351
|
Sebollela A, Cline EN, Popova I, Luo K, Sun X, Ahn J, Barcelos MA, Bezerra VN, Lyra E Silva NM, Patel J, Pinheiro NR, Qin LA, Kamel JM, Weng A, DiNunno N, Bebenek AM, Velasco PT, Viola KL, Lacor PN, Ferreira ST, Klein WL. A human scFv antibody that targets and neutralizes high molecular weight pathogenic amyloid-β oligomers. J Neurochem 2017; 142:934-947. [PMID: 28670737 PMCID: PMC5752625 DOI: 10.1111/jnc.14118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 12/21/2022]
Abstract
Brain accumulation of soluble oligomers of the amyloid-β peptide (AβOs) is increasingly considered a key early event in the pathogenesis of Alzheimer's disease (AD). A variety of AβO species have been identified, both in vitro and in vivo, ranging from dimers to 24mers and higher order oligomers. However, there is no consensus in the literature regarding which AβO species are most germane to AD pathogenesis. Antibodies capable of specifically recognizing defined subpopulations of AβOs would be a valuable asset in the identification, isolation, and characterization of AD-relevant AβO species. Here, we report the characterization of a human single chain antibody fragment (scFv) denoted NUsc1, one of a number of scFvs we have identified that stringently distinguish AβOs from both monomeric and fibrillar Aβ. NUsc1 readily detected AβOs previously bound to dendrites in cultured hippocampal neurons. In addition, NUsc1 blocked AβO binding and reduced AβO-induced neuronal oxidative stress and tau hyperphosphorylation in cultured neurons. NUsc1 further distinguished brain extracts from AD-transgenic mice from wild type (WT) mice, and detected endogenous AβOs in fixed AD brain tissue and AD brain extracts. Biochemical analyses indicated that NUsc1 targets a subpopulation of AβOs with apparent molecular mass greater than 50 kDa. Results indicate that NUsc1 targets a particular AβO species relevant to AD pathogenesis, and suggest that NUsc1 may constitute an effective tool for AD diagnostics and therapeutics.
Collapse
Affiliation(s)
- Adriano Sebollela
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Erika N Cline
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Izolda Popova
- Recombinant Protein Production Core (rPPC), Northwestern University, Evanston, Illinois, USA
| | - Kevin Luo
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Xiaoxia Sun
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Jay Ahn
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Milena A Barcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vanessa N Bezerra
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jason Patel
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Nathalia R Pinheiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lei A Qin
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Josette M Kamel
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Anthea Weng
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Nadia DiNunno
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Adrian M Bebenek
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
- Illinois Math and Science Academy, Aurora, Illinois, USA
| | - Pauline T Velasco
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kirsten L Viola
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Pascale N Lacor
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - William L Klein
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
352
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
353
|
Woitok M, Klose D, Di Fiore S, Richter W, Stein C, Gresch G, Grieger E, Barth S, Fischer R, Kolberg K, Niesen J. Comparison of a mouse and a novel human scFv-SNAP-auristatin F drug conjugate with potent activity against EGFR-overexpressing human solid tumor cells. Onco Targets Ther 2017; 10:3313-3327. [PMID: 28740407 PMCID: PMC5505605 DOI: 10.2147/ott.s140492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antibody–drug conjugates (ADCs) can deliver toxins to specific targets such as tumor cells. They have shown promise in preclinical/clinical development but feature stoichiometrically undefined chemical linkages, and those based on full-size antibodies achieve only limited tumor penetration. SNAP-tag technology can overcome these challenges by conjugating benzylguanine-modified toxins to single-chain fragment variables (scFvs) with 1:1 stoichiometry while preserving antigen binding. Two (human and mouse) scFv-SNAP fusion proteins recognizing the epidermal growth factor receptor (EGFR) were expressed in HEK 293T cells. The purified fusion proteins were conjugated to auristatin F (AURIF). Binding activity was confirmed by flow cytometry/immunohistochemistry, and cytotoxic activity was confirmed by cell viability/apoptosis and cell cycle arrest assays, and a novel microtubule dynamics disassembly assay was performed. Both ADCs bound specifically to their target cells in vitro and ex vivo, indicating that the binding activity of the scFv-SNAP fusions was unaffected by conjugation to AURIF. Cytotoxic assays confirmed that the ADCs induced apoptosis and cell cycle arrest at nanomolar concentrations and microtubule disassembly. The SNAP-tag technology provides a platform for the development of novel ADCs with defined conjugation sites and stoichiometry. We achieved the stable and efficient linkage of AURIF to human or murine scFvs using the SNAP-tag technology, offering a strategy to improve the development of personalized medicines.
Collapse
Affiliation(s)
- Mira Woitok
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany.,Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Diana Klose
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | | | - Christoph Stein
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Gerrit Gresch
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Elena Grieger
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany.,Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Katharina Kolberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| |
Collapse
|
354
|
Abstract
The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described.
Collapse
|
355
|
Generation of a rabbit single-chain fragment variable (scFv) antibody for specific detection of Bradyrhizobium sp. DOA9 in both free-living and bacteroid forms. PLoS One 2017; 12:e0179983. [PMID: 28654662 PMCID: PMC5487062 DOI: 10.1371/journal.pone.0179983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant-microbe interactions in the future.
Collapse
|
356
|
Giudicelli V, Duroux P, Kossida S, Lefranc MP. IG and TR single chain fragment variable (scFv) sequence analysis: a new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST. BMC Immunol 2017; 18:35. [PMID: 28651553 PMCID: PMC5485737 DOI: 10.1186/s12865-017-0218-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/16/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. METHODS The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. RESULTS For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available. CONCLUSION The "Analysis of single chain Fragment variable (scFv)" implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.
Collapse
Affiliation(s)
- Véronique Giudicelli
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France.
| | - Patrice Duroux
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France.
| | - Sofia Kossida
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France.
| | - Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France.
| |
Collapse
|
357
|
Mala J, Puthong S, Maekawa H, Kaneko Y, Palaga T, Komolpis K, Sooksai S. Construction and sequencing analysis of scFv antibody fragment derived from monoclonal antibody against norfloxacin (Nor155). J Genet Eng Biotechnol 2017; 15:69-76. [PMID: 30647643 PMCID: PMC6296615 DOI: 10.1016/j.jgeb.2017.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/19/2017] [Indexed: 11/20/2022]
Abstract
Norfloxacin belongs to the group of fluoroquinolone antibiotics which has been approved for treatment in animals. However, its residues in animal products can pose adverse side effects to consumer. Therefore, detection of the residue in different food matrices must be concerned. In this study, a single chain variable fragment (scFv) that recognizes norfloxacin antibiotic was constructed. The cDNA was synthesized from total RNA of hybridoma cells against norfloxacin. Genes encoding VH and VL regions of monoclonal antibody against norfloxacin (Nor155) were amplified and size of VH and VL fragments was 402 bp and 363 bp, respectively. The scFv of Nor155 was constructed by an addition of (Gly4Ser)3 as a linker between VH and VL regions and subcloned into pPICZαA, an expression vector of Pichia pastoris. The sequence of scFv Nor155 (GenBank No. AJG06891.1) was confirmed by sequencing analysis. The complementarity determining regions (CDR) I, II, and III of VH and VL were specified by Kabat method. The obtained recombinant plasmid will be useful for production of scFv antibody against norfloxacin in P. pastoris and further engineer scFv antibody against fluoroquinolone antibiotics.
Collapse
Affiliation(s)
- J. Mala
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - S. Puthong
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - H. Maekawa
- Yeast Genetic Resources Laboratory, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Y. Kaneko
- Yeast Genetic Resources Laboratory, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - T. Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - K. Komolpis
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - S. Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
358
|
Zhao P, Atanackovic D, Dong S, Yagita H, He X, Chen M. An Anti-Programmed Death-1 Antibody (αPD-1) Fusion Protein That Self-Assembles into a Multivalent and Functional αPD-1 Nanoparticle. Mol Pharm 2017; 14:1494-1500. [PMID: 28343398 DOI: 10.1021/acs.molpharmaceut.6b01021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer immune checkpoint therapy has achieved remarkable clinical successes in various cancers. However, current immune checkpoint inhibitors block the checkpoint of not only the immune cells that are important to cancer therapy but also the immune cells that are irrelevant to the therapy. Such an indiscriminate blockade limits the efficacy and causes the autoimmune toxicity of the therapy. It might be beneficial to use a carrier to target immune checkpoint inhibitors to cancer-reactive immune cells. Here, we explore a method to load the inhibitors into carriers. We used the anti-programmed death-1 antibody (αPD-1) as a model immune checkpoint inhibitor. First, we generated a recombinant single-chain variable fragment (scFv) of αPD-1. Then, we designed and generated a fusion protein consisting of the scFv and an amphiphilic immune-tolerant elastin-like polypeptide (iTEP). Because of the amphiphilic iTEP, the fusion was able to self-assemble into a nanoparticle (NP). The NP was proved to block the PD-1 immune checkpoint in vitro and in vivo. Particularly, the NP exacerbated diabetes development in nonobese diabetic mice as effectively as natural, intact αPD-1. In summary, we successfully expressed αPD-1 as a recombinant protein and linked αPD-1 to a NP, which lays a foundation to develop a delivery system to target αPD-1 to a subpopulation of immune cells.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah , Salt Lake City, Utah 84112, United States
| | - Djordje Atanackovic
- University of Utah School of Medicine , Salt Lake City, Utah 84112, United States
| | - Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah , Salt Lake City, Utah 84112, United States
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine , Tokyo, Japan
| | - Xiao He
- Department of Pathology, The University of Utah , Salt Lake City, Utah 84112, United States
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
359
|
de Carvalho WJ, Fujimura PT, Bonetti AM, Goulart LR, Cloonan K, da Silva NM, Araújo ECB, Ueira-Vieira C, Leal WS. Characterization of antennal sensilla, larvae morphology and olfactory genes of Melipona scutellaris stingless bee. PLoS One 2017; 12:e0174857. [PMID: 28423045 PMCID: PMC5396885 DOI: 10.1371/journal.pone.0174857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/16/2017] [Indexed: 01/31/2023] Open
Abstract
There is growing evidence in the literature suggesting that caste differentiation in the stingless bee, Melipona scutellaris, and other bees in the genus Melipona, is triggered by environmental signals, particularly a primer pheromone. With the proper amount of food and a chemical stimulus, 25% of females emerge as queens, in agreement with a long-standing “two loci/two alleles model” proposed in the 1950s. We surmised that these larvae must be equipped with an olfactory system for reception of these chemical signals. Here we describe for the first time the diversity of antennal sensilla in adults and the morphology of larvae of M. scutellaris. Having found evidence for putative olfactory sensilla in larvae, we next asked whether olfactory proteins were expressed in larvae. Since the molecular basis of M. scutellaris is still unknown, we cloned olfactory genes encoding chemosensory proteins (CSP) and odorant-binding proteins (OBPs) using M. scutellaris cDNA template and primers designed on the basis CSPs and OBPs previously reported from the European honeybee, Apis mellifera. We cloned two CSP and two OBP genes and then attempted to express the proteins encoded by these genes. With a recombinant OBP, MscuOBP8, and a combinatorial single-chain variable fragment antibody library, we generated anti-MscuOBP8 monoclonal antibody. By immunohistochemistry we demonstrated that the anti-MscuOBP8 binds specifically to the MscuOBP8. Next, we found evidence that MscuOBP8 is expressed in M. scutellaris larvae and it is located in the mandibular region, thus further supporting the hypothesis of olfactory function in immature stages. Lastly, molecular modeling suggests that MscuOBP8 may function as a carrier of primer pheromones or other ligands.
Collapse
Affiliation(s)
- Washington João de Carvalho
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, United States of America
- Laboratório de Genética, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Patrícia Tieme Fujimura
- Laboratório de Genética, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Ana Maria Bonetti
- Laboratório de Genética, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, United States of America
| | - Kevin Cloonan
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, United States of America
| | - Neide Maria da Silva
- Laboratório de Immunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Ester Cristina Borges Araújo
- Laboratório de Immunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Carlos Ueira-Vieira
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, United States of America
- Laboratório de Genética, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Walter S. Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
360
|
Bandehpour M, Yarian F, Ahangarzadeh S. Bioinformatics evaluation of novel ribosome display-selected single chain variable fragment (scFv) structure with factor H binding protein through docking. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibodies play a significant role in the immunotherapy, basic research and the pharmaceutical industry. Nowadays, both DNA recombinant technology and antibody engineering technology are widely used in many fields such as diagnostics, therapeutics, drug targeted delivery, and research reagents. Computational docking of antigen-antibody complexes and analysis of atomic interactions are important to find effective B-cell epitopes and new antibodies with appropriate properties. In the present study, by using ClusPro 2.0 webserver, docking the antigen (factor H binding protein (fHbp)) to the novel-selected scFv antibody was performed. By analyzing the fHbp-scFv complexes, important amino acids were identified. After docking, peptides Ala192-His198, Asp 211-216, and Gly229-Ser228 of the fHbp antigen were recognized as essential interactive regions to the scFv antibody. Results obtained from our bioinformatics study are important and give us the basis for the favored designs of new molecules such as effective B-cell epitopes targeted by neutralizing antibodies for vaccine design.
Collapse
Affiliation(s)
- Mojgan Bandehpour
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Ahangarzadeh
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
361
|
Ising C, Gallardo G, Leyns CEG, Wong CH, Jiang H, Stewart F, Koscal LJ, Roh J, Robinson GO, Remolina Serrano J, Holtzman DM. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J Exp Med 2017; 214:1227-1238. [PMID: 28416651 PMCID: PMC5413341 DOI: 10.1084/jem.20162125] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
Ising et al. report expression of anti-tau scFvs in the brain of a mouse model of tauopathy by AAV-mediated gene transfer. Treated mice show markedly decreased tau hyperphosphorylation and detergent-soluble tau species. Therefore, the Fc domain is not required to mediate effects in tauopathy. Tauopathies are characterized by the progressive accumulation of hyperphosphorylated, aggregated forms of tau. Our laboratory has previously demonstrated that passive immunization with an anti-tau antibody, HJ8.5, decreased accumulation of pathological tau in a human P301S tau-expressing transgenic (P301S-tg) mouse model of frontotemporal dementia/tauopathy. To investigate whether the Fc domain of HJ8.5 is required for the therapeutic effect, we engineered single-chain variable fragments (scFvs) derived from HJ8.5 with variable linker lengths, all specific to human tau. Based on different binding properties, we selected two anti-tau scFvs and tested their efficacy in vivo by adeno-associated virus–mediated gene transfer to the brain of P301S-tg mice. The scFvs significantly reduced levels of hyperphosphorylated, aggregated tau in brain tissue of P301S-tg mice, associated with a decrease in detergent-soluble tau species. Interestingly, these mice showed substantial levels of scFvs in the cerebrospinal fluid without significant effects on total extracellular tau levels. Therefore, our study provides a novel strategy for anti-tau immunotherapeutics that potentially limits a detrimental proinflammatory response.
Collapse
Affiliation(s)
- Christina Ising
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Gilbert Gallardo
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Cheryl E G Leyns
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Connie H Wong
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | | | - Floy Stewart
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Lauren J Koscal
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Joseph Roh
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Grace O Robinson
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Javier Remolina Serrano
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| |
Collapse
|
362
|
Saeed AFUH, Wang R, Ling S, Wang S. Antibody Engineering for Pursuing a Healthier Future. Front Microbiol 2017; 8:495. [PMID: 28400756 PMCID: PMC5368232 DOI: 10.3389/fmicb.2017.00495] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans.
Collapse
Affiliation(s)
- Abdullah F U H Saeed
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
363
|
Tohidkia MR, Sepehri M, Khajeh S, Barar J, Omidi Y. Improved Soluble ScFv ELISA Screening Approach for Antibody Discovery Using Phage Display Technology. SLAS DISCOVERY 2017; 22:1026-1034. [PMID: 28346811 DOI: 10.1177/2472555217701059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phage display technology (PDT) is a powerful tool for the isolation of recombinant antibody (Ab) fragments. Using PDT, target molecule-specific phage-Ab clones are enriched through the "biopanning" process. The individual specific binders are screened by the monoclonal scFv enzyme-linked immunosorbent assay (ELISA) that may associate with inevitable false-negative results. Thus, in this study, three strategies were investigated for optimization of the scFvs screening using Tomlinson I and J libraries, including (1) optimizing the expression of functional scFvs, (2) improving the sensitivity of ELISA, and (3) preparing different samples containing scFvs. The expression of all scFv Abs was significantly enhanced when scFv clones were cultivated in the terrific broth (TB) medium at the optimum temperature of 30 °C. The protein A-conjugated with horseradish peroxidase (HRP) was found to be a well-suited reagent for the detection of Ag-bound scFvs in comparison with either anti-c-myc Ab or the mixing procedure. Based on our findings, it seems there is no universal media supplement for an improved expression of all scFvs derived from both Tomlinson I and J libraries. We thus propose that expression of scFv fragments in a microplate scale is largely dependent on a variety of parameters, in particular the scFv clones and relevant sequences.
Collapse
Affiliation(s)
- Mohammad R Tohidkia
- 1 Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sepehri
- 1 Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Shirin Khajeh
- 1 Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- 1 Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- 1 Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
364
|
The Five Immune Forces Impacting DNA-Based Cancer Immunotherapeutic Strategy. Int J Mol Sci 2017; 18:ijms18030650. [PMID: 28304339 PMCID: PMC5372662 DOI: 10.3390/ijms18030650] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022] Open
Abstract
DNA-based vaccine strategy is increasingly realized as a viable cancer treatment approach. Strategies to enhance immunogenicity utilizing tumor associated antigens have been investigated in several pre-clinical and clinical studies. The promising outcomes of these studies have suggested that DNA-based vaccines induce potent T-cell effector responses and at the same time cause only minimal side-effects to cancer patients. However, the immune evasive tumor microenvironment is still an important hindrance to a long-term vaccine success. Several options are currently under various stages of study to overcome immune inhibitory effect in tumor microenvironment. Some of these approaches include, but are not limited to, identification of neoantigens, mutanome studies, designing fusion plasmids, vaccine adjuvant modifications, and co-treatment with immune-checkpoint inhibitors. In this review, we follow a Porter’s analysis analogy, otherwise commonly used in business models, to analyze various immune-forces that determine the potential success and sustainable positive outcomes following DNA vaccination using non-viral tumor associated antigens in treatment against cancer.
Collapse
|
365
|
Rezaei G, Habibi-Anbouhi M, Mahmoudi M, Azadmanesh K, Moradi-Kalbolandi S, Behdani M, Ghazizadeh L, Abolhassani M, Shokrgozar MA. Development of anti-CD47 single-chain variable fragment targeted magnetic nanoparticles for treatment of human bladder cancer. Nanomedicine (Lond) 2017; 12:597-613. [DOI: 10.2217/nnm-2016-0302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To develop a novel anti-CD47 single-chain variable fragment (scFv) functionalized magnetic nanoparticles (MNPs) for targeting bladder cell lines and its applicability in thermotherapy. Material & methods: An immunized murine antibody phage display library was constructed and screened to isolate anti-CD47 binders. A scFv was selected and conjugated to MNPs which was then utilized to discriminate CD47+ bladder cells along with assessing its efficacy in thermotherapy. Results: An scFv with high affinity to bladder cells was efficiently conjugated to MNPs. Following a hyperthermia treatment, the function of scFv–MNP conjugates led to a considerable reduction in cell viability. Conclusion: The anti-CD47 scFv–MNP conjugate was an effective cancer cell thermotherapy tool that might pave the way for development of bionano-based targeting techniques in both early detection and treatment of cancer.
Collapse
Affiliation(s)
- Gashin Rezaei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | | - Morteza Mahmoudi
- Nanotechnology Research Center & Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155–6451, Iran
| | - Kayhan Azadmanesh
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahdi Behdani
- Immunology Department, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Ghazizadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Abolhassani
- Immunology Department, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
366
|
Anti-Proliferative Effects of Human Anti-FZD7 Single Chain Antibodies on Colorectal Cancer Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.5812/semj.45219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
367
|
Nejatollahi F, Bayat P, Moazen B. Cell growth inhibition and apoptotic effects of a specific anti-RTFscFv antibody on prostate cancer, but not glioblastoma, cells. F1000Res 2017; 6:156. [PMID: 28491282 PMCID: PMC5399964 DOI: 10.12688/f1000research.10803.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 01/04/2023] Open
Abstract
Background: Single chain antibody (scFv) has shown interesting results in cancer immunotargeting approaches, due to its advantages over monoclonal antibodies. Regeneration and tolerance factor (RTF) is one of the most important regulators of extracellular and intracellular pH in eukaryotic cells. In this study, the inhibitory effects of a specific anti-RTF scFv were investigated and compared between three types of prostate cancer and two types of glioblastoma cells.
Methods: A phage antibody display library of scFv was used to select specific scFvs against RTF using panning process. The reactivity of a selected scFv was assessed by phage ELISA. The anti-proliferative and apoptotic effects of the antibody on prostate cancer (PC-3, Du-145 and LNCaP) and glioblastoma (U-87 MG and A-172) cell lines were investigated by MTT and Annexin V/PI assays.
Results: A specific scFv with frequency 35% was selected against RTF epitope. This significantly inhibited the proliferation of the prostate cells after 24 h. The percentages of cell viability (using 1000 scFv/cell) were 52, 61 and 73% for PC-3, Du-145 and LNCaP cells, respectively, compared to untreated cells. The antibody (1000 scFv/cell) induced apoptosis at 50, 40 and 25% in PC-3, Du-145 and LNCaP cells, respectively. No growth inhibition and apoptotic induction was detected for U-87 and A172 glioblastoma cells.
Conclusions: Anti-RTFscFv significantly reduced the proliferation of the prostate cancer cells. The inhibition of cell growth and apoptotic induction effects in PC-3 cells were greater than Du-145 and LNCaP cells. This might be due to higher expression of RTF antigen in PC-3 cells and/or better accessibility of RTF to scFv antibody. The resistance of glioblastoma cells to anti-RTF scFv offers the existence of mechanism(s) that abrogate the inhibitory effect(s) of the antibody to RTF. The results suggest that the selected anti-RTF scFv antibody could be an effective new alternative for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Foroogh Nejatollahi
- Shiraz HIV/AIDS research center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Recombinant Antibody Laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payam Bayat
- Recombinant Antibody Laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Moazen
- Shiraz HIV/AIDS research center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Recombinant Antibody Laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
368
|
Rukkawattanakul T, Sookrung N, Seesuay W, Onlamoon N, Diraphat P, Chaicumpa W, Indrawattana N. Human scFvs That Counteract Bioactivities of Staphylococcus aureus TSST-1. Toxins (Basel) 2017; 9:toxins9020050. [PMID: 28218671 PMCID: PMC5331430 DOI: 10.3390/toxins9020050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/09/2017] [Indexed: 11/16/2022] Open
Abstract
Some Staphylococcus aureus isolates produced toxic shock syndrome toxin-1 (TSST-1) which is a pyrogenic toxin superantigen (PTSAg). The toxin activates a large fraction of peripheral blood T lymphocytes causing the cells to proliferate and release massive amounts of pro-inflammatory cytokines leading to a life-threatening multisystem disorder: toxic shock syndrome (TSS). PTSAg-mediated-T cell stimulation circumvents the conventional antigenic peptide presentation to T cell receptor (TCR) by the antigen-presenting cell (APC). Instead, intact PTSAg binds directly to MHC-II molecule outside peptide binding cleft and simultaneously cross-links TCR-Vβ region. Currently, there is neither specific TSS treatment nor drug that directly inactivates TSST-1. In this study, human single chain antibodies (HuscFvs) that bound to and neutralized bioactivities of the TSST-1 were generated using phage display technology. Three E. coli clones transfected with TSST-1-bound phages fished-out from the human scFv library using recombinant TSST-1 as bait expressed TSST-1-bound-HuscFvs that inhibited the TSST-1-mediated T cell activation and pro-inflammatory cytokine gene expressions and productions.Computerized simulation, verified by mutations of the residues of HuscFv complementarity determining regions (CDRs),predicted to involve in target binding indicated that the HuscFvs formed interface contact with the toxin residues important for immunopathogenesis. The HuscFvs have high potential for future therapeutic application.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Bacterial Toxins/antagonists & inhibitors
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Cell Surface Display Techniques
- Cells, Cultured
- Cytokines/metabolism
- Enterotoxins/antagonists & inhibitors
- Enterotoxins/genetics
- Enterotoxins/immunology
- Enterotoxins/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Histocompatibility Antigens Class II/metabolism
- Host-Pathogen Interactions
- Humans
- Inflammation Mediators/metabolism
- Lymphocyte Activation/drug effects
- Mutation
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Shock, Septic/immunology
- Shock, Septic/metabolism
- Shock, Septic/microbiology
- Shock, Septic/prevention & control
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/metabolism
- Single-Chain Antibodies/pharmacology
- Staphylococcal Infections/immunology
- Staphylococcal Infections/metabolism
- Staphylococcal Infections/microbiology
- Staphylococcal Infections/prevention & control
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/genetics
- Staphylococcus aureus/immunology
- Staphylococcus aureus/metabolism
- Superantigens/genetics
- Superantigens/immunology
- Superantigens/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/microbiology
Collapse
Affiliation(s)
- Thunchanok Rukkawattanakul
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Watee Seesuay
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Nattawat Onlamoon
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Pornphan Diraphat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
369
|
Morita I, Oyama H, Yasuo M, Matsuda K, Katagi K, Ito A, Tatsuda H, Tanaka H, Morimoto S, Kobayashi N. Antibody Fragments for On-Site Testing of Cannabinoids Generated via in Vitro Affinity Maturation. Biol Pharm Bull 2017; 40:174-181. [PMID: 28154257 DOI: 10.1248/bpb.b16-00669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Law enforcement against illicit use of cannabis and related substances requires rapid, feasible, and reliable tools for on-site testing of cannabinoids. Notably, methods based on cannabinoid-specific antibodies enable efficient screening of multiple specimens. Antibody engineering may accelerate development of modern and robust testing systems. Here, we used in vitro affinity maturation to generate a single-chain Fv fragment (scFv) that recognizes with high affinity the psychoactive cannabinoid, Δ9-tetrahydrocannabinol (THC). A mouse monoclonal antibody against THC, Ab-THC#33, with Ka 6.2×107 M-1 (as Fab fragment) was established by the hybridoma technique. Then, a "wild-type" scFv (wt-scFv) with Ka, 1.1×107 M-1 was prepared by bacterial expression of a fusion gene combining the VH and VL genes for Ab-THC#33. Subsequently, random point mutations in VH and VL were generated separately, and the resulting products were assembled into mutant scFv genes, which were then phage-displayed. Repeated panning identified a mutant scFv (scFv#m1-36) with 10-fold enhanced affinity (Ka 1.1×108 M-1) for THC, in which only a single conservative substitution (Ser50Thr) was present at the N-terminus of the VH-complementarity-determining region 2 (CDR2) sequence. In competitive enzyme-linked immunosorbent assay (ELISA), the mutant scFv generated dose-response curves with midpoint 0.27 ng/assay THC, which was 3-fold lower than that of wt-scFv. Even higher reactivity with a major THC metabolite, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol, indicated that the mutant scFv will be useful for testing not only THC in confiscated materials, but also the metabolite in urine. Indeed, the antibody fragment is potentially suitable for use in advanced on-site testing platforms for cannabinoids.
Collapse
|
370
|
Yang N, Yao N, Liao X, Xie X, Wu Y, Fan C, Zhao J, Li G. Effects of metal ions on the structure and activity of a human anti-cyclin D1 single-chain variable fragment AD5. Mol Med Rep 2017. [PMID: 28627625 PMCID: PMC5561975 DOI: 10.3892/mmr.2017.6756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cyclin D1 has become a potential target for anti-tumor therapy. Recently, a novel human anti-cyclin D1 single-chain variable fragment (AD5) was identified, which demonstrated specific binding activity to cyclin D1 and exhibited anti-tumor effects. However, the detailed characteristics of AD5 remain unclear. In the present study, the structure and activity of AD5 in the presence of copper II (Cu2+) or iron III (Fe3+) metal ions was investigated by fluorescence spectroscopy, synchronous fluorescence and enzyme-linked immunosorbent assay. Cu2+ and Fe3+ were able to bind to AD5 and quench the fluorescence intensity of AD5 primarily by static quenching, which slightly altered the conformation of AD5 at temperatures of 293, 298 and 303 K; however, these temperatures demonstrated different effects on the activity of AD5. These results may be of value for the clinical application of anti-cyclin D1 single chain antibodies in the future.
Collapse
|
371
|
Vallet-Courbin A, Larivière M, Hocquellet A, Hemadou A, Parimala SN, Laroche-Traineau J, Santarelli X, Clofent-Sanchez G, Jacobin-Valat MJ, Noubhani A. A Recombinant Human Anti-Platelet scFv Antibody Produced in Pichia pastoris for Atheroma Targeting. PLoS One 2017; 12:e0170305. [PMID: 28125612 PMCID: PMC5268420 DOI: 10.1371/journal.pone.0170305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/03/2017] [Indexed: 11/18/2022] Open
Abstract
Cells of the innate and adaptive immune system are key factors in the progression of atherosclerotic plaque, leading to plaque instability and rupture, potentially resulting in acute atherothrombotic events such as coronary artery disease, cerebrovascular disease and peripheral arterial disease. Here, we describe the cloning, expression, purification, and immunoreactivity assessment of a recombinant single-chain variable fragment (scFv) derived from a human anti-αIIbβ3 antibody (HuAb) selected to target atheromatous lesions for the presence of platelets. Indeed, platelets within atheroma plaques have been shown to play a role in inflammation, in platelet-leucocyte aggregates and in thrombi formation and might thus be considered relevant biomarkers of atherosclerotic progression. The DNA sequence that encodes the anti-αIIbβ3 TEG4 scFv previously obtained from a phage-display selection on activated platelets, was inserted into the eukaryote vector (pPICZαA) in fusion with a tag sequence encoding 2 cysteines useable for specific probes grafting experiments. The recombinant protein was expressed at high yields in Pichia pastoris (30 mg/L culture). The advantage of P. pastoris as an expression system is the production and secretion of recombinant proteins in the supernatant, ruling out the difficulties encountered when scFv are produced in the cytoplasm of bacteria (low yield, low solubility and reduced affinity). The improved conditions allowed for the recovery of highly purified and biologically active scFv fragments ready to be grafted in a site-directed way to nanoparticles for the imaging of atherosclerotic plaques involving inflammatory processes and thus at high risk of instability.
Collapse
Affiliation(s)
| | - Mélusine Larivière
- Centre de Résonance Magnétique de Systèmes Biologiques, Centre Nationale de Recherche Scientifique et Université de Bordeaux, Bordeaux, France
| | | | - Audrey Hemadou
- Centre de Résonance Magnétique de Systèmes Biologiques, Centre Nationale de Recherche Scientifique et Université de Bordeaux, Bordeaux, France
| | | | - Jeanny Laroche-Traineau
- Centre de Résonance Magnétique de Systèmes Biologiques, Centre Nationale de Recherche Scientifique et Université de Bordeaux, Bordeaux, France
| | | | - Gisèle Clofent-Sanchez
- Centre de Résonance Magnétique de Systèmes Biologiques, Centre Nationale de Recherche Scientifique et Université de Bordeaux, Bordeaux, France
| | - Marie-Josée Jacobin-Valat
- Centre de Résonance Magnétique de Systèmes Biologiques, Centre Nationale de Recherche Scientifique et Université de Bordeaux, Bordeaux, France
| | | |
Collapse
|
372
|
Ehsaei B, Nejatollahi F, Mohammadi M. Specific Single Chain Antibodies Against A Neuronal Growth Inhibitor Receptor, Nogo Receptor 1: Promising New Antibodies for the Immunotherapy of Multiple Sclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.17795/semj45358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
373
|
Wong P, Li L, Chea J, Delgado MK, Crow D, Poku E, Szpikowska B, Bowles N, Channappa D, Colcher D, Wong JYC, Shively JE, Yazaki PJ. PET imaging of 64Cu-DOTA-scFv-anti-PSMA lipid nanoparticles (LNPs): Enhanced tumor targeting over anti-PSMA scFv or untargeted LNPs. Nucl Med Biol 2017; 47:62-68. [PMID: 28126683 DOI: 10.1016/j.nucmedbio.2017.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/24/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Single chain (scFv) antibodies are ideal targeting ligands due to their modular structure, high antigen specificity and affinity. These monovalent ligands display rapid tumor targeting but have limitations due to their fast urinary clearance. METHODS An anti-prostate membrane antigen (PSMA) scFv with a site-specific cysteine was expressed and evaluated in a prostate cancer xenograft model by Cu-64 PET imaging. To enhance tumor accumulation, the scFv-cys was conjugated to the co-polymer DSPE-PEG-maleimide that spontaneously assembled into a homogeneous multivalent lipid nanoparticle (LNP). RESULTS The targeted LNP exhibited a 2-fold increase in tumor uptake compared to the scFv alone using two different thiol ester chemistries. The anti-PSMA scFv-LNP exhibited a 1.6 fold increase in tumor targeting over the untargeted LNP. CONCLUSIONS The targeted anti-PSMA scFv-LNP showed enhanced tumor accumulation over the scFv alone or the untargeted DOTA-micelle providing evidence for the development of this system for drug delivery. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Anti-tumor scFv antibody fragments have not achieved their therapeutic potential due to their fast blood clearance. Conjugation to an LNP enables multivalency to the tumor antigen as well as increased molecular size for chemotherapy drug delivery.
Collapse
Affiliation(s)
- Patty Wong
- Department of Radiation Oncology, City of Hope Medical Center, City of Hope, Duarte, CA, 91010-3000, USA
| | - Lin Li
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Junie Chea
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Melissa K Delgado
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Desiree Crow
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Erasmus Poku
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Barbara Szpikowska
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Nicole Bowles
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Divya Channappa
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - David Colcher
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Jeffrey Y C Wong
- Department of Radiation Oncology, City of Hope Medical Center, City of Hope, Duarte, CA, 91010-3000, USA
| | - John E Shively
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Paul J Yazaki
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA.
| |
Collapse
|
374
|
Abstract
Natural antibodies are defined as antibodies detected in a healthy individual without active immunization. These antibodies are specific for exoantigens, as well as for autoantigens, mostly without any pathogenic role. Most of the studies conducted with natural (auto-) antibodies have been performed using affinity purified antibodies from individual sera or polyclonal Ig-preparations such as Intravenous Ig (IVIg). For in-depth analysis of such autoantibodies affinity-purified Ig-preparations from healthy individuals are of no use, as they are oligoclonal or polyclonal. Thus, there is a need of human monoclonal autoantibodies. Human monoclonal autoantibodies can be produced from B cells isolated from humans; however, this requires the screening of a large number of antibodies to identify one among them specific to an antigen. Using the phage display technology we generated such autoantibodies against the alpha subunit of the high-affinity IgE receptor (FcεRIα). Here we describe the step-by-step protocol for the generation of such libraries and the isolation of autoantibodies by affinity panning.
Collapse
Affiliation(s)
- Monique Vogel
- University Clinic of Rheumatology, Immunology and Allergology, Inselspital, University Hospital of Bern, CH-3010, Bern, Switzerland.
| | - Michael P Horn
- University Institute of Clinical Chemistry and Center of Laboratory Medicine, Inselspital, University Hospital of Bern, CH-3010, Bern, Switzerland
| |
Collapse
|
375
|
Murad H, Assaad JM, Al-Shemali R, Abbady AQ. Exploiting Nanobodies in the Detection and Quantification of Human Growth Hormone via Phage-Sandwich Enzyme-Linked Immunosorbent Assay. Front Endocrinol (Lausanne) 2017; 8:115. [PMID: 28611730 PMCID: PMC5447680 DOI: 10.3389/fendo.2017.00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/10/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Monitoring blood levels of human growth hormone (hGH) in most children with short stature deficiencies is crucial for taking a decision of treatment with extended course of daily and expensive doses of recombinant hGH (rhGH or Somatropin®). Besides, misusing of rhGH by sportsmen is banned by the World Anti-Doping Agency and thus sensitive GH-detecting methods are highly welcome in this field. Nanobodies are the tiniest antigen-binding entity derived from camel heavy chain antibodies. They were successfully generated against numerous antigens including hormones. METHODS A fully nanobody-based sandwich ELISA method was developed in this work for direct measurement of GH in biological samples. RESULTS Two major characteristics of nanobody were exploited for this goal: the robust and stable structure of the nanobody (NbGH04) used to capture hGH from tested samples, and the great ability of tailoring, enabling the display of the anti-GH detector nanobody (NbGH07) on the tip of M13-phage. Such huge, stable, and easy-to-prepare phage-Nb was used in ELISA to provide an amplified signal. Previously, NbGH04 was retrieved on immobilized hGH by phage display from a wide "immune" cDNA library prepared from a hGH-immunized camel. Here, and in order to assure epitope heterogeneity, NbGH07 was isolated from the same library using NbGH04-captured hGH as bait. Interaction of both nanobodies with hGH was characterized and compared with different anti-GH nanobodies and antibodies. The sensitivity (~0.5 ng/ml) and stability of the nanobody-base sandwich ELISA were assessed using rhGH before testing in the quantification of hGH in blood sera and cell culture supernatants. CONCLUSION In regard to all advantages of nanobodies; stability, solubility, production affordability in Escherichia coli, and gene tailoring, nanobody-based phage sandwich ELISA developed here would provide a valuable method for hGH detection and quantification.
Collapse
Affiliation(s)
- Hossam Murad
- Department of Molecular Biology and Biotechnology, AECS, Damascus, Syria
| | - Jana Mir Assaad
- Department of Molecular Biology and Biotechnology, AECS, Damascus, Syria
| | - Rasha Al-Shemali
- Department of Molecular Biology and Biotechnology, AECS, Damascus, Syria
| | - Abdul Qader Abbady
- Department of Molecular Biology and Biotechnology, AECS, Damascus, Syria
- *Correspondence: Abdul Qader Abbady,
| |
Collapse
|
376
|
Development of a novel engineered antibody targeting Neisseria species. Biotechnol Lett 2016; 39:407-413. [PMID: 27888365 DOI: 10.1007/s10529-016-2258-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/10/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVES A Neissaria bacterial pilus sugar, bacillosamine, was synthesized and, for the first time, used as a probe to screen a single-chain variable fragment (scFv). RESULTS Four Neisseria, Neisseria gonorrhoeae, Neisseria meningitidis, Neisseria sicca and Neisseria subflava, and two negative controls, Streptococcus pneumoniae and Escherichia coli, were tested through ELISA, immunostaining and gold nanoparticle immunological assay. All results indicated that the selected scFv is feasible for the specific detection of Neisseria species via the recognition of bacillosamine. CONCLUSIONS The recombinant scFv could detect Neisseria strains at 106 CFU/ml.
Collapse
|
377
|
Integrating scFv into xMAP Assays for the Detection of Marine Toxins. Toxins (Basel) 2016; 8:toxins8110346. [PMID: 27879646 PMCID: PMC5127142 DOI: 10.3390/toxins8110346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 11/17/2022] Open
Abstract
Marine toxins, such as saxitoxin and domoic acid are associated with algae blooms and can bioaccumulate in shell fish which present both health and economic concerns. The ability to detect the presence of toxin is paramount for the administration of the correct supportive care in case of intoxication; environmental monitoring to detect the presence of toxin is also important for prevention of intoxication. Immunoassays are one tool that has successfully been applied to the detection of marine toxins. Herein, we had the variable regions of two saxitoxin binding monoclonal antibodies sequenced and used the information to produce recombinant constructs that consist of linked heavy and light variable domains that make up the binding domains of the antibodies (scFv). Recombinantly produced binding elements such as scFv provide an alternative to traditional antibodies and serve to "preserve" monoclonal antibodies as they can be easily recreated from their sequence data. In this paper, we combined the anti-saxitoxin scFv developed here with a previously developed anti-domoic acid scFv and demonstrated their utility in a microsphere-based competitive immunoassay format. In addition to detection in buffer, we demonstrated equivalent sensitivity in oyster and scallop matrices. The potential for multiplexed detection using scFvs in this immunoassay format is demonstrated.
Collapse
|
378
|
Jee PF, Chen FS, Shu MH, Wong WF, Abdul Rahim R, AbuBakar S, Chang LY. Insertion of single-chain variable fragment (scFv) peptide linker improves surface display of influenza hemagglutinin (HA1) on non-recombinant Lactococcus lactis. Biotechnol Prog 2016; 33:154-162. [PMID: 27802566 DOI: 10.1002/btpr.2400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Heterologous protein displayed on the surface of Lactococcus lactis using the binding domain of N-acetylmuramidase (AcmA) has a potential application in vaccine delivery. In this study, we developed a non-recombinant L. lactis surface displaying the influenza A (H1N1) 2009 hemagglutinin (HA1). Three recombinant proteins, HA1/L/AcmA, HA1/AcmA, and HA1 were overexpressed in Escherichia coli, and purified. In the binding study using flow cytometry, the HA1/L/AcmA, which contained the single-chain variable fragment (scFv) peptide linker showed significantly higher percentage of binding counts and mean fluorescence binding intensity (MFI) (51.7 ± 1.4% and 3,594.0 ± 675.9, respectively) in comparison to the HA1/AcmA without the scFv peptide linker (41.1 ± 1.5% and 1,652.0 ± 34.1, respectively). Higher amount of HA1/L/AcmA (∼2.9 × 104 molecules per cell) was displayed on L. lactis when compared to HA1/AcmA (∼1.1 × 104 molecules per cell) in the immunoblotting analysis. The HA1/L/AcmA completely agglutinated RBCs at comparable amount of protein to that of HA1/AcmA and HA1. Computational modeling of protein structures suggested that scFv peptide linker in HA1/L/AcmA kept the HA1 and the AcmA domain separated at a much longer distance in comparison to HA1/AcmA. These findings suggest that insertion of the scFv peptide linker between HA1 and AcmA improved binding of recombinant proteins to L. lactis. Hence, insertion of scFv peptide linker can be further investigated as a potential approach for improvement of heterologous proteins displayed on the surface of L. lactis using the AcmA binding domain. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:154-162, 2017.
Collapse
Affiliation(s)
- Pui-Fong Jee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fez-Shin Chen
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Meng-Hooi Shu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
379
|
Grewal Y, Shiddiky MJA, Mahler SM, Cangelosi GA, Trau M. Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30649-30664. [PMID: 27762541 PMCID: PMC5114700 DOI: 10.1021/acsami.6b09263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 05/06/2023]
Abstract
Rapid progress in disease biomarker discovery has increased the need for robust detection technologies. In the past several years, the designs of many immunoaffinity reagents have focused on lowering costs and improving specificity while also promoting stability. Antibody fragments (scFvs) have long been displayed on the surface of yeast and phage libraries for selection; however, the stable production of such fragments presents challenges that hamper their widespread use in diagnostics. Membrane and cell wall proteins similarly suffer from stability problems when solubilized from their native environment. Recently, cell envelope compositions that maintain membrane proteins in native or native-like lipid environment to improve their stability have been developed. This cell envelope composition approach has now been adapted toward stabilizing antibody fragments by retaining their native cell wall environment. A new class of immunoaffinity reagents has been developed that maintains antibody fragment attachment to yeast cell wall. Herein, we review recent strategies that incorporate cell wall fragments with functional scFvs, which are designed for easy production while maintaining specificity and stability when in use with simple detection platforms. These cell wall based antibody fragments are globular in structure, and heterogeneous in size, with fragments ranging from tens to hundreds of nanometers in size. These fragments appear to retain activity once immobilized onto biosensor surfaces for the specific and sensitive detection of pathogen antigens. They can be quickly and economically generated from a yeast display library and stored lyophilized, at room temperature, for up to a year with little effect on stability. This new format of scFvs provides stability, in a simple and low-cost manner toward the use of scFvs in biosensor applications. The production and "panning" of such antibody cell wall composites are also extremely facile, enabling the rapid adoption of stable and inexpensive affinity reagents for emerging infectious threats.
Collapse
Affiliation(s)
- Yadveer
S. Grewal
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Muhammad J. A. Shiddiky
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen M. Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology
(AIBN), University of Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerard A. Cangelosi
- School
of Public Health, University of Washington, Seattle, Washington 98195, United States
| | - Matt Trau
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
380
|
Akbari B, Farajnia S, Zarghami N, Mahdieh N, Rahmati M, Khosroshahi SA, Rahbarnia L. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR). Protein Expr Purif 2016; 127:8-15. [DOI: 10.1016/j.pep.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
381
|
Dong S, Shi H, Cao D, Wang Y, Zhang X, Li Y, Gao X, Wang L. Novel nanoscale bacteriophage-based single-domain antibodies for the therapy of systemic infection caused by Candida albicans. Sci Rep 2016; 6:32256. [PMID: 27558409 PMCID: PMC4997605 DOI: 10.1038/srep32256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Candida albicans (C. albicans) is an important human commensal and opportunistic fungal pathogen. Secreted aspartyl proteinases (Saps) are a major virulence trait of C. albicans, and among these proteases Sap2 has the highest expression levels. It is possible that antibodies against Sap2 could provide an antifungal effect. In this study, two phages displaying anti-rSap2 single chain variable fragments (scFvs) were screened from human single fold scFv libraries, and their potential therapeutic roles were evaluated using a murine model infected by C. albicans. The in vivo efficacies were assessed by mortality rates, fungal burden and histological examination. Overall survival rates were significantly increased while the colony counts and infectious foci were significantly decreased after treatment with the scFv-phages relative to the control groups. In order to investigate the immune response provoked by scFv-phages, three kinds of cytokines (Th1, Th2 and Th17 types) were measured and a clear immune response was observed. These findings suggest that anti-rSap2 scFv-phages have potential in the therapy of systemic infection caused by C. albicans.
Collapse
Affiliation(s)
- Shuai Dong
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province, 130024 P. R. China
| | - Hongxi Shi
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province, 130024 P. R. China
| | - Donghui Cao
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun City, Jilin Province, 130021 P. R. China
| | - Yicun Wang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province, 130024 P. R. China
| | - Xintong Zhang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province, 130024 P. R. China
| | - Yan Li
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province, 130024 P. R. China
| | - Xiang Gao
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province, 130024 P. R. China.,Key Laboratory of Molecular Epigenetics of MOE, Changchun City, Jilin Province, 130024 P. R. China
| | - Li Wang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province, 130024 P. R. China
| |
Collapse
|
382
|
Selection and application of broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins. Anal Biochem 2016; 512:70-77. [PMID: 27544649 DOI: 10.1016/j.ab.2016.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023]
Abstract
Bt Cry toxin is a kind of bio-toxins that used for genetically modified crops (GMC) transformation widely. In this study, total 15 positive clones could bind the Bt Cry toxins which isolated from a human domain antibody library by 5 rounds affinity selection. According to analyzing of PCR amplification and enzyme-linked immunosorbent assay (ELISA), the most positive phage domain antibody (named F5) gene was cloned into the pET26b vector and expressed in E. coli BL21. The purified antibody was used to develop an indirect competitive ELISA (IC-ELISA) for Cry1Ab, Cry1Ac, Cry1B, Cry1C and Cry1F toxins, respectively. The working range of detection for standard curves in IC-ELISA were 0.258-1.407 μg/mL, the medium inhibition concentration (IC50) were 0.727-0.892 μg/mL and detection limit (IC10) were 0.029-0.074 μg/mL for those Bt Cry toxins. The affinity of F5 domain antibody with Cry1Ab, Cry1Ac, Cry1B, Cry1C and Cry1F toxins were 1.21-5.94 × 10(7) M(-1). The average recoveries of the 5 kinds of Bt Cry toxins from spiked wheat samples were ranged from 81.2%-100.8% with a CV at 2.5%-9.4%. The results showed that we successfully obtained the broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins in agricultural product samples.
Collapse
|
383
|
Niesen J, Sack M, Seidel M, Fendel R, Barth S, Fischer R, Stein C. SNAP-Tag Technology: A Useful Tool To Determine Affinity Constants and Other Functional Parameters of Novel Antibody Fragments. Bioconjug Chem 2016; 27:1931-41. [PMID: 27391930 DOI: 10.1021/acs.bioconjchem.6b00315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibody derivatives, such as the single chain fragment variable (scFv), can be developed as diagnostic and therapeutic tools in cancer research, especially in the form of fusion proteins. Such derivatives are easier to produce and modify than monoclonal antibodies (mAbs) and achieve better tissue/tumor penetration. The genetic modification of scFvs is also much more straightforward than the challenging chemical modification of mAbs. Therefore, we constructed two scFvs derived from the approved monoclonal antibodies cetuximab (scFv2112) and panitumumab (scFv1711), both of which are specific for the epidermal growth factor receptor (EGFR), a well-characterized solid tumor antigen. Both scFvs were genetically fused to the SNAP-tag, an engineered version of the human DNA repair enzyme O(6)-alkylguanine DNA alkyltransferase that allows the covalent coupling of benzylguanine (BG)-modified substrates such as fluorescent dyes. The SNAP-tag achieves controllable and irreversible protein modification and is an important tool for experimental studies in vitro and in vivo. The affinity constant of a scFv is a key functional parameter, especially in the context of a fusion protein. Therefore, we developed a method to define the affinity constants of scFv-SNAP fusion proteins by surface plasmon resonance (SPR) spectroscopy. We could confirm that both scFvs retained their functionality after fusion to the SNAP-tag in a variety of procedures and assays, including ELISA, flow cytometry, and confocal microscopy. The experimental procedures described herein, and the new protocol for affinity determination by SPR spectroscopy, are suitable for the preclinical evaluation of diverse antibody formats and derivatives.
Collapse
Affiliation(s)
- Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Markus Sack
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University , 52074 Aachen, Germany
| | - Melanie Seidel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany.,Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University , 52074 Aachen, Germany
| | - Christoph Stein
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| |
Collapse
|
384
|
Gupta SK, Shukla P. Microbial platform technology for recombinant antibody fragment production: A review. Crit Rev Microbiol 2016; 43:31-42. [PMID: 27387055 DOI: 10.3109/1040841x.2016.1150959] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recombinant antibody fragments are being used for the last few years as an important therapeutic protein to cure various critical and life threatening human diseases. Several expression platforms now days employed for the production of these recombinant fragments, out of which bacterial system has emerged a promising host for higher expression. Since, a small antibody fragment unlike full antibody does not require human-like post-translational modification therefore it is potentially expressed in prokaryotic production system. Recently, small antibody fragments such as scFvs (single-chain variable fragments) and Fabs (antibody fragments) which does not require glycosylation are successfully produced in bacteria and have commercially launched for therapeutic use as these fragments shows better tissue penetration and less immunogenic to human body compared to full-size antibody. Recently developed Wacker's ESETEC secretion technology is an efficient technology for the expression and secretion of the antibody fragment (Fab) exceeded up to 4.0 g/L while scFv up to 3.5 g/L into the fermentation broth. The Pfenex system and pOP prokaryotic expression vector are another platform used for the considerably good amount of antibody fragment production successfully. In this review, we summarize the recent progress on various expression platforms and cloning approaches for the production of different forms of antibody fragments in E. coli.
Collapse
Affiliation(s)
- Sanjeev Kumar Gupta
- a Advanced Biotech Lab, Ipca Laboratories Ltd., Kandivli Industrial Estate, Kandivli (west) , Mumbai , Mahrashtra , India
| | - Pratyoosh Shukla
- b Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| |
Collapse
|
385
|
Wronska MA, O'Connor IB, Tilbury MA, Srivastava A, Wall JG. Adding Functions to Biomaterial Surfaces through Protein Incorporation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5485-5508. [PMID: 27164952 DOI: 10.1002/adma.201504310] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The concept of biomaterials has evolved from one of inert mechanical supports with a long-term, biologically inactive role in the body into complex matrices that exhibit selective cell binding, promote proliferation and matrix production, and may ultimately become replaced by newly generated tissues in vivo. Functionalization of material surfaces with biomolecules is critical to their ability to evade immunorecognition, interact productively with surrounding tissues and extracellular matrix, and avoid bacterial colonization. Antibody molecules and their derived fragments are commonly immobilized on materials to mediate coating with specific cell types in fields such as stent endothelialization and drug delivery. The incorporation of growth factors into biomaterials has found application in promoting and accelerating bone formation in osteogenerative and related applications. Peptides and extracellular matrix proteins can impart biomolecule- and cell-specificities to materials while antimicrobial peptides have found roles in preventing biofilm formation on devices and implants. In this progress report, we detail developments in the use of diverse proteins and peptides to modify the surfaces of hard biomaterials in vivo and in vitro. Chemical approaches to immobilizing active biomolecules are presented, as well as platform technologies for isolation or generation of natural or synthetic molecules suitable for biomaterial functionalization.
Collapse
Affiliation(s)
- Małgorzata A Wronska
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Iain B O'Connor
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Maura A Tilbury
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Akshay Srivastava
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - J Gerard Wall
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| |
Collapse
|
386
|
Cavalcante MF, Kazuma SM, Bender EA, Adorne MD, Ullian M, Veras MM, Saldiva PHN, Maranhão AQ, Guterres SS, Pohlmann AR, Abdalla DSP. A nanoformulation containing a scFv reactive to electronegative LDL inhibits atherosclerosis in LDL receptor knockout mice. Eur J Pharm Biopharm 2016; 107:120-9. [PMID: 27378286 DOI: 10.1016/j.ejpb.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease responsible for the majority of cases of myocardial infarction and ischemic stroke. The electronegative low-density lipoprotein, a modified subfraction of native LDL, is pro-inflammatory and plays an important role in atherogenesis. To investigate the effects of a nanoformulation (scFv anti-LDL(-)-MCMN-Zn) containing a scFv reactive to LDL(-) on the inhibition of atherosclerosis, its toxicity was evaluated in vitro and in vivo and further it was also administered weekly to LDL receptor knockout mice. The scFv anti-LDL(-)-MCMN-Zn nanoformulation did not induce cell death in RAW 264.7 macrophages and HUVECs. The 5mg/kg dose of scFv anti-LDL(-)-MCMN-Zn did not cause any typical signs of toxicity and it was chosen for the evaluation of its atheroprotective effect in Ldlr(-/-) mice. This nanoformulation significantly decreased the atherosclerotic lesion area at the aortic sinus, compared with that in untreated mice. In addition, the Il1b mRNA expression and CD14 protein expression were downregulated in the atherosclerotic lesions at the aortic arch of Ldlr(-/-) mice treated with scFv anti-LDL(-)-MCMN-Zn. Thus, the scFv anti-LDL(-)-MCMN-Zn nanoformulation inhibited the progression of atherosclerotic lesions, indicating its potential use in a future therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Marcela Frota Cavalcante
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Soraya Megumi Kazuma
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Eduardo André Bender
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcia Duarte Adorne
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mayara Ullian
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana Matera Veras
- LIM5, Department of Pathology, Medicine School, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Andrea Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | - Silvia Stanisçuaski Guterres
- Department of Production and Control of Medicines, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dulcineia Saes Parra Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
387
|
Abstract
Recent clinical trials have demonstrated the ability to durably control cancer in some patients by manipulating T lymphocytes. These immunotherapies are revolutionizing cancer treatment but benefit only a minority of patients. It is thus a crucial time for clinicians, cancer scientists and immunologists to determine the next steps in shifting cancer treatment towards better cancer control. This Review describes recent advances in our understanding of tumour-associated myeloid cells. These cells remain less studied than T lymphocytes but have attracted particular attention because their presence in tumours is often linked to altered patient survival. Also, experimental studies indicate that myeloid cells modulate key cancer-associated activities, including immune evasion, and affect virtually all types of cancer therapy. Consequently, targeting myeloid cells could overcome limitations of current treatment options.
Collapse
Affiliation(s)
- Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts 02114, USA
- Graduate Program in Immunology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
388
|
Spencer B, Williams S, Rockenstein E, Valera E, Xin W, Mante M, Florio J, Adame A, Masliah E, Sierks MR. α-synuclein conformational antibodies fused to penetratin are effective in models of Lewy body disease. Ann Clin Transl Neurol 2016; 3:588-606. [PMID: 27606342 PMCID: PMC4999592 DOI: 10.1002/acn3.321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/12/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022] Open
Abstract
Objective Progressive accumulation of α‐synuclein (α‐syn) has been associated with Parkinson's disease (PD) and Dementia with Lewy body (DLB). The mechanisms through which α‐syn leads to neurodegeneration are not completely clear; however, the formation of various oligomeric species have been proposed to play a role. Antibody therapy has shown effectiveness at reducing α‐syn accumulation in the central nervous system (CNS); however, most of these studies have been conducted utilizing antibodies that recognize both monomeric and higher molecular weight α‐syn. In this context, the main objective of this study was to investigate the efficacy of immunotherapy with single‐chain antibodies (scFVs) against specific conformational forms of α‐syn fused to a novel brain penetrating sequence. Method We screened various scFVs against α‐syn expressed from lentiviral vectors by intracerebral injections in an α‐syn tg model. The most effective scFVs were fused to the cell‐penetrating peptide penetratin to enhance transport across the blood–brain barrier, and lentiviral vectors were constructed and tested for efficacy following systemic delivery intraperitoneal into α‐syn tg mice. Result Two scFVs (D5 and 10H) selectively targeted different α‐syn oligomers and reduced the accumulation of α‐syn and ameliorated functional deficits when delivered late in disease development; however, only one of the antibodies (D5) was also effective when delivered early in disease development. These scFVs were also utilized in an enzyme‐linked immunosorbent assay (ELISA) assay to monitor the effects of immunotherapy on α‐syn oligomers in brain and plasma. Interpretation The design and targeting of antibodies for specific species of α‐syn oligomers is crucial for therapeutic immunotherapy and might be of relevance for the treatment of Lewy body disease.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neuroscience University of California San Diego California
| | - Stephanie Williams
- Department of Chemical Engineering Arizona State University Tempe Arizona
| | - Edward Rockenstein
- Department of Neuroscience University of California San Diego California
| | - Elvira Valera
- Department of Neuroscience University of California San Diego California
| | - Wei Xin
- Department of Chemical Engineering Arizona State University Tempe Arizona
| | - Michael Mante
- Department of Neuroscience University of California San Diego California
| | - Jazmin Florio
- Department of Neuroscience University of California San Diego California
| | - Anthony Adame
- Department of Neuroscience University of California San Diego California
| | - Eliezer Masliah
- Department of Neuroscience University of California San Diego California; Department of Pathology University of California San Diego California
| | - Michael R Sierks
- Department of Chemical Engineering Arizona State University Tempe Arizona
| |
Collapse
|
389
|
Production of in vivo biotinylated scFv specific to almond ( Prunus dulcis ) proteins by recombinant Pichia pastoris. J Biotechnol 2016; 227:112-119. [DOI: 10.1016/j.jbiotec.2016.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 11/18/2022]
|
390
|
Huang R, Kiss MM, Batonick M, Weiner MP, Kay BK. Generating Recombinant Antibodies to Membrane Proteins through Phage Display. Antibodies (Basel) 2016; 5:antib5020011. [PMID: 31557992 PMCID: PMC6698964 DOI: 10.3390/antib5020011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 01/03/2023] Open
Abstract
One of the most important classes of proteins in terms of drug targets is cell surface membrane proteins, and yet it is a challenging set of proteins for generating high-quality affinity reagents. In this review, we focus on the use of phage libraries, which display antibody fragments, for generating recombinant antibodies to membrane proteins. Such affinity reagents generally have high specificity and affinity for their targets. They have been used for cell staining, for promoting protein crystallization to solve three-dimensional structures, for diagnostics, and for treating diseases as therapeutics. We cover publications on this topic from the past 10 years, with a focus on the various formats of membrane proteins for affinity selection and the diverse affinity selection strategies used. Lastly, we discuss the challenges faced in this field and provide possible directions for future efforts.
Collapse
Affiliation(s)
- Renhua Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607-7060, USA.
| | - Margaret M Kiss
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Melissa Batonick
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Michael P Weiner
- AxioMx Inc., a subsidiary of Abcam Plc, Branford, CT 06405, USA.
| | - Brian K Kay
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607-7060, USA.
| |
Collapse
|
391
|
Yusibov V, Kushnir N, Streatfield SJ. Antibody Production in Plants and Green Algae. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:669-701. [PMID: 26905655 DOI: 10.1146/annurev-arplant-043015-111812] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | | |
Collapse
|
392
|
Regan L, Hinrichsen MR, Oi C. Protein engineering strategies with potential applications for altering clinically relevant cellular pathways at the protein level. Expert Rev Proteomics 2016; 13:481-93. [PMID: 27031866 DOI: 10.1586/14789450.2016.1172966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
All diseases can be fundamentally viewed as the result of malfunctioning cellular pathways. Protein engineering offers the potential to develop new tools that will allow these dysfunctional pathways to be better understood, in addition to potentially providing new routes to restore proper function. Here we discuss different approaches that can be used to change the intracellular activity of a protein by intervening at the protein level: targeted protein sequestration, protein recruitment, protein degradation, and selective inhibition of binding interfaces. The potential of each of these tools to be developed into effective therapeutic treatments will also be discussed, along with any major barriers that currently block their translation into the clinic.
Collapse
Affiliation(s)
- Lynne Regan
- a Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , USA.,b Department of Chemistry , Yale University , New Haven , CT , USA.,c Integrated Graduate Program in Physical and Engineering Biology , Yale University , New Haven , CT , USA
| | - Michael R Hinrichsen
- a Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , USA
| | | |
Collapse
|
393
|
Safdari Y, Ahmadzadeh V, Khalili M, Jaliani HZ, Zarei V, Erfani-Moghadam V. Use of single chain antibody derivatives for targeted drug delivery. Mol Med 2016; 22:258-270. [PMID: 27249008 DOI: 10.2119/molmed.2016.00043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Single chain antibodies (scFvs), which contain only the variable domains of full-length antibodies, are relatively small molecules that can be used for selective drug delivery. In this review, we display how scFv antibodies help improve the specificity and efficiency of drugs. Small interfering RNA (siRNA) delivery using scFv-drug fusion peptides, siRNA delivery using scFv-conjugated nanoparticles, targeted delivery using scFv-viral peptide- fusion proteins, use of scFv in fusion with cell penetrating peptides for effective targeted drug delivery, scFv-mediated targeted delivery of inorganic nanoparticles, scFv-mediated increase of tumor killing activity of granulocytes, use of scFv for tumor imaging, site-directed conjugation of scFv molecules to drug carrier systems, use of scFv to relieve pain, use of scFv for increasing drug loading efficiency are among the topics that are discussed here.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahideh Ahmadzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Khalili
- Golestan Research Center of Gastroenterology and Hepatology (GRCGH), Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Zarei Jaliani
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Zarei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
394
|
Amoury M, Mladenov R, Nachreiner T, Pham AT, Hristodorov D, Di Fiore S, Helfrich W, Pardo A, Fey G, Schwenkert M, Thepen T, Kiessling F, Hussain AF, Fischer R, Kolberg K, Barth S. A novel approach for targeted elimination of CSPG4-positive triple-negative breast cancer cells using a MAP tau-based fusion protein. Int J Cancer 2016; 139:916-27. [DOI: 10.1002/ijc.30119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/24/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Manal Amoury
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Radoslav Mladenov
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Thomas Nachreiner
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Anh-Tuan Pham
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Dmitrij Hristodorov
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Stefano Di Fiore
- Department of Pharmaceutical Product Development; Fraunhofer Institute for Molecular Biology and Applied Ecology; Aachen Germany
| | - Wijnand Helfrich
- Department of Surgery, Laboratory for Translational Surgical Oncology; University of Groningen, University Medical Center Groningen; The Netherlands
| | - Alessa Pardo
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
| | - Georg Fey
- Department of Biology; Friedrich Alexander University Erlangen-Nuremberg; Germany
| | | | - Theophilus Thepen
- Department of Pharmaceutical Product Development; Fraunhofer Institute for Molecular Biology and Applied Ecology; Aachen Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen; Germany
| | - Ahmad F. Hussain
- Department of Gynecology and Obstetrics; University Hospital RWTH Aachen; Germany
| | - Rainer Fischer
- Department of Pharmaceutical Product Development; Fraunhofer Institute for Molecular Biology and Applied Ecology; Aachen Germany
| | - Katharina Kolberg
- Department of Experimental Medicine and Immunotherapy; Institute for Applied Medical Engineering, University Hospital RWTH Aachen; Germany
- Department of Pharmaceutical Product Development; Fraunhofer Institute for Molecular Biology and Applied Ecology; Aachen Germany
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences; University of Cape Town; Observatory South Africa
| |
Collapse
|
395
|
Li C, He J, Ren H, Zhang X, Du E, Li X. Preparation of a Chicken scFv to Analyze Gentamicin Residue in Animal Derived Food Products. Anal Chem 2016; 88:4092-8. [DOI: 10.1021/acs.analchem.6b00426] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cui Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Jinxin He
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Hao Ren
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Xiaoying Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Xinping Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
396
|
Liang H, Li X, Wang B, Chen B, Zhao Y, Sun J, Zhuang Y, Shi J, Shen H, Zhang Z, Dai J. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix. Sci Rep 2016; 6:18205. [PMID: 26883295 PMCID: PMC4756367 DOI: 10.1038/srep18205] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn’t showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody–drug conjugates (ADC) or immunotoxins.
Collapse
Affiliation(s)
- Hui Liang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jie Sun
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiajia Shi
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
397
|
Dormeshkin DO, Kuprienko OS, Svirid AV, Gilep AA, Sviridov OV, Usanov SA. Generation and characterization of biotinylated recombinant Fab antibody fragment against cortisol. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
398
|
Ji X, Shen Y, Sun H, Gao X. A novel anti-alpha-fetoprotein single-chain variable fragment displays anti-tumor effects in HepG2 cells as a single agent or in combination with paclitaxel. Tumour Biol 2016; 37:10085-96. [DOI: 10.1007/s13277-016-4803-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/06/2016] [Indexed: 01/16/2023] Open
|
399
|
Amoury M, Kolberg K, Pham AT, Hristodorov D, Mladenov R, Di Fiore S, Helfrich W, Kiessling F, Fischer R, Pardo A, Thepen T, Hussain AF, Nachreiner T, Barth S. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model. Cancer Lett 2016; 372:201-9. [PMID: 26806809 DOI: 10.1016/j.canlet.2016.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis and high prevalence among young premenopausal women. Unlike in other breast cancer subtypes, no targeted therapy is currently available. Overexpression of epithelial cell adhesion molecule (EpCAM) in 60% of TNBC tumors correlates with poorer prognosis and is associated with cancer stem cell phenotype. Thus, selective elimination of EpCAM(+) TNBC tumor cells is of clinical importance. Therefore, we constructed a fully human targeted cytolytic fusion protein, designated GbR201K-αEpCAM(scFv), in which an EpCAM-selective single-chain antibody fragment (scFv) is genetically fused to a granzyme B (Gb) mutant with reduced sensitivity to its natural inhibitor serpin B9. In vitro studies confirmed its specific binding, internalization and cytotoxicity toward a panel of EpCAM-expressing TNBC cells. Biodistribution kinetics and tumor-targeting efficacy using MDA-MB-468 cells in a human TNBC xenograft model in mice revealed selective accumulation of GbR201K-αEpCAM(scFv) in the tumors after i.v. injection. Moreover, treatment of tumor-bearing mice demonstrated a prominent inhibition of tumor growth of up to 50 % in this proof-of-concept study. Taken together, our results indicate that GbR201K-αEpCAM(scFv) is a promising novel targeted therapeutic for the treatment of TNBC.
Collapse
Affiliation(s)
- Manal Amoury
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Katharina Kolberg
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany; Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Anh-Tuan Pham
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Dmitrij Hristodorov
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Radoslav Mladenov
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Stefano Di Fiore
- Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Wijnand Helfrich
- Department of Surgery, Laboratory for Translational Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Rainer Fischer
- Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Alessa Pardo
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Theophilus Thepen
- Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Ahmad F Hussain
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Thomas Nachreiner
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
400
|
Yoon A, Shin JW, Kim S, Kim H, Chung J. Chicken scFvs with an Artificial Cysteine for Site-Directed Conjugation. PLoS One 2016; 11:e0146907. [PMID: 26764487 PMCID: PMC4713166 DOI: 10.1371/journal.pone.0146907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023] Open
Abstract
For the site-directed conjugation of chemicals and radioisotopes to the chicken-derived single-chain variable fragment (scFv), we investigated amino acid residues replaceable with cysteine. By replacing each amino acid of the 157 chicken variable region framework residues (FR, 82 residues on VH and 75 on VL) with cysteine, 157 artificial cysteine mutants were generated and characterized. At least 27 residues on VL and 37 on VH could be replaced with cysteine while retaining the binding activity of the original scFv. We prepared three VL (L5, L6 and L7) and two VH (H13 and H16) mutants as scFv-Ckappa fusion proteins and showed that PEG-conjugation to the sulfhydryl group of the artificial cysteine was achievable in all five mutants. Because the charge around the cysteine residue affects the in vivo stability of thiol-maleimide conjugation, we prepared 16 charge-variant artificial cysteine mutants by replacing the flanking residues of H13 with charged amino acids and determined that the binding activity was not affected in any of the mutants except one. We prepared four charge-variant H13 artificial cysteine mutants (RCK, DCE, ECD and ECE) as scFv-Ckappa fusion proteins and confirmed that the reactivity of the sulfhydryl group on cysteine is active and their binding activity is retained after the conjugation process.
Collapse
Affiliation(s)
- Aerin Yoon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Jung Won Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Soohyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyori Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|