351
|
Miholjcic TBS, Baud O, Iranmanesh P, Wildhaber BE. Risk Factors for Dehiscence of Operative Incisions in Newborns after Laparotomy. Eur J Pediatr Surg 2024; 34:351-362. [PMID: 37816380 PMCID: PMC11226331 DOI: 10.1055/s-0043-1771223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/26/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Surgical wound dehiscence (SWD) in neonates is a life-threatening complication. The aim was to define risk factors of postoperative incision dehiscence in this population. METHODS Data of 144 patients from 2010 to 2020 were analyzed retrospectively. All full-term newborns or preterm newborns up to 42 weeks of amenorrhea (adjusted) who had a laparotomy within 30 days were included. Descriptive patient information and perioperative data were collected. SWD was defined as any separation of cutaneous edges of postoperative wounds. RESULTS Overall, SWD occurred in 16/144 (11%) patients, with a significantly increased incidence in preterm newborns (13/59, 22%) compared with full-term newborns (3/85, 4%; p < 0.001). SWD was significantly associated with exposure to postnatal steroids (60% vs. 4%, p < 0.001) and nonsteroidal anti-inflammatory drugs (25% vs. 4%, p < 0.01), invasive ventilation duration before surgery (median at 10 vs. 0 days, p < 0.001), preoperative low hemoglobin concentration (115 vs. 147 g/L, p < 0.001) and platelet counts (127 vs. 295 G/L, p < 0.001), nonabsorbable suture material (43% vs. 8%, p < 0.001), the presence of ostomies (69% vs. 18%, p < 0.001), positive bacteriological wound cultures (50% vs. 6%, p < 0.001), and relaparotomy (25% vs. 3%, p < 0.01). Thirteen of 16 patients with SWD presented necrotizing enterocolitis/intestinal perforations (81%, p < 0.001). CONCLUSION This study identified prematurity and a number of other factors linked to the child's general condition as risk factors for SWD. Some of these can help physicians recognize and respond to at-risk patients and provide better counseling for parents.
Collapse
Affiliation(s)
- Tina B. S. Miholjcic
- Division of Child and Adolescent Surgery, Department of Pediatrics, Gynecology, and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Baud
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Neonatal and Pediatric Intensive Care, Department of Pediatrics, Gynecology, and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Pouya Iranmanesh
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Digestive Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Barbara E. Wildhaber
- Division of Child and Adolescent Surgery, Department of Pediatrics, Gynecology, and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
352
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
353
|
Zhong Y, Wei ET, Wu L, Wang Y, Lin Q, Wu N, Chen H, Tang N. Novel Biomaterials for Wound Healing and Tissue Regeneration. ACS OMEGA 2024; 9:32268-32286. [PMID: 39100297 PMCID: PMC11292631 DOI: 10.1021/acsomega.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024]
Abstract
Skin is the first defense barrier of the human body, which can resist the invasion of external dust, microorganisms and other pollutants, and ensure that the human body maintains the homeostasis of the internal environment. Once the skin is damaged, the health threat to the human body will increase. Wound repair and the human internal environment are a dynamic process. How to effectively accelerate the healing of wounds without affecting the internal environment of the human body and guarantee that the repaired tissue retains its original function as much as possible has become a research hotspot. With the advancement of technology, researchers have combined new technologies to develop and prepare various types of materials for wound healing. This article will introduce the wound repair materials developed and prepared in recent years from three types: nanofibers, composite hydrogels, and other new materials. The paper aims to provide reference for researchers in related fields to develop and prepare multifunctional materials. This may be helpful to design more ideal materials for clinical application, and then achieve better wound healing and regeneration effects.
Collapse
Affiliation(s)
- Yi Zhong
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Er-ting Wei
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Leran Wu
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Yong Wang
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Qin Lin
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Nihuan Wu
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Hongpeng Chen
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Nan Tang
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| |
Collapse
|
354
|
Li Y, Zhang L, He M, Zhao Y. Sequence analysis of microbiota in clinical human cases with diabetic foot ulcers from China. Heliyon 2024; 10:e34368. [PMID: 39104504 PMCID: PMC11298921 DOI: 10.1016/j.heliyon.2024.e34368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Background Diabetic foot ulcers (DFU) seriously threaten the health and quality of life of patients. The microbiota is the primary reason for the refractory and high recurrence of DFU. This study aimed to determine the wound microbiota at different DFU stages. Methods Wound samples were collected from 48 patients with DFU and divided into three phases: inflammatory (I, n = 49), proliferation (P, n = 22), and remodeling (R, n = 19). The wound samples obtained at different stages were then subjected to 16S rRNA gene sequencing. The number of operational taxonomic units (OTUs) in the different groups was calculated according to the criterion of 97 % sequence similarity. The diversity of the microbiota differentially presented bacterial taxa at the phylum and genus levels, and important phyla and genera in the different groups were further explored. Results After sequencing, 3351, 925, and 777 OTUs were observed in groups I, P, and R, respectively, and 175 OTUs overlapped. Compared with the inflammatory stage, the α-diversity of wound microbiota at proliferation and remodeling stages was significantly decreased (P < 0.05). At the phylum level, Firmicutes, Proteobacteria, Actinobacteriota, and Bacteroidota were the dominant phyla, accounting for more than 90 % of all the phyla. At the genus level, Random Forest and linear discriminant analysis effect size analyses showed that Peptoniphilus, Lactobacillus, Prevotella, Veillonella, Dialister, Streptococcus, and Ruminococcus were the signature wound microbiota for the inflammatory stage; Anaerococcus, Ralstonia, Actinomyces, and Akkermansia were important species for the proliferation stage; and the crucial genera for the remodeling stage were Enterobacter, Pseudomonas, Sondgrassella, Bifidobacterium, and Faecalibacterium. Conclusions There were significant differences in the composition and structure of the wound microbiota in patients with DFU at different stages, which may lay a foundation for effectively promoting wound healing in DFU.
Collapse
Affiliation(s)
- Ying Li
- The Ninth Clinical School of Shanxi Medical University, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| | - Li Zhang
- Department of Endocrinology, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| | - Meifang He
- Department of Endocrinology, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| | - Yuebin Zhao
- Department of Endocrinology, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| |
Collapse
|
355
|
Shi J, Shen J, Guo W, Zhang C. Robot-assisted versus traditional fixation for the treatment of calcaneal fractures: a meta-analysis. BMC Musculoskelet Disord 2024; 25:591. [PMID: 39068403 PMCID: PMC11282853 DOI: 10.1186/s12891-024-07726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE With the development of surgical technology, the level of digital medicine is constantly improving. The birth of new technologies has a certain impact on traditional methods. At present, robot-assisted technology has been applied to patients with calcaneal fractures, which poses a challenge to traditional surgery. We aimed to assess whether robot-assisted internal fixation confers certain surgical advantages through a literature review. DESIGN The databases PubMed, EMBASE, the Cochrane Library, the China National Knowledge Infrastructure (CNKI), and the Wanfang Data Knowledge Service Platform were systematically searched for both randomized and nonrandomized studies involving patients with calcaneal fractures. MAIN RESULTS Five studies were identified that compared clinical indexes. For the clinical indexes, robot-assisted surgery is generally feasible because of intraoperative fluoroscopy, complications, the Gissane angle, the calcaneal width, and the American Orthopedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot score 3 and 6 months after the operation (P < 0.05). However, on the operation time, Böhler's angle at 3 and 6 months, Gissane angle and calcaneal width at 6 months after the operation did not show good efficacy compared with those of the traditional group (P > 0.05). CONCLUSIONS Based on the current evidence, the advantages of robot-assisted fixation over traditional fixation are clear. The long-term clinical effects of the two methods are also good, and the short-term effect of robot assistance is better. However, the quality of some studies is low, and more high-quality randomized controlled trials (RCTs) are needed for further verification.
Collapse
Affiliation(s)
- Jiaxiao Shi
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China.
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research(Preparing), Cangzhou, China.
| | - Jiaxin Shen
- Department of Intensive Care Unit, Cangzhou Central Hospital, Cangzhou, 061001, China
| | - Wei Guo
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research(Preparing), Cangzhou, China
| | - Chaochao Zhang
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research(Preparing), Cangzhou, China
| |
Collapse
|
356
|
Yan L, Wang Y, Feng J, Ni Y, Zhang T, Cao Y, Zhou M, Zhao C. Mechanism and application of fibrous proteins in diabetic wound healing: a literature review. Front Endocrinol (Lausanne) 2024; 15:1430543. [PMID: 39129915 PMCID: PMC11309995 DOI: 10.3389/fendo.2024.1430543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Diabetic wounds are more complex than normal chronic wounds because of factors such as hypoxia, reduced local angiogenesis, and prolonged inflammation phase. Fibrous proteins, including collagen, fibrin, laminin, fibronectin, elastin etc., possess excellent inherent properties that make them highly advantageous in the area of wound healing. Accumulating evidence suggests that they contribute to the healing process of diabetic wounds by facilitating the repair and remodel of extracellular matrix, stimulating the development of vascular and granulation tissue, and so on. However, there is currently a lack of a comprehensive review of the application of these proteins in diabetes wounds. An overview of fibrous protein characteristics and the alterations linked to diabetic wounds is given in this article's initial section. Next is a summary of the advanced applications of fibrous proteins in the last five years, including acellular dermal matrix, hydrogel, foam, scaffold, and electrospun nanofibrous membrane. These dressings have the ability to actively promote healing in addition to just covering wounds compared to traditional wound dressings like gauze or bandage. Research on fibrous proteins and their role in diabetic wound healing may result in novel therapeutic modalities that lower the incidence of diabetic wounds and thereby enhance the health of diabetic patients.
Collapse
Affiliation(s)
- Lilin Yan
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
357
|
Liu L, Liu D. Bioengineered mesenchymal stem cell-derived exosomes: emerging strategies for diabetic wound healing. BURNS & TRAUMA 2024; 12:tkae030. [PMID: 39015252 PMCID: PMC11250359 DOI: 10.1093/burnst/tkae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/10/2024] [Indexed: 07/18/2024]
Abstract
Diabetic wounds are among the most common complications of diabetes mellitus and their healing process can be delayed due to persistent inflammatory reactions, bacterial infections, damaged vascularization and impaired cell proliferation, which casts a blight on patients'health and quality of life. Therefore, new strategies to accelerate diabetic wound healing are being positively explored. Exosomes derived from mesenchymal stem cells (MSC-Exos) can inherit the therapeutic and reparative abilities of stem cells and play a crucial role in diabetic wound healing. However, poor targeting, low concentrations of therapeutic molecules, easy removal from wounds and limited yield of MSC-Exos are challenging for clinical applications. Bioengineering techniques have recently gained attention for their ability to enhance the efficacy and yield of MSC-Exos. In this review, we summarise the role of MSC-Exos in diabetic wound healing and focus on three bioengineering strategies, namely, parental MSC-Exos engineering, direct MSC-Exos engineering and MSC-Exos combined with biomaterials. Furthermore, the application of bioengineered MSC-Exos in diabetic wound healing is reviewed. Finally, we discuss the future prospects of bioengineered MSC-Exos, providing new insights into the exploration of therapeutic strategies.
Collapse
Affiliation(s)
- Lihua Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, P.R. China
- Huankui Academy, Nanchang University, Xuefu Road, Honggutan District, Nanchang, Jiangxi, 330006, P.R. China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
358
|
Yen PSY, Tu HP, Huang SH, Lee SS. Timely Shaver Treatment Removes Chronic Tophaceous Mass Improve Surgical Outcomes. Int J Med Sci 2024; 21:1799-1805. [PMID: 39113890 PMCID: PMC11302556 DOI: 10.7150/ijms.95372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Current treatments with urate-lowering therapy (ULT) are effective for most patients with gout. However, approximately 10% of these patients do not respond well to ULT and develop chronic tophus lesions. Objective: This study aimed to evaluate the efficacy of surgery involving the shaver technique against chronic tophus lesions. Methods: This single-center, retrospective cohort study included 217 patients who had cumulatively undergone 303 shaver-assisted procedures between 2002 and 2018. Surgical outcomes were assessed in terms of the length of hospital stay (LOS) and wound healing time. Results: LOS and wound healing time were longer in patients with a preoperative tophus infection and lower extremity lesions than in those without infection and with upper extremity lesions (respectively, LOS: 12.7 vs. 8.6 days; wound healing time: 22.7 vs. 16.3 days). However, factors such as age, sex, body mass index, renal function, or uricemia level exerted no significant effect on surgical outcomes. Conclusion: Surgery involving the shaver technique should be performed before tophus infection. Clinical outcomes tend to be better for upper extremity lesions than for lower extremity lesions.
Collapse
Affiliation(s)
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Regenerative medicine and cell therapy research center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Regenerative medicine and cell therapy research center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
359
|
Hong C, Chung H, Lee G, Kim D, Jiang Z, Kim SH, Lee K. Remendable Cross-Linked Alginate/Gelatin Hydrogels Incorporating Nanofibers for Wound Repair and Regeneration. Biomacromolecules 2024; 25:4344-4357. [PMID: 38917335 DOI: 10.1021/acs.biomac.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Wound dressings made from natural-derived polymers are highly valued for their biocompatibility, biodegradability, and biofunctionality. However, natural polymer-based hydrogels can come with their own set of limitations, such as low mechanical strength, limited cell affinity, and the potential cytotoxicity of cross-linkers, which delineate the boundaries of their usage and hamper their practical application. To overcome the limitation of natural-derived polymers, this study utilized a mixture of oxidized alginate and gelatin with 5 mg/mL polycaprolactone (PCL):gelatin nanofiber fragments at a ratio of 7:3 (OGN-7) to develop a hydrogel composite wound dressing that can be injected and has the ability to be remended. The in situ formation of the remendable hydrogel is facilitated by dual cross-linking of oxidized alginate chains with gelatin and PCL/gelatin nanofibers through Schiff-base mechanisms, supported by the physical integration of nanofibers, thereby obviating the need for additional cross-linking agents. Furthermore, OGN-7 exhibits increased stiffness (γ = 79.4-316.3%), reduced gelation time (543 ± 5 to 475 ± 5 s), improved remendability of the hydrogel, and excellent biocompatibility. Notably, OGN-7 achieves full fusion within 1 h of incubation and maintains structural integrity under external stress, effectively overcoming the inherent mechanical weaknesses of natural polymer-based dressings and enhancing biofunctionality. The therapeutic efficacy of OGN-7 was validated through a full-thickness in vivo wound healing analysis, which demonstrated that OGN-7 significantly accelerates wound closure compared to alginate-based dressings and control groups. Histological analysis further revealed that re-epithelialization and collagen deposition were markedly enhanced in the regenerating skin of the OGN-7 group, confirming the superior therapeutic performance of OGN-7. In summary, OGN-7 optimized the synergistic effects of natural polymers, which enhances their collective functionality as a wound dressing and expands their utility across diverse biomedical applications.
Collapse
Affiliation(s)
- Changgi Hong
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Haeun Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Gyubok Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Zhuomin Jiang
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
360
|
Zhu S, Cui Y, Zhang W, Ji Y, Li L, Luo S, Cui J, Li M. Inflammation Can Be a High-Risk Factor for Mucosal Nonunion of MRONJ by Regulating SIRT1 Signaling When Treated with an Oncologic Dose of Zoledronate. Drug Des Devel Ther 2024; 18:2793-2812. [PMID: 38979400 PMCID: PMC11229984 DOI: 10.2147/dddt.s456811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Zoledronate (ZA) stands as a highly effective antiresorptive agent known to trigger medication-related osteonecrosis of the jaw (MRONJ). Its clinical dosages primarily encompass those used for oncologic and osteoporosis treatments. While inflammation is recognized as a potential disruptor of mucosal healing processes associated with ZA, prior research has overlooked the influence of varying ZA dosages on tissue adaptability. Therefore, a deeper understanding of the specific mechanisms by which inflammation exacerbates ZA-induced MRONJ, particularly when inflammation acts as a risk factor, remains crucial. Methods Cell proliferation and migration of human oral keratinocytes (HOK) was analyzed after treatment with different doses of ZA and/or lipopolysaccharide (LPS) to assess their possible effect on mucosal healing of extraction wounds. Mouse periodontitis models were established using LPS, and histological changes in extraction wounds were observed after the administration of oncologic dose ZA. Hematoxylin and eosin (HE) staining and immunofluorescence were used to evaluate mucosal healing. Results In vitro, LPS did not exacerbate the effects of osteoporosis therapeutic dose of ZA on the proliferation and migration of HOK cells, while aggravated these with the oncologic dose of ZA treatment by inducing mitochondrial dysfunction and oxidative stress via regulating SIRT1 expression. Furthermore, SIRT1 overexpression can alleviate this process. In vivo, local injection of LPS increased the nonunion of mucous membranes in MRONJ and decreased the expression of SIRT1, PGC-1α, and MnSOD. Conclusion Inflammation aggravates oncologic dose of ZA-induced mitochondrial dysfunction and oxidative stress via a SIRT1-dependent pathway, enhancing the risk of impaired mucosal healing in MRONJ. Our study implies that inflammation becomes a critical risk factor for MRONJ development at higher ZA concentrations. Elucidating the mechanisms of inflammation as a risk factor for mucosal non-healing in MRONJ could inform the development of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Siqi Zhu
- School of Stomatology, Jinzhou Medical University, Jinzhou, People's Republic of China
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Yajun Cui
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Weidong Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Yu Ji
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Lingshuang Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Shenglei Luo
- Department of Oral and Maxillofacial Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jing Cui
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological Hospital, Jinan, People's Republic of China
- Central Laboratory, Jinan Key Laboratory of oral tissue regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, People's Republic of China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
361
|
Malhotra K, Bondje S, Sklavounos A, Mortada H, Khajuria A. Absorbable versus Nonabsorbable Sutures for Facial Skin Closure: A Systematic Review and Meta-analysis of Clinical and Aesthetic Outcomes. Arch Plast Surg 2024; 51:386-396. [PMID: 39034976 PMCID: PMC11257736 DOI: 10.1055/a-2318-1287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/15/2024] [Indexed: 07/23/2024] Open
Abstract
When repairing facial wounds, it is crucial to possess a thorough understanding of suitable suture materials and their evidence base. The absence of high-quality and comprehensive systematic reviews poses challenges in making informed decisions. In this study, we conducted a review of the existing literature and assessed the quality of the current evidence pertaining to the clinical, aesthetic, and patient-reported outcomes associated with absorbable and nonabsorbable sutures for facial skin closure. The study was registered on Prospective Register of Systematic Reviews. We conducted searches on Embase, Ovid, and PubMed/MEDLINE databases. Only randomized controlled trials (RCTs) were eligible for inclusion in this study. Additionally, the risk of bias in the randomized studies was assessed using Cochrane's Risk of Bias Tool. The study included a total of nine RCTs involving 804 participants with facial injuries. Among these injuries, absorbable sutures were utilized in 50.2% (403 injuries), while nonabsorbable sutures were employed in 49.8% (401 injuries). The analysis of cosmesis scales revealed no statistically significant difference between absorbable and nonabsorbable sutures regarding infections ( p = 0.72), visual analog scale ( p = 0.69), wound dehiscence ( p = 0.08), and scarring ( p = 0.46). The quality of the included studies was determined to have a low risk of bias. Absorbable sutures can be considered a suitable alternative to nonabsorbable sutures, as they demonstrate comparable aesthetic and clinical outcomes. Future high-quality studies with a level I evidence design and cost-effectiveness analysis are necessary to enhance clinician-patient shared decision-making and optimize the selection of suture materials. Level of evidence is I, risk/prognostic study.
Collapse
Affiliation(s)
- Kashish Malhotra
- Department of Surgery, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Sophie Bondje
- Department of ENT Surgery & Cancer Services, Torbay Hospital, Torquay, United Kingdom
| | - Alexandros Sklavounos
- Urology Division, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Hatan Mortada
- Division of Plastic Surgery, Department of Surgery, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- Department of Plastic Surgery and Burn Unit, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ankur Khajuria
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
362
|
Rai O, Romero KN, Shaykh N, Caldas R, Tripathi V, Padilla RM, Karan A, Guo HJ, Jacob R. A Jaw-Dropping Consequence: Nintedanib's Role in Osteonecrosis of the Jaw. Cureus 2024; 16:e65689. [PMID: 39205781 PMCID: PMC11357727 DOI: 10.7759/cureus.65689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Nintedanib, a tyrosine kinase inhibitor, is a cornerstone in the management of idiopathic pulmonary fibrosis through its anti-fibrotic effects; however, its impact on wound healing is less studied. We present a case of medication-related osteonecrosis of the jaw (MRONJ) following the initiation of nintedanib. The patient's presentation prompted a drug holiday of nintedanib, resulting in a marked improvement in her symptoms. MRONJ is a disease requiring a high index of suspicion, and the number of inciting medications continues to rise. Nintedanib, as an inhibitor of angiogenesis, may have contributed to poor wound healing following dental extraction, subsequently leading to MRONJ.
Collapse
Affiliation(s)
- Oshin Rai
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Kaitlyn N Romero
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Natalie Shaykh
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Ricardo Caldas
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Vanshika Tripathi
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Rebekah M Padilla
- Diagnostic Radiology, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Abhinav Karan
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Hui Jun Guo
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Rafik Jacob
- Program for Adults with Intellectual and Developmental Disabilities, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| |
Collapse
|
363
|
Leventis M, Van Stralen K. A Novel Zinc-Containing Palatal Stent and Topical Oxygen Therapy for Wound Protection and Healing Following Mucoperiosteal Flap Surgery in the Hard Palate: A Case Report. Cureus 2024; 16:e64095. [PMID: 38979025 PMCID: PMC11230139 DOI: 10.7759/cureus.64095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/10/2024] Open
Abstract
In oral surgery, common surgical procedures such as the removal of impacted teeth, the treatment of intraosseous cysts and tumors, and endodontic surgery often require access through a palatal approach. Full-thickness flap surgery in the hard palate region can result in significant post-operative pain, swelling, and hematoma, adversely affecting the patient's function and well-being for several days. Moreover, post-operative infection can delay or compromise healing. Post-surgical traditional palatal stents have been shown to effectively reduce discomfort by minimizing swelling and pain during the early healing phases. Recent advances in materials with the incorporation of bioactive agents have led to the fabrication of a new generation of wound dressings that provide improved conditions for effective wound protection and healing. This case report illustrates the use of a novel, zinc-embedded, thermoplastic surgical polymer for the chairside fabrication of post-operative palatal stents. A 33-year-old female patient, who underwent mucoperiosteal flap surgery for the management of a nasopalatine duct cyst, was provided immediately post-surgery with a customized zinc-containing palatal stent. The bone defect was grafted using a fully resorbable synthetic bone substitute, and an oxygen and lactoferrin-releasing oral gel was provided post-operatively as an adjunct therapy. The innovative stent helped the patient maintain low levels of pain and minimal swelling during the initial post-operative period, resulting in uneventful healing, as documented during the one-week follow-up appointment. Further reviews at four weeks and six months post-surgery revealed successful healing and sensory recovery in the anterior palatal region. As emphasized in this report, the chairside fabrication of zinc-containing palatal stents for post-operative wound protection seems to constitute a valid, simple, time-saving, and cost-effective clinical solution. Moreover, the incorporation of zinc nanoparticles into the stent is of great clinical importance, potentially offering significant benefits in post-operative bacterial control and enhancement of the early-phase palatal soft-tissue healing.
Collapse
Affiliation(s)
- Minas Leventis
- Oral Surgery, Dental School, National and Kapodistrian University of Athens, Athens, GRC
| | | |
Collapse
|
364
|
Wang D, Shimamura N, Miwa N, Xiao L. Combined use of hydrogen-rich water and enzyme-digested edible bird's nest improves PMA/LPS-impaired wound healing in human inflammatory gingival tissue equivalents. Hum Cell 2024; 37:997-1007. [PMID: 38679666 DOI: 10.1007/s13577-024-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Gingival wound healing plays a critical role in maintaining oral health. However, this process can be delayed by oxidative stress and excessive inflammatory responses. In this study, we established a human inflammatory gingival tissue equivalent (iGTE) to investigate the inhibitory effects of hydrogen-rich water (HW), enzyme-digested edible bird's nest (EBND) and sialic acid (SA) on PMA (an inducer of oxidative free radicals)- and LPS (an inflammatory stimulus)-impaired wound healing. The iGTE was constructed by human gingival fibroblasts (hGFs), keratinocytes and macrophages under three-dimensional conditions. Wounds in the iGTE and hGF/keratinocyte monolayers were created by mechanical injury. Tissues and cells were pretreated with HW, EBND, and SA, and then exposed to the inflammatory and oxidative environment induced by PMA (10 ng/mL) and LPS (250 ng/mL). The inflammatory cytokines IL-6 and IL-8 were quantitatively analyzed by ELISA. Histopathological image analysis was performed by HE and immunofluorescence staining. In the iGTE, PMA/LPS significantly reduced the epithelial thickness while causing a decrease in K8/18, E-cadherin, laminin and elastin expression and an increase in COX-2 expression along with ulcer-like lesions. In mechanically scratched hGFs and keratinocyte monolayers, PMA/LPS significantly impaired wound healing, and promoted the secretion of IL-6 and IL-8. Pretreatment of HW, EBND, and SA significantly suppressed PMA/LPS-induced wound healing delay and inflammatory responses in cell monolayers, as well as in the iGTE. Remarkably, the combined use of HW and EBND exhibited particularly robust results. Combined use of HW and EBND may be applied for the prevention and treatment of wound healing delay.
Collapse
Affiliation(s)
- Dongliang Wang
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Bazhou Economic Development Zone, Langfang, 065700, China
| | - Naohiro Shimamura
- Department of Dental Anesthesiology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Nobuhiko Miwa
- Prefectural University of Hiroshima, Faculty of Life Sciences, Hiroshima, 727-0023, Japan
- Incorporated Association Hydrogen Medical Institute, Minatojima Minamicho 1-6-4, ChuOh-Ku, Kobe, 650-0047, Japan
| | - Li Xiao
- Department of Physiology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-Ku, Tokyo, 102-8159, Japan.
| |
Collapse
|
365
|
Kesavan R, Sasikumar CS. Multimodal imaging device to comprehensively assess infection, oxygenation, and wound analytics-A pilot study. Wound Repair Regen 2024; 32:429-436. [PMID: 38661243 DOI: 10.1111/wrr.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Wound analytics, infection detection, and oxygenation measurement are the three critical prerequisites for appropriate wound care. Although devices that rapidly detect the above-mentioned parameters independently exist, there is no single point-of-care device that is enabled with all the three functionalities. Through this study, we are introducing and evaluating the performance of Illuminate Pro Max-a novel, rapid, hand-held non-contact, point-of-care multimodal imaging device that is equipped to measure the three wound assessment parameters. Here, a total of 60 diabetic foot ulcer patients were imaged using Illuminate Pro Max to detect bioburden and measure StO2 levels and wound dimensions (size and depth). The results were further evaluated against the current gold standard technique for each parameter, that is, culture test to detect bioburden, a transcutaneous oxygen pressure (TcPO2) measuring device-Perimed Periflux 5000 to measure oxygenation, and paper ruler to measure wound size. Culture tests reported 42 samples as infection-positive and 18 samples as infection-negative. On comparing with the culture report, the device showed 88% sensitivity and 86% PPV in detecting the bioburden. Wound dimensions (length and width) were comparable with the paper scale measurements. Wound depth was also reported by the device. The StO2 map generated by the device depicted the tissue oxygenation levels in various regions of the wound. In conclusion, this novel, comprehensive point-of-care multispectral imaging device can be an effective tool for rapid wound assessment which can help in prompt treatment.
Collapse
Affiliation(s)
- Rajesh Kesavan
- Podiatric Surgery, Dr. RK Diabetic Foot and Podiatry Institute &Rakesh Jhunjhunwala Amputation Prevention Center, Chennai, India
| | - Changam Sheela Sasikumar
- Dr. RK Diabetic Foot and Podiatry Institute &Rakesh Jhunjhunwala Amputation Prevention Center, Chennai, India
| |
Collapse
|
366
|
Duan W, Zhao J, Gao Y, Xu K, Huang S, Zeng L, Shen JW, Zheng Y, Wu J. Porous silicon-based sensing and delivery platforms for wound management applications. J Control Release 2024; 371:530-554. [PMID: 38857787 DOI: 10.1016/j.jconrel.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Wound management remains a great challenge for clinicians due to the complex physiological process of wound healing. Porous silicon (PSi) with controlled pore morphology, abundant surface chemistry, unique photonic properties, good biocompatibility, easy biodegradation and potential bioactivity represent an exciting class of materials for various biomedical applications. In this review, we focus on the recent progress of PSi in the design of advanced sensing and delivery systems for wound management applications. Firstly, we comprehensively introduce the common type, normal healing process, delaying factors and therapeutic drugs of wound healing. Subsequently, the typical fabrication, functionalization and key characteristics of PSi have been summarized because they provide the basis for further use as biosensing and delivery materials in wound management. Depending on these properties, the rise of PSi materials is evidenced by the examples in literature in recent years, which has emphasized the robust potential of PSi for wound monitoring, treatment and theranostics. Finally, challenges and opportunities for the future development of PSi-based sensors and delivery systems for wound management applications are proposed and summarized. We hope that this review will help readers to better understand current achievements and future prospects on PSi-based sensing and delivery systems for advanced wound management.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Keying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Longhuan Zeng
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yongke Zheng
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China.
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
367
|
Yew Toong L, Ghauth S, Yin Xuan N. Skull Base Osteomyelitis: A 5-Year Review and Prognostic Outcome in a Single Tertiary Institution. OTO Open 2024; 8:e70001. [PMID: 39206427 PMCID: PMC11351174 DOI: 10.1002/oto2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Objective The primary objective of this study is to review the clinical parameters associated with skull base osteomyelitis (SBO), with a secondary aim of studying their association with patient outcomes 1 and 6 months after treatment initiation. Study Design This is a single-center restrospective observational study. Setting The study was conducted from January 2018 to December 2022 at the University Malaya Medical Center in Kuala Lumpur. Methods Patients aged over 15 years with a diagnosis of SBO were included in the study. Clinical parameters, investigations, and follow-up records were recorded. The disease outcomes were analyzed at 1 and 6 months after treatment initiation using multivariable analyses. Results The study identified 31 patients with SBO, the majority of whom were elderly males with comorbidities such as diabetes and hypertension. Otalgia and otorrhea were the most common symptoms, and computed tomography scans were used for diagnosis. Pseudomonas aeruginosa was the most commonly identified pathogen, and intravenous broad-spectrum antimicrobials were used to treat all patients. Surgical intervention was required for 25% of patients, and underlying ischemic heart disease, anemia, and single nerve palsy were significantly associated with an unfavorable prognosis. Patients with higher body mass index and elevated C-reactive protein showed poorer outcomes after 1 and 6 months of treatment, respectively. Conclusion Early recognition, prompt treatment, better control of comorbidities, nutrition, and monitoring can improve SBO outcomes and reduce complications. Therefore, as the prevalence of SBO increases, diagnostic criteria or management guidelines should be established to guide the best clinical practice.
Collapse
Affiliation(s)
- Liew Yew Toong
- Department of OtolaryngologyUniversiti MalayaKuala LumpurMalaysia
| | - Sakina Ghauth
- Department of OtolaryngologyUniversiti MalayaKuala LumpurMalaysia
| | - Ng Yin Xuan
- Department of OtolaryngologyUniversiti MalayaKuala LumpurMalaysia
| |
Collapse
|
368
|
Chin SW, Azman A, Tan JW. Incorporation of natural and synthetic polymers into honey hydrogel for wound healing: A review. Health Sci Rep 2024; 7:e2251. [PMID: 39015423 PMCID: PMC11250418 DOI: 10.1002/hsr2.2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Background and Aims The difficulty in treating chronic wounds due to the prolonged inflammation stage has affected a staggering 6.5 million people, accompanied by 25 billion USD annually in the United States alone. A 1.9% rise in chronic wound prevalence among Medicare beneficiaries was reported from 2014 to 2019. Besides, the global wound care market values were anticipated to increase from USD 20.18 billion in 2022 to USD 30.52 billion in 2030, suggesting an expected rise in chronic wounds financial burdens. The lack of feasibility in using traditional dry wound dressings sparks hydrogel development as an alternative approach to tackling chronic wounds. Since ancient times, honey has been used to treat wounds, including burns, and ongoing studies have also demonstrated its wound-healing capabilities on cellular and animal models. However, the fluidity and low mechanical strength in honey hydrogel necessitate the incorporation of other polymers. Therefore, this review aims to unravel the characteristics and feasibility of natural (chitosan and gelatin) and synthetic (polyvinyl alcohol and polyethylene glycol) polymers to be incorporated in the honey hydrogel. Methods Relevant articles were identified from databases (PubMed, Google Scholar, and Science Direct) using keywords related to honey, hydrogel, and polymers. Relevant data from selected studies were synthesized narratively and reported following a structured narrative format. Results The importance of honey's roles and mechanisms of action in wound dressings were discussed. Notable studies concerning honey hydrogels with diverse polymers were also included in this article to provide a better perspective on fabricating customized hydrogel wound dressings for various types of wounds in the future. Conclusion Honey's incapability to stand alone in hydrogel requires the incorporation of natural and synthetic polymers into the hydrogel. With this review, it is hoped that the fabrication and commercialization of the desired honey composite hydrogel for wound treatment could be brought forth.
Collapse
Affiliation(s)
- Siau Wui Chin
- School of ScienceMonash University MalaysiaSubang JayaMalaysia
| | | | - Ji Wei Tan
- School of ScienceMonash University MalaysiaSubang JayaMalaysia
| |
Collapse
|
369
|
Wang L, Ding X, Li J, Li M, Ding P, Guo W, Wu Q, Sun Y, Jiang G, Okoro OV, Mirzaei M, Shavandi A, Fan L, Nie L. Genipin crosslinked quaternary ammonium chitosan hydrogels for wound dressings. Biomed Mater 2024; 19:045042. [PMID: 38815598 DOI: 10.1088/1748-605x/ad525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Bacterial infection can lead to various complications, such as inflammations on surrounding tissues, which can prolong wound healing and thus represent a significant clinical and public healthcare problem. Herein, a report on the fabrication of a novel genipin/quaternized chitosan (CS) hydrogel for wound dressing is presented. The hydrogel was prepared by mixing quaternized CS and genipin under 35 °C bath. The hydrogels showed porous structure (250-500 μm) and mechanical properties (3000-6000 Pa). In addition, the hydrogels displayed self-healing ability and adhesion performance on different substrates. Genipin crosslinked quaternized CS hydrogels showed antibacterial activities againstE. coliandS. aureus. The CCK-8 and fluorescent images confirmed the cytocompatibility of hydrogels by seeding with NIH-3T3 cells. The present study showed that the prepared hydrogel has the potential to be used as wound dressing.
Collapse
Affiliation(s)
- Ling Wang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Man Li
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Qiaoyun Wu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Mahta Mirzaei
- Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, Republic of Korea
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
| | - Amin Shavandi
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Lihong Fan
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| |
Collapse
|
370
|
Doğru D, Özdemir GD, Özdemir MA, Ercan UK, Topaloğlu Avşar N, Güren O. An automated in vitro wound healing microscopy image analysis approach utilizing U-net-based deep learning methodology. BMC Med Imaging 2024; 24:158. [PMID: 38914942 PMCID: PMC11197287 DOI: 10.1186/s12880-024-01332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The assessment of in vitro wound healing images is critical for determining the efficacy of the therapy-of-interest that may influence the wound healing process. Existing methods suffer significant limitations, such as user dependency, time-consuming nature, and lack of sensitivity, thus paving the way for automated analysis approaches. METHODS Hereby, three structurally different variations of U-net architectures based on convolutional neural networks (CNN) were implemented for the segmentation of in vitro wound healing microscopy images. The developed models were fed using two independent datasets after applying a novel augmentation method aimed at the more sensitive analysis of edges after the preprocessing. Then, predicted masks were utilized for the accurate calculation of wound areas. Eventually, the therapy efficacy-indicator wound areas were thoroughly compared with current well-known tools such as ImageJ and TScratch. RESULTS The average dice similarity coefficient (DSC) scores were obtained as 0.958 ∼ 0.968 for U-net-based deep learning models. The averaged absolute percentage errors (PE) of predicted wound areas to ground truth were 6.41%, 3.70%, and 3.73%, respectively for U-net, U-net++, and Attention U-net, while ImageJ and TScratch had considerable averaged error rates of 22.59% and 33.88%, respectively. CONCLUSIONS Comparative analyses revealed that the developed models outperformed the conventional approaches in terms of analysis time and segmentation sensitivity. The developed models also hold great promise for the prediction of the in vitro wound area, regardless of the therapy-of-interest, cell line, magnification of the microscope, or other application-dependent parameters.
Collapse
Affiliation(s)
- Dilan Doğru
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey
| | - Gizem D Özdemir
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Mehmet A Özdemir
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey.
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey.
| | - Utku K Ercan
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Nermin Topaloğlu Avşar
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Onan Güren
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey.
| |
Collapse
|
371
|
Cimmino G, De Nisco M, Piccolella S, Gravina C, Pedatella S, Pacifico S. Innovative Cosmeceutical Ingredients: Harnessing Selenosugar-Linked Hydroxycinnamic Acids for Antioxidant and Wound-Healing Properties. Antioxidants (Basel) 2024; 13:744. [PMID: 38929184 PMCID: PMC11200926 DOI: 10.3390/antiox13060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Selenosugars are gaining growing interest due to their antioxidant efficacy, and their ability to inhibit glycosidases, repair skin tissue or reduce endothelial dysfunction. Among selenosugars, those in which selenium replaces heterocyclic oxygen in a 5-membered sugar were our focus, and their coupling with phenolic compounds appears to be a strategy aimed at producing new compounds with enhanced antioxidant efficacy. In this context, the Mitsunobu reaction has been advantageously explored to obtain trans-p-coumaroyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose, trans-caffeoyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose, and trans-feruloyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose. These compounds underwent removal of the iso-propylidene group, to provide the corresponding hydroxycinnamoyl-1,4-deoxy-4-seleno-d-ribose. All compounds were characterized by Nuclear Magnetic Resonance (NMR) spectroscopy and High-Resolution Mass Spectrometry (HRMS). This latter technique was pivotal for ensuing cellular metabolomics analyses. In fact, after evaluating the anti-radical efficacy through 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, which underline the massive role of the phenolic moiety in establishing efficacy, the compounds, whose cytotoxicity was first screened in two highly oxidative-stress-sensitive cells, were tested for their wound healing properties towards human HaCaT keratinocytes cells. Caffeoyl- and feruloyl selenosugars exerted a dose-dependent repair activity, while, as highlighted by the metabolomic approach, they were poorly taken up within the cells.
Collapse
Affiliation(s)
- Giovanna Cimmino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (G.C.); (C.G.); (S.P.)
- Department of Chemical Sciences, University of Napoli Federico II, Via Cinthia 4, 80126 Napoli, Italy;
| | - Mauro De Nisco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (G.C.); (C.G.); (S.P.)
| | - Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (G.C.); (C.G.); (S.P.)
| | - Silvana Pedatella
- Department of Chemical Sciences, University of Napoli Federico II, Via Cinthia 4, 80126 Napoli, Italy;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (G.C.); (C.G.); (S.P.)
| |
Collapse
|
372
|
Wang J, Ismail M, Khan NR, Khan DEN, Iftikhar T, Shahid MG, Shah SU, Rehman ZU. Chitosan based ethanolic Allium Sativumextract hydrogel film: a novel skin tissue regeneration platform for 2nd degree burn wound healing. Biomed Mater 2024; 19:045036. [PMID: 38898715 DOI: 10.1088/1748-605x/ad565b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
This study investigated the potential of ethanolic garlic extract-loaded chitosan hydrogel film for burn wound healing in an animal model. The ethanolic garlic extract was prepared by macerating fresh ground garlic cloves in ethanol for 24 h, followed by filtration and concentration using a rotary evaporator. Hydrogels were then prepared by casting a chitosan solution with garlic extract added at varying concentrations for optimization and, following drying, subjected to various characterization tests, including moisture adsorption (MA), water vapor transmission rate (WVTR), and water vapor permeability rate (WVPR), erosion, swelling, tensile strength, vibrational, and thermal analysis, and surface morphology. The optimized hydrogel (G2) was then analyzedin vivofor its potential for healing 2nd degree burn wounds in rats, and histological examination of skin samples on day 14 of the healing period. Results showed optimized hydrogel (G2; chitosan: 2 g, garlic extract: 1 g) had MA of 56.8% ± 2.7%, WVTR and WVPR of 0.00074 ± 0.0002, and 0.000 498 946 ± 0.0001, eroded up to 11.3% ± 0.05%, 80.7% ± 0.04% of swelling index, and tensile strength of 16.6 ± 0.9 MPa, which could be attributed to the formation of additional linkages between formulation ingredients and garlic extract constituents at OH/NH and C=O, translating into an increase in transition melting temperature and enthalpy (ΔT= 238.83 °C ± 1.2 °C, ΔH= 4.95 ± 0.8 J g-1) of the chitosan moieties compared with blank. Animal testing revealed G2 formulation significantly reduced the wound size within 14 d of the experiment (37.3 ± 6.8-187.5 ± 21.5 mm2) and had significantly higher reepithelization (86.3 ± 6.8-26.8 ± 21.5 and 38.2% ± 15.3%) compared to untreated and blank groups by hastening uniform and compact deposition of collagen fibers at the wound site, cementing developed formulation a promising platform for skin regeneration.
Collapse
Affiliation(s)
- Jing Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710004, People's Republic of China
| | - Mohammad Ismail
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000 KP, Pakistan
| | - Nauman Rahim Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000 KP, Pakistan
| | - Dur-E-Najaf Khan
- Department of Pharmacy, Bacha Khan University Charsadda, Charsadda, KP 24540, Pakistan
| | - Tayyaba Iftikhar
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | | | | | - Zahid Ur Rehman
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000 KP, Pakistan
| |
Collapse
|
373
|
Johnson M, Song R, Li Y, Milne C, Lyu J, Lara-Sáez I, A S, Wang W. Hyaluronic Acid/Chondroitin Sulfate-Based Dynamic Thiol-Aldehyde Addition Hydrogel: An Injectable, Self-Healing, On-Demand Dissolution Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3003. [PMID: 38930372 PMCID: PMC11205580 DOI: 10.3390/ma17123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Frequent removal and reapplication of wound dressings can cause mechanical disruption to the healing process and significant physical discomfort for patients. In response to this challenge, a dynamic covalent hydrogel has been developed to advance wound care strategies. This system comprises aldehyde functionalized chondroitin sulfate (CS-CHO) and thiolated hyaluronic acid (HA-SH), with the distinct ability to form in situ via thiol-aldehyde addition and dissolve on-demand via the thiol-hemithioacetal exchange reaction. Although rarely reported, the dynamic covalent reaction of thiol-aldehyde addition holds great promise for the preparation of dynamic hydrogels due to its rapid reaction kinetics and easy reversible dissociation. The thiol-aldehyde addition chemistry provides the hydrogel system with highly desirable characteristics of rapid gelation (within seconds), self-healing, and on-demand dissolution (within 30 min). The mechanical and dissolution properties of the hydrogel can be easily tuned by utilizing CS-CHO materials of different aldehyde functional group contents. The chemical structure, rheology, self-healing, swelling profile, degradation rate, and cell biocompatibility of the hydrogels are characterized. The hydrogel possesses excellent biocompatibility and proves to be significant in promoting cell proliferation in vitro when compared to a commercial hydrogel (HyStem® Cell Culture Scaffold Kit). This study introduces the simple fabrication of a new dynamic hydrogel system that can serve as an ideal platform for biomedical applications, particularly in wound care treatments as an on-demand dissolvable wound dressing.
Collapse
Affiliation(s)
- Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Cameron Milne
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
374
|
Bronte J, Zhou C, Vempati A, Tam C, Khong J, Hazany S, Hazany S. A Comprehensive Review of Non-Surgical Treatments for Hypertrophic and Keloid Scars in Skin of Color. Clin Cosmet Investig Dermatol 2024; 17:1459-1469. [PMID: 38911337 PMCID: PMC11193462 DOI: 10.2147/ccid.s470997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Hypertrophic and keloid scars are fibroproliferative growths resulting from aberrant wound healing. Individuals with Fitzpatrick skin types (FSTs) IV-VI are particularly predisposed to hypertrophic and keloid scarring, yet specific guidelines for these populations are still lacking within the literature. Therefore, this comprehensive review provides a list of various treatments and considerations for hypertrophic and keloid scarring in patients with skin of color. We constructed a comprehensive PubMed search term and performed quadruple-blinded screening on all resulting studies to achieve this objective. Our findings demonstrate 1) the lack of efficacious treatments for raised scars within this population and 2) the need to empirically investigate individualized and multimodal therapeutic options for those with skin of color.
Collapse
Affiliation(s)
- Joshua Bronte
- Department of Research, Scar Healing Institute, Los Angeles, CA, USA
| | - Crystal Zhou
- Department of Research, Scar Healing Institute, Los Angeles, CA, USA
| | - Abhinav Vempati
- Department of Research, Scar Healing Institute, Los Angeles, CA, USA
| | - Curtis Tam
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Khong
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sanam Hazany
- Department of Research, Scar Healing Institute, Los Angeles, CA, USA
| | - Salar Hazany
- Department of Research, Scar Healing Institute, Los Angeles, CA, USA
| |
Collapse
|
375
|
Syromiatnikova VY, Kvon AI, Starostina IG, Gomzikova MO. Strategies to enhance the efficacy of FGF2-based therapies for skin wound healing. Arch Dermatol Res 2024; 316:405. [PMID: 38878084 DOI: 10.1007/s00403-024-02953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/22/2024] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
Basic fibroblast growth factor (FGF2 or bFGF) is critical for optimal wound healing. Experimental studies show that local application of FGF2 is a promising therapeutic approach to stimulate tissue regeneration, including for the treatment of chronic wounds that have a low healing potential or are characterised by a pathologically altered healing process. However, the problem of low efficiency of growth factors application due to their rapid loss of biological activity in the aggressive proteolytic environment of the wound remains. Therefore, ways to preserve the efficacy of FGF2 for wound treatment are being actively developed. This review considers the following strategies to improve the effectiveness of FGF2-based therapy: (1) use of vehicles/carriers for delivery and gradual release of FGF2; (2) chemical modification of FGF2 to increase the stability of the molecule; (3) use of genetic constructs encoding FGF2 for de novo synthesis of protein in the wound. In addition, this review discusses FGF2-based therapeutic strategies that are undergoing clinical trials and demonstrating the efficacy of FGF2 for skin wound healing.
Collapse
Affiliation(s)
- V Y Syromiatnikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - A I Kvon
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - I G Starostina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - M O Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia.
| |
Collapse
|
376
|
Bouarfa M, Chebaibi M, Ez-Zahra Amrati F, Souirti Z, Saghrouchni H, El atki Y, Bekkouche K, Mourabiti H, Bari A, Giesy JP, Mohany M, Al-Rejaie SS, Aboul-Soud MAM, Bousta D. In vivo and in silico studies of the effects of oil extracted from Cannabis sativa L. seeds on healing of burned skin wounds in rats. Front Chem 2024; 12:1381527. [PMID: 38919274 PMCID: PMC11197104 DOI: 10.3389/fchem.2024.1381527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction This study investigates the potential effects of cannabis seed oil (CSO) on the wound healing process. The aim was to assess the efficacy of CSO in treating skin wounds using an animal model and to explore its anti-inflammatory properties through in silico analysis. Methods Eighteen male albino Wistar rats, weighing between 200 and 250 g, were divided into three groups: an untreated negative control group, a group treated with the reference drug silver sulfadiazine (SSD) (0.01 g/mL), and a group treated topically with CSO (0.962 g/mL). The initial wound diameter for all groups was 1 cm. In silico studies were conducted using Maestro 11.5 to evaluate the anti-inflammatory effects of phytoconstituents against cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Results CSO and SSD treatments led to a significant reduction (p <0.05) in the size of burned skin wounds by day 5, with contraction rates of 53.95% and 45.94%, respectively, compared to the untreated negative control group. By day 15, wounds treated with CSO and SSD had nearly healed, showing contraction rates of 98.8% and 98.15%, respectively. By day 20, the wounds treated with CSO had fully healed (100%), while those treated with SSD had almost completely healed, with a contraction rate of 98.97%. Histological examination revealed granulated tissue, neo-blood vessels, fibroblasts, and collagen fibers in wounds treated with CSO. In silico studies identified arachidic acid, γ-linolenic acid, and linolenic acid as potent inhibitors of COX-1 and COX-2. Serum biochemical parameters indicated no significant changes (p > 0.05) in liver and kidney function in rats treated with CSO, whereas a significant increase (p < 0.01) in ALAT level was observed in rats treated with SSD. Discussion The findings demonstrate that CSO has a promising effect on wound healing. The CSO treatment resulted in significant wound contraction and histological improvements, with no adverse effects on liver and kidney function.However, the study's limitations, including the small sample size and the need for detailed elucidation of CSO's mechanism of action, suggest that further research is necessary. Future studies should focus on exploring the molecular pathways and signaling processes involved in CSO's pharmacological effects.
Collapse
Affiliation(s)
- Mouna Bouarfa
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Zouhair Souirti
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Neurology Department, Sleep Center Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Adana, Türkiye
| | - Yassine El atki
- High Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Khalid Bekkouche
- Laboratory of Agri-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Team of Protection and Valorization of Plant Resources (AgroBiotech Center, URL-CRNST 05), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Hajar Mourabiti
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Service de Toxico-pharmacologie, Fès, Morocco
| | - Amina Bari
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Sciences, Baylor University, Waco, TX, United States
- Department of Integrative Biology and Centre for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
377
|
Râpă M, Gaidau C, Stefan LM, Lazea-Stoyanova A, Berechet MD, Iosageanu A, Matei E, Jankauskaitė V, Predescu C, Valeika V, Balčiūnaitienė A, Cupara S. Donkey Gelatin and Keratin Nanofibers Loaded with Antioxidant Agents for Wound Healing Dressings. Gels 2024; 10:391. [PMID: 38920937 PMCID: PMC11202978 DOI: 10.3390/gels10060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Acute and chronic wounds present a significant healthcare challenge, requiring innovative solutions for effective treatment. The exploitation of natural by-products with advanced cell regeneration potential and plant-based materials, which possess bioactive properties, is an innovative topic in wound management. This study investigates the potential of donkey gelatin and keratin for blending with natural bioactive extracts such as sumac, curcumin, and oak acorn to fabricate antioxidant and antimicrobial nanofibers with accelerated wound healing processes. The fabricated nanofibers possess good in vitro biocompatibility, except for the sumac-based donkey nanofibers, where cell viability significantly dropped to 56.25% (p < 0.05 compared to non-treated cells). The nanofiber dimensions showed structural similarities to human extracellular matrix components, providing an ideal microenvironment for tissue regeneration. The donkey nanofiber-based sumac and curcumin extracts presented a higher dissolution in the first 10 min (74% and 72%). Curcumin extract showed similar antimicrobial and antifungal performances to rivanol, while acorn and sumac extracts demonstrated similar values to each other. In vitro tests performed on murine fibroblast cells demonstrated high migration rates of 89% and 85% after 24 h in the case of acorn and curcumin nanofibers, respectively, underscoring the potential of these nanofibers as versatile platforms for advanced wound care applications.
Collapse
Affiliation(s)
- Maria Râpă
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.)
| | - Carmen Gaidau
- The National Research & Development Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 031251 Bucharest, Romania;
| | - Laura Mihaela Stefan
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (L.M.S.); (A.I.)
| | - Andrada Lazea-Stoyanova
- Low Temperature Plasma Department, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Mariana Daniela Berechet
- The National Research & Development Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 031251 Bucharest, Romania;
| | - Andreea Iosageanu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (L.M.S.); (A.I.)
| | - Ecaterina Matei
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.)
| | - Virginija Jankauskaitė
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, 51424 Kaunas, Lithuania;
| | - Cristian Predescu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.)
| | - Virgilijus Valeika
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania;
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Snezana Cupara
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| |
Collapse
|
378
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
379
|
Zeng CH, Kang JM, Kim SH, Park Y, Shim S, Kim DK, Shin JH, Park JH. EW-7197, transforming growth factor β inhibitor, combined with irreversible electroporation for improving skin wound in a rat excisional model. Sci Rep 2024; 14:12779. [PMID: 38834729 PMCID: PMC11150421 DOI: 10.1038/s41598-024-61003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
To evaluate the safety and efficacy of combining EW-7197 with irreversible electroporation (IRE) for improving wound healing, 16 male Sprague-Dawley rats were randomly divided into four groups of four rats each after dorsal excisional wound induction: sham control group; oral administration of EW-7197 for 7 days group; one-time application of IRE group; and one-time application of IRE followed by oral administration of EW-7197 for 7 days group. Measurement of wound closure rate, laser Doppler scanning, histological staining (hematoxylin and eosin and Masson's trichrome), and immunohistochemical analyses (Ki-67 and α-SMA) were performed to evaluate the efficacy. Fifteen of 16 rats survived throughout the study. Statistically significant differences in wound closure rates were observed between the combination therapy group and the other three groups (all P < 0.05). The degrees of inflammation, α-SMA, and Ki-67 were reduced in the EW-7197 and IRE monotherapy groups; however, not statistically significant. The fibrosis score exhibited significant reduction in all three treatment groups, with the most prominent being in the combination therapy group. This study concludes that oral administration of EW-7197 combined with IRE demonstrated effectiveness in improving skin wound in a rat excisional model and may serve as a potential alternative for promoting healing outcomes.
Collapse
Affiliation(s)
- Chu Hui Zeng
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeon Min Kang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Song Hee Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yubeen Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Soyeon Shim
- EWHA DrugDesignHouse, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Dae-Kee Kim
- EWHA DrugDesignHouse, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Ji Hoon Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
380
|
Rezaei S, Nilforoushzadeh MA, Amirkhani MA, Moghadasali R, Taghiabadi E, Nasrabadi D. Preclinical and Clinical Studies on the Use of Extracellular Vesicles Derived from Mesenchymal Stem Cells in the Treatment of Chronic Wounds. Mol Pharm 2024; 21:2637-2658. [PMID: 38728585 DOI: 10.1021/acs.molpharmaceut.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
To date, the widespread implementation of therapeutic strategies for the treatment of chronic wounds, including debridement, infection control, and the use of grafts and various dressings, has been time-consuming and accompanied by many challenges, with definite success not yet achieved. Extensive studies on mesenchymal stem cells (MSCs) have led to suggestions for their use in treating various diseases. Given the existing barriers to utilizing such cells and numerous pieces of evidence indicating the crucial role of the paracrine signaling system in treatments involving MSCs, extracellular vesicles (EVs) derived from these cells have garnered significant attention in treating chronic wounds in recent years. This review begins with a general overview of current methods for chronic wound treatment, followed by an exploration of EV structure, biogenesis, extraction methods, and characterization. Subsequently, utilizing databases such as Google Scholar, PubMed, and ScienceDirect, we have explored the latest findings regarding the role of EVs in the healing of chronic wounds, particularly diabetic and burn wounds. In this context, the role and mode of action of these nanoparticles in healing chronic wounds through mechanisms such as oxygen level elevation, oxidative stress damage reduction, angiogenesis promotion, macrophage polarization assistance, etc., as well as the use of EVs as carriers for engineered nucleic acids, have been investigated. The upcoming challenges in translating EV-based treatments for healing chronic wounds, along with possible approaches to address these challenges, are discussed. Additionally, clinical trial studies in this field are also covered.
Collapse
Affiliation(s)
- Soheila Rezaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3514799422, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422Iran
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Mohammad Amir Amirkhani
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran
| | - Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Davood Nasrabadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3514799422, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422Iran
| |
Collapse
|
381
|
N Hoang M, Nyqvist E, Hesla AC, Tsagkozis P, Löfgren J. Wound healing after surgery for soft tissue sarcomas, and the effect of primary plastic reconstruction - A retrospective cohort study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108348. [PMID: 38677000 DOI: 10.1016/j.ejso.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Immediate vascularized reconstruction after sarcoma resection may reduce wound complications common in primary closure, but previous research is conflicting. The present study analysed wound complication rates and compared wound-related outcomes among immediate vascularized reconstruction with primary closure. MATERIALS AND METHODS Patient- and tumour characteristics were collected from patients who received primary surgery with curative intent between 2010 and 2020 at the Stockholm Sarcoma Centre. Clinical outcomes were sought in free text in medical records. The primary outcome measures were early (<30 days) wound complications. Secondary outcome measures included late (30-day to 2-year) wound complications, time to wound healing, 30-day postoperative complications according to Clavien Dindo, and health care consumption. RESULTS A total of 482 patients were included, of whom 69 had immediate vascularized reconstruction. Comparison of early complications for reconstructive surgery with primary closure revealed a significantly higher complication rate for the first group (59.4 % vs 29.8 %, p < 0.01). The groups had comparable health care consumption the first and second postoperative years. In-depth analyses identified BMI >25, smoking and high-grade lesions as factors with adverse effects on wound healing. CONCLUSIONS Sarcoma patients experience high rates of wound complications and consume considerable health care resources. Reconstructed individuals were more susceptible to such complications than were subjects with primary closure.
Collapse
Affiliation(s)
- Madeleine N Hoang
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.
| | - Emmy Nyqvist
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; Department of Orthopaedic Surgery, Karolinska University Hospital, Stockholm, Sweden.
| | - Asle Charles Hesla
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; Department of Orthopaedic Surgery, Karolinska University Hospital, Stockholm, Sweden.
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; Department of Orthopaedic Surgery, Karolinska University Hospital, Stockholm, Sweden.
| | - Jenny Löfgren
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
382
|
Shenoi R, Kolte V, Karmarkar J, Budhraja N, Ingole P, Rajguru J, Dahake R. Efficacy of Silicone Gel in Healing of Lacerated Wounds in Maxillofacial Region-An Experimental Study. J Maxillofac Oral Surg 2024; 23:509-516. [PMID: 38911432 PMCID: PMC11189841 DOI: 10.1007/s12663-022-01749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background Face plays the most crucial part in defining personality and anything that hampers the facial esthetics foists a great amount of psychological impact. Hence, it is extremely important to manage the facial injuries efficiently and consider all the three elements of recovery, i.e., psychological, medical and esthetics. Purpose-To evaluate the efficacy of silicone gel in healing of lacerated wounds on face. Materials and methods A sample size of 44 patients in each group undergoing suturing of contused lacerated wound (CLW) was calculated with P-67, q-52 and l-10 Using Formula, N = 4pq/l2 using Statistical Package for Social Sciences (SPSS) software version 23. Patients were divided into two groups, Group A and Group B where Group A was study group who applied silicone over sutured wounds, while Group B was control group who did not applied any gel. Results In silicone group, a significant difference was observed between 7th day and 30th, 60th, 90th and 120th day in healing scores, while in non-silicone group, no significant difference was observed at the initial period. However, difference started to appear from 90th day and continued till 120th day. Conclusion Silicone gel has considerable effect in healing of wound and prevention of unesthetic scarring when it is applied immediately from the day of suture removal and continued till 3 months.
Collapse
Affiliation(s)
- Ramakrishna Shenoi
- Department of Oral and Maxillofacial Surgery, V.S.P.M Dental College and Research Center, Nagpur, Maharashtra 440019 India
| | - Vrinda Kolte
- Department of Oral and Maxillofacial Surgery, V.S.P.M Dental College and Research Center, Nagpur, Maharashtra 440019 India
| | - Jui Karmarkar
- Department of Oral and Maxillofacial Surgery, V.S.P.M Dental College and Research Center, Nagpur, Maharashtra 440019 India
| | - Nilima Budhraja
- Department of Oral and Maxillofacial Surgery, V.S.P.M Dental College and Research Center, Nagpur, Maharashtra 440019 India
| | - Pranav Ingole
- Department of Oral and Maxillofacial Surgery, V.S.P.M Dental College and Research Center, Nagpur, Maharashtra 440019 India
| | - Jignesh Rajguru
- Department of Oral and Maxillofacial Surgery, V.S.P.M Dental College and Research Center, Nagpur, Maharashtra 440019 India
| | - Rahul Dahake
- Department of Oral and Maxillofacial Surgery, V.S.P.M Dental College and Research Center, Nagpur, Maharashtra 440019 India
| |
Collapse
|
383
|
Dizdar SK, Doğan U, Ece M, Kaya KS, Seyhun N, Turgut S. Effects of submucoperichondrial application of platelet-rich plasma on nasal mucosal healing after septoplasty. Auris Nasus Larynx 2024; 51:437-442. [PMID: 38520974 DOI: 10.1016/j.anl.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 03/25/2024]
Abstract
OBJECTIVE(S) Our aim is to investigate the effects of the submucoperichondrial application of Platelet Rich Plasma (PRP) on nasal mucosal healing after septoplasty surgery. METHOD(S) This prospective randomized observational study was conducted between July 2019 and February 2021, with 40 patients aged 18-60 years who underwent closed the only septoplasty operation for similar septal deviations. Patient divided into two group; 21 patients were placed in PRP group to which PRP was applied on all mucosal surface and submucoperichondrial area of septum and 19 patients were placed in control group to which saline solution was applied on same regions. Nasal obstruction score, mucociliary clearance time, presence of nasal crusting, and bleeding time were evaluated on 5th, 10th, 15th day after surgery and compared between groups. RESULTS Intranasal crusting on day 10 was found to be lower in the PRP group (n:13 68.4 %) than control group (n:7 33.3 %) with a statistically significant difference (p = 0.028). The nasal obstruction score on day 10 and 15 were found to be lower in the PRP group (3,33 ± 2,75, 2,07 ± 2,20) (than the control group (5,44 ± 2,26, 3,37 ± 1,92) with a statistically significant difference (p = 0,003,p = 0,009). The mucociliary clearance rate was found to be higher and the bleeding time was found to be lower in the PRP group, but a statistically significant difference was not observed. CONCLUSIONS Application of submucoperichondrial PRP could have beneficial effects on nasal mucosal repair, nasal crusting, and congestion after septoplasty surgery.
Collapse
Affiliation(s)
- Senem Kurt Dizdar
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, Otorhinolaryngology Department, Demokrasi Street, Huzur Neighbourhood, No:1, Sarıyer, İstanbul, Turkey.
| | - Uğur Doğan
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, Otorhinolaryngology Department, Demokrasi Street, Huzur Neighbourhood, No:1, Sarıyer, İstanbul, Turkey
| | - Mehmet Ece
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, Otorhinolaryngology Department, Demokrasi Street, Huzur Neighbourhood, No:1, Sarıyer, İstanbul, Turkey
| | - Kerem Sami Kaya
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, Otorhinolaryngology Department, Demokrasi Street, Huzur Neighbourhood, No:1, Sarıyer, İstanbul, Turkey
| | - Nurullah Seyhun
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, Otorhinolaryngology Department, Demokrasi Street, Huzur Neighbourhood, No:1, Sarıyer, İstanbul, Turkey
| | - Suat Turgut
- University of Health Science Hamidiye Sisli Etfal Education and Research Hospital, Otorhinolaryngology Department, Demokrasi Street, Huzur Neighbourhood, No:1, Sarıyer, İstanbul, Turkey
| |
Collapse
|
384
|
Su LY, Yao M, Xu W, Zhong M, Cao Y, Zhou H. Cascade encapsulation of antimicrobial peptides, exosomes and antibiotics in fibrin-gel for first-aid hemostasis and infected wound healing. Int J Biol Macromol 2024; 269:132140. [PMID: 38719006 DOI: 10.1016/j.ijbiomac.2024.132140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Wounding is one of the most common healthcare problems. Bioactive hydrogels have attracted much attention in first-aid hemostasis and wound healing due to their excellent biocompatibility, antibacterial properties, and pro-healing bioactivity. However, their applications are limited by inadequate mechanical properties. In this study, we first prepared edible rose-derived exosome-like nanoparticles (ELNs) and used them to encapsulate antimicrobial peptides (AMP), abbreviated as ELNs(AMP). ELNs(AMP) showed superior intracellular antibacterial activity, 2.5 times greater than AMP, in in vitro cell infection assays. We then prepared and tested an FDA-approved fibrin-gel of fibrinogen and thrombin encapsulating ELNs(AMP) and novobiocin sodium salt (NB) (ELNs(AMP)/NB-fibrin-gels). The fibrin gel showed a sustained release of ELNs(AMP) and NB over the eight days of testing. After spraying onto the skin, the formulation underwent in situ gelation and developed a stable patch with excellent hemostatic performance in a mouse liver injury model with hemostasis in 31 s, only 35.6 % of the PBS group. The fibrin gel exhibited pro-wound healing properties in the mouse-infected skin defect model. The thickness of granulation tissue and collagen of the ELNs(AMP)/NB-fibrin-gels group was 4.00, 6.32 times greater than that of the PBS group. In addition, the ELNs(AMP)/NB-fibrin-gels reduced inflammation (decreased mRNA levels of TNF-α, IL-1β, IL6, MCP1, and CXCL1) at the wound sites and demonstrated a biocompatible and biosafe profile. Thus, we have developed a hydrogel system with excellent hemostatic, antibacterial, and pro-wound healing properties, which may be a candidate for next-generation tissue regeneration with a wide clinical application for first-aid hemostasis and infected wound healing.
Collapse
Affiliation(s)
- Ling-Yan Su
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China; Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650000, China
| | - Mengyu Yao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Xishan District, No.157 Jinbi Road, Kunming 650032, China; School of Medical, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming 650000, China
| | - Wen Xu
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China
| | - Minghua Zhong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Xishan District, No.157 Jinbi Road, Kunming 650032, China; Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming 650000, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Xishan District, No.157 Jinbi Road, Kunming 650032, China; Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming 650000, China.
| | - Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China; Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650000, China.
| |
Collapse
|
385
|
Priyanka K, Sahoo RN, Nanda A, Kanhar S, Das C, Sahu A, Naik PK, Nayak AK. Wound Healing Activity of Topical Herbal Gels Containing Barringtonia acutangula Fruit Extract: In silico and In vivo Studies. Chem Biodivers 2024; 21:e202400147. [PMID: 38687689 DOI: 10.1002/cbdv.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The current study describes the efficacy of B. acutangula fruit extract in wound healing via incorporation within topical gels. B. acutangula fruit extract was produced by solvent extraction method. The bioactive extract was incorporated within Carbopol 940-based topical gels, which were applied topically over the excision and incision wounds. The change in healing process was observed till 20 days. The percentages of closure of excision wound area were 92.89 % and 93.43 %, when treated with topical herbal gels containing B. acutangula fruit extract of 5 % and 10 %, respectively. The tensile strengths of incision area in rats treated with topical herbal gels containing 5 % and 10 % methanol extract of B. acutangula fruits were found to be 25±5.12 g and 30±4.10 g, respectively. The wound healing activity of topical herbal gels containing B. acutangula fruit extract in rats was found to be significant when compared with that of the reference standard and untreated groups. In addition, in silico studies suggested about good skin permeability and binding to the proteins responsible for delaying wound healing. It can be concluded that this topical herbal gels containing B. acutangula fruit extract could be used clinically for the treatment of wounds.
Collapse
Affiliation(s)
- Kumari Priyanka
- Department of Pharmacy, Usha Martin University, Ranchi, 835103, Jharkhand, India
| | - Rudra Narayan Sahoo
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Ashirbad Nanda
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 752050, Odisha, India
| | - Satish Kanhar
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 752050, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Abhijit Sahu
- Center of Excellence, Natural Products & Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, 768019, Odisha, India
| | - Pradeep Kumar Naik
- Center of Excellence, Natural Products & Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, 768019, Odisha, India
| | - Amit Kumar Nayak
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
386
|
González-Itier S, Miranda M, Corrales-Orovio R, Vera C, Veloso-Giménez V, Cárdenas-Calderón C, Egaña JT. Plants as a cost-effective source for customizable photosynthetic wound dressings: A proof of concept study. Biotechnol Bioeng 2024; 121:1961-1972. [PMID: 38555480 DOI: 10.1002/bit.28705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Oxygen is essential for tissue regeneration, playing a crucial role in several processes, including cell metabolism and immune response. Therefore, the delivery of oxygen to wounds is an active field of research, and recent studies have highlighted the potential use of photosynthetic biomaterials as alternative oxygenation approach. However, while plants have traditionally been used to enhance tissue regeneration, their potential to produce and deliver local oxygen to wounds has not yet been explored. Hence, in this work we studied the oxygen-releasing capacity of Marchantia polymorpha explants, showing their capacity to release oxygen under different illumination settings and temperatures. Moreover, co-culture experiments revealed that the presence of these explants had no adverse effects on the viability and morphology of fibroblasts in vitro, nor on the viability of zebrafish larvae in vivo. Furthermore, oxygraphy assays demonstrate that these explants could fulfill the oxygen metabolic requirements of zebrafish larvae and freshly isolated skin biopsies ex vivo. Finally, the biocompatibility of explants was confirmed through a human skin irritation test conducted in healthy volunteers following the ISO-10993-10-2010. This proof-of-concept study provides valuable scientific insights, proposing the potential use of freshly isolated plants as biocompatible low-cost oxygen delivery systems for wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Sergio González-Itier
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Miranda
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Veterinary Medicine and Agronomy, Universidad de las Américas, Santiago, Chile
| | - Rocío Corrales-Orovio
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Constanza Vera
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Veloso-Giménez
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Cárdenas-Calderón
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
387
|
Chen Z, Debnath R, Chikelu I, Zhou JX, Ko KI. Primed inflammatory response by fibroblast subset is necessary for proper oral and cutaneous wound healing. Mol Oral Microbiol 2024; 39:113-124. [PMID: 37902166 PMCID: PMC11058109 DOI: 10.1111/omi.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023]
Abstract
Fibroblasts are ubiquitous mesenchymal cells that exhibit considerable molecular and functional heterogeneity. Besides maintaining stromal integrity, oral fibroblast subsets are thought to play an important role in host-microbe interaction during injury repair, which is not well explored in vivo. Here, we characterize a subset of fibroblast lineage labeled by paired-related homeobox-1 promoter activity (Prx1Cre+) in oral mucosa and skin and demonstrate these fibroblasts readily respond to microbial products to facilitate the normal wound healing process. Using a reporter mouse model, we determined that Prx1Cre+ fibroblasts had significantly higher expression of toll-like receptors 2 and 4 compared to other fibroblast populations. In addition, Prx1 immunopositive cells exhibited heightened activation of inflammatory transcription factor NF-κB during the early wound healing process. At the cytokine level, CXCL1 and CCL2 were significantly upregulated by Prx1Cre+ fibroblasts at baseline and upon LPS stimulation. Importantly, lineage-specific knockout to prevent NF-κB activation in Prx1Cre+ fibroblasts drastically impaired both oral and skin wound healing processes, which was linked to reduced macrophage infiltration, failure to resolve inflammation, and clearance of bacteria. Together, our data implicate a pro-healing role of Prx1-lineage fibroblasts by facilitating early macrophage recruitment and bacterial clearance.
Collapse
Affiliation(s)
- Zhaoxu Chen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul Debnath
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ifeoma Chikelu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan X. Zhou
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kang I. Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation and Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
388
|
Gavin NC, Northfield S, Mihala G, Somerville M, Kleidon T, Marsh N, Larsen E, Campbell J, Rickard CM, Ullman AJ. Central Venous Access Device-Associated Skin Complications in Adults with Cancer: A Prospective Observational Study. Semin Oncol Nurs 2024; 40:151618. [PMID: 38622044 DOI: 10.1016/j.soncn.2024.151618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVES To identify the prevalence and type of central venous access device-associated skin complications for adult cancer patients, describe central venous access device management practices, and identify clinical and demographic characteristics associated with risk of central venous access device-associated skin complications. METHODS A prospective cohort study of 369 patients (626 central venous access devices; 7,682 catheter days) was undertaken between March 2017 and March 2018 across two cancer care in-patient units in a large teaching hospital. RESULTS Twenty-seven percent (n = 168) of participants had a central venous access device-associated skin complication. In the final multivariable analysis, significant (P < .05) risk factors for skin complications were cutaneous graft versus host disease (2.1 times greater risk) and female sex (1.4 times greater risk), whereas totally implanted vascular access device reduced risk for skin complications by two-thirds (incidence risk ratio 0.37). CONCLUSION Central venous access device-associated skin complications are a significant, potentially avoidable injury, requiring cancer nurses to be aware of high-risk groups and use evidence-based preventative and treatment strategies. IMPLICATIONS FOR PRACTICE This study has confirmed how common these potentially preventable injuries are. Therefore, the prevalence of these complications could be reduced by focusing on improvements in skin assessment, reductions in central venous access device dressing variation and improving clinician knowledge of this injury.
Collapse
Affiliation(s)
- Nicole C Gavin
- Nurse Researcher, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston; Researcher, Alliance for Vascular Access Teaching and Research Group, School of Nursing and Midwifery, Nathan, and School of Pharmacy and Medical Services, Southport; Adjunct Associate Professor, School of Nursing, Queensland, Australia University of Technology, Kelvin Grove; Senior Research Fellow, School of Nursing, Midwifery and Social Work, University of Queensland, St. Lucia; Senior Research Fellow, School of Medicine, University of Queensland, Herston; School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia.
| | - Sarah Northfield
- Clinical Nurse Consultant, Specialist Palliative Care Service, Toowoomba Hospital, Queensland, Australia
| | - Gabor Mihala
- Biostatistician, School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Margarette Somerville
- Clinical Nurse Research, Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Tricia Kleidon
- Paediatrics and Neonatal Researcher, Alliance for Vascular Access Teaching and Research Group, School of Nursing and Midwifery, Nathan, and School of Pharmacy and Medical Services, Southport; Research Fellow, School of Nursing, Midwifery and Social Work, University of Queensland, St. Lucia; Research Fellow, School of Nursing and Midwifery, Griffith University, Nathan; Nurse Practitioner, Vascular Access Management Service, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Nicole Marsh
- Acute/Critical Care Professor, Alliance for Vascular Access Teaching and Research Group, School of Nursing and Midwifery, Nathan, and School of Pharmacy and Medical Services, Southport; Professor, School of Nursing, Queensland, Australia University of Technology, Kelvin Grove; Professor, School of Nursing, Midwifery and Social Work, University of Queensland, St. Lucia; Professor, School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia; Nursing and Midwifery Research Centre, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Emily Larsen
- Researcher, Alliance for Vascular Access Teaching and Research Group, School of Nursing and Midwifery, Nathan, and School of Pharmacy and Medical Services, Southport; School of Nursing and Midwifery, Griffith University, Nathan; Research Fellow, Nursing and Midwifery Research Centre, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Jill Campbell
- Adjunct Senior Research Fellow, National Health and Medical Research Council Centre of Research Excellence in Wiser Wound Care, Menzies Health Institute, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Claire M Rickard
- Infection Prevention Professor, Alliance for Vascular Access Teaching and Research Group, School of Nursing and Midwifery, Nathan, and School of Pharmacy and Medical Services, Southport; Professor, School of Nursing, Midwifery and Social Work, University of Queensland, St. Lucia; Professor, School of Nursing and Midwifery, Griffith University, Nathan; Professor, Nursing and Midwifery Research Centre, Royal Brisbane and Women's Hospital, Herston; Professor, National Health and Medical Research Council Centre of Research Excellence in Wiser Wound Care, Menzies Health Institute, Griffith University, Gold Coast Campus; and Herston Infectious Diseases Institute, Metro North Health, Herston, Queensland, Australia
| | - Amanda J Ullman
- Professor, Alliance for Vascular Access Teaching and Research Group, School of Nursing and Midwifery, Nathan, and School of Pharmacy and Medical Services, Southport; Professor, School of Nursing, Midwifery and Social Work, University of Queensland, St. Lucia; Professor, Vascular Access Management Service, Queensland Children's Hospital, South Brisbane; Nursing and Midwifery Research Centre, Royal Brisbane and Women's Hospital, Herston; Professor, National Health and Medical Research Council Centre of Research Excellence in Wiser Wound Care, Menzies Health Institute, Griffith University, Gold Coast Campus, Queensland, Australia
| |
Collapse
|
389
|
Yang T, Cao Y, Zhang X. Update on suspensory suture techniques in reconstructive periodontal surgeries. Oral Maxillofac Surg 2024; 28:539-545. [PMID: 37857796 DOI: 10.1007/s10006-023-01185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE Reconstructive periodontal surgery, which has received more and more interest in modern periodontology, can help save severely compromised teeth and solve aesthetic problems caused by the destruction of periodontal tissues in periodontal diseases. Unfortunately, there is few literatures reviewing the use of suspensory suture techniques in reconstructive periodontal surgeries. METHODS An electronic search of the PubMed and Web of Science was performed. Full-text articles were obtained from the records after screening in the title and abstracts. RESULTS Effective suture is of central importance to a successful treatment outcome of periodontal surgeries, especially incremental soft or hard tissue surgeries. Limitations in suture techniques may negatively affect the intimate contact of the affected tissues, wound closure and stabilization, and successful wound healing. Suitable anchors can be selected to help achieve this objective. Suspensory sutures may be more precise suture techniques, due to the use of relatively immobile anchors. CONCLUSION This review aims to provide key points of successful wound healing and summarize the current state of the suspensory suture techniques for reconstructive periodontal surgeries in daily practice, including their treatment application, detailed steps, advantages, and disadvantages.
Collapse
Affiliation(s)
- Ting Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yukun Cao
- Department of Cardiovascular Medicine, Air Force Medical Center, PLA, Beijing, China
| | - Xianhua Zhang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
390
|
Suryani IR, Shujaat S, That MT, Coucke W, Jacobs R. Prediction of wound healing status following dental extraction using Adapted-University of Connecticut osteonecrosis numerical scale: A retrospective study. Health Sci Rep 2024; 7:e2184. [PMID: 38915354 PMCID: PMC11194833 DOI: 10.1002/hsr2.2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Background and Aims There is a scarcity of evidence concerning the use of a prognostic instrument for predicting normal healing, delayed healing, and medication-related osteonecrosis of the jaw (MRONJ) occurrence following tooth extraction in medically compromised patients. The present study aimed to predict healing outcomes following tooth extraction in medically compromised patients using an Adapted-University of Connecticut osteonecrosis numerical scale (A-UCONNS). Methods The digital medical records of medically compromised patients were reviewed, who underwent tooth extraction. The A-UCONNS parameters included the initial pathological condition, dental procedures, comorbidities (smoking habits, type and duration of medication, and type of intervention), and administered antiresorptive (AR) medications. Each parameter was assigned a different weight, and the scores were then accumulated and classified into three categories: minimal risk (less than 10), moderate risk (10-15), and significant risk (16 or more). The patient's healing status was categorized as normal healing, delayed healing, or MRONJ. Results A total of 353 male patients (mean age: 67.4 years) were recruited from a pool of 3977 patients, where 12.46% of patients had delayed wound healing, and 18.69% developed MRONJ. The median A-UCONNS scores for MRONJ were higher based on initial pathology, comorbidity, and AR drugs compared to normal or delayed healing. In addition, a significant relationship existed between A-UCONNS and healing outcomes (p < 0.05), with a unit increase in A-UCONNS associated with 1.347 times higher odds of experiencing MRONJ compared to normal healing. In contrast, a low score was linked to an increased likelihood of normal wound healing. Conclusion The A-UCONNS could act as a promising tool for predicting wound healing outcomes. It can provide clinicians the ability to pinpoint patients at high risk and allow tailoring of patient-specific strategies for improving healing outcomes following tooth extraction.
Collapse
Affiliation(s)
- Isti R. Suryani
- Department of Imaging & Pathology, OMFS IMPATH Research Group, Faculty of Medicine, KU Leuven & Oral and Maxillofacial SurgeryUniversity Hospitals LeuvenLeuvenBelgium
- Department of Dentomaxillofacial Radiology, Faculty of DentistryUniversitas Gadjah MadaYogyakartaIndonesia
| | - Sohaib Shujaat
- Department of Imaging & Pathology, OMFS IMPATH Research Group, Faculty of Medicine, KU Leuven & Oral and Maxillofacial SurgeryUniversity Hospitals LeuvenLeuvenBelgium
- King Abdullah International Medical Research Center, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health SciencesMinistry of National Guard Health AffairsRiyadhSaudi Arabia
| | - Minh T. That
- Department of Imaging & Pathology, OMFS IMPATH Research Group, Faculty of Medicine, KU Leuven & Oral and Maxillofacial SurgeryUniversity Hospitals LeuvenLeuvenBelgium
| | | | - Reinhilde Jacobs
- Department of Imaging & Pathology, OMFS IMPATH Research Group, Faculty of Medicine, KU Leuven & Oral and Maxillofacial SurgeryUniversity Hospitals LeuvenLeuvenBelgium
- Department of Dental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
391
|
Zhang Z, Li N, Sun L, Liu Z, Jin Y, Xue Y, Li B, Xuan H, Yuan H. Eggshell membrane powder reinforces adhesive polysaccharide hydrogels for wound repair. Int J Biol Macromol 2024; 269:131879. [PMID: 38692527 DOI: 10.1016/j.ijbiomac.2024.131879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Multifunctional polysaccharide hydrogels with strong tissue adhesion, and antimicrobial and hemostatic properties are attractive wound healing materials. In this study, a chitosan-based hydrogel (HCS) was designed, and its properties were enhanced by incorporating oxidized eggshell membrane (OEM). Hydrogel characterization and testing results showed that the hydrogel had excellent antimicrobial properties, cytocompatibility, satisfactory adhesion properties on common substrates, and wet-state adhesion capacity. A rat liver injury model confirmed the significant hemostatic effect of the hydrogel. Finally, the ability of the hydrogel to promote wound healing was verified using rat skin wound repair experiments. Our findings indicate that HCS/OEM hydrogels with added eggshell membrane fibers have better self-healing properties, mechanical strength, adhesion, hemostatic properties, and biocompatibility than HCS hydrogels, in addition to having superior repair performance in wound repair experiments. Overall, the multifunctional polysaccharide hydrogels fabricated in this study are ideal for wound repair.
Collapse
Affiliation(s)
- Zhuojun Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Nianci Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Li Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Zihao Liu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Ye Xue
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Biyun Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China.
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
392
|
de Souza A, Santo GE, Amaral GO, Sousa KSJ, Parisi JR, Achilles RB, Ribeiro DA, Renno ACM. Electrospun skin dressings for diabetic wound treatment: a systematic review. J Diabetes Metab Disord 2024; 23:49-71. [PMID: 38932903 PMCID: PMC11196489 DOI: 10.1007/s40200-023-01324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/26/2023] [Indexed: 06/28/2024]
Abstract
Abstract Diabetes mellitus is a metabolic disease characterized by persistent hyperglycemia associated with a lack of insulin production or insulin resistance. In diabetic patients, the capacity for healing is generally decreased, leading to chronic wounds. One of the most common treatments for chronic wounds is skin dressings, which serve as protection from infection, reduce pain levels, and stimulate tissue healing. Furthermore, electrospinning is one of the most effective techniques used for manufacturing skin dressings. Objective The purpose of this study was to perform a systematic review of the literature to examine the effects of electrospun skin dressings from different sources in the process of healing skin wounds using in vivo experiments in diabetic rats. Methods The search was carried out according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), and the Medical Subject Headings (MeSH) descriptors were defined as "wound dressing," "diabetes," "in vivo," and "electrospun." A total of 14 articles were retrieved from PubMed and Scopus databases. Results The results were based mainly on histological analysis and macroscopic evaluation, demonstrating moderate evidence synthesis for all experimental studies, showing a positive effect of electrospun skin dressings for diabetic wound treatment. Conclusion This review confirms the significant benefits of using electrospun skin dressings for skin repair and regeneration. All the inks used were demonstrated to be suitable for dressing manufacturing. Moreover, in vivo findings showed full wound closure in most of the studies, with well-organized dermal and epidermal layers.
Collapse
Affiliation(s)
- Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Giovanna E. Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Gustavo O. Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Karolyne S. J. Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Julia R. Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glicerio Avenue, Santos, SP 11045002 Brazil
| | - Rodrigo B. Achilles
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Daniel A. Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ana C. M. Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| |
Collapse
|
393
|
Francis SD, Kang AW, Maheta BJ, Sangalang BR, Salingaros S, Wu RT, Nazerali RS. Impact of post-operative infection on revision procedures in breast reconstruction: A marketscan database analysis. J Plast Reconstr Aesthet Surg 2024; 93:103-110. [PMID: 38678812 PMCID: PMC11616014 DOI: 10.1016/j.bjps.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Esthetic complications, such as capsular contracture and soft-tissue contour defects, hinder the desired outcomes of breast reconstruction. As subclinical infection is a prevailing theory behind capsular contracture, we investigated the effects of post-operative infections on these issues and revision procedures. METHODS We conducted a retrospective database study (2007-2021) on breast reconstruction patients from the MarketScan® Databases. Esthetic complications were defined by their associated revision procedures and queried via CPT codes. Severe capsular contracture (Grade 3-4) was defined as requiring capsulotomy or capsulectomy with implant removal or replacement. Moderate and severe soft-tissue defects were determined by the need for fat grafting or breast revision, respectively. Generalized linear models were used, adjusting for comorbidities and surgical factors (p < 0.05). RESULTS We analyzed the data on 62,510 eligible patients. Post-operative infections increased the odds of capsulotomy (OR 1.59, p < 0.001) and capsulectomy (OR 2.30, p < 0.001). They also raised the odds of breast revision for severe soft-tissue defects (OR 1.21, p < 0.001). There was no significant association between infections and fat grafting for moderate defects. Patients who had post-operative infections were also more likely to experience another infection after fat grafting (OR 3.39, p = 0.0018). In two-stage reconstruction, infection after tissue expander placement was associated with greater odds of infection after implant placement. CONCLUSION Post-operative infections increase the likelihood of developing severe soft-tissue defects and capsular contracture requiring surgical revision. Our data reinforce the role of infections in the pathophysiology of capsular contracture. Additionally, infections elevate the risk of subsequent infections after fat grafting for moderate defects, further increasing patient morbidity.
Collapse
Affiliation(s)
| | | | - Bhagvat J Maheta
- California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Brian R Sangalang
- University of California Riverside School of Medicine, Riverside, CA, USA
| | | | - Robin T Wu
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahim S Nazerali
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
394
|
Palumbo FS, Calligaris M, Calzà L, Fiorica C, Baldassarro VA, Carreca AP, Lorenzini L, Giuliani A, Carcione C, Cuscino N, Pitarresi G, Scilabra SD, Conaldi PG, Chinnici CM. Topical application of a hyaluronic acid-based hydrogel integrated with secretome of human mesenchymal stromal cells for diabetic ulcer repair. Regen Ther 2024; 26:520-532. [PMID: 39156755 PMCID: PMC11327949 DOI: 10.1016/j.reth.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
This preclinical proof-of-concept study aimed to evaluate the effectiveness of secretome therapy in diabetic mice with pressure ulcers. We utilized a custom-made hyaluronic acid (HA)-based porous sponge, which was rehydrated either with normal culture medium or secretome derived from human mesenchymal stromal cells (MSCs) to achieve a hydrogel consistency. Following application onto skin ulcers, both the hydrogel-only and the hydrogel + secretome combination accelerated wound closure compared to the vehicle group. Notably, the presence of secretome significantly enhanced the healing effect of the hydrogel, as evidenced by a thicker epidermis and increased revascularization of the healed area compared to the vehicle group. Notably, molecular analysis of healed skin revealed significant downregulation of genes involved in delayed wound healing and abnormal inflammatory response in ulcers treated with the hydrogel + secretome combination, compared to those treated with the hydrogel only. Additionally, we found no significant differences in therapeutic outcomes when comparing the use of secretome from fetal dermal MSCs to that from umbilical cord MSCs. This observation is supported by the proteomic profile of the two secretomes, which suggests a shared molecular signature responsible of the observed therapeutic effects.
Collapse
Affiliation(s)
- Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Matteo Calligaris
- Proteomic Group, Ri.MED Foundation c/o IRCCS ISMETT, via E. Tricomi 5, 90127, Palermo, Italy
| | - Laura Calzà
- Fondazione IRET, Tecnopolo di Bologna, Via Tolara di Sopra, 41e, 40064, Ozzano dell’Emilia (BO), Italy
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università degli Studi di Bologna, Via S. Donato, 15, 40127, Bologna, Italy
| | - Calogero Fiorica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Vito Antonio Baldassarro
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università degli Studi di Bologna, Bologna, Italy
| | - Anna Paola Carreca
- Regenerative Medicine and Immmunotherapy Unit, Ri.MED Foundation c/o IRCCS ISMETT, via E. Tricomi 5, 90127, Palermo, Italy
| | - Luca Lorenzini
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università degli Studi di Bologna, Bologna, Italy
| | - Alessandro Giuliani
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università degli Studi di Bologna, Bologna, Italy
| | - Claudia Carcione
- Cell Therapy Group, Ri.MED Foundation c/o IRCCS ISMETT, via E. Tricomi, 5 90127, Palermo, Italy
| | - Nicola Cuscino
- Department of Research, IRCCS ISMETT, Via E. Tricomi 5, 90127, Palermo, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Simone Dario Scilabra
- Proteomic Group, Ri.MED Foundation c/o IRCCS ISMETT, via E. Tricomi 5, 90127, Palermo, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT, Via E. Tricomi 5, 90127, Palermo, Italy
| | - Cinzia Maria Chinnici
- Cell Therapy Group, Ri.MED Foundation c/o IRCCS ISMETT, via E. Tricomi, 5 90127, Palermo, Italy
| |
Collapse
|
395
|
Li A, Ma B, Hua S, Ping R, Ding L, Tian B, Zhang X. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydr Polym 2024; 333:121952. [PMID: 38494217 DOI: 10.1016/j.carbpol.2024.121952] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Different types of clinical wounds are difficult to treat while infected by bacteria. Wound repair involves multiple cellular and molecular interactions, which is a complicated process. However, wound repair often suffers from abnormal cellular functions or pathways that result in unavoidable side effects, so there is an urgent need for a material that can heal wounds quickly and with few side effects. Based on these needs, hydrogels with injectable properties have been confirmed to be able to undergo self-healing, which provides favorable conditions for wound healing. Notably, as a biopolymer with excellent easy-to-modify properties from a wide range of natural sources, chitosan can be used to prepare injectable hydrogel with multifunction for wound healing because of its outstanding flowability and injectability. Especially, chitosan-based hydrogels with marked biocompatibility, non-toxicity, and bio-adhesion properties are ideal for facilitating wound healing. In this review, the characteristics and healing mechanisms of different wounds are briefly summarized. In addition, the preparation and characterization of injectable chitosan hydrogels in recent years are classified. Additionally, the bioactive properties of this type of hydrogel in vitro and in vivo are demonstrated, and future trend in wound healing is prospected.
Collapse
Affiliation(s)
- Aiqin Li
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Day Ward, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Bin Ma
- Department of Spine Surgery, Yinchuan Guolong Orthopedic Hospital, Yinchuan, Ningxia 750001, China
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Rui Ping
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia 750001, China
| | - Lu Ding
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Xu Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
396
|
Liu X, Peng S, Pei Y, Huo Y, Zong Y, Ren J, Zhao J. Facile fabrication of chitosan/hyaluronic acid hydrogel-based wound closure material Co-loaded with gold nanoparticles and fibroblast growth factor to improve anti-microbial and healing efficiency in diabetic wound healing and nursing care. Regen Ther 2024; 26:1018-1029. [PMID: 39553541 PMCID: PMC11565426 DOI: 10.1016/j.reth.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Generally, diabetic wounds heal very slowly and inefficiently with an increasing risk of infections. Recent nanotechnology and biomaterial advances elaborate developed multi-functional hydrogels and nanoparticles offer promising solutions to accelerate wound healing for diabetic patients. This research work demonstrates to use of solvent diffusion method to develop hydrogel nanocomposites composed of chitosan (CS), hyaluronic acid (HA), gold (Au), and fibroblast growth factors (FGF). The biological analysis of nanocomposites exhibited enhanced wound healing efficiency by incorporating bioactive molecules like FGF and bioactive Au nanoparticles. In vitro, cell compatibility analysis (MTT assay) of prepared hydrogel nanocomposites was studied on fibroblast cell lines NIH-3T3-L1 and L929 and exhibited greater cell survival ability (>90 %), cell proliferation and migration ability, which demonstrated the suitability of nanocomposite for wound healing treatment. In vitro, anti-bacterial analyses established that FGF-Au@CS/HA has strong antibacterial effectiveness against gram-positive and gram-negative pathogens. The observation of the present research revealed that prepared FGF-Au@CS/HA hydrogel composites could be a suitable biomaterial for diabetic wound care, potentially improving its antibacterial and healing efficacies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Shengwei Peng
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yongju Pei
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yuanyuan Huo
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yadi Zong
- Department of Pediatric Surgery, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jianwei Ren
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jing Zhao
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| |
Collapse
|
397
|
Abo-Salem HM, Ali EA, Abdelmegeed H, El Souda SSM, Abdel-Aziz MS, Ahmed KM, Fawzy NM. Chitosan nanoparticles of new chromone-based sulfonamide derivatives as effective anti-microbial matrix for wound healing acceleration. Int J Biol Macromol 2024; 272:132631. [PMID: 38810852 DOI: 10.1016/j.ijbiomac.2024.132631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
A new series of chromone and furochromone-based sulfonamide Schiff's base derivatives 3-12 were synthesized and evaluated for their antimicrobial activity against S. aureus, E. coli, C. albicans, and A. niger using agar diffusion method. Compound 3a demonstrated potent antimicrobial activities with MIC values of 9.76 and 19.53 μg/mL against S. aureus, E. coli and C. albicans, which is 2-fold and 4-fold more potent than neomycin (MIC = 19.53, 39.06 μg/mL respectively). To improve the effectiveness of 3a, it was encapsulated into chitosan nanoparticles (CS-3aNPs). The CS-3aNPs size was 32.01 nm, as observed by transmission electron microscope (TEM) images and the zeta potential value was 14.1 ± 3.07 mV. Encapsulation efficiency (EE) and loading capacity (LC) were 91.5 % and 1.6 %, respectively as indicated by spectral analysis. The CS-3aNPs extremely inhibited bacterial growth utilizing the colony-forming units (CFU). The ability of CS-3aNPs to protect skin wounds was evaluated in vivo. CS-3aNPs showed complete wound re-epithelialization, hyperplasia of the epidermis, well-organized granulation tissue formation, and reduced signs of wound infection, as seen through histological assessment which showed minimal inflammatory cells in comparison with untreated wound. Overall, these findings suggest that CS-3aNPs has a positive impact on protecting skin wounds from infection due to their antimicrobial activity.
Collapse
Affiliation(s)
- Heba M Abo-Salem
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt.
| | - Eman AboBakr Ali
- Polymers and Pigments Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Heba Abdelmegeed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Sahar S M El Souda
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Khadiga M Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Nagwa M Fawzy
- Chemistry of Natural and Microbial Products Department, National Research Center, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
398
|
Song YW, Park JY, Kwon YH, Jang WE, Kim SJ, Seo JT, Moon SJ, Jung UW. Host modulation therapy for improving the osseointegration of dental implants under bone healing-suppressed conditions: a preclinical rodent-model experiment. J Periodontal Implant Sci 2024; 54:177-188. [PMID: 37857517 PMCID: PMC11227931 DOI: 10.5051/jpis.2301800090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE Placing dental implants in areas with low bone density or in conditions where bone healing is suppressed is challenging for clinicians. An experiment using a rodent model was performed with the aim of determining the efficacy of host modulation by increasing the systemic level of cholesterol sulfate (CS) using Irosustat in the context of the bone healing process around dental implants. METHODS In 16 ovariectomised female Sprague-Dawley rats, 2 implant fixtures were placed in the tibial bones (1 fixture on each side). At 1 week after surgery, the high-CS group (n=8) received Irosustat-mixed feed, while the control group (n=8) was fed conventionally. Block specimens were obtained at 5 weeks post-surgery for histologic analysis and the data were evaluated statistically (P<0.05). RESULTS Unlike the high-CS group, half of the specimens in the control group demonstrated severe bone resorption along with a periosteal reaction in the cortex. The mean percentages of bone-to-implant contact (21.5%) and bone density (28.1%) near the implant surface were significantly higher in the high-CS group than in the control group (P<0.05), as was the number of Haversian canals (by 5.3). CONCLUSIONS Host modulation by increasing the CS level may enhance the osseointegration of dental implants placed under conditions of impaired bone healing.
Collapse
Affiliation(s)
- Young Woo Song
- Department of Periodontology, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, Korea
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea
| | - Yoon-Hee Kwon
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea
| | - Wooyoung Eric Jang
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Sung-Jin Kim
- Department of Oral Histology and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jeong Taeg Seo
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea.
| |
Collapse
|
399
|
Tang Q, Tan Y, Leng S, Liu Q, Zhu L, Wang C. Cupric-polymeric nanoreactors integrate into copper metabolism to promote chronic diabetic wounds healing. Mater Today Bio 2024; 26:101087. [PMID: 38784443 PMCID: PMC11111831 DOI: 10.1016/j.mtbio.2024.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Given multifunction of copper (Cu) contributing to all stages of the physiology of wound healing, Cu-based compounds have great therapeutic potentials to accelerate the wound healing, but they must be limited to a very low concentration range to avoid detrimental accumulation. Additionally, the cellular mechanism of Cu-based compounds participating the healing process remains elusive. In this study, copper oxide nanoparticles (CuONPs) were synthesized to mimic the multiple natural enzymes and trapped into PEG-b-PCL polymersomes (PS) to construct cupric-polymeric nanoreactors (CuO@PS) via a direct hydration method, thus allowing to compartmentalize Cu-based catalytic reactions in an isolated space to improve the efficiency, selectivity, recyclability as well as biocompatibility. While nanoreactors trafficked to lysosomes following endocytosis, the released Cu-based compounds in lysosomal lumen drove a cytosolic Cu+ influx to mobilize Cu metabolism mostly via Atox1-ATP7a/b-Lox axis, thereby activating the phosphorylation of mitogen-activated protein kinase 1 and 2 (MEK1/2) to initiate downstream signaling events associated with cell proliferation, migration and angiogenesis. Moreover, to facilitate to lay on wounds, cupric-polymeric nanoreactors were finely dispersed into a thermosensitive Pluronic F127 hydrogel to form a composite hydrogel sheet that promoted the healing of chronic wounds in diabetic rat models. Hence, cupric-polymeric nanoreactors represented an attractive translational strategy to harness cellular Cu metabolism for chronic wounds healing.
Collapse
Affiliation(s)
- Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shaolong Leng
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qi Liu
- The First Dongguan Affiliated Hospital Guangdong Medical University No. 42, Jiaoping Road Dongguan, Guangdong, 523710, China
| | - Linyu Zhu
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Department of Neurosurgery, JiuJiang Hospital of Traditional Chinese Medicine, Jiujiang, China
| |
Collapse
|
400
|
Fok MR, Jin L. Learn, unlearn, and relearn post-extraction alveolar socket healing: Evolving knowledge and practices. J Dent 2024; 145:104986. [PMID: 38574844 DOI: 10.1016/j.jdent.2024.104986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This review was to offer a comprehensive analysis of currently available evidence on post-extraction alveolar socket healing, including i) the histological and molecular events during alveolar socket healing, ii) the dimensional ridge alterations after socket healing and controversies relating to sinus pneumatisation, iii) the patient-specific factors, procedural elements, and site-related variables influencing socket healing, iv) techniques and effectiveness of alveolar ridge preservation (ARP) procedure, and v) the philosophies and cost-effectiveness of ARP in clinical practice. SOURCES AND STUDY SELECTION To investigate the dimensional profiles of the alveolar ridge following unassisted healing, an overview of systematic reviews was conducted in February 2024 by two independent reviewers. Four electronic databases were searched in Pubmed, Embase, Web of science and Cochrane Library between 2004 and 2024 to identify all relevant systematic reviews on post-extraction healing. A further manual search of reviews was also conducted. The articles were further reviewed in full text for relevance. The AMSTAR-2 appraisal tool was adopted to assess methodological quality. Current research pertaining to other listed objectives was objectively analysed in narration. DATA 11 out of 459 retrieved studies were selected and ultimately covered in this review on the dimensional changes of alveolar ridge following natural healing: Seven systematic reviews and four systematic reviews with meta-analyses. The methodological quality of all included reviews was critically low. CONCLUSION This review thoroughly examines the healing profiles of post-extraction alveolar sockets and highlights the dynamic process with overlapping phases and the inter-individual variability in outcomes. ARP procedure is a potential strategy for facilitating prosthetic site development, while the current evidence is limited. Herein, an individualised and prosthetically driven approach is crucial. Further well sized and designed trials with novel biomaterials need to be undertaken, and the role of artificial intelligence in predicting healing and assisting clinical decision-making could be explored. CLINICAL SIGNIFICANCE By advancing our understanding of alveolar socket healing and its management strategies, clinicians can make more informed decisions regarding patient and site level assessment and selection, surgical techniques, and biomaterial choices, ultimately contributing to the enhanced healing process with reduced complications and improved quality of life for patients undergoing tooth extraction and dental implant treatments.
Collapse
Affiliation(s)
- Melissa Rachel Fok
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|