351
|
Kalaany NY, Gauthier KC, Zavacki AM, Mammen PPA, Kitazume T, Peterson JA, Horton JD, Garry DJ, Bianco AC, Mangelsdorf DJ. LXRs regulate the balance between fat storage and oxidation. Cell Metab 2005; 1:231-44. [PMID: 16054068 DOI: 10.1016/j.cmet.2005.03.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 02/09/2005] [Accepted: 03/02/2005] [Indexed: 11/21/2022]
Abstract
Despite the well-established role of liver X receptors (LXRs) in regulating cholesterol homeostasis, their contribution to lipid homeostasis remains unclear. Here we show that LXR null mice are defective in hepatic lipid metabolism and are resistant to obesity when challenged with a diet containing both high fat and cholesterol. This phenotype is dependent on the presence of dietary cholesterol and is accompanied by the aberrant production of thyroid hormone in liver. Interestingly, the inability of LXR-/- mice to induce SREBP-1c-dependent lipogenesis does not explain the LXR-/- phenotype, since SREBP-1c null mice are not obesity resistant. Instead, the LXR-/- response is due to abnormal energy dissipation resulting from uncoupled oxidative phosphorylation and ectopic expression of uncoupling proteins in muscle and white adipose. These studies suggest that, by selectively sensing the cholesterol component of a lipid-rich diet, LXRs govern the balance between storage and oxidation of dietary fat.
Collapse
Affiliation(s)
- Nada Y Kalaany
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Cohen AW, Schubert W, Brasaemle DL, Scherer PE, Lisanti MP. Caveolin-1 expression is essential for proper nonshivering thermogenesis in brown adipose tissue. Diabetes 2005; 54:679-86. [PMID: 15734843 DOI: 10.2337/diabetes.54.3.679] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently, we have shown that loss of caveolin-1 leads to marked alterations in insulin signaling and lipolysis in white adipose tissue. However, little is known about the role of caveolin-1 in brown adipose tissue (BAT), a tissue responsible for nonshivering thermogenesis. Here, we show that caveolin-1 null mice have a mildly, yet significantly, decreased resting core body temperature. To investigate this in detail, we next subjected the mice to fasting (for 24 h) or cold treatment (4 degrees C for 24 h), individually or in combination. Interestingly, caveolin-1 null mice showed markedly decreased body temperatures in response to fasting or fasting/cold treatment; however, cold treatment alone had no effect. In addition, under these conditions caveolin-1 null mice failed to show the normal increase in serum nonesterified fatty acids induced by fasting or fasting/cold treatment, suggesting that these mice are unable to liberate triglyceride stores for heat production. In accordance with these results, the triglyceride content of BAT was reduced nearly 10-fold in wild-type mice after fasting/cold treatment, but it was reduced only 3-fold in caveolin-1 null mice. Finally, electron microscopy of adipose tissue revealed dramatic perturbations in the mitochondria of caveolin-1 null interscapular brown adipocytes. Taken together, our data provide the first molecular genetic evidence that caveolin-1 plays a critical functional and structural role in the modulation of thermogenesis via an effect on lipid mobilization.
Collapse
Affiliation(s)
- Alex W Cohen
- Department of Molecular Pharmacology, The Albert Einstein Cancer Center, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
353
|
Ishigaki Y, Katagiri H, Yamada T, Ogihara T, Imai J, Uno K, Hasegawa Y, Gao J, Ishihara H, Shimosegawa T, Sakoda H, Asano T, Oka Y. Dissipating excess energy stored in the liver is a potential treatment strategy for diabetes associated with obesity. Diabetes 2005; 54:322-32. [PMID: 15677488 DOI: 10.2337/diabetes.54.2.322] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
For examining whether dissipating excess energy in the liver is a possible therapeutic approach to high-fat diet-induced metabolic disorders, uncoupling protein-1 (UCP1) was expressed in murine liver using adenoviral vectors in mice with high-fat diet-induced diabetes and obesity, and in standard diet-fed lean mice. Once diabetes with obesity developed, hepatic UCP1 expression increased energy expenditure, decreased body weight, and reduced fat in the liver and adipose tissues, resulting in markedly improved insulin resistance and, thus, diabetes and dyslipidemia. Decreased expressions of enzymes for lipid synthesis and glucose production and activation of AMP-activated kinase in the liver seem to contribute to these improvements. Hepatic UCP1 expression also reversed high-fat diet-induced hyperphagia and hypothalamic leptin resistance, as well as insulin resistance in muscle. In contrast, intriguingly, in standard diet-fed lean mice, hepatic UCP1 expression did not significantly affect energy expenditure or hepatic ATP contents. Furthermore, no alterations in blood glucose levels, body weight, or adiposity were observed. These findings suggest that ectopic UCP1 in the liver dissipates surplus energy without affecting required energy and exerts minimal metabolic effects in lean mice. Thus, enhanced UCP expression in the liver is a new potential therapeutic target for the metabolic syndrome.
Collapse
Affiliation(s)
- Yasushi Ishigaki
- Division of Advanced and Therapeutics for Metabolic Diseases, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005; 280:13560-7. [PMID: 15653680 DOI: 10.1074/jbc.m414670200] [Citation(s) in RCA: 554] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SIRT3 is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene, which mediates the effect of caloric restriction on life span extension in yeast and Caenorhabditis elegans. Because adipose tissue is essential in energy homeostasis and also plays a role in life span determination, we decided to investigate the function of sirtuin members in fat. We report here that murine SIRT3 is expressed in brown adipose tissue and is localized on the mitochondria inner membrane. Caloric restriction activates SIRT3 expression in both white and brown adipose. Additionally, cold exposure up-regulates SIRT3 expression in brown fat, whereas elevated climate temperature reduces the expression. Enforced expression of SIRT3 in the HIB1B brown adipocytes enhances the expression of the uncoupling protein PGC-1alpha, UCP1, and a series of mitochondria-related genes. Both ADP-ribosyltransferase and deacetylase activities of SIRT3 are required for this action. Furthermore, the SIRT3 deacetylase mutant exhibits a dominant negative effect by inhibiting UCP1 expression. This inhibitive effect can be abolished by the coexpression of PGC-1alpha, indicating a major role of PGC-1alpha in the SIRT3 action. In addition, SIRT3 stimulates CREB phosphorylation, which reportedly activates PGC-1alpha promoter directly. Functionally, sustained expression of SIRT3 decreases membrane potential and reactive oxygen species production while increasing cellular respiration. Finally, SIRT3, along with genes related to mitochondrial function, is down-regulated in the brown adipose tissue of several genetically obese mice. In summary, our results demonstrate that SIRT3 activates mitochondria functions and plays an important role in adaptive thermogenesis in brown adipose.
Collapse
Affiliation(s)
- Tong Shi
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
355
|
Takahashi M, Kamei Y, Ezaki O. Mest/Peg1 imprinted gene enlarges adipocytes and is a marker of adipocyte size. Am J Physiol Endocrinol Metab 2005; 288:E117-24. [PMID: 15353408 DOI: 10.1152/ajpendo.00244.2004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity is a common and serious metabolic disorder in the developed world that is occasionally accompanied by type II diabetes, atherosclerosis, hypertension, and hyperlipidemia. We have found that mesoderm-specific transcript (Mest)/paternally expressed gene 1 (Peg1) gene expression was markedly enhanced in white adipose tissue of mice with diet-induced and genetically caused obesity/diabetes but not with streptozotocin-induced diabetes, which does not cause obesity. Administration of pioglitazone, a drug for type II diabetes and activator of peroxisome proliferator-activated receptor (PPAR)gamma, in obese db/db mice reduced the enhanced expression of Mest mRNA in adipose tissue, concomitant with an increase in body weight and a decrease in the size of adipose cells. Ectopic expression of Mest in 3T3-L1 cells caused increased gene expression of adipose markers such as PPARgamma, CCAAT/enhancer binding protein (C/EBP)alpha, and adipocyte fatty acid binding protein (aP)2. In transgenic mice overexpressing Mest in adipose tissue, enhanced expression of the adipose genes was observed. Moreover, adipocytes were markedly enlarged in the transgenic mice. Thus Mest appears to enlarge adipocytes and could be a novel marker of the size of adipocytes.
Collapse
Affiliation(s)
- Mayumi Takahashi
- Division of Clinical Nutrition, National Institute of Health and Nutrition, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | | | | |
Collapse
|
356
|
Rossmeisl M, Flachs P, Brauner P, Sponarova J, Matejkova O, Prazak T, Ruzickova J, Bardova K, Kuda O, Kopecky J. Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores. Int J Obes (Lond) 2004; 28 Suppl 4:S38-44. [PMID: 15592485 DOI: 10.1038/sj.ijo.0802855] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As indicated by in vitro studies, both lipogenesis and lipolysis in adipocytes depend on the cellular ATP levels. Ectopic expression of mitochondrial uncoupling protein 1 (UCP1) in the white adipose tissue of the aP2-Ucp1 transgenic mice reduced obesity induced by genetic or dietary manipulations. Furthermore, respiratory uncoupling lowered the cellular energy charge in adipocytes, while the synthesis of fatty acids (FA) was inhibited and their oxidation increased. Importantly, the complex metabolic changes triggered by ectopic UCP1 were associated with the activation of AMP-activated protein kinase (AMPK), a metabolic master switch, in adipocytes. Effects of several typical treatments that reduce adiposity, such as administration of leptin, beta-adrenoceptor agonists, bezafibrate, dietary n-3 polyunsaturated FA or fasting, can be compared with a phenotype of the aP2-Ucp1 mice. These situations generally lead to the upregulation of mitochondrial UCPs and suppression of the cellular energy charge and FA synthesis in adipocytes. On the other hand, FA oxidation is increased. Moreover, it has been shown that AMPK in adipocytes can be activated by adipocyte-derived hormones leptin and adiponectin, and also by insulin-sensitizes thiazolidinediones. Thus, it is evident that metabolism of adipose tissue itself is important for the control of body fat content and that the cellular energy charge and AMPK are involved in the control of lipid metabolism in adipocytes. The reciprocal link between synthesis and oxidation of FA in adipocytes represents a prospective target for the new treatment strategies aimed at reducing obesity.
Collapse
Affiliation(s)
- M Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Ruzickova J, Rossmeisl M, Prazak T, Flachs P, Sponarova J, Veck M, Tvrzicka E, Bryhn M, Kopecky J. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 2004; 39:1177-85. [PMID: 15736913 DOI: 10.1007/s11745-004-1345-9] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Omega-3 PUFA of marine origin reduce adiposity in animals fed a high-fat diet. Our aim was to learn whether EPA and DHA could limit development of obesity and reduce cellularity of adipose tissue and whether other dietary FA could influence the effect of EPA/DHA. Weight gain induced by composite high-fat diet in C57BL/6J mice was limited when the content of EPA/DHA was increased from 1 to 12% (wt/wt) of dietary lipids. Accumulation of adipose tissue was reduced, especially of the epididymal fat. Low ratio of EPA to DHA promoted the effect. A higher dose of EPA/DHA was required to reduce adiposity when admixed to diets that did not promote obesity, the semisynthetic high-fat diets rich in EFA, either alpha-linolenic acid (ALA, 18:3 n-3, the precursor of EPA and DHA) or linoleic (18:2 n-6) acid. Quantification of adipose tissue DNA revealed that except for the diet rich in ALA the reduction of epididymal fat was associated with 34-50% depression of tissue cellularity, similar to the 30% caloric restriction in the case of the high-fat composite diet. Changes in plasma markers and adipose gene expression indicated improvement of lipid and glucose metabolism due to EPA/DHA even in the context of the diet rich in ALA. Our results document augmentation of the antiadipogenic effect of EPA/DHA during development of obesity and suggest that EPA/DHA could reduce accumulation of body fat by limiting both hypertrophy and hyperplasia of fat cells. Increased dietary intake of EPA/DHA may be beneficial regardless of the ALA intake.
Collapse
Affiliation(s)
- Jana Ruzickova
- Department of Adipose Tissue Biology and Centre for Integrated Genomics, Institute of Physiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci U S A 2004; 101:16507-12. [PMID: 15545607 PMCID: PMC534517 DOI: 10.1073/pnas.0405432101] [Citation(s) in RCA: 369] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We recently found that long-term exposure to nitric oxide (NO) triggers mitochondrial biogenesis in mammalian cells and tissues by activation of guanylate cyclase and generation of cGMP. Here, we report that the NO/cGMP-dependent mitochondrial biogenesis is associated with enhanced coupled respiration and content of ATP in U937, L6, and PC12 cells. The observed increase in ATP content depended entirely on oxidative phosphorylation, because ATP formation by glycolysis was unchanged. Brain, kidney, liver, heart, and gastrocnemius muscle from endothelial NO synthase null mutant mice displayed markedly reduced mitochondrial content associated with significantly lower oxygen consumption and ATP content. In these tissues, ultrastructural analyses revealed significantly smaller mitochondria. Furthermore, a significant reduction in the number of mitochondria was observed in the subsarcolemmal region of the gastrocnemius muscle. We conclude that NO/cGMP stimulates mitochondrial biogenesis, both in vitro and in vivo, and that this stimulation is associated with increased mitochondrial function, resulting in enhanced formation of ATP.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Preclinical Sciences, Laboratorio Interdisciplinare Technologie Avanzate (LITA) Vialba, University of Milan, 20157 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Matejkova O, Mustard KJ, Sponarova J, Flachs P, Rossmeisl M, Miksik I, Thomason-Hughes M, Grahame Hardie D, Kopecky J. Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat. FEBS Lett 2004; 569:245-8. [PMID: 15225642 DOI: 10.1016/j.febslet.2004.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 05/14/2004] [Accepted: 06/03/2004] [Indexed: 11/13/2022]
Abstract
The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that promotes catabolic and inhibits anabolic pathways. However, the role of AMPK in adipocytes is poorly understood. We show that transgenic expression of mitochondrial uncoupling protein 1 in white fat, which induces obesity resistance in mice, is associated with depression of cellular energy charge, activation of AMPK, downregulation of adipogenic genes, and increase in lipid oxidation. Activation of AMPK may explain the complex metabolic changes in adipose tissue of these animals and our results support a role for adipocyte AMPK in the regulation of storage of body fat.
Collapse
Affiliation(s)
- Olga Matejkova
- Department of Adipose Tissue Biology and Center for Integrated Genomics, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Nolan MA, Sikorski MA, McKnight GS. The role of uncoupling protein 1 in the metabolism and adiposity of RII beta-protein kinase A-deficient mice. Mol Endocrinol 2004; 18:2302-11. [PMID: 15192081 DOI: 10.1210/me.2004-0194] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mice lacking the RII beta regulatory subunit of protein kinase A exhibit a 50% reduction in white adipose tissue stores compared with wild-type littermates and are resistant to diet-induced obesity. RII beta(-/-) mice also have an increase in resting oxygen consumption along with a 4-fold increase in the brown adipose-specific mitochondrial uncoupling protein 1 (UCP1). In this study, we examined the basis for UCP1 induction and tested the hypothesis that the induced levels of UCP1 in RII beta null mice are essential for the lean phenotype. The induction of UCP1 occurred at the protein but not the mRNA level and correlated with an increase in mitochondria in brown adipose tissue. Mice lacking both RII beta and UCP1 (RII beta(-/-)/Ucp1(-/-)) were created, and the key parameters of metabolism and body composition were studied. We discovered that RII beta(-/-) mice exhibit nocturnal hyperactivity in addition to the increased oxygen consumption at rest. Disruption of UCP1 in RII beta(-/-) mice reduced basal oxygen consumption but did not prevent the nocturnal hyperactivity. The double knockout animals also retained the lean phenotype of the RII beta null mice, demonstrating that induction of UCP1 and increased resting oxygen consumption is not the cause of leanness in the RII beta mutant mice.
Collapse
Affiliation(s)
- Michael A Nolan
- Department of Pharmacology, Box 357750, University of Washington, Seattle, Washington 98195-7750, USA
| | | | | |
Collapse
|
361
|
Abstract
Obesity and the related disorders of dyslipidemia and diabetes (components of syndrome X) have become global health epidemics. Over the past decade, the elucidation of key regulators of energy balance and insulin signaling have revolutionized our understanding of fat and sugar metabolism and their intimate link. The three 'lipid-sensing' peroxisome proliferator-activated receptors (PPAR-alpha, PPAR-gamma and PPAR-delta) exemplify this connection, regulating diverse aspects of lipid and glucose homeostasis, and serving as bona fide therapeutic targets. With molecular underpinnings now in place, new pharmacologic approaches to metabolic disease and new questions are emerging.
Collapse
Affiliation(s)
- Ronald M Evans
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
362
|
Miyazaki M, Dobrzyn A, Sampath H, Lee SH, Man WC, Chu K, Peters JM, Gonzalez FJ, Ntambi JM. Reduced adiposity and liver steatosis by stearoyl-CoA desaturase deficiency are independent of peroxisome proliferator-activated receptor-alpha. J Biol Chem 2004; 279:35017-24. [PMID: 15180999 DOI: 10.1074/jbc.m405327200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stearoyl-CoA desaturase catalyzes the rate-limiting step in the biosynthesis of monounsaturated fatty acids, which are required for normal rates of synthesis of triglycerides, cholesterol esters, and phospholipids. Mice with a targeted disruption of the stearoyl-CoA desaturase 1 (SCD1) isoform are protected against diet and leptin deficiency-induced adiposity, have increased energy expenditure, and have up-regulated expression of hepatic genes encoding enzymes of fatty acid beta-oxidation. Because peroxisome proliferator-activated receptor-alpha (PPARalpha) is a key transcription factor that induces the transcription of fatty acid beta-oxidation and thermogenic genes, we hypothesized that the increased fatty acid oxidation observed in SCD1 deficiency is dependent on activation of the PPARalpha pathway. Here we show that mice nullizygous for SCD1 and PPARalpha are still protected against adiposity, have increased energy expenditure, and maintain high expression of PPARalpha target genes in the liver and brown adipose tissue. The SCD1 deficiency rescued hepatic steatosis of the PPARalpha(-/-) mice. The SCD1 mutation increased the phosphorylation of both AMP-activated protein kinase and acetyl-CoA carboxylase, thereby increasing CPT activity and stimulating the oxidation of liver palmitoyl-CoA in the PPARalpha null mice. The findings indicate that the reduced adiposity, reduced liver steatosis, increased energy expenditure, and increased expression of PPARalpha target genes associated with SCD1 deficiency are independent of activation of the PPARalpha pathway.
Collapse
Affiliation(s)
- Makoto Miyazaki
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Christoffolete MA, Moriscot AS. Hypercaloric cafeteria-like diet induced UCP3 gene expression in skeletal muscle is impaired by hypothyroidism. Braz J Med Biol Res 2004; 37:923-7. [PMID: 15264037 DOI: 10.1590/s0100-879x2004000600019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The uncoupling protein UCP3 belongs to a family of mitochondrial carriers located in the inner mitochondrial membrane of certain cell types. It is expressed almost exclusively at high levels in skeletal muscle and its physiological role has not been fully determined in this tissue. In the present study we have addressed the possible interaction between a hypercaloric diet and thyroid hormone (T3), which are strong stimulators of UCP3 gene expression in skeletal muscle. Male Wistar rats weighing 180 +/- 20 g were rendered hypothyroid by thyroidectomy and the addition of methimazole (0.05%; w/v) to drinking water after surgery. The rats were fed a hypercaloric cafeteria diet (68% carbohydrates, 13% protein and 18% lipids) for 10 days and sacrificed by decapitation. Subsequently, the gastrocnemius muscle was dissected, total RNA was isolated with Trizol and UCP3 gene expression was determined by Northern blotting using a specific probe. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by the Student-Newman-Keuls post-test. Skeletal muscle UCP3 gene expression was decreased by 60% in hypothyroid rats and UCP3 mRNA expression was increased 70% in euthyroid cafeteria-fed rats compared to euthyroid chow-fed animals, confirming previous studies. Interestingly, the cafeteria diet was unable to stimulate UCP3 gene expression in hypothyroid animals (40% lower as compared to euthyroid cafeteria-fed animals). The results show that a hypercaloric diet is a strong stimulator of UCP3 gene expression in skeletal muscle and requires T3 for an adequate action.
Collapse
Affiliation(s)
- M A Christoffolete
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brasil
| | | |
Collapse
|
364
|
Abstract
The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine released from sympathetic nerves. In thermoregulatory thermogenesis, brown adipose tissue is essential for classical nonshivering thermogenesis (this phenomenon does not exist in the absence of functional brown adipose tissue), as well as for the cold acclimation-recruited norepinephrine-induced thermogenesis. Heat production from brown adipose tissue is activated whenever the organism is in need of extra heat, e.g., postnatally, during entry into a febrile state, and during arousal from hibernation, and the rate of thermogenesis is centrally controlled via a pathway initiated in the hypothalamus. Feeding as such also results in activation of brown adipose tissue; a series of diets, apparently all characterized by being low in protein, result in a leptin-dependent recruitment of the tissue; this metaboloregulatory thermogenesis is also under hypothalamic control. When the tissue is active, high amounts of lipids and glucose are combusted in the tissue. The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Collapse
Affiliation(s)
- Barbara Cannon
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
365
|
Robidoux J, Martin TL, Collins S. β-ADRENERGICRECEPTORS ANDREGULATION OFENERGYEXPENDITURE: A Family Affair. Annu Rev Pharmacol Toxicol 2004; 44:297-323. [PMID: 14744248 DOI: 10.1146/annurev.pharmtox.44.101802.121659] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The family of adrenergic receptors (ARs) expressed in adipocytes includes three sibling betaARs and two alphaAR cousins. Together they profoundly influence the mobilization of stored fatty acids, secretion of fat-cell derived hormones, and the specialized process of nonshivering thermogenesis in brown adipose tissue. The two types of fat cells that compose adipose tissue, brown and white, are structurally and functionally distinct. Studies on the mechanisms by which individual betaAR regulates these cell-specific functions have recently uncovered new signal transduction cascades involved in processes traditionally ascribed to adenylyl cyclase/cAMP/protein kinase A system. They illustrate how betaAR signaling can orchestrate a coordinated set of intracellular responses for fine control of metabolic balance.
Collapse
Affiliation(s)
- Jacques Robidoux
- Departments of Pharmacology, Psychiatry, and Behavioral Sciences, and The Sarah W. Stedman Center for Nutritional Studies, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
366
|
Abstract
Understanding the mechanisms governing the acquisition of white and brown adipocyte phenotypes might have implications for the physiopathology of, and therapeutic strategies for obesity. Peroxisome proliferator-activated recetor gamma (PPARgamma) and its coactivators, PGC-1alpha and SRC-1, influence brown adipocyte metabolism and development. Ectopic expression of PGC-1alpha induces the expression of brown adipocyte genes in human white adipocytes. The changes in gene expression promote stimulation of fatty acid oxidation. There is now evidence to support the concept of an alteration in energy balance through a conversion of white to brown adipose tissue.
Collapse
Affiliation(s)
- Claire Tiraby
- Unité de Recherches sur les Obésités, Institut National de la Santé et de la Recherche Médicale (Inserm) Unité 586, Institut Louis Bugnard, Centre Hospitalier Universitaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
367
|
Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Hong W, Li P. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 2003; 35:49-56. [PMID: 12910269 DOI: 10.1038/ng1225] [Citation(s) in RCA: 376] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 07/14/2003] [Indexed: 11/10/2022]
Abstract
The thermogenic activity of brown adipose tissue (BAT), important for adaptive thermogenesis and energy expenditure, is mediated by the mitochondrial uncoupling protein1 (Ucp1) that uncouples ATP generation and dissipates the energy as heat. We show here that Cidea, a protein of unknown function sharing sequence similarity with the N-terminal region of DNA fragmentation factors Dffb and Dffa, is expressed at high levels in BAT. Cidea-null mice had higher metabolic rate, lipolysis in BAT and core body temperature when subjected to cold treatment. Notably, Cidea-null mice are lean and resistant to diet-induced obesity and diabetes. Furthermore, we provide evidence that the role of Cidea in regulating thermogenesis, lipolysis and obesity may be mediated in part through its direct suppression of Ucp1 activity. Our data thus indicate a role for Cidea in regulating energy balance and adiposity.
Collapse
Affiliation(s)
- Zhihong Zhou
- Laboratories of Apoptosis Regulation, Institute of Molecular and Cell Biology, 30 Medical Dr., Singapore 117609, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D, Langin D. Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003; 278:33370-6. [PMID: 12807871 DOI: 10.1074/jbc.m305235200] [Citation(s) in RCA: 349] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity, i.e. an excess of white adipose tissue (WAT), predisposes to the development of type 2 diabetes and cardiovascular disease. Brown adipose tissue is present in rodents but not in adult humans. It expresses uncoupling protein 1 (UCP1) that allows dissipation of energy as heat. Peroxisome proliferator-activated receptor gamma (PPAR gamma) and PPAR gamma coactivator 1 alpha (PGC-1 alpha) activate mouse UCP1 gene transcription. We show here that human PGC-1 alpha induced the activation of the human UCP1 promoter by PPAR gamma. Adenovirus-mediated expression of human PGC-1 alpha increased the expression of UCP1, respiratory chain proteins, and fatty acid oxidation enzymes in human subcutaneous white adipocytes. Changes in the expression of other genes were also consistent with brown adipocyte mRNA expression profile. PGC-1 alpha increased the palmitate oxidation rate by fat cells. Human white adipocytes can therefore acquire typical features of brown fat cells. The PPAR gamma agonist rosiglitazone potentiated the effect of PGC-1 alpha on UCP1 expression and fatty acid oxidation. Hence, PGC-1 alpha is able to direct human WAT PPAR gamma toward a transcriptional program linked to energy dissipation. However, the response of typical white adipocyte targets to rosiglitazone treatment was not altered by PGC-1 alpha. UCP1 mRNA induction was shown in vivo by injection of the PGC-1 alpha adenovirus in mouse white fat. Alteration of energy balance through an increased utilization of fat in WAT may be a conceivable strategy for the treatment of obesity.
Collapse
Affiliation(s)
- Claire Tiraby
- Unité de Recherches sur les Obésités, Institut National de la Santé et de la Recherche Médicale Unité 586, Institut Louis Bugnard, Centre Hospitalier Universitaire de Toulouse, Université Paul Sabatier, 31403 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
369
|
Carrière A, Fernandez Y, Rigoulet M, Pénicaud L, Casteilla L. Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett 2003; 550:163-7. [PMID: 12935904 DOI: 10.1016/s0014-5793(03)00862-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preadipocytes are present and can proliferate to increase fat mass throughout adult life. The importance of mitochondria in these cells has never been investigated, although we recently reported that mitochondrial oxidative metabolism is non-negligible in white preadipocytes. Mitochondrial reactive oxygen species generation is intimately associated with respiratory chain function. An increasing number of reports support their role as signalling molecules. The aim of this work was to study the effects of mitochondrial reactive oxygen species on proliferation of white preadipocytes. Rotenone and oligomycin, inhibitors of complex I and of ATP synthase respectively, increased H(2)O(2) and inhibited cell growth of preadipocytes (without inducing necrosis or apoptosis). These effects were partly prevented by addition of radical scavengers. A chemical uncoupler had opposite effects on reactive oxygen species generation and cell growth. Propofol, which inhibits complex I but also scavenges free radicals, had effects similar to those of the uncoupler on both parameters. Thus, mitochondrial reactive oxygen species can influence development of adipose tissue by affecting the size of the white preadipocyte pool.
Collapse
Affiliation(s)
- Audrey Carrière
- UMR 5018 CNRS-UPS, IFR31, Bât. L1, CHU Rangueil, 31059 Toulouse Cedex 49, France
| | | | | | | | | |
Collapse
|
370
|
Coulter AA, Bearden CM, Liu X, Koza RA, Kozak LP. Dietary fat interacts with QTLs controlling induction of Pgc-1 alpha and Ucp1 during conversion of white to brown fat. Physiol Genomics 2003; 14:139-47. [PMID: 12746468 DOI: 10.1152/physiolgenomics.00057.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify novel regulatory factors controlling induction of the brown adipocyte-specific mitochondrial uncoupling protein (Ucp1) mRNA in the retroperitoneal white fat depot, we previously mapped quantitative trait loci (QTLs) that control this trait to chromosomes 2, 3, 8, and 19. Since the peroxisome proliferator activator receptor-gamma coactivator-1alpha (PGC-1alpha) regulates Ucp1 and other genes of energy metabolism, we have evaluated whether the QTLs controlling Ucp1 mRNA levels also modulate Pgc-1alpha mRNA levels by analysis of backcross progeny from the A/J and C57BL/6J strains of mice. The results indicate that a locus on chromosome 3 orchestrates expression of Pgc-1alpha and Ucp1 in retroperitoneal fat of mice fed a low-fat diet; however, the effect of this locus on Pgc-1alpha is lost, and a significant correlation between Ucp1 and Pgc-1alpha is severely reduced in mice fed a high-fat diet. An additional QTL located on chromosome 5 has also been identified for the selective regulation of Ucp1 mRNA levels. Similar to the effects of a high-fat diet on the chromosome 3 QTL, linkage of the chromosome 5 QTL is also lost in mice on a high-fat diet. Thus dietary fat has a profound influence on PGC-1alpha-regulated pathways controlling energy metabolism in white fat. The allelic variation observed in the regulation of Ucp1 and Pgc-1alpha expression in brown adipocytes of white fat but not interscapular brown fat suggests that fundamentally different regulatory mechanisms exist to control the thermogenic capacities of these tissues.
Collapse
Affiliation(s)
- Ann Allen Coulter
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | |
Collapse
|
371
|
Kabine M, Clémencet MC, Bride J, El Kebbaj MS, Latruffe N, Cherkaoui-Malki M. Changes of peroxisomal fatty acid metabolism during cold acclimatization in hibernating jerboa (Jaculus orientalis). Biochimie 2003; 85:707-14. [PMID: 14505827 DOI: 10.1016/s0300-9084(03)00117-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Jerboa (Jaculus orientalis) is a deep hibernator originating from sub-desert highlands and represents an excellent model to help to understand the incidence of seasonal variations of food intake and of body as well as environmental temperatures on lipid metabolism. In jerboa, hibernation processes are characterized by changes in the size of mitochondria, the number of peroxisomes in liver and in the expression of enzymes linked to fatty acid metabolism. In liver and kidney, cold acclimatization shows an opposite effect on the activities of the mitochondrial acyl-CoA dehydrogenase (-50%) and the peroxisomal acyl-CoA oxidase (AOX) (+50%), while in brown and white adipose tissues, both activities are decreased down to 85%. These enzymes activities are subject to a strong induction in brown and in white adipose tissue (3.4- to 7.5-fold, respectively) during the hibernation period which is characterized by a low body temperature (around 10 degrees C) and by starvation. Expression level of AOX mRNA and protein are increased during both pre-hibernation and hibernation periods. Unexpectedly, treatment with ciprofibrate, a hypolipemic agent, deeply affects lipolysis in brown adipose tissue by increasing acyl-CoA dehydrogenase activity (3.4-fold), both AOX activity and mRNA levels (2.8- and 3.8-fold, respectively) during pre-hibernation. Therefore, during pre-hibernation acclimatization, there is a negative regulation of fatty acid degradation allowing to accumulate a lipid stock which is later degraded during the hibernation period (starvation) due to a positive regulation of enzymes providing the required energy for animal survival.
Collapse
Affiliation(s)
- Mostafa Kabine
- BMC (GDR-CNRS n degrees 2583), Faculté des Sciences Gabriel, LBMC - Université de Bourgogne, 6, boulevard Gabriel, 21000, Dijon, France
| | | | | | | | | | | |
Collapse
|
372
|
Wang T, Zang Y, Ling W, Corkey BE, Guo W. Metabolic partitioning of endogenous fatty acid in adipocytes. OBESITY RESEARCH 2003; 11:880-7. [PMID: 12855758 DOI: 10.1038/oby.2003.121] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To develop an accurate new method to measure the partitioning of adipocyte endogenous fatty acids among different metabolic pathways, a critical step toward understanding the regulatory mechanism by which fat disposition is modulated. RESEARCH METHODS AND PROCEDURES Isolated primary rat adipocytes were pre-incubated with isotope-labeled fatty acids. This allows determination of the specific activity of labeled fatty acids in the endogenous lipid pool. After the removal of exogenous fatty acids, the disposition of endogenous fatty acids into the three major metabolic pathways, namely, oxidation, re-esterification, and release into the medium, was measured independently. This was compared with the total lipolytic release of endogenous fatty acids, as measured by glycerol release. Adipocytes from normal fed and fasted animals were used to determine the effects of physiological variations on the metabolic fate of endogenous fatty acids. RESULTS In normal fed animals, 0.2% of endogenous fatty acids were oxidized, 50.1% were released, and 49.7% were re-esterified. Fasting doubled the partitioning of fatty acids toward oxidation (p < 0.05) in association with increased lipolysis (1.4-fold increase) (p < 0.05). This effect was completely abolished by the addition of insulin to the cells (61% reduction) (p < 0.05). DISCUSSION The endogenous fatty acids in adipocytes are actively oxidized. This process can be regulated by altered physiological conditions or by insulin. Over time, it is possible that a small shift of fatty acids toward oxidation could have a significant impact on body fuel economy. This hypothesis needs to be tested.
Collapse
Affiliation(s)
- Tong Wang
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
373
|
Liu X, Rossmeisl M, McClaine J, Riachi M, Harper ME, Kozak LP. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J Clin Invest 2003; 111:399-407. [PMID: 12569166 PMCID: PMC151850 DOI: 10.1172/jci15737] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The availability of mice lacking the mitochondrial uncoupling protein UCP1, has provided an opportunity to analyze the relationship between the capacity for energy expenditure and the development of obesity in response to a high-fat, high-sucrose diet. Congenic UCP1-deficient mice on a C57BL/6J genetic background show a temperature-dependent resistance to diet-induced obesity when compared with wild-type mice. This resistance, which occurs at 20 degrees C, is quickly reversed when the ambient temperature is increased to 27 degrees C. At 20 degrees C, total oxygen consumption and physical activity of mutant and wild-type mice are indistinguishable; however, body temperature is higher in UCP1-deficient mice by 0.1-0.3 degrees C, and respiratory quotient is slightly reduced. A reduced respiratory quotient, together with elevated beta-hydroxybutyrate and reduced plasma fatty acid levels, suggests that the mutants oxidize a greater proportion of fat than wild-type mice, and that this possibly accounts for the resistance to diet-induced obesity. Although shivering is one alternative mechanism of thermogenesis that is probably used in UCP1-deficient mice, whether there are others remains to be determined. Nevertheless, our study underscores the paradox that elimination of the major thermogenic mechanism in the animal reduces rather than increases metabolic efficiency. We propose that in the absence of nonshivering thermogenesis, alternative, calorically more costly pathways of metabolism must be used to maintain body temperature.
Collapse
Affiliation(s)
- Xiaotuan Liu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | |
Collapse
|
374
|
Frühbeck G, Gómez-Ambrosi J. Control of body weight: a physiologic and transgenic perspective. Diabetologia 2003; 46:143-72. [PMID: 12627314 DOI: 10.1007/s00125-003-1053-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 01/23/2003] [Indexed: 12/29/2022]
Affiliation(s)
- G Frühbeck
- Department of Endocrinology, Clínica Universitaria de Navarra, University of Navarre, Avda. Pío XII 36, 31008 Pamplona, Spain.
| | | |
Collapse
|
375
|
Li Y, Knapp JR, Kopchick JJ. Enlargement of interscapular brown adipose tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-disrupted dwarf mice. Exp Biol Med (Maywood) 2003; 228:207-15. [PMID: 12563029 DOI: 10.1177/153537020322800212] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Growth hormone (GH) acts on adipose tissue by accelerating fat expenditure, preventing triglyceride accumulation, and facilitating lipid mobilization. To investigate whether GH is involved in the development and metabolism of interscapular brown adipose tissue (BAT), a site of nonshivering thermogenesis, we employed three lines of transgenic mice. Two of the lines are dwarf due to expression of a GH antagonist (GHA) or disruption of the GH receptor/binding-protein gene. A third mouse line is giant due to overexpression of a bovine GH (bGH) transgene. We have found that the body weights of those animals are proportional to their body lengths at 10 weeks of age. However, GHA dwarf mice tend to catch up with the nontransgenic (NT) littermates in body weight but not in body length at 52 weeks of age. The increase of body mass index (BMI) for GHA mice accelerates rapidly relative to controls as a function of age. We have also observed that BAT in both dwarf mouse lines but not in giant mice is enlarged in contrast to nontransgenic littermates. This enlargement occurs as a function of age. Northern analysis suggests that BAT can be a GH-responsive tissue because GHR/BP mRNAs were found there. Finally, the level of uncoupling protein-1 (UCP1) RNA was found to be higher in dwarf mice and lower in giant animals relative to controls, suggesting that GH-mediated signaling may negatively regulate UCP1 gene expression in BAT.
Collapse
Affiliation(s)
- Yuesheng Li
- Edison Biotechnology Institute, Department of Biological Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | | | | |
Collapse
|
376
|
Liu X, Rossmeisl M, McClaine J, Kozak LP. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J Clin Invest 2003. [DOI: 10.1172/jci200315737] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
377
|
Abstract
Different types of lean mice have been produced by genetic manipulation. Leanness can result from deficiency of stored energy or a lack of adipocytes to store the lipid. Mice lacking functional adipocytes are usually insulin resistant and have fatty livers, and elevated circulating triglyceride levels. Insulin resistance may result from the lack of adipocyte hormones (such as leptin) and increased metabolite (such as triglyceride) levels in nonadipose tissue. Mice with depleted adipocyte triglyceride levels typically are insulin sensitive and have normal or low liver and circulating triglycerides. Mechanisms to produce depleted adipocytes include increased energy expenditure by peripheral tissues, peripheral mechanisms to decrease food intake, and altered central regulation of these processes.
Collapse
Affiliation(s)
- Marc L Reitman
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892-1770, USA.
| |
Collapse
|
378
|
Prpic V, Watson PM, Frampton IC, Sabol MA, Jezek GE, Gettys TW. Adaptive changes in adipocyte gene expression differ in AKR/J and SWR/J mice during diet-induced obesity. J Nutr 2002; 132:3325-32. [PMID: 12421846 DOI: 10.1093/jn/132.11.3325] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Obesity-prone (AKR/J) and obesity-resistant (SWR/J) mice were weaned onto low (LF) or high fat (HF) diets to identify adaptive changes in adipocyte gene expression that are associated with differences between the strains in fat deposition. Food consumption was monitored at weekly intervals and all mice were evaluated after consuming their respective diets for 4 wk for analysis of mRNA levels of selected metabolic genes. Despite similar food consumption, body weight and fat deposition were significantly greater in AKR/J than in SWR/J mice, and this difference was greatly accentuated by the HF diet. The HF diet produced distinct differences between strains in gene expression patterns among fat depots. In AKR/J mice, UCP1 mRNA was decreased 10-fold in interscapular brown adipose tissue (BAT) and four- to fivefold in retroperitoneal and inguinal white adipose tissue (WAT). The HF diet also decreased PGC-1 and beta(3)-adrenergic receptor mRNA by two- and ninefold in BAT from AKR/J mice. In contrast, the HF diet either increased uncoupling protein (UCP)1 in BAT or had no effect on expression of these genes in adipose tissues from SWR/J mice. UCP2 mRNA was fourfold higher in WAT from AKR/J compared with SWR/J mice and increased by an additional twofold in WAT from AKR/J mice fed the HF diet. UCP2 was unaffected by diet in SWR/J mice. These studies show that the diet-induced obesity of AKR/J mice is characterized by increased metabolic efficiency and is associated with changes in adipocyte gene expression that limit the adaptive thermogenic response to increased energy density.
Collapse
Affiliation(s)
- Veronica Prpic
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | |
Collapse
|
379
|
Abstract
In mammals, the adipose organ is a multi-depot organ made of two tissue types, the white and brown adipose tissues, which collaborate in partitioning the energy contained in lipids between thermogenesis and the other metabolic functions. It consists of several sc and visceral depots. Some areas of these depots are brown and correspond to brown adipose tissue, while many are white and correspond to white adipose tissue. White areas contain a variable amount of brown adipocytes and their number varies with age, strain and environmental conditions. Brown and white adipocyte are morphologically different. At light microscopy level, brown adipocytes have cytoplasmic lipids arranged as numerous small droplets (multilocularity), while white adipocytes have cytoplasmic lipids arranged in a unique vacuole (unilocularity). Ultrastructurally, brown adipocytes have numerous big mitochondria packed with cristae and containing the thermogenic uncoupling protein 1 (UCP1). In vivo and in vitro studies have shown that the differentiation process of brown and white adipocytes shows distinctive features. Nevertheless, the origin of the adipocyte precursor is still unknown. Recent data have stressed the plasticity of the adipose organ in adult animals. Indeed, under peculiar conditions fully differentiated, white adipocytes can transdifferentiate into brown adipocytes, and viceversa. The ability of the adipose organ to interconvert its main cytotypes in order to meet changing metabolic needs is highly pertinent to the physiopathology of obesity and related to therapeutic strategies.
Collapse
Affiliation(s)
- S Cinti
- Institute of Normal Human Morphology, Faculty of Medicine, University of Ancona, Ancona, Italy.
| |
Collapse
|
380
|
Rim JS, Kozak LP. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene. J Biol Chem 2002; 277:34589-600. [PMID: 12084707 DOI: 10.1074/jbc.m108866200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.
Collapse
Affiliation(s)
- Jong S Rim
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | |
Collapse
|
381
|
Flachs P, Novotný J, Baumruk F, Bardová K, Bourová L, Miksík I, Sponarová J, Svoboda P, Kopecký J. Impaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels. Biochem J 2002; 364:369-76. [PMID: 12023879 PMCID: PMC1222581 DOI: 10.1042/bj20011438] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vitro experiments suggest that stimulation of lipolysis by catecholamines in adipocytes depends on the energy status of these cells. We tested whether mitochondrial uncoupling proteins (UCPs) that control the efficiency of ATP production could affect lipolysis and noradrenaline signalling in white fat in vivo. The lipolytic effect of noradrenaline was lowered by ectopic UCP1 in white adipocytes of aP2-Ucp1 transgenic mice, overexpressing the UCP1 gene from the aP2 gene promoter, reflecting the magnitude of UCP1 expression, the impaired stimulation of cAMP levels by noradrenaline and the reduction of the ATP/ADP ratio in different fat depots. Thus only subcutaneous but not epididymal fat was affected. UCP1 also down-regulated the expression of hormone-sensitive lipase and lowered its activity, and altered the expression of trimeric G-proteins in adipocytes. The adipose tissue content of the stimulatory G-protein alpha subunit was increased while that of the inhibitory G-protein alpha subunits decreased in response to UCP1 expression. Our results support the idea that the energy status of cells, and the ATP/ADP ratio in particular, modulates the lipolytic effects of noradrenaline in adipose tissue in vivo. They also demonstrate changes at the G-protein level that tend to overcome the reduction of lipolysis when ATP level in adipocytes is low. Therefore, respiratory uncoupling may exert a broad effect on hormonal signalling in adipocytes.
Collapse
Affiliation(s)
- Pavel Flachs
- Department of Adipose Tissue Biology and Center for Integrated Genomics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1803, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Bernal-Mizrachi C, Weng S, Li B, Nolte LA, Feng C, Coleman T, Holloszy JO, Semenkovich CF. Respiratory uncoupling lowers blood pressure through a leptin-dependent mechanism in genetically obese mice. Arterioscler Thromb Vasc Biol 2002; 22:961-8. [PMID: 12067905 DOI: 10.1161/01.atv.0000019404.65403.71] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin resistance is commonly associated with hypertension, a condition that causes vascular disease in people with obesity and type 2 diabetes. The mechanisms linking hypertension and insulin resistance are poorly understood. To determine whether respiratory uncoupling can prevent insulin resistance-related hypertension, we crossed transgenic mice expressing uncoupling protein 1 (UCP1) in skeletal muscle with lethal yellow (A(y)/a) mice, genetically obese animals known to have elevated blood pressure. Despite increased food intake, UCP-A(y)/a mice weighed less than their A(y)/a littermates. The metabolic rate was higher in UCP-A(y)/a mice than in A(y)/a mice and did not impair their ability to alter oxygen consumption in response to temperature changes, an adaptation involving sympathetic nervous system activity. Compared with their nontransgenic littermates, UCP-A(y)/a mice had lower fasting insulin, glucose, triglyceride, and cholesterol levels and were more insulin sensitive. Blood pressure, serum leptin, and urinary catecholamine levels were also lower in uncoupled mice. Independent of sympathetic nervous system activity, low-dose peripheral leptin infusion increased blood pressure in UCP-A(y)/a mice but not in their A(y)/a littermates. These data indicate that skeletal muscle respiratory uncoupling reverses insulin resistance and lowers blood pressure in genetic obesity without affecting thermoregulation. The data also suggest that uncoupling could decrease the risk of atherosclerosis in type 2 diabetes.
Collapse
Affiliation(s)
- Carlos Bernal-Mizrachi
- Department of Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
383
|
Valet P, Tavernier G, Castan-Laurell I, Saulnier-Blache JS, Langin D. Understanding adipose tissue development from transgenic animal models. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30458-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
384
|
Kopecký J, Flachs P, Bardová K, Brauner P, Prazák T, Sponarová J. Modulation of lipid metabolism by energy status of adipocytes: implications for insulin sensitivity. Ann N Y Acad Sci 2002; 967:88-101. [PMID: 12079839 DOI: 10.1111/j.1749-6632.2002.tb04267.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It is becoming evident that insulin resistance of white adipose tissue is a major factor underlying the cardiovascular risk of obesity. Impaired fat storage rather than altered glucose metabolism in adipocytes probably contributes to development of insulin resistance in muscle and other tissues, in particular via increased delivery of nonesterified fatty acids into circulation. Lipid metabolism of adipose tissue is affected by the energy status of fat cells. In vitro experiments indicated the dependence of both lipogenesis and lipolysis on ATP levels in adipocytes. Thus, respiratory uncoupling in adipocytes that results in stimulation of energy dissipation and depression of ATP synthesis may contribute to the control of lipid metabolism, adiposity, and insulin sensitivity. This notion is supported by the expression of UCPs in adipocytes, for example, UCP2, UCP5, as well as some protonophoric anion transporters, and by induction of UCP1 and UCP3 in white fat by pharmacological treatments that reduce adiposity. A negative correlation between expression of UCPs in adipocytes and accumulation of white fat was also found. Expression of UCP1 from the adipose-specific promoter in the aP2-Ucp1 transgenic mice mitigated obesity induced by genetic or dietary factors. The obesity resistance, accompanied by respiratory uncoupling in adipocytes and increased energy expenditure, resulted from ectopic expression of UCP1 in white, but not brown fat. Probably due to depression of the ATP/ADP ratio, both fatty acid synthesis and lipolytic action of norepinephrine in adipocytes of transgenic mice were relatively low. Expression of regulatory G-proteins, which are essential for both catecholamine and insulin signaling in adipocytes, was also altered by ectopic UCP1. These results support the role of protonophoric proteins in adipocytes in the control of adiposity and insulin sensitivity. Antidiabetic effects of thiazolidinediones, fibrates, beta(3)-adrenoreceptor agonists, dietary n-3 PUFAs, and leptin may be explained at least partially by their effects on the energy and hence also the lipid metabolism of fat cells.
Collapse
Affiliation(s)
- Jan Kopecký
- Department of Adipose Tissue Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
385
|
Schlüter A, Barberá MJ, Iglesias R, Giralt M, Villarroya F. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation. Biochem J 2002; 362:61-9. [PMID: 11829740 PMCID: PMC1222360 DOI: 10.1042/0264-6021:3620061] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis.
Collapse
Affiliation(s)
- Agatha Schlüter
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Facultat de Biologia, Avda Diagonal 645, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
386
|
Rossmeisl M, Barbatelli G, Flachs P, Brauner P, Zingaretti MC, Marelli M, Janovská P, Horáková M, Syrový I, Cinti S, Kopecký J. Expression of the uncoupling protein 1 from the aP2 gene promoter stimulates mitochondrial biogenesis in unilocular adipocytes in vivo. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:19-28. [PMID: 11784294 DOI: 10.1046/j.0014-2956.2002.02627.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) is a specific marker of multilocular brown adipocytes. Ectopic UCP1 in white fat of aP2-Ucp1 mice mitigates development of obesity by both, increasing energy expenditure and decreasing in situ lipogenesis. In order to further analyse consequences of respiratory uncoupling in white fat, the effects of the ectopic UCP1 on the morphology of adipocytes and biogenesis of mitochondria in these cells were studied. In subcutaneous white fat of both aP2-Ucp1 and young control (5-week-old) mice, numerous multilocular adipocytes were found, while they were absent in adult (7- to 9-month-old) animals. Only unilocular cells were present in epididymal fat of both genotypes. In both fat depots of aP2-Ucp1 mice, the levels of the UCP1 transcript and UCP1 antigen declined during ageing, and they were higher in subcutaneous than in epididymal fat. Under no circumstances could ectopic UCP1 induce the conversion of unilocular into multilocular adipocytes. Presence of ectopic UCP1 in unilocular adipocytes was associated with the elevation of the transcripts for UCP2 and for subunit IV of mitochondrial cytochrome oxidase (COX IV), and increased content of mitochondrial cytochromes. Electron microscopy indicated changes of mitochondrial morphology and increased mitochondrial content due to ectopic UCP1 in unilocular adipocytes. In 3T3-L1 adipocytes, 2,4-dinitrophenol increased the levels of the transcripts for both COX IV and for nuclear respiratory factor-1. Our results indicate that respiratory uncoupling in unilocular adipocytes of white fat is capable of both inducing mitochondrial biogenesis and reducing development of obesity.
Collapse
Affiliation(s)
- Martin Rossmeisl
- Department of Adipose Tissue Biology and Center for Integrated Genomics, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Bray GA, York DA. Obesity. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
388
|
Collins S, Cao W, Daniel KW, Dixon TM, Medvedev AV, Onuma H, Surwit R. Adrenoceptors, uncoupling proteins, and energy expenditure. Exp Biol Med (Maywood) 2001; 226:982-90. [PMID: 11743133 DOI: 10.1177/153537020122601104] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Interest in the biology of adipose tissue has undergone a revival in recent years with the discovery of a host of genes that contribute to the regulation of satiety and metabolic rate. The catecholamines have long been known to be key modulators of adipose tissue lipolysis and the hydrolysis of triglyceride energy stores. However, more recent efforts to understand the role of individual adrenergic receptor subtypes expressed in adipocytes and their signal transduction pathways have revealed a complexity not previously appreciated. Combined with this interest in the modulation of adipocyte metabolism is a renewed focus upon brown adipose tissue and the mechanisms of whole body thermogenesis in general. The discovery of novel homologs of the brown fat uncoupling protein (UCP) such as UCP2 and UCP3 has provoked intensive study of these mitochondrial proteins and the role that they play in fuel metabolism. The story of the novel UCPs has proven to be intriguing and still incompletely understood. Here, we review the status of adipose tissue from inert storage depot to endocrine organ, interesting signal transduction pathways triggered by beta-adrenergic receptors in adipocytes, the potential of these receptors for discriminating and coordinated metabolic regulation, and current views on the role of UCP2 and UCP3 based on physiological studies and gene knockout models.
Collapse
Affiliation(s)
- S Collins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
389
|
Abstract
Mitochondrial proton cycling is responsible for a significant proportion of basal or standard metabolic rate, so further uncoupling of mitochondria may be a good way to increase energy expenditure and represents a good pharmacological target for the treatment of obesity. Uncoupling by 2,4-dinitrophenol has been used in this way in the past with notable success, and some of the effects of thyroid hormone treatment to induce weight loss may also be due to uncoupling. Diet can alter the pattern of phospholipid fatty acyl groups in the mitochondrial membrane, and this may be a route to uncoupling in vivo. Energy expenditure can be increased by stimulating the activity of uncoupling protein 1 (UCP1) in brown adipocytes either directly or through beta 3-adrenoceptor agonists. UCP2 in a number of tissues, UCP3 in skeletal muscle and the adenine nucleotide translocase have also been proposed as possible drug targets. Specific uncoupling of muscle or brown adipocyte mitochondria remains an attractive target for the development of antiobesity drugs.
Collapse
Affiliation(s)
- J A Harper
- MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | | | |
Collapse
|
390
|
Saito M, Ohashi A. [Mitochondrial uncoupling protein as a target of pharmacotherapy for obesity]. Nihon Yakurigaku Zasshi 2001; 118:327-33. [PMID: 11729636 DOI: 10.1254/fpj.118.327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Uncoupling protein (UCP) is a transporter family present in the mitochondrial inner membrane, and as its name suggests, it uncouples respiration from ATP synthesis by dissipating the transmembrane proton gradient as heat. UCP is now recognized as a key molecule in metabolic thermogenesis such as cold- and diet-induced heat production, which is a significant component of energy expenditure, and its dysfunction contributes to the development of obesity. Among the UCP family, UCP-1 is expressed exclusively in brown adipose tissue (BAT), while UCP-2 is present in many organs and UCP-3 is in skeletal muscle. BAT thermogenesis by UCP-1, which has been studied most extensively, is controlled directly by sympathetic nerves principally through the beta-adrenergic action of norepinephrine. Since the beta 3-adrenoceptor is present primarily in adipose tissues, its selective agonists stimulate BAT thermogenesis and also lipid mobilization in white adipose tissue without any noticeable effect on beta 1- and beta 2-adrenoceptos. Therefore, beta 3-adrenoceptor agonists would be promising for the pharmacotherapy of obesity. UCP gene expression is up regulated by ligands for nuclear receptors such as thyroid hormone receptor, peroxisome proliferator-activated receptors (PPAR) and retinoid-X receptor. Long chain fatty acids and some of their metabolites are known to activate PPAR and thereby lead to abundant expression of UCP, which may also contribute to increase in energy expenditure and prevention of obesity. The activity of UCP is suppressed by purine nucleotides but activated by fatty acids. Thus, fatty acids increase UCP-mediated thermogenesis by direct activation of UCP and also by increased gene expression, implying some specific fatty acids or their derivatives as an effective anti-obesity tool.
Collapse
Affiliation(s)
- M Saito
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | |
Collapse
|
391
|
Tsukiyama-Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z, Gingras AC, Katsume A, Elchebly M, Spiegelman BM, Harper ME, Tremblay ML, Sonenberg N. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat Med 2001; 7:1128-32. [PMID: 11590436 DOI: 10.1038/nm1001-1128] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
All nuclear-encoded mRNAs contain a 5' cap structure (m7GpppN, where N is any nucleotide), which is recognized by the eukaryotic translation initiation factor 4E (eIF4E) subunit of the eIF4F complex. The eIF4E-binding proteins constitute a family of three polypeptides that reversibly repress cap-dependent translation by binding to eIF4E, thus preventing the formation of the eIF4F complex. We investigated the biological function of 4E-BP1 by disrupting its gene (Eif4ebp1) in the mouse. Eif4ebp1-/- mice manifest markedly smaller white fat pads than wild-type animals, and knockout males display an increase in metabolic rate. The males' white adipose tissue contains cells that exhibit the distinctive multilocular appearance of brown adipocytes, and expresses the uncoupling protein 1 (UCP1), a specific marker of brown fat. Consistent with these observations, translation of the peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC1), a transcriptional co-activator implicated in mitochondrial biogenesis and adaptive thermogenesis, is increased in white adipose tissue of Eif4ebp1-/- mice. These findings demonstrate that 4E-BP1 is a novel regulator of adipogenesis and metabolism in mammals.
Collapse
Affiliation(s)
- K Tsukiyama-Kohara
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Esterbauer H, Schneitler C, Oberkofler H, Ebenbichler C, Paulweber B, Sandhofer F, Ladurner G, Hell E, Strosberg AD, Patsch JR, Krempler F, Patsch W. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nat Genet 2001; 28:178-83. [PMID: 11381268 DOI: 10.1038/88911] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity is the most common nutritional disorder in Western society. Uncoupling protein-2 (UCP2) is a recently identified member of the mitochondrial transporter superfamily that is expressed in many tissues, including adipose tissue. Like its close relatives UCP1 and UCP3, UCP2 uncouples proton entry in the mitochondrial matrix from ATP synthesis and is therefore a candidate gene for obesity. We show here that a common G/A polymorphism in the UCP2 promoter region is associated with enhanced adipose tissue mRNA expression in vivo and results in increased transcription of a reporter gene in the human adipocyte cell line PAZ-6. In analyzing 340 obese and 256 never-obese middle-aged subjects, we found a modest but significant reduction in obesity prevalence associated with the less-common allele. We confirmed this association in a population-based sample of 791 middle-aged subjects from the same geographic area. Despite its modest effect, but because of its high frequency (approximately 63%), the more-common risk allele conferred a relatively large population-attributable risk accounting for 15% of the obesity in the population studied.
Collapse
Affiliation(s)
- H Esterbauer
- Department of Laboratory Medicine, Landeskliniken Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Du H, Heur M, Duanmu M, Grabowski GA, Hui DY, Witte DP, Mishra J. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31157-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
394
|
Abstract
Obesity is a health problem of epidemic proportions in the industrialized world. The cloning and characterization of the genes for the five naturally occurring monogenic obesity syndromes in the mouse have led to major breakthroughs in understanding the physiology of energy balance and the contribution of genetics to obesity in the human population. However, the regulation of energy balance is an extremely complex process, and it is quickly becoming clear that hundreds of genes are involved. In this article, we review the naturally occurring monogenic and polygenic obese mouse strains, as well as the large number of transgenic and knockout mouse models currently available for the study of obesity and energy balance.
Collapse
Affiliation(s)
- S W Robinson
- Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, USA.
| | | | | |
Collapse
|
395
|
Harper ME, Himms-Hagen J. Mitochondrial efficiency: lessons learned from transgenic mice. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:159-72. [PMID: 11239492 DOI: 10.1016/s0005-2728(00)00244-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metabolic research has, like most areas of research in the life sciences, been affected dramatically by the application of transgenic technologies. Within the specific area of bioenergetics it has been thought that transgenic approaches in mice would provide definitive proof for some longstanding metabolic theories and assumptions. Here we review a number of transgenic approaches that have been used in mice to address theories of mitochondrial efficiency. The focus is largely on genes that affect the coupling of energy substrate oxidation to ATP synthesis, and thus, mice in which the uncoupling protein (Ucp) genes are modified are discussed extensively. Transgenic approaches have indeed provided proof-of-concept in some instances, but in many other instances they have yielded results that are in contrast to initial hypotheses. Many studies have also shown that genetic background can affect phenotypic outcomes, and that the upregulated expression of genes that are related to the modified gene often complicates the interpretation of findings.
Collapse
Affiliation(s)
- M E Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, Ont., Canada K1H 8M5.
| | | |
Collapse
|
396
|
Abstract
Four recently discovered homologues of the brown adipose tissue-specific mitochondrial uncoupling protein (UCP1) vary from 29% to 58% in their similarity to UCP1. Although these homologues share important structural features with UCP1 and like UCP1 can reduce the mitochondrial membrane potential when expressed in yeast, there is no clear evidence that they can function thermogenically in vivo. On the other hand, evidence continues to accumulate indicating that the up-regulation of Ucp1 reduces excessive adiposity.
Collapse
Affiliation(s)
- L P Kozak
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| | | |
Collapse
|
397
|
Commins SP, Watson PM, Frampton IC, Gettys TW. Leptin selectively reduces white adipose tissue in mice via a UCP1-dependent mechanism in brown adipose tissue. Am J Physiol Endocrinol Metab 2001; 280:E372-7. [PMID: 11158943 DOI: 10.1152/ajpendo.2001.280.2.e372] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that leptin, in addition to reducing body fat by restraining food intake, reduces body fat through a peripheral mechanism requiring uncoupling protein 1 (UCP1). Leptin was administered to wild-type (WT) mice and mice with a targeted disruption of the UCP1 gene (UCP1 deficient), while vehicle-injected control animals of each genotype were pair-fed to each leptin-treated group. Leptin reduced the size of white adipose tissue (WAT) depots in WT mice but not in UCP1-deficient animals. This was accompanied by a threefold increase in the amount of UCP1 protein and mRNA in the brown adipose tissue (BAT) of WT mice. Leptin also increased UCP2 mRNA in WAT of both WT and UCP1-deficient mice but increased UCP2 and UCP3 mRNA only in BAT from UCP1-deficient mice. These results indicate that leptin reduces WAT through a peripheral mechanism requiring the presence of UCP1, with little or no involvement of UCP2 or UCP3.
Collapse
Affiliation(s)
- S P Commins
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
398
|
Higa M, Kakuma T, Pan W, Wang ZW, Babcock E, McCorkle K, Lee Y, Unger R. Slow recovery of body fat lost during adenovirus-induced hyperleptinemia. Biochem Biophys Res Commun 2000; 279:786-91. [PMID: 11162429 DOI: 10.1006/bbrc.2000.4025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In normal rats, adenovirus-induced hyperleptinemia causes disappearance of visible body fat, downregulation of lipogenic enzymes, and upregulation of oxidative enzymes and thermogenic proteins. In addition, preadipocyte markers replace mature adipocyte markers, suggesting dedifferentiation. In weight loss induced by caloric restriction, by contrast, the lipogenic machinery is essentially intact. To determine if the radical changes induced by leptin would slow the reappearance of body fat, we compared normal lean rats made hyperleptinemic by infusing an adenovirus-leptin construct with diet-matched littermates. Initially, in plasma leptin the hyperleptinemic rats averaged approximately 50x the controls and, although it declined progressively, it was still slightly elevated at 150 days (P < 0.05). In the hyperleptinemics, body fat mass, quantified by magnetic resonance spectroscopy, remained below the pretreatment value for 60 days, while in diet-matched controls it exceeded the pretreatment value. Epididymal fat pad weight in hyperleptinemics was still 28% below paired controls at 150 days posttreatment. Histologic examination revealed adipocytes of hyperleptinemic animals to be smaller 60 days after treatment. At 60 days, adipose tissue UCP-2 gene expression in hyperleptinemics was still above controls, but expression of other lipogenic and oxidative enzymes had returned to baseline expression levels. We conclude that in normal rats recovery of body fat following adenovirus-induced hyperleptinemia is much slower than after caloric restriction, possibly because of persistent upregulation of adipocyte UCP-2.
Collapse
Affiliation(s)
- M Higa
- Gifford Laboratories, Touchstone Center for Diabetes Research, Dallas, Texas 75390-8854, USA
| | | | | | | | | | | | | | | |
Collapse
|
399
|
Abstract
The lipoatrophy syndromes are a heterogeneous group of syndromes characterized by a paucity of adipose tissue. Severe lipoatrophy is associated with insulin-resistant diabetes mellitus (DM). The loss of adipose tissue can have a genetic, immune, or infectious/drug-associated etiology. Causative mutations have been identified in patients for one form of partial lipoatrophy--Dunnigan-type familial partial lipodystrophy. Experiments using lipoatrophic mice demonstrate that the diabetes results from the lack of fat and that leptin deficiency is a contributing factor. Thiazolidinedione therapy improves metabolic control in lipoatrophic patients; the efficacy of leptin treatment is currently being investigated.
Collapse
Affiliation(s)
- M L Reitman
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 8N-250, 10 Center Drive, Bethesda, MD 20892-1770, USA.
| | | | | | | |
Collapse
|
400
|
Koza RA, Hohmann SM, Guerra C, Rossmeisl M, Kozak LP. Synergistic gene interactions control the induction of the mitochondrial uncoupling protein (Ucp1) gene in white fat tissue. J Biol Chem 2000; 275:34486-92. [PMID: 10931824 DOI: 10.1074/jbc.m002136200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among a selected group of mouse strains susceptible to dietary obesity, those with an enhanced capacity for Ucp1 and brown adipocyte induction in white fat preferentially lost body weight following adrenergic stimulation. Based on the generality of this mechanism for reducing obesity, a genetic analysis was initiated to identify genes that control brown adipocyte induction in white fat depots in mice. Quantitative trait locus (QTL) analysis was performed using the variations of retroperitoneal fat Ucp1 mRNA expression in progeny of genetic crosses between the A/J and C57BL/6J parental strains and selected AXB recombinant inbred strains. Three A/J-derived loci on chromosomes 2, 3, and 8 and one C57BL/6J locus on chromosome 19 were linked to Ucp1 induction in retroperitoneal fat. Although A/J-derived alleles seemed to contribute to elevated Ucp1 expression, the C57BL/6J allele on chromosome 19 increased Ucp1 mRNA to levels higher than parental values. Thus, novel patterns of C57BL/6J and A/J recombinant genotypes among the four mapped loci resulted in a transgressive variation of Ucp1 phenotypes. Although the extent of the interchromosomal interactions have not been fully explored, strong synergistic interactions occur between a C57BL/6J allele on chromosome 19 and an A/J allele on chromosome 8. In addition to selective synergistic interactions between loci, variations in recessive and dominant effects also contribute to the final levels of Ucp1 expression.
Collapse
Affiliation(s)
- R A Koza
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | |
Collapse
|