on the pathogenicity of F. oxysporum in the phylogenomic framework of the genus Fusarium, we elucidate the evolution of pathogenicity within the FOSC. We conclude that a population genomics approach within a clearly defined phylogenomic framework is essential not only for understanding the evolution of the pathogenicity mechanism but also for identifying informative candidates associated with pathogenicity that can be developed as targets in disease management programs.
Collapse
Affiliation(s)
- Yong Zhang
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Li-Jun Ma
- University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
384
|
Wang D, Fu JF, Zhou RJ, Li ZB, Xie YJ. Proteomics research and related functional classification of liquid sclerotial exudates of Sclerotinia ginseng. PeerJ 2017; 5:e3979. [PMID: 29104825 PMCID: PMC5669253 DOI: 10.7717/peerj.3979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/11/2017] [Indexed: 02/01/2023] Open
Abstract
Sclerotinia ginseng is a necrotrophic soil pathogen that mainly infects the root and basal stem of ginseng, causing serious commercial losses. Sclerotia, which are important in the fungal life cycle, are hard, asexual, resting structures that can survive in soil for several years. Generally, sclerotium development is accompanied by the exudation of droplets. Here, the yellowish droplets of S. ginseng were first examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the proteome was identified by a combination of different analytical platforms. A total of 59 proteins were identified and classified into six categories: carbohydrate metabolism (39%), oxidation-reduction process (12%), transport and catabolism (5%), amino acid metabolism (3%), other functions (18%), and unknown protein (23%), which exhibited considerable differences in protein composition compared with droplets of S. sclerotium. In the carbohydrate metabolism group, several proteins were associated with sclerotium development, particularly fungal cell wall formation. The pathogenicity and virulence of the identified proteins are also discussed in this report. The findings of this study may improve our understanding of the function of exudate droplets as well as the life cycle and pathogenesis of S. ginseng.
Collapse
Affiliation(s)
- Dan Wang
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jun Fan Fu
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ru Jun Zhou
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zi Bo Li
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yu Jiao Xie
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
385
|
Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat Ecol Evol 2017; 1:1931-1941. [DOI: 10.1038/s41559-017-0347-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022]
|
386
|
Djemiel C, Grec S, Hawkins S. Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS) Metabarcoding during Flax Dew-Retting. Front Microbiol 2017; 8:2052. [PMID: 29104570 PMCID: PMC5655573 DOI: 10.3389/fmicb.2017.02052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
Flax dew-retting is a key step in the industrial extraction of fibers from flax stems and is dependent upon the production of a battery of hydrolytic enzymes produced by micro-organisms during this process. To explore the diversity and dynamics of bacterial and fungal communities involved in this process we applied a high-throughput sequencing (HTS) DNA metabarcoding approach (16S rRNA/ITS region, Illumina Miseq) on plant and soil samples obtained over a period of 7 weeks in July and August 2014. Twenty-three bacterial and six fungal phyla were identified in soil samples and 11 bacterial and four fungal phyla in plant samples. Dominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes (bacteria) and Ascomycota, Basidiomycota, and Zygomycota (fungi) all of which have been previously associated with flax dew-retting except for Bacteroidetes and Basidiomycota that were identified for the first time. Rare phyla also identified for the first time in this process included Acidobacteria, CKC4, Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and TM6 (bacteria), and Chytridiomycota (fungi). No differences in microbial communities and colonization dynamics were observed between early and standard flax harvests. In contrast, the common agricultural practice of swath turning affects both bacterial and fungal community membership and structure in straw samples and may contribute to a more uniform retting. Prediction of community function using PICRUSt indicated the presence of a large collection of potential bacterial enzymes capable of hydrolyzing backbones and side-chains of cell wall polysaccharides. Assignment of functional guild (functional group) using FUNGuild software highlighted a change from parasitic to saprophytic trophic modes in fungi during retting. This work provides the first exhaustive description of the microbial communities involved in flax dew-retting and will provide a valuable benchmark in future studies aiming to evaluate the effects of other parameters (e.g., year-to year and site variability etc.) on this complex process.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Simon Hawkins
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
387
|
Ah-Fong AMV, Shrivastava J, Judelson HS. Lifestyle, gene gain and loss, and transcriptional remodeling cause divergence in the transcriptomes of Phytophthora infestans and Pythium ultimum during potato tuber colonization. BMC Genomics 2017; 18:764. [PMID: 29017458 PMCID: PMC5635513 DOI: 10.1186/s12864-017-4151-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND How pathogen genomes evolve to support distinct lifestyles is not well-understood. The oomycete Phytophthora infestans, the potato blight agent, is a largely biotrophic pathogen that feeds from living host cells, which become necrotic only late in infection. The related oomycete Pythium ultimum grows saprophytically in soil and as a necrotroph in plants, causing massive tissue destruction. To learn what distinguishes their lifestyles, we compared their gene contents and expression patterns in media and a shared host, potato tuber. RESULTS Genes related to pathogenesis varied in temporal expression pattern, mRNA level, and family size between the species. A family's aggregate expression during infection was not proportional to size due to transcriptional remodeling and pseudogenization. Ph. infestans had more stage-specific genes, while Py. ultimum tended towards more constitutive expression. Ph. infestans expressed more genes encoding secreted cell wall-degrading enzymes, but other categories such as secreted proteases and ABC transporters had higher transcript levels in Py. ultimum. Species-specific genes were identified including new Pythium genes, perforins, which may disrupt plant membranes. Genome-wide ortholog analyses identified substantial diversified expression, which correlated with sequence divergence. Pseudogenization was associated with gene family expansion, especially in gene clusters. CONCLUSION This first large-scale analysis of transcriptional divergence within oomycetes revealed major shifts in genome composition and expression, including subfunctionalization within gene families. Biotrophy and necrotrophy seem determined by species-specific genes and the varied expression of shared pathogenicity factors, which may be useful targets for crop protection.
Collapse
Affiliation(s)
- Audrey M. V. Ah-Fong
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| | - Jolly Shrivastava
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
388
|
Neu E, Featherston J, Rees J, Debener T. A draft genome sequence of the rose black spot fungus Diplocarpon rosae reveals a high degree of genome duplication. PLoS One 2017; 12:e0185310. [PMID: 28981525 PMCID: PMC5628827 DOI: 10.1371/journal.pone.0185310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Black spot is one of the most severe and damaging diseases of garden roses. We present the draft genome sequence of its causative agent Diplocarpon rosae as a working tool to generate molecular markers and to analyze functional and structural characteristics of this fungus. RESULTS The isolate DortE4 was sequenced with 191x coverage of different read types which were assembled into 2457 scaffolds. By evidence supported genome annotation with the MAKER pipeline 14,004 gene models were predicted and transcriptomic data indicated that 88.5% of them are expressed during the early stages of infection. Analyses of k-mer distributions resulted in unexpectedly large genome size estimations between 72.5 and 91.4 Mb, which cannot be attributed to its repeat structure and content of transposable elements alone, factors explaining such differences in other fungal genomes. In contrast, different lines of evidences demonstrate that a huge proportion (approximately 80%) of genes are duplicated, which might indicate a whole genome duplication event. By PCR-RFLP analysis of six paralogous gene pairs of BUSCO orthologs, which are expected to be single copy genes, we could show experimentally that the duplication is not due to technical error and that not all isolates tested possess all of the paralogs. CONCLUSIONS The presented genome sequence is still a fragmented draft but contains almost the complete gene space. Therefore, it provides a useful working tool to study the interaction of D. rosae with the host and the influence of a genome duplication outside of the model yeast in the background of a phytopathogen.
Collapse
Affiliation(s)
- Enzo Neu
- Institute for Plant Genetics, Leibniz University Hannover, Hannover, Germany
| | - Jonathan Featherston
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, Pretoria, South Africa
| | - Jasper Rees
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, Pretoria, South Africa
| | - Thomas Debener
- Institute for Plant Genetics, Leibniz University Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
389
|
Nawaz MA, Rehman HM, Imtiaz M, Baloch FS, Lee JD, Yang SH, Lee SI, Chung G. Systems Identification and Characterization of Cell Wall Reassembly and Degradation Related Genes in Glycine max (L.) Merill, a Bioenergy Legume. Sci Rep 2017; 7:10862. [PMID: 28883533 PMCID: PMC5589831 DOI: 10.1038/s41598-017-11495-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Soybean is a promising biomass resource for generation of second-generation biofuels. Despite the utility of soybean cellulosic biomass and post-processing residues in biofuel generation, there is no comprehensive information available on cell wall loosening and degradation related gene families. In order to achieve enhanced lignocellulosic biomass with softened cell walls and reduced recalcitrance, it is important to identify genes involved in cell wall polymer loosening and degrading. Comprehensive genome-wide analysis of gene families involved in cell wall modifications is an efficient stratagem to find new candidate genes for soybean breeding for expanding biofuel industry. We report the identification of 505 genes distributed among 12 gene families related to cell wall loosening and degradation. 1262 tandem duplication events contributed towards expansion and diversification of studied gene families. We identified 687 Simple Sequence Repeat markers and 5 miRNA families distributed on 316 and 10 genes, respectively. Publically available microarray datasets were used to explore expression potential of identified genes in soybean plant developmental stages, 68 anatomical parts, abiotic and biotic stresses. Co-expression networks revealed transcriptional coordination of different gene families involved in cell wall loosening and degradation process.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Muhammad Imtiaz
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275, China
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, 14280, Bolu, Turkey
| | - Jeong Dong Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Soo In Lee
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, Republic of Korea.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
390
|
Rao S, Nandineni MR. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum. PLoS One 2017; 12:e0183567. [PMID: 28846714 PMCID: PMC5573122 DOI: 10.1371/journal.pone.0183567] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022] Open
Abstract
Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.
Collapse
Affiliation(s)
- Soumya Rao
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, Telangana, India
- Graduate studies, Manipal University, Manipal, Karnataka, India
| | - Madhusudan R. Nandineni
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, Telangana, India
- Laboratory of DNA Fingerprinting Services, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, Telangana, India
| |
Collapse
|
391
|
Raffaello T, Asiegbu FO. Small secreted proteins from the necrotrophic conifer pathogen Heterobasidion annosum s.l. (HaSSPs) induce cell death in Nicotiana benthamiana. Sci Rep 2017; 7:8000. [PMID: 28801666 PMCID: PMC5554239 DOI: 10.1038/s41598-017-08010-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 01/07/2023] Open
Abstract
The basidiomycete Heterobasidion annosum sensu lato (s.l.) is considered to be one of the most destructive conifer pathogens in the temperate forests of the northern hemisphere. H. annosum is characterized by a dual fungal lifestyle. The fungus grows necrotrophically on living plant cells and saprotrophically on dead wood material. In this study, we screened the H. annosum genome for small secreted proteins (HaSSPs) that could potentially be involved in promoting necrotrophic growth during the fungal infection process. The final list included 58 HaSSPs that lacked predictable protein domains. The transient expression of HaSSP encoding genes revealed the ability of 8 HaSSPs to induce cell chlorosis and cell death in Nicotiana benthamiana. In particular, one protein (HaSSP30) could induce a rapid, strong, and consistent cell death within 2 days post-infiltration. HaSSP30 also increased the transcription of host-defence-related genes in N. benthamiana, which suggested a necrotrophic-specific immune response. This is the first line of evidence demonstrating that the H. annosum genome encodes HaSSPs with the capability to induce plant cell death in a non-host plant.
Collapse
Affiliation(s)
- Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, Faculty of Agriculture and Forestry, Latokartanonkaari 7, 00014, Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, Faculty of Agriculture and Forestry, Latokartanonkaari 7, 00014, Helsinki, Finland.
| |
Collapse
|
392
|
van der Does HC, Rep M. Adaptation to the Host Environment by Plant-Pathogenic Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:427-450. [PMID: 28645233 DOI: 10.1146/annurev-phyto-080516-035551] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.
Collapse
Affiliation(s)
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, 1098XH Amsterdam, The Netherlands;
| |
Collapse
|
393
|
Kim H, Lee SJ, Jo IH, Lee J, Bae W, Kim H, Won K, Hyun TK, Ryu H. Characterization of the Rosellinia necatrix Transcriptome and Genes Related to Pathogenesis by Single-Molecule mRNA Sequencing. THE PLANT PATHOLOGY JOURNAL 2017; 33:362-369. [PMID: 28811753 PMCID: PMC5538440 DOI: 10.5423/ppj.oa.03.2017.0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/31/2017] [Accepted: 04/09/2017] [Indexed: 06/03/2023]
Abstract
White root rot disease, caused by the pathogen Rosellinia necatrix, is one of the world's most devastating plant fungal diseases and affects several commercially important species of fruit trees and crops. Recent global outbreaks of R. necatrix and advances in molecular techniques have both increased interest in this pathogen. However, the lack of information regarding the genomic structure and transcriptome of R. necatrix has been a barrier to the progress of functional genomic research and the control of this harmful pathogen. Here, we identified 10,616 novel full-length transcripts from the filamentous hyphal tissue of R. necatrix (KACC 40445 strain) using PacBio single-molecule sequencing technology. After annotation of the unigene sets, we selected 14 cell cycle-related genes, which are likely either positively or negatively involved in hyphal growth by cell cycle control. The expression of the selected genes was further compared between two strains that displayed different growth rates on nutritional media. Furthermore, we predicted pathogen-related effector genes and cell wall-degrading enzymes from the annotated gene sets. These results provide the most comprehensive transcriptomal resources for R. necatrix, and could facilitate functional genomics and further analyses of this important phytopathogen.
Collapse
Affiliation(s)
- Hyeongmin Kim
- Department of Biology, Chungbuk National University, Cheongju 28644,
Korea
| | - Seung Jae Lee
- Bioinformatics Team, DNA Link, Inc., Seoul 03721,
Korea
| | - Ick-Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709,
Korea
| | - Jinsu Lee
- Department of Biology, Chungbuk National University, Cheongju 28644,
Korea
| | - Wonsil Bae
- Department of Biology, Chungbuk National University, Cheongju 28644,
Korea
| | - Hyemin Kim
- Department of Biology, Chungbuk National University, Cheongju 28644,
Korea
| | - Kyungho Won
- Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Naju 58126,
Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644,
Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644,
Korea
| |
Collapse
|
394
|
Abstract
Fungi are among the dominant causal agents of plant diseases. To colonize plants and cause disease, pathogenic fungi use diverse strategies. Some fungi kill their hosts and feed on dead material (necrotrophs), while others colonize the living tissue (biotrophs). For successful invasion of plant organs, pathogenic development is tightly regulated and specialized infection structures are formed. To further colonize hosts and establish disease, fungal pathogens deploy a plethora of virulence factors. Depending on the infection strategy, virulence factors perform different functions. While basically all pathogens interfere with primary plant defense, necrotrophs secrete toxins to kill plant tissue. In contrast, biotrophs utilize effector molecules to suppress plant cell death and manipulate plant metabolism in favor of the pathogen. This article provides an overview of plant pathogenic fungal species and the strategies they use to cause disease.
Collapse
|
395
|
Abstract
Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.
Collapse
|
396
|
Hilton A, Zhang H, Yu W, Shim WB. Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane. THE PLANT PATHOLOGY JOURNAL 2017; 33:238-248. [PMID: 28592943 PMCID: PMC5461043 DOI: 10.5423/ppj.oa.02.2017.0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 05/21/2023]
Abstract
Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-1α gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.
Collapse
Affiliation(s)
- Angelyn Hilton
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843-2132,
USA
| | - Huanming Zhang
- Bioenvironmental Science, Texas A&M University, College Station, TX 77843-2132,
USA
| | - Wenying Yu
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, People’s Republic of
China
| | - Won-Bo Shim
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843-2132,
USA
- Bioenvironmental Science, Texas A&M University, College Station, TX 77843-2132,
USA
- Corresponding author: Phone) +1-979-458-2190, FAX) +1-979-845-6483, E-mail)
| |
Collapse
|
397
|
Gui YJ, Chen JY, Zhang DD, Li NY, Li TG, Zhang WQ, Wang XY, Short DPG, Li L, Guo W, Kong ZQ, Bao YM, Subbarao KV, Dai XF. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environ Microbiol 2017; 19:1914-1932. [PMID: 28205292 DOI: 10.1111/1462-2920.13695] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Glycoside hydrolase 12 (GH12) proteins act as virulence factors and pathogen-associated molecular patterns (PAMPs) in oomycetes. However, the pathogenic mechanisms of fungal GH12 proteins have not been characterized. In this study, we demonstrated that two of the six GH12 proteins produced by the fungus Verticillium dahliae Vd991, VdEG1 and VdEG3 acted as PAMPs to trigger cell death and PAMP-triggered immunity (PTI) independent of their enzymatic activity in Nicotiana benthamiana. A 63-amino-acid peptide of VdEG3 was sufficient for cell death-inducing activity, but this was not the case for the corresponding peptide of VdEG1. Further study indicated that VdEG1 and VdEG3 trigger PTI in different ways: BAK1 is required for VdEG1- and VdEG3-triggered immunity, while SOBIR1 is specifically required for VdEG1-triggered immunity in N. benthamiana. Unlike oomycetes, which employ RXLR effectors to suppress host immunity, a carbohydrate-binding module family 1 (CBM1) protein domain suppressed GH12 protein-induced cell death. Furthermore, during infection of N. benthamiana and cotton, VdEG1 and VdEG3 acted as PAMPs and virulence factors, respectively indicative of host-dependent molecular functions. These results suggest that VdEG1 and VdEG3 associate differently with BAK1 and SOBIR1 receptor-like kinases to trigger immunity in N. benthamiana, and together with CBM1-containing proteins manipulate plant immunity.
Collapse
Affiliation(s)
- Yue-Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Nan-Yang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wen-Qi Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin-Yan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dylan P G Short
- Department of Plant Pathology, University of California, Davis, United States of America
| | - Lei Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Guo
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu-Ming Bao
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, United States of America
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
398
|
Sarrocco S, Matarese F, Baroncelli R, Vannacci G, Seidl-Seiboth V, Kubicek CP, Vergara M. The Constitutive Endopolygalacturonase TvPG2 Regulates the Induction of Plant Systemic Resistance by Trichoderma virens. PHYTOPATHOLOGY 2017; 107:537-544. [PMID: 28095207 DOI: 10.1094/phyto-03-16-0139-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Trichoderma spp. are opportunistic fungi some of which are commonly present in the rhizosphere. Several species, such as T. virens, are also efficient biocontrol agents against phytopathogenic fungi and exert beneficial effects on plants. These effects are the consequence of interactions between Trichoderma and plant roots, which trigger enhanced plant growth and induce plant resistance. We have previously shown that T. virens I10 expresses two endopolygalacturonase genes, tvpg1 and tvpg2, during the interaction with plant roots; tvpg1 is inducible while tvpg2 is constitutively transcribed. Using the same system, the tomato polygalacturonase-inhibitor gene Lepgip1 was induced at the same time as tvpg1. Here we show by gene disruption that TvPG2 performs a regulatory role on the inducible tvpg1 gene and in triggering the plant immune response. A tvpg2-knockout strain fails to transcribe the inducible tvpg1 gene in neither in vitro in inducing media containing pectin or plant cell walls, nor during the in vivo interaction with tomato roots. Likewise, the in vivo induction of Lepgip1 does not occur, and its defense against the pathogen Botrytis cinerea is significantly reduced. Our data prove the importance of a T. virens constitutively produced endopolygalacturonase in eliciting plant induced systemic resistance against pathogenic fungi.
Collapse
Affiliation(s)
- Sabrina Sarrocco
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Fabiola Matarese
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Riccardo Baroncelli
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giovanni Vannacci
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Verena Seidl-Seiboth
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Christian Peter Kubicek
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Mariarosaria Vergara
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
399
|
da Rosa-Garzon NG, Laure HJ, Souza-Motta CMD, Rosa JC, Cabral H. Medium pH in submerged cultivation modulates differences in the intracellular protein profile of Fusarium oxysporum. Prep Biochem Biotechnol 2017; 47:664-672. [DOI: 10.1080/10826068.2017.1303610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nathália Gonsales da Rosa-Garzon
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hélen Julie Laure
- School of Medicine of Ribeirão Preto, Department of Molecular and Cellular Biology and Pathogenic Bioagents, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - José César Rosa
- School of Medicine of Ribeirão Preto, Department of Molecular and Cellular Biology and Pathogenic Bioagents, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hamilton Cabral
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
400
|
Sun Q, Sun Y, Juzenas K. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2231-2244. [PMID: 28398585 PMCID: PMC5447876 DOI: 10.1093/jxb/erx103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Biology, University of Wisconsin, Stevens Point, WI 54481, USA
| | - Yuliang Sun
- School of Medicine, Boston University, Boston, MA 02118, USA
| | - Kevin Juzenas
- Department of Biology, University of Wisconsin, Stevens Point, WI 54481, USA
| |
Collapse
|