351
|
Waugh KA, Araya P, Pandey A, Jordan KR, Smith KP, Granrath RE, Khanal S, Butcher ET, Estrada BE, Rachubinski AL, McWilliams JA, Minter R, Dimasi T, Colvin KL, Baturin D, Pham AT, Galbraith MD, Bartsch KW, Yeager ME, Porter CC, Sullivan KD, Hsieh EW, Espinosa JM. Mass Cytometry Reveals Global Immune Remodeling with Multi-lineage Hypersensitivity to Type I Interferon in Down Syndrome. Cell Rep 2020; 29:1893-1908.e4. [PMID: 31722205 DOI: 10.1016/j.celrep.2019.10.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/28/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
People with Down syndrome (DS; trisomy 21) display a different disease spectrum relative to the general population, including lower rates of solid malignancies and higher incidence of neurological and autoimmune conditions. However, the mechanisms driving this unique clinical profile await elucidation. We completed a deep mapping of the immune system in adults with DS using mass cytometry to evaluate 100 immune cell types, which revealed global immune dysregulation consistent with chronic inflammation, including key changes in the myeloid and lymphoid cell compartments. Furthermore, measurement of interferon-inducible phosphorylation events revealed widespread hypersensitivity to interferon-α in DS, with cell-type-specific variations in downstream intracellular signaling. Mechanistically, this could be explained by overexpression of the interferon receptors encoded on chromosome 21, as demonstrated by increased IFNAR1 surface expression in all immune lineages tested. These results point to interferon-driven immune dysregulation as a likely contributor to the developmental and clinical hallmarks of DS.
Collapse
Affiliation(s)
- Katherine A Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ahwan Pandey
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80302, USA
| | - Kimberly R Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Santosh Khanal
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric T Butcher
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Belinda Enriquez Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer A McWilliams
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross Minter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tiana Dimasi
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelley L Colvin
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dmitry Baturin
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew T Pham
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kyle W Bartsch
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael E Yeager
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elena W Hsieh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80302, USA.
| |
Collapse
|
352
|
Mensah KA, Chen JW, Schickel JN, Isnardi I, Yamakawa N, Vega-Loza A, Anolik JH, Gatti RA, Gelfand EW, Montgomery RR, Horowitz MC, Craft JE, Meffre E. Impaired ATM activation in B cells is associated with bone resorption in rheumatoid arthritis. Sci Transl Med 2020; 11:11/519/eaaw4626. [PMID: 31748230 DOI: 10.1126/scitranslmed.aaw4626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
Patients with rheumatoid arthritis (RA) may display atypical CD21-/lo B cells in their blood, but the implication of this observation remains unclear. We report here that the group of patients with RA and elevated frequencies of CD21-/lo B cells shows decreased ataxia telangiectasia-mutated (ATM) expression and activation in B cells compared with other patients with RA and healthy donor controls. In agreement with ATM involvement in the regulation of V(D)J recombination, patients with RA who show defective ATM function displayed a skewed B cell receptor (BCR) Igκ repertoire, which resembled that of patients with ataxia telangiectasia (AT). This repertoire was characterized by increased Jκ1 and decreased upstream Vκ gene segment usage, suggesting improper secondary recombination processes and selection. In addition, altered ATM function in B cells was associated with decreased osteoprotegerin and increased receptor activator of nuclear factor κB ligand (RANKL) production. These changes favor bone loss and correlated with a higher prevalence of erosive disease in patients with RA who show impaired ATM function. Using a humanized mouse model, we also show that ATM inhibition in vivo induces an altered Igκ repertoire and RANKL production by immature B cells in the bone marrow, leading to decreased bone density. We conclude that dysregulated ATM function in B cells promotes bone erosion and the emergence of circulating CD21-/lo B cells, thereby contributing to RA pathophysiology.
Collapse
Affiliation(s)
- Kofi A Mensah
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jeff W Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Natsuko Yamakawa
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Andrea Vega-Loza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jennifer H Anolik
- Division of Rheumatology, Allergy, and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Richard A Gatti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Erwin W Gelfand
- Department of Pediatrics, National Jewish Health, University of Colorado, Denver, CO 80113, USA
| | - Ruth R Montgomery
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joe E Craft
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Eric Meffre
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
353
|
Arroyo EN, Pepper M. B cells are sufficient to prime the dominant CD4+ Tfh response to Plasmodium infection. J Exp Med 2020; 217:jem.20190849. [PMID: 31748243 PMCID: PMC7041722 DOI: 10.1084/jem.20190849] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Arroyo and Pepper demonstrate that interactions with B cells, not dendritic cells, are required for the priming of the CD4+ T cell response during Plasmodium infection. This results in a Tfh-biased response as reported by others in both mice and humans. CD4+ T follicular helper (Tfh) cells dominate the acute response to a blood-stage Plasmodium infection and provide signals to direct B cell differentiation and protective antibody expression. We studied antigen-specific CD4+ Tfh cells responding to Plasmodium infection in order to understand the generation and maintenance of the Tfh response. We discovered that a dominant, phenotypically stable, CXCR5+ Tfh population emerges within the first 4 d of infection and results in a CXCR5+ CCR7+ Tfh/central memory T cell response that persists well after parasite clearance. We also found that CD4+ T cell priming by B cells was both necessary and sufficient to generate this Tfh-dominant response, whereas priming by conventional dendritic cells was dispensable. This study provides important insights into the development of CD4+ Tfh cells during Plasmodium infection and highlights the heterogeneity of antigen-presenting cells involved in CD4+ T cell priming.
Collapse
Affiliation(s)
- E Nicole Arroyo
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
354
|
Freudenhammer M, Voll RE, Binder SC, Keller B, Warnatz K. Naive- and Memory-like CD21 low B Cell Subsets Share Core Phenotypic and Signaling Characteristics in Systemic Autoimmune Disorders. THE JOURNAL OF IMMUNOLOGY 2020; 205:2016-2025. [PMID: 32907998 DOI: 10.4049/jimmunol.2000343] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
An expansion of CD21low B cells has been described in a variety of diseases associated with persistent immune stimulation as in chronic infection, immunodeficiency, or autoimmunity. Different developmental stages of CD21low B cells have been highlighted in specific diseases; however, a systematic comparison of distribution, phenotype, and signaling capacity of these populations has not yet been performed to delineate the pivotal character of this unusual B cell population. Screening of more than 200 patients with autoimmune disease demonstrated that the prevalence of patients with expanded CD21low B cells varies between diseases. The expansion was frequent in patients with systemic lupus erythematosus, in which it correlated to relative B cell lymphopenia and duration of disease. Different proportions of distinct developmental stages of CD21low B cells co-occur in nearly all patients with autoimmune disease. Although in most patients, naive-like and CD27- switched memory B cells were the most prominent CD21low subpopulations, there was no detectable association of the pattern with the underlying disease. Despite their distinct developmental stage, all CD21low B cells share a common core phenotype including the increased expression of inhibitory receptors, associated with an elevated constitutive phosphorylation of proximal signaling molecules downstream of the BCR but impaired Ca2+ mobilization and NF-κB activation after BCR stimulation. Further, this was accompanied by impaired upregulation of CD69, although CD86 upregulation was preserved. Beyond maturation-associated differences, the common core characteristics of all CD21low B cell populations suggests either a common ancestry or a shared sustained imprint by the environment they originated in.
Collapse
Affiliation(s)
- Mirjam Freudenhammer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and
| | - Sebastian C Binder
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; .,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and
| |
Collapse
|
355
|
ARID3a expression in human hematopoietic stem cells is associated with distinct gene patterns in aged individuals. IMMUNITY & AGEING 2020; 17:24. [PMID: 32905435 PMCID: PMC7469297 DOI: 10.1186/s12979-020-00198-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023]
Abstract
Background Immunologic aging leads to immune dysfunction, significantly reducing the quality of life of the elderly. Aged-related defects in early hematopoiesis result in reduced lymphoid cell development, functionally defective mature immune cells, and poor protective responses to vaccines and pathogens. Despite considerable progress understanding the underlying causes of decreased immunity in the elderly, the mechanisms by which these occur are still poorly understood. The DNA-binding protein ARID3a is expressed in a subset of human hematopoietic progenitors. Inhibition of ARID3a in bulk human cord blood CD34+ hematopoietic progenitors led to developmental skewing toward myeloid lineage at the expense of lymphoid lineage cells in vitro. Effects of ARID3a expression in adult-derived hematopoietic stem cells (HSCs) have not been analyzed, nor has ARID3a expression been assessed in relationship to age. We hypothesized that decreases in ARID3a could explain some of the defects observed in aging. Results Our data reveal decreased frequencies of ARID3a-expressing peripheral blood HSCs from aged healthy individuals compared with young donor HSCs. Inhibition of ARID3a in young donor-derived HSCs limits B lineage potential, suggesting a role for ARID3a in B lymphopoiesis in bone marrow-derived HSCs. Increasing ARID3a levels of HSCs from aged donors in vitro alters B lineage development and maturation. Finally, single cell analyses of ARID3a-expressing HSCs from young versus aged donors identify a number of differentially expressed genes in aged ARID3A-expressing cells versus young ARID3A-expressing HSCs, as well as between ARID3A-expressing and non-expressing cells in both young and aged donor HSCs. Conclusions These data suggest that ARID3a-expressing HSCs from aged individuals differ at both molecular and functional levels compared to ARID3a-expressing HSCs from young individuals.
Collapse
|
356
|
Labi V, Derudder E. Cell signaling and the aging of B cells. Exp Gerontol 2020; 138:110985. [PMID: 32504658 DOI: 10.1016/j.exger.2020.110985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
The uniqueness of each B cell lies in the structural diversity of the B-cell antigen receptor allowing the virtually limitless recognition of antigens, a necessity to protect individuals against a range of challenges. B-cell development and response to stimulation are exquisitely regulated by a group of cell surface receptors modulating various signaling cascades and their associated genetic programs. The effects of these signaling pathways in optimal antibody-mediated immunity or the aberrant promotion of immune pathologies have been intensely researched in the past in young individuals. In contrast, we are only beginning to understand the contribution of these pathways to the changes in B cells of old organisms. Thus, critical transcription factors such as E2A and STAT5 show differential expression or activity between young and old B cells. As a result, B-cell physiology appears altered, and antibody production is impaired. Here, we discuss selected phenotypic changes during B-cell aging and attempt to relate them to alterations of molecular mechanisms.
Collapse
Affiliation(s)
- Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
357
|
Frasca D, Blomberg BB. Adipose tissue, immune aging, and cellular senescence. Semin Immunopathol 2020; 42:573-587. [PMID: 32785750 DOI: 10.1007/s00281-020-00812-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Obesity represents a serious health problem as it is rapidly increasing worldwide. Obesity is associated with reduced healthspan and lifespan, decreased responses to infections and vaccination, and increased frequency of inflammatory conditions typical of old age. Obesity is characterized by increased fat mass and remodeling of the adipose tissue (AT). In this review, we summarize published data on the different types of AT present in mice and humans, and their roles as fat storage as well as endocrine and immune tissues. We review the age-induced changes, including those in the distribution of fat in the body, in abundance and function of adipocytes and their precursors, and in the infiltration of immune cells from the peripheral blood. We also show that cells with a senescent-associated secretory phenotype accumulate in the AT of mice and humans with age, where they secrete several factors involved in the establishment and maintenance of local inflammation, oxidative stress, cell death, tissue remodeling, and infiltration of pro-inflammatory immune cells. Not only adipocytes and pre-adipocytes but also immune cells show a senescent phenotype in the AT. With the increase in human lifespan, it is crucial to identify strategies of intervention and target senescent cells in the AT to reduce local and systemic inflammation and the development of age-associated diseases. Several studies have indeed shown that senescent cells can be effectively targeted in the AT by selectively removing them or by inhibiting the pathways that lead to the secretion of pro-inflammatory factors.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
358
|
Levack RC, Newell KL, Popescu M, Cabrera-Martinez B, Winslow GM. CD11c + T-bet + B Cells Require IL-21 and IFN-γ from Type 1 T Follicular Helper Cells and Intrinsic Bcl-6 Expression but Develop Normally in the Absence of T-bet. THE JOURNAL OF IMMUNOLOGY 2020; 205:1050-1058. [PMID: 32680956 DOI: 10.4049/jimmunol.2000206] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
CD11c+ T-bet+ B cells generated during ehrlichial infection require CD4+ T cell help and IL-21 signaling for their development, but the exact T cell subset required had not been known. In this study, we show in a mouse model of Ehrlichia muris that type 1 T follicular helper (TFH1) cells provide help to CD11c+ T-bet+ B cells via the dual secretion of IL-21 and IFN-γ in a CD40/CD40L-dependent manner. TFH1 cell help was delivered in two phases: IFN-γ signals were provided early in infection, whereas CD40/CD40L help was provided late in infection. In contrast to T-bet+ T cells, T-bet+ B cells did not develop in the absence of B cell-intrinsic Bcl-6 but were generated in the absence of T-bet. T-bet-deficient memory B cells were largely indistinguishable from their wild-type counterparts, although they no longer underwent switching to IgG2c. These data suggest that a primary function of T-bet in B cells during ehrlichial infection is to promote appropriate class switching, not lineage specification. Thus, CD11c+ memory B cells develop normally without T-bet but require Bcl-6 and specialized help from dual cytokine-producing TFH1 cells.
Collapse
Affiliation(s)
- Russell C Levack
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| | - Krista L Newell
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| | - Maria Popescu
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| | | | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
359
|
Kim CC, Baccarella AM, Bayat A, Pepper M, Fontana MF. FCRL5 + Memory B Cells Exhibit Robust Recall Responses. Cell Rep 2020; 27:1446-1460.e4. [PMID: 31042472 PMCID: PMC6530801 DOI: 10.1016/j.celrep.2019.04.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/02/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
FCRL5+ atypical memory B cells (atMBCs) expand in many chronic human infections, including recurrent malaria, but studies have drawn opposing conclusions about their function. Here, in mice infected with Plasmodium chabaudi, we demonstrate expansion of an antigen-specific FCRL5+ population that is distinct from previously described FCRL5+ innate-like murine subsets. Comparative analyses reveal overlapping phenotypic and transcriptomic signatures between FCRL5+ B cells from Plasmodium-infected mice and atMBCs from Plasmodium-exposed humans. In infected mice, FCRL5 is expressed on the majority of antigen-specific germinal-center-derived memory B cells (MBCs). Upon challenge, FCRL5+ MBCs rapidly give rise to antibody-producing cells expressing additional atypical markers, demonstrating functionality in vivo. Moreover, atypical markers are expressed on antigen-specific MBCs generated by immunization in both mice and humans, indicating that the atypical phenotype is not restricted to chronic settings. This study resolves conflicting interpretations of atMBC function and suggests FCRL5+ B cells as an attractive target for vaccine strategies.
Collapse
Affiliation(s)
- Charles C Kim
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alyssa M Baccarella
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aqieda Bayat
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Mary F Fontana
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
360
|
Woodruff M, Ramonell R, Cashman K, Nguyen D, Saini A, Haddad N, Ley A, Kyu S, Howell JC, Ozturk T, Lee S, Chen W, Estrada J, Morrison-Porter A, Derrico A, Anam F, Sharma M, Wu H, Le S, Jenks S, Tipton CM, Hu W, Lee FEH, Sanz I. Dominant extrafollicular B cell responses in severe COVID-19 disease correlate with robust viral-specific antibody production but poor clinical outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32511635 DOI: 10.1101/2020.04.29.20083717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A wide clinical spectrum has become a hallmark of the SARS-CoV-2 (COVID-19) pandemic, although its immunologic underpinnings remain to be defined. We have performed deep characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation as previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody secreting cell expansion and early production of high levels of SARS-CoV-2-specific antibodies. Yet, these patients fared poorly with elevated inflammatory biomarkers, multi-organ failure, and death. Combined, the findings strongly indicate a major pathogenic role for immune activation in subsets of COVID-19 patients. Our study suggests that, as in autoimmunity, targeted immunomodulatory therapy may be beneficial in specific patient subpopulations that can be identified by careful immune profiling.
Collapse
|
361
|
Frasca D, Blomberg BB, Garcia D, Keilich SR, Haynes L. Age-related factors that affect B cell responses to vaccination in mice and humans. Immunol Rev 2020; 296:142-154. [PMID: 32484934 DOI: 10.1111/imr.12864] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
Aging significantly changes the ability to respond to vaccinations and infections. In this review, we summarize published results on age-related changes in response to infection with the influenza virus and on the factors known to increase influenza risk infection leading to organ failure and death. We also summarize how aging affects the response to the influenza vaccine with a special focus on B cells, which have been shown to be less responsive in the elderly. We show the cellular and molecular mechanisms contributing to the dysfunctional immune response of the elderly to the vaccine against influenza. These include a defective interaction of helper T cells (CD4+) with B cells in germinal centers, changes in the microenvironment, and the generation of immune cells with a senescence-associated phenotype. Finally, we discuss the effects of aging on metabolic pathways and we show how metabolic complications associated with aging lead to immune dysfunction.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Spencer R Keilich
- UConn Center on Aging, Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Laura Haynes
- UConn Center on Aging, Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
362
|
Dhenni R, Phan TG. The geography of memory B cell reactivation in vaccine-induced immunity and in autoimmune disease relapses. Immunol Rev 2020; 296:62-86. [PMID: 32472583 DOI: 10.1111/imr.12862] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Memory B cells (Bmem) provide an active second layer of defense against re-infection by pathogens that have bypassed the passive first layer provided by neutralizing antibodies. Here, we review recent progress in our understanding of Bmem heterogeneity in terms of their origin (germinal center-dependent vs center-independent), phenotype (canonical vs atypical vs age-associated B cells), trafficking (recirculating vs tissue-resident), and fate (plasma cell vs germinal center differentiation). The development of transgenic models and intravital imaging technologies has made it possible to track the cellular dynamics of Bmem reactivation by antigen, their interactions with follicular memory T cells, and differentiation into plasma cells in subcapsular proliferative foci in the lymph nodes of immune animals. Such in situ studies have reinforced the importance of geography in shaping the outcome of the secondary antibody response. We also review the evidence for Bmem reactivation and differentiation into short-lived plasma cells in the pathogenesis of disease flares in relapsing-remitting autoimmune diseases. Elucidating the mechanisms that control the Bmem fate decision to differentiate into plasma cells or germinal center B cells will aid future efforts to more precisely engineer fit-for-purpose vaccines as well as to treat antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Rama Dhenni
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
363
|
Chodisetti SB, Fike AJ, Domeier PP, Schell SL, Mockus TE, Choi NM, Corradetti C, Hou B, Atkins HM, Caricchio R, Decker T, Lukacher AE, Olsen N, Rahman ZSM. Serine Phosphorylation of the STAT1 Transactivation Domain Promotes Autoreactive B Cell and Systemic Autoimmunity Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2641-2650. [PMID: 32253245 PMCID: PMC9305983 DOI: 10.4049/jimmunol.2000170] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/09/2023]
Abstract
Although STAT1 tyrosine-701 phosphorylation (designated STAT1-pY701) is indispensable for STAT1 function, the requirement for STAT1 serine-727 phosphorylation (designated STAT1-pS727) during systemic autoimmune and antipathogen responses remains unclear. Using autoimmune-prone B6.Sle1b mice expressing a STAT1-S727A mutant in which serine is replaced by alanine, we report in this study that STAT1-pS727 promotes autoimmune Ab-forming cell (AFC) and germinal center (GC) responses, driving autoantibody production and systemic lupus erythematosus (SLE) development. In contrast, STAT1-pS727 is not required for GC, T follicular helper cell (Tfh), and Ab responses to various foreign Ags, including pathogens. STAT1-pS727 is also not required for gut microbiota and dietary Ag-driven GC and Tfh responses in B6.Sle1b mice. By generating B cell-specific bone marrow chimeras, we demonstrate that STAT1-pS727 plays an important B cell-intrinsic role in promoting autoimmune AFC, GC, and Tfh responses, leading to SLE-associated autoantibody production. Our analysis of the TLR7-accelerated B6.Sle1b.Yaa SLE disease model expressing a STAT1-S727A mutant reveals STAT1-pS727-mediated regulation of autoimmune AFC and GC responses and lupus nephritis development. Together, we identify previously unrecognized differential regulation of systemic autoimmune and antipathogen responses by STAT1-pS727. Our data implicate STAT1-pS727 as a therapeutic target for SLE without overtly affecting STAT1-mediated protection against pathogenic infections.
Collapse
Affiliation(s)
- Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Taryn E Mockus
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, China
| | - Hannah M Atkins
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; and
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Nancy Olsen
- Department of Rheumatology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
| |
Collapse
|
364
|
Cooper L, Good-Jacobson KL. Dysregulation of humoral immunity in chronic infection. Immunol Cell Biol 2020; 98:456-466. [PMID: 32275789 DOI: 10.1111/imcb.12338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic viral infections disrupt the ability of the humoral immune response to produce neutralizing antibody or form effective immune memory, preventing viral clearance and making vaccine design difficult. Multiple components of the B-cell response are affected by pathogens that are not cleared from the host. Changes in the microenvironment shift production of B cells to short-lived plasma cells early in the response. Polyclonal B cells are recruited into both the plasma cell and germinal center compartments, inhibiting the formation of a targeted, high-affinity response. Finally, memory B cells shift toward an "atypical" phenotype, which may in turn result in changes to the functional properties of this population. While similar properties of B-cell dysregulation have been described across different types of persistent infections, key questions about the underlying mechanisms remain. This review will discuss the recent advances in this field, as well as highlight the critical questions about the interplay between viral load, microenvironment, the polyclonal response and atypical memory B cells that are yet to be answered. Design of new preventative treatments will rely on identifying the extrinsic and intrinsic modulators that push B cells toward an ineffective response, and thus identify new ways to guide them back onto the best path for clearance of virus and formation of effective immune memory.
Collapse
Affiliation(s)
- Lucy Cooper
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
365
|
Gustafson CE, Kim C, Weyand CM, Goronzy JJ. Influence of immune aging on vaccine responses. J Allergy Clin Immunol 2020; 145:1309-1321. [PMID: 32386655 PMCID: PMC7198995 DOI: 10.1016/j.jaci.2020.03.017] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Impaired vaccine responses in older individuals are associated with alterations in both the quantity and quality of the T-cell compartment with age. As reviewed herein, the T-cell response to vaccination requires a fine balance between the generation of inflammatory effector T cells versus follicular helper T (TFH) cells that mediate high-affinity antibody production in tandem with the induction of long-lived memory cells for effective recall immunity. During aging, we find that this balance is tipped where T cells favor short-lived effector but not memory or TFH responses. Consistently, vaccine-induced antibodies commonly display a lower protective capacity. Mechanistically, multiple, potentially targetable, changes in T cells have been identified that contribute to these age-related defects, including posttranscription regulation, T-cell receptor signaling, and metabolic function. Although research into the induction of tissue-specific immunity by vaccines and with age is still limited, current mechanistic insights provide a framework for improved design of age-specific vaccination strategies that require further evaluation in a clinical setting.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif.
| |
Collapse
|
366
|
Johnson JL, Rosenthal RL, Knox JJ, Myles A, Naradikian MS, Madej J, Kostiv M, Rosenfeld AM, Meng W, Christensen SR, Hensley SE, Yewdell J, Canaday DH, Zhu J, McDermott AB, Dori Y, Itkin M, Wherry EJ, Pardi N, Weissman D, Naji A, Prak ETL, Betts MR, Cancro MP. The Transcription Factor T-bet Resolves Memory B Cell Subsets with Distinct Tissue Distributions and Antibody Specificities in Mice and Humans. Immunity 2020; 52:842-855.e6. [PMID: 32353250 DOI: 10.1016/j.immuni.2020.03.020] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
B cell subsets expressing the transcription factor T-bet are associated with humoral immune responses and autoimmunity. Here, we examined the anatomic distribution, clonal relationships, and functional properties of T-bet+ and T-bet- memory B cells (MBCs) in the context of the influenza-specific immune response. In mice, both T-bet- and T-bet+ hemagglutinin (HA)-specific B cells arose in germinal centers, acquired memory B cell markers, and persisted indefinitely. Lineage tracing and IgH repertoire analyses revealed minimal interconversion between T-bet- and T-bet+ MBCs, and parabionts showed differential tissue residency and recirculation properties. T-bet+ MBCs could be subdivided into recirculating T-betlo MBCs and spleen-resident T-bethi MBCs. Human MBCs displayed similar features. Conditional gene deletion studies revealed that T-bet expression in B cells was required for nearly all HA stalk-specific IgG2c antibodies and for durable neutralizing titers to influenza. Thus, T-bet expression distinguishes MBC subsets that have profoundly different homing, residency, and functional properties, and mediate distinct aspects of humoral immune memory.
Collapse
Affiliation(s)
- John L Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca L Rosenthal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James J Knox
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Joanna Madej
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariya Kostiv
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University School of Medicine, and Cleveland VA Hospital, Cleveland, OH 45106, USA
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoav Dori
- Center for Lymphatic Imaging and Intervention, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Max Itkin
- Division of Interventional Radiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, Parker Institute for Cancer Immunotherapy at University of Pennsylvania, and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 19104, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
367
|
Abstract
The age-associated B cell subset has been the focus of increasing interest over the last decade. These cells have a unique cell surface phenotype and transcriptional signature, and they rely on TLR7 or TLR9 signals in the context of Th1 cytokines for their formation and activation. Most are antigen-experienced memory B cells that arise during responses to microbial infections and are key to pathogen clearance and control. Their increasing prevalence with age contributes to several well-established features of immunosenescence, including reduced B cell genesis and damped immune responses. In addition, they are elevated in autoimmune and autoinflammatory diseases, and in these settings they are enriched for characteristic autoantibody specificities. Together, these features identify age-associated B cells as a subset with pivotal roles in immunological health, disease, and aging. Accordingly, a detailed understanding of their origins, functions, and physiology should make them tractable translational targets in each of these settings.
Collapse
Affiliation(s)
- Michael P. Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
368
|
Marrack P. Obsessive-Compulsive Behavior Isn't Necessarily a Bad Thing. Annu Rev Immunol 2020; 38:1-21. [PMID: 31594433 DOI: 10.1146/annurev-immunol-072319-033325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is difficult to believe that in about 1960 practically nothing was known about the thymus and some of its products, T cells bearing αβ receptors for antigen. Thus I was lucky to join the field of T cell biology almost at its beginning, when knowledge about the cells was just getting off the ground and there was so much to discover. This article describes findings about these cells made by others and myself that led us all from ignorance, via complete confusion, to our current state of knowledge. I believe I was fortunate to practice science in very supportive institutions and with very collaborative colleagues in two countries that both encourage independent research by independent scientists, while simultaneously ignoring or somehow being able to avoid some of the difficulties of being a woman in what was, at the time, a male-dominated profession.
Collapse
Affiliation(s)
- Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA; .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
369
|
Peripheral B Cell Subsets in Autoimmune Diseases: Clinical Implications and Effects of B Cell-Targeted Therapies. J Immunol Res 2020; 2020:9518137. [PMID: 32280720 PMCID: PMC7125470 DOI: 10.1155/2020/9518137] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Antibody-secreting cells (ASCs) play a fundamental role in humoral immunity. The aberrant function of ASCs is related to a number of disease states, including autoimmune diseases and cancer. Recent insights into activated B cell subsets, including naïve B cell to ASC stages and their resultant cellular disturbances, suggest that aberrant ASC differentiation occurs during autoimmune diseases and is closely related to disease severity. However, the mechanisms underlying highly active ASC differentiation and the B cell subsets in autoimmune patients remain undefined. Here, we first review the processes of ASC generation. From the perspective of novel therapeutic target discovery, prediction of disease progression, and current clinical challenges, we further summarize the aberrant activity of B cell subsets including specialized memory CD11chiT-bet+ B cells that participate in the maintenance of autoreactive ASC populations. An improved understanding of subgroups may also enhance the knowledge of antigen-specific B cell differentiation. We further discuss the influence of current B cell therapies on B cell subsets, specifically focusing on systemic lupus erythematosus, rheumatoid arthritis, and myasthenia gravis.
Collapse
|
370
|
Abstract
The immune system plays an important role in obesity-induced adipose tissue inflammation and the resultant metabolic dysfunction, which can lead to hypertension, dyslipidemia, and insulin resistance and their downstream sequelae of type 2 diabetes mellitus and cardiovascular disease. While macrophages are the most abundant immune cell type in adipose tissue, other immune cells are also present, such as B cells, which play important roles in regulating adipose tissue inflammation. This brief review will overview B-cell subsets, describe their localization in various adipose depots and summarize our knowledge about the function of these B-cell subsets in regulating adipose tissue inflammation, obesity-induced metabolic dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Prasad Srikakulapu
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Coleen A McNamara
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| |
Collapse
|
371
|
Frasca D, Diaz A, Romero M, Vazquez T, Strbo N, Romero L, McCormack RM, Podack ER, Blomberg BB. Impaired B Cell Function in Mice Lacking Perforin-2. Front Immunol 2020; 11:328. [PMID: 32180773 PMCID: PMC7057857 DOI: 10.3389/fimmu.2020.00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
Perforin-2 (P2) is a pore-forming protein with cytotoxic activity against intracellular bacterial pathogens. P2 knockout (P2KO) mice are unable to control infections and die from normally non-lethal bacterial infections. Here we show that P2KO mice as compared to WT mice show significantly higher levels of systemic inflammation, measured by inflammatory markers in serum, due to continuous microbial translocation from the gut which cannot be controlled as these mice lack P2. Systemic inflammation in young and old P2KO mice induces intrinsic B cell inflammation. Systemic and B cell intrinsic inflammation are negatively associated with in vivo and in vitro antibody responses. Chronic inflammation leads to class switch recombination defects, which are at least in part responsible for the reduced in vivo and in vitro antibody responses in young and old P2KO vs. WT mice. These defects include the reduced expression of activation-induced cytidine deaminase (AID), the enzyme for class switch recombination, somatic hypermutation and IgG production and of its transcriptional activators E47 and Pax5. Of note, the response of young P2KO mice is not different from the one observed in old WT mice, suggesting that the chronic inflammatory status of mice lacking P2 may accelerate, or be equivalent, to that seen in old mice. The inflammatory status of the splenic B cells is associated with increased frequencies and numbers of the pro-inflammatory B cell subset called Age-associated B Cells (ABCs) in the spleen and the visceral adipose tissue (VAT) of P2KO old mice. We show that B cells differentiate into ABCs in the VAT following interaction with the adipocytes and their products, and this occurs more in the VAT of P2KO mice as compared to WT controls. This is to our knowledge the first study on B cell function and antibody responses in mice lacking P2.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Thomas Vazquez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Laura Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ryan M McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
372
|
Gustafson CE, Jadhav R, Cao W, Qi Q, Pegram M, Tian L, Weyand CM, Goronzy JJ. Immune cell repertoires in breast cancer patients after adjuvant chemotherapy. JCI Insight 2020; 5:134569. [PMID: 32102986 PMCID: PMC7101137 DOI: 10.1172/jci.insight.134569] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022] Open
Abstract
Adjuvant chemotherapy in breast cancer patients causes immune cell depletion at an age when the regenerative capacity is compromised. Successful regeneration requires the recovery of both quantity and quality of immune cell subsets. Although immune cell numbers rebound within a year after treatment, it is unclear whether overall compositional diversity is recovered. We investigated the regeneration of immune cell complexity by comparing peripheral blood mononuclear cells from breast cancer patients ranging from 1-5 years after chemotherapy with those of age-matched healthy controls using mass cytometry and T cell receptor sequencing. These data reveal universal changes in patients' CD4+ T cells that persisted for years and consisted of expansion of Th17-like CD4 memory populations with incomplete recovery of CD4+ naive T cells. Conversely, CD8+ T cells fully recovered within a year. Mechanisms of T cell regeneration, however, were unbiased, as CD4+ and CD8+ T cell receptor diversity remained high. Likewise, terminal differentiated effector memory cells were not expanded, indicating that regeneration was not driven by recognition of latent viruses. These data suggest that, while CD8+ T cell immunity is successfully regenerated, the CD4 compartment may be irreversibly affected. Moreover, the bias of CD4 memory toward inflammatory effector cells may impact responses to vaccination and infection.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Rohit Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Qian Qi
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | | | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Jorg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| |
Collapse
|
373
|
Golinski ML, Demeules M, Derambure C, Riou G, Maho-Vaillant M, Boyer O, Joly P, Calbo S. CD11c + B Cells Are Mainly Memory Cells, Precursors of Antibody Secreting Cells in Healthy Donors. Front Immunol 2020; 11:32. [PMID: 32158442 PMCID: PMC7051942 DOI: 10.3389/fimmu.2020.00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
CD11c+ B cells have been reported to be increased in autoimmune diseases, but they are detected in the blood of healthy individuals as well. We aimed to characterize CD11c+ B cells from healthy donors by flow cytometry, microarray analysis, and in vitro functional assays. Here, we report that CD11c+ B cells are a distinct subpopulation of B cells, enriched in the memory subpopulation even if their phenotype is heterogeneous, with overexpression of genes involved in B-cell activation and differentiation as well as in antigen presentation. Upon activation, CD11c+ B cells can differentiate into antibody-secreting cells, and CD11c could be upregulated in CD11c- B cells by B-cell receptor activation. Finally, we show that patients with pemphigus, an autoimmune disease mediated by B cells, have a decreased frequency of CD11c+ B cell after treatment, relative to baseline. Our findings show that CD11c+ B cells are mainly memory B cells prone to differentiate into antibody secreting cells that accumulate with age, independently of gender.
Collapse
Affiliation(s)
- Marie-Laure Golinski
- INSERM U1234, Normandy University, Rouen, France
- Department of Dermatology, Rouen University Hospital, Rouen, France
| | | | | | - Gaetan Riou
- INSERM U1234, Normandy University, Rouen, France
| | - Maud Maho-Vaillant
- INSERM U1234, Normandy University, Rouen, France
- Department of Dermatology, Rouen University Hospital, Rouen, France
| | - Olivier Boyer
- INSERM U1234, Normandy University, Rouen, France
- Department of Immunology, Rouen University Hospital, Rouen, France
| | - Pascal Joly
- INSERM U1234, Normandy University, Rouen, France
- Department of Dermatology, Rouen University Hospital, Rouen, France
| | | |
Collapse
|
374
|
Abstract
PURPOSE OF REVIEW The aim of this review is to discuss recent developments in our understanding of how systemic lupus erythematosus (SLE)-associated genes contribute to autoimmunity. RECENT FINDINGS Gene-function studies have revealed mechanisms through which SLE-associated alleles of IFIH1, TNFAIP3, IRF5, and PRDM1 likely contribute to the development of autoimmunity. Novel research has identified Mac-1 (encoded by ITGAM), CaMK4, and iRhom2 as plausible therapeutic targets in lupus nephritis. SUMMARY The work discussed in this review has broad implications for our understanding of the pathogenesis of SLE and for the development of novel therapeutic strategies.
Collapse
|
375
|
Magnusson L, Barcenilla H, Pihl M, Bensing S, Espes D, Carlsson PO, Casas R. Mass Cytometry Studies of Patients With Autoimmune Endocrine Diseases Reveal Distinct Disease-Specific Alterations in Immune Cell Subsets. Front Immunol 2020; 11:288. [PMID: 32153591 PMCID: PMC7047233 DOI: 10.3389/fimmu.2020.00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 01/10/2023] Open
Abstract
Although there is evidence that autoimmune diseases share similar immunogenetic mechanisms, studies comparing peripheral CD45+ cells from patients with autoimmune endocrine diseases in parallel are limited. In this study, we applied high-dimensional single-cell mass cytometry to phenotypically characterize PBMC from patients with new-onset (N-T1D) and long-standing type 1 diabetes, Hashimoto's thyroiditis (HT), Graves' disease and autoimmune Addison's disease (AD), as well as healthy controls. The frequency of CD20loCD27hiCD38hiHLA-DRint plasmablasts, CD86+CD14loCD16+ non-classical monocytes and two subsets of CD56dimHLA-DR+IFN-γ+ NK cells were increased in patients with HT. Subsets of CD56dimCD69+HLA-DR- NK cells and CD8+ TEMRA cells, both expressing IFN-γ, were expanded and reduced, respectively, in the N-T1D group. In addition, patients with AD were characterized by an increased percentage of central memory CD8+ T cells that expressed CCR4, GATA3, and IL-2. We demonstrate that patients with N-T1D, HT, and AD had altered frequencies of distinct subsets within antigen-presenting and cytotoxic cell lineages. Previously unreported alterations of specific cell subsets were identified in samples from patients with HT and AD. Our study might contribute to a better understanding of shared and diverging immunological features between autoimmune endocrine diseases.
Collapse
Affiliation(s)
- Louise Magnusson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Division of Children and Women Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hugo Barcenilla
- Division of Children and Women Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mikael Pihl
- Core Facility Flow Cytometry Unit, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Sophie Bensing
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Espes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Rosaura Casas
- Division of Children and Women Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
376
|
Elhelbawy NG, Nassar AAH, Eltorgoman AEA, Saber SM, Badr EA. Immunological microenvironment gene expression in patients with diffuse large B cell non Hodgkin lymphoma. Biochem Biophys Rep 2020; 21:100731. [PMID: 32025577 PMCID: PMC6997500 DOI: 10.1016/j.bbrep.2020.100731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background Non Hodgkin lymphoma (NHL) is one of the immune system cancers. The occurrence and progression of malignant lymphomas depends on cellular pathways deregulation. Understanding the relationship between the immune system at the genetic level and malignant transformation is critical to reach its etiology. Objective The aim of this work is to evaluate the expression of five immune related genes (PD-1, FOXP3, GrA, GrB and CD11c) in patients with diffuse large B cell non Hodgkin lymphoma (DLBCL). Materials and methods This study was conducted on fifty patients with DLBCL and fifty sex and age matched apparently healthy subjects. The participants were subjected to these laboratory investigations: complete blood count, serum lactate dehydrogenase and β2microglobulin (β2M) levels and determination of PD-1, FOXP3, GrA, GrB and CD11c gene expressions. Results The results of this study revealed that PD-1, FOXP3, GrA, GrB and CD11c gene expressions were significantly increased in DLBCL patients. Conclusion Patients with DLBCL have variablePD-1, FOXP3,GrA, GrB and CD11cgene expressions levels, which are correlated with the overall survival (OS) indicating that they can be good predictors of outcome in these patients.
Collapse
Affiliation(s)
- Nesreen G Elhelbawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| | - Adel A H Nassar
- Department of Organic Chemistry, Faculty of Science, Menoufia University, Egypt
| | | | - Safa M Saber
- Chemist at Central Laboratory, Faculty of Medicine, Menoufia University, Egypt
| | - Eman Ae Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
377
|
Gao W, Sun X, Li D, Sun L, He Y, Wei H, Jin F, Cao Y. Toll-like receptor 7 and Toll-like receptor 9 agonists effectively enhance immunological memory in Plasmodium chabaudi infected BALB/c mice. Int Immunopharmacol 2020; 81:106248. [PMID: 32007799 DOI: 10.1016/j.intimp.2020.106248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Wenyan Gao
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China; Department of Obstetrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xiaodan Sun
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Danni Li
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Lin Sun
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Yang He
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Huanping Wei
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yaming Cao
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
378
|
Eccles JD, Turner RB, Kirk NA, Muehling LM, Borish L, Steinke JW, Payne SC, Wright PW, Thacker D, Lahtinen SJ, Lehtinen MJ, Heymann PW, Woodfolk JA. T-bet+ Memory B Cells Link to Local Cross-Reactive IgG upon Human Rhinovirus Infection. Cell Rep 2020; 30:351-366.e7. [PMID: 31940481 PMCID: PMC6994188 DOI: 10.1016/j.celrep.2019.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/01/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023] Open
Abstract
Human rhinoviruses cause the common cold and exacerbate chronic respiratory diseases. Although infection elicits neutralizing antibodies, these do not persist or cross-protect across multiple rhinovirus strains. To analyze rhinovirus-specific B cell responses in humans, we developed techniques using intact RV-A16 and RV-A39 for high-throughput high-dimensional single-cell analysis, with parallel assessment of antibody isotypes in an experimental infection model. Our approach identified T-bet+ B cells binding both viruses that account for ∼5% of CXCR5- memory B cells. These B cells infiltrate nasal tissue and expand in the blood after infection. Their rapid secretion of heterotypic immunoglobulin G (IgG) in vitro, but not IgA, matches the nasal antibody profile post-infection. By contrast, CXCR5+ memory B cells binding a single virus are clonally distinct, absent in nasal tissue, and secrete homotypic IgG and IgA, mirroring the systemic response. Temporal and spatial functions of dichotomous memory B cells might explain the ability to resolve infection while rendering the host susceptible to re-infection.
Collapse
Affiliation(s)
- Jacob D Eccles
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ronald B Turner
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Nicole A Kirk
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Larry Borish
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - John W Steinke
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Spencer C Payne
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Otolaryngology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Paul W Wright
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Deborah Thacker
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Sampo J Lahtinen
- DuPont Nutrition & Biosciences, Global Health and Nutrition Science, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Markus J Lehtinen
- DuPont Nutrition & Biosciences, Global Health and Nutrition Science, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Peter W Heymann
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Judith A Woodfolk
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
379
|
Kenderes KJ, Levack RC, Papillion AM, Cabrera-Martinez B, Dishaw LM, Winslow GM. T-Bet + IgM Memory Cells Generate Multi-lineage Effector B Cells. Cell Rep 2020; 24:824-837.e3. [PMID: 30044980 PMCID: PMC6141031 DOI: 10.1016/j.celrep.2018.06.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/20/2018] [Accepted: 06/18/2018] [Indexed: 01/26/2023] Open
Abstract
Immunoglobulin M (IgM) memory cells undergo differentiation in germinal centers following antigen challenge, but the full effector cell potential of these cells is unknown. We monitored the differentiation of enhanced yellow fluorescent protein (eYFP)- labeled CD11c+ and CD11cneg T-bet+ IgM memory cells after their transfer into naive recipient mice. Following challenge infection, many memory cells differentiated into IgM-producing plasmablasts. Other donor B cells entered germinal centers, down- regulated CD11c, underwent class switch recombination, and became switched memory cells. Yet other donor cells were maintained as IgM memory cells, and these IgM memory cells retained their multi-lineage potential following serial transfer. These findings were corroborated at the molecular level using immune repertoire analyses. Thus, IgM memory cells can differentiate into all effector B cell lineages and undergo self-renewal, properties that are characteristic of stem cells. We propose that these memory cells exist to provide long-term multi-functional immunity and act primarily to maintain the production of protective antibodies. T-bet+ B cells have now been identified in a wide range of immunological contexts. Using a model bacterial infection, Kenderes et al. show that single T-bet+ IgM memory cells exhibit multi-lineage potential and can undergo self-renewal, both properties of stem cells.
Collapse
Affiliation(s)
- Kevin J Kenderes
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Russell C Levack
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Amber M Papillion
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Lisa M Dishaw
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
380
|
Chodisetti SB, Fike AJ, Domeier PP, Singh H, Choi NM, Corradetti C, Kawasawa YI, Cooper TK, Caricchio R, Rahman ZSM. Type II but Not Type I IFN Signaling Is Indispensable for TLR7-Promoted Development of Autoreactive B Cells and Systemic Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2020; 204:796-809. [PMID: 31900342 DOI: 10.4049/jimmunol.1901175] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/18/2019] [Indexed: 01/12/2023]
Abstract
TLR7 is associated with development of systemic lupus erythematosus (SLE), but the underlying mechanisms are incompletely understood. Although TLRs are known to activate type I IFN (T1IFN) signaling, the role of T1IFN and IFN-γ signaling in differential regulation of TLR7-mediated Ab-forming cell (AFC) and germinal center (GC) responses, and SLE development has never been directly investigated. Using TLR7-induced and TLR7 overexpression models of SLE, we report in this study a previously unrecognized indispensable role of TLR7-induced IFN-γ signaling in promoting AFC and GC responses, leading to autoreactive B cell and SLE development. T1IFN signaling in contrast, only modestly contributed to autoimmune responses and the disease process in these mice. TLR7 ligand imiquimod treated IFN-γ reporter mice show that CD4+ effector T cells including follicular helper T (Tfh) cells are the major producers of TLR7-induced IFN-γ. Transcriptomic analysis of splenic tissues from imiquimod-treated autoimmune-prone B6.Sle1b mice sufficient and deficient for IFN-γR indicates that TLR7-induced IFN-γ activates multiple signaling pathways to regulate TLR7-promoted SLE. Conditional deletion of Ifngr1 gene in peripheral B cells further demonstrates that TLR7-driven autoimmune AFC, GC and Tfh responses and SLE development are dependent on IFN-γ signaling in B cells. Finally, we show crucial B cell-intrinsic roles of STAT1 and T-bet in TLR7-driven GC, Tfh and plasma cell differentiation. Altogether, we uncover a nonredundant role for IFN-γ and its downstream signaling molecules STAT1 and T-bet in B cells in promoting TLR7-driven AFC, GC, and SLE development whereas T1IFN signaling moderately contributes to these processes.
Collapse
Affiliation(s)
- Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Yuka Imamura Kawasawa
- Department of Pharmacology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033.,Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
| |
Collapse
|
381
|
Kugler-Umana O, Devarajan P, Swain SL. Understanding the Heterogeneous Population of Age-Associated B Cells and Their Contributions to Autoimmunity and Immune Response to Pathogens. Crit Rev Immunol 2020; 40:297-309. [PMID: 33426819 PMCID: PMC8118092 DOI: 10.1615/critrevimmunol.2020034934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In humans and mice, susceptibility to infections and autoimmunity increases with age due to age-associated changes in innate and adaptive immune responses. Aged innate cells are also less active, leading to decreased naive T- and B-cell responses. Aging innate cells contribute to an overall heightened inflammatory environment. Naive T and B cells undergo cell-intrinsic age-related changes that result in reduced effector and memory responses. However, previously established B- and T-cell memory responses persist with age. One dramatic change is the appearance of a newly recognized population of age-associated B cells (ABCs) that has a unique cluster of differentiation (CD)21-CD23- phenotype. Here, we discuss the discovery and origins of the naive phenotype immunoglobulin (Ig)D+ versus activated CD11c+T-bet+ ABCs, with a focus on protective and pathogenic properties. In humans and mice, antigen-experienced CD11c+T-bet+ ABCs increase with autoimmunity and appear in response to bacterial and viral infections. However, our analyses indicate that CD21-CD23- ABCs include a resting, naive, progenitor ABC population that expresses IgD. Similar to generation of CD11c+T-bet+ ABCs, naive ABC response to pathogens depends on toll-like receptor stimulation, making this a key feature of ABC activation. Here, we put forward a potential developmental map of distinct subsets from putative naive ABCs. We suggest that defining signals that can harness the naive ABC response may contribute to protection against pathogens in the elderly. CD11c+T-bet+ ABCs may be useful targets for therapeutic strategies to counter autoimmunity.
Collapse
Affiliation(s)
- Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Susan L. Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
382
|
Pérez‐Mazliah D, Ndungu FM, Aye R, Langhorne J. B-cell memory in malaria: Myths and realities. Immunol Rev 2020; 293:57-69. [PMID: 31733075 PMCID: PMC6972598 DOI: 10.1111/imr.12822] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
Abstract
B-cell and antibody responses to Plasmodium spp., the parasite that causes malaria, are critical for control of parasitemia and associated immunopathology. Antibodies also provide protection to reinfection. Long-lasting B-cell memory has been shown to occur in response to Plasmodium spp. in experimental model infections, and in human malaria. However, there are reports that antibody responses to several malaria antigens in young children living with malaria are not similarly long-lived, suggesting a dysfunction in the maintenance of circulating antibodies. Some studies attribute this to the expansion of atypical memory B cells (AMB), which express multiple inhibitory receptors and activation markers, and are hyporesponsive to B-cell receptor (BCR) restimulation in vitro. AMB are also expanded in other chronic infections such as tuberculosis, hepatitis B and C, and HIV, as well as in autoimmunity and old age, highlighting the importance of understanding their role in immunity. Whether AMB are dysfunctional remains controversial, as there are also studies in other infections showing that AMB can produce isotype-switched antibodies and in mouse can contribute to protection against infection. In light of these controversies, we review the most recent literature on either side of the debate and challenge some of the currently held views regarding B-cell responses to Plasmodium infections.
Collapse
Affiliation(s)
- Damián Pérez‐Mazliah
- The Francis Crick InstituteLondonUK
- York Biomedical Research InstituteHull York Medical SchoolUniversity of YorkYorkUK
| | | | - Racheal Aye
- Department of Immunology and Infectious DiseaseJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | | |
Collapse
|
383
|
Khan S, Chan YT, Revelo XS, Winer DA. The Immune Landscape of Visceral Adipose Tissue During Obesity and Aging. Front Endocrinol (Lausanne) 2020; 11:267. [PMID: 32499756 PMCID: PMC7243349 DOI: 10.3389/fendo.2020.00267] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity and aging represent major health burdens to the global adult population. Both conditions promote the development of associated metabolic diseases such as insulin resistance. The visceral adipose tissue (VAT) is a site that becomes dysfunctional during obesity and aging, and plays a significant role during their pathophysiology. The changes in obese and aging VAT are now recognized to be partly driven by a chronic local inflammatory state, characterized by immune cells that typically adopt an inflammatory phenotype during metabolic disease. Here, we summarize the current knowledge on the immune cell landscape of the VAT during lean, obese, and aged conditions, highlighting their similarities and differences. We also briefly discuss possible linked mechanisms that fuel obesity- and age-associated VAT dysfunction.
Collapse
Affiliation(s)
- Saad Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Yi Tao Chan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Xavier S. Revelo
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Xavier S. Revelo
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Daniel A. Winer
| |
Collapse
|
384
|
Micronutrients that Affect Immunosenescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:13-31. [DOI: 10.1007/978-3-030-42667-5_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
385
|
Rheumatoid arthritis patients display B-cell dysregulation already in the naïve repertoire consistent with defects in B-cell tolerance. Sci Rep 2019; 9:19995. [PMID: 31882654 PMCID: PMC6934703 DOI: 10.1038/s41598-019-56279-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
B cells are postulated to be central in seropositive rheumatoid arthritis (RA). Here, we use exploratory mass cytometry (n = 23) and next-generation sequencing (n = 19) to study B-cell repertoire shifts in RA patients. Expression of several B-cell markers were significantly different in ACPA+ RA compared to healthy controls, including an increase in HLA-DR across subsets, CD22 in clusters of IgM+ B cells and CD11c in IgA+ memory. Moreover, both IgA+ and IgG+ double negative (IgD− CD27−) CD11c+ B cells were increased in ACPA+ RA, and there was a trend for elevation in a CXCR5/CCR6high transitional B-cell cluster. In the RA BCR repertoire, there were significant differences in subclass distribution and, notably, the frequency of VH with low somatic hypermutation (SHM) was strikingly higher, especially in IgG1 (p < 0.0001). Furthermore, both ACPA+ and ACPA− RA patients had significantly higher total serum IgA and IgM compared to controls, based on serology of larger cohorts (n = 3494 IgA; n = 397 IgM). The observed elevated Ig-levels, distortion in IgM+ B cells, increase in double negative B cells, change in B-cell markers, and elevation of unmutated IgG+ B cells suggests defects in B-cell tolerance in RA. This may represent an underlying cause of increased polyreactivity and autoimmunity in RA.
Collapse
|
386
|
Carlberg K, Korotkova M, Larsson L, Catrina AI, Ståhl PL, Malmström V. Exploring inflammatory signatures in arthritic joint biopsies with Spatial Transcriptomics. Sci Rep 2019; 9:18975. [PMID: 31831833 PMCID: PMC6908624 DOI: 10.1038/s41598-019-55441-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022] Open
Abstract
Lately it has become possible to analyze transcriptomic profiles in tissue sections with retained cellular context. We aimed to explore synovial biopsies from rheumatoid arthritis (RA) and spondyloarthritis (SpA) patients, using Spatial Transcriptomics (ST) as a proof of principle approach for unbiased mRNA studies at the site of inflammation in these chronic inflammatory diseases. Synovial tissue biopsies from affected joints were studied with ST. The transcriptome data was subjected to differential gene expression analysis (DEA), pathway analysis, immune cell type identification using Xcell analysis and validation with immunohistochemistry (IHC). The ST technology allows selective analyses on areas of interest, thus we analyzed morphologically distinct areas of mononuclear cell infiltrates. The top differentially expressed genes revealed an adaptive immune response profile and T-B cell interactions in RA, while in SpA, the profiles implicate functions associated with tissue repair. With spatially resolved gene expression data, overlaid on high-resolution histological images, we digitally portrayed pre-selected cell types in silico. The RA displayed an overrepresentation of central memory T cells, while in SpA effector memory T cells were most prominent. Consequently, ST allows for deeper understanding of cellular mechanisms and diversity in tissues from chronic inflammatory diseases.
Collapse
Affiliation(s)
- Konstantin Carlberg
- Department of Gene Technology, Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.,Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ludvig Larsson
- Department of Gene Technology, Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Anca I Catrina
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik L Ståhl
- Department of Gene Technology, Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
387
|
Cascione L, Rinaldi A, Bruscaggin A, Tarantelli C, Arribas AJ, Kwee I, Pecciarini L, Mensah AA, Spina V, Chung EYL, di Bergamo LT, Dirnhofer S, Tzankov A, Miranda RN, Young KH, Traverse-Glehen A, Gaidano G, Swerdlow SH, Gascoyne R, Rabadan R, Ponzoni M, Bhagat G, Rossi D, Zucca E, Bertoni F. Novel insights into the genetics and epigenetics of MALT lymphoma unveiled by next generation sequencing analyses. Haematologica 2019; 104:e558-e561. [PMID: 31018978 PMCID: PMC6959164 DOI: 10.3324/haematol.2018.214957] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Luciano Cascione
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Alessio Bruscaggin
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Alberto J Arribas
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
| | | | - Afua A Mensah
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Valeria Spina
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Elaine Y L Chung
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Lodovico Terzi di Bergamo
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Stephan Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | | | - Raul Rabadan
- Department of Systems Biology, Department of Biomedical Informatics, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | | | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| |
Collapse
|
388
|
Dungan M, Carrithers MD. Regulation of expansion of CD11c + B cells and anti-viral immunity by epithelial V-like antigen. Immunobiology 2019; 225:151883. [PMID: 31818507 DOI: 10.1016/j.imbio.2019.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
Prior work demonstrated that epithelial V-like antigen (EVA), a cell surface adhesion molecule, is expressed in B lymphocytes and is necessary for the efficacy of anti-alpha4 integrin treatment of experimental autoimmune encephalomyelitis (EAE), the mouse model of human multiple sclerosis. EVA deficiency is associated with a severe clinical phenotype of EAE in the presence or absence of treatment. Histological analysis revealed enhanced B cell-mediated autoimmunity and deposition of antibody and complement within the brain and spinal cord. Here our goal was to determine the molecular mechanism of EVA regulation of B lymphocyte function. Analysis of bone marrow from MOG-immunized mice revealed increased expansion of CD11c+ B cells in EVA-deficient mice as compared to wild type controls. In vitro studies of mouse bone marrow B lymphocytes revealed enhanced proliferation of the CD11c+ population in response to the Tlr7/8 agonist R848. An increase in R848-induced proliferation of CD11c+ B cells was also seen in vitro in Daudi cells, a human B cell line, following knockdown of the mpzl2 gene that encodes EVA. These mechanisms were characterized further by global expression analysis of bone marrow from immunized EVA-deficient and wild type control mice. These data revealed increased expression of B cell associated genes and decreased expression of the anti-viral oligoadenylate synthase genes, Oas1 and Oas2, in the knockout condition. In Daudi cells, R848 treatment induced an increase in Oas2 expression in control cells that was not observed in EVA-deficient cells. EVA deficiency also was associated with increased transcription of an Epstein-Barr virus gene during lytic replication. These results suggest EVA expression and signaling prevent expansion of CD11c+ B lymphocytes, a cellular phenotype associated with autoimmunity, increase expression of anti-viral oligoadenylate synthase genes, and reduce replication of a DNA virus.
Collapse
Affiliation(s)
- Matthew Dungan
- Department of Neurology, University of Illinois College of Medicine, Chicago, IL 60612, United States
| | - Michael D Carrithers
- Department of Neurology, University of Illinois College of Medicine, Chicago, IL 60612, United States; Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, United States; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
389
|
Ma K, Du W, Wang X, Yuan S, Cai X, Liu D, Li J, Lu L. Multiple Functions of B Cells in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:E6021. [PMID: 31795353 PMCID: PMC6929160 DOI: 10.3390/ijms20236021] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by excessive autoantibody production and multi-organ involvement. Although the etiology of SLE still remains unclear, recent studies have characterized several pathogenic B cell subsets and regulatory B cell subsets involved in the pathogenesis of SLE. Among pathogenic B cell subsets, age-associated B cells (ABCs) are a newly identified subset of autoreactive B cells with T-bet-dependent transcriptional programs and unique functional features in SLE. Accumulation of T-bet+ CD11c+ ABCs has been observed in SLE patients and lupus mouse models. In addition, innate-like B cells with the autoreactive B cell receptor (BCR) expression and long-lived plasma cells with persistent autoantibody production contribute to the development of SLE. Moreover, several regulatory B cell subsets with immune suppressive functions have been identified, while the impaired inhibitory effects of regulatory B cells have been indicated in SLE. Thus, further elucidation on the functional features of B cell subsets will provide new insights in understanding lupus pathogenesis and lead to novel therapeutic interventions in the treatment of SLE.
Collapse
Affiliation(s)
- Kongyang Ma
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China; (K.M.); (D.L.)
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China; (S.Y.); (X.C.)
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China; (S.Y.); (X.C.)
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China; (K.M.); (D.L.)
| | - Jingyi Li
- Department of Rheumatology and Immunology, Southwest Hospital, The First Hospital Affiliated to The Army Medical University, Chongqing 400038, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| |
Collapse
|
390
|
Netravali IA, Cariappa A, Yates K, Haining WN, Bertocchi A, Allard-Chamard H, Rosenberg I, Pillai S. 9-O-acetyl sialic acid levels identify committed progenitors of plasmacytoid dendritic cells. Glycobiology 2019; 29:861-875. [PMID: 31411667 DOI: 10.1093/glycob/cwz062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 11/12/2022] Open
Abstract
The origins of plasmacytoid dendritic cells (pDCs) have long been controversial and progenitors exclusively committed to this lineage have not been described. We show here that the fate of hematopoietic progenitors is determined in part by their surface levels of 9-O-acetyl sialic acid. Pro-pDCs were identified as lineage negative 9-O-acetyl sialic acid low progenitors that lack myeloid and lymphoid potential but differentiate into pre-pDCs. The latter cells are also lineage negative, 9-O-acetyl sialic acid low cells but are exclusively committed to the pDC lineage. Levels of 9-O-acetyl sialic acid provide a distinct way to define progenitors and thus facilitate the study of hematopoietic differentiation.
Collapse
Affiliation(s)
- Ilka A Netravali
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Annaiah Cariappa
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kathleen Yates
- Dana-Farber Cancer Institute, Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - W Nicholas Haining
- Dana-Farber Cancer Institute, Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Bertocchi
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hugues Allard-Chamard
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.,Division of Rheumatology, Faculté de Médecine et des Sciences de la Santé de l', Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada, J1K 2R1
| | - Ian Rosenberg
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
391
|
|
392
|
Edwards ESJ, Bosco JJ, Aui PM, Stirling RG, Cameron PU, Chatelier J, Hore-Lacy F, O'Hehir RE, van Zelm MC. Predominantly Antibody-Deficient Patients With Non-infectious Complications Have Reduced Naive B, Treg, Th17, and Tfh17 Cells. Front Immunol 2019; 10:2593. [PMID: 31803177 PMCID: PMC6873234 DOI: 10.3389/fimmu.2019.02593] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Patients with predominantly antibody deficiency (PAD) suffer from severe and recurrent infections that require lifelong immunoglobulin replacement and prophylactic antibiotic treatment. Disease incidence is estimated to be 1:25,000 worldwide, and up to 68% of patients develop non-infectious complications (NIC) including autoimmunity, which are difficult to treat, causing high morbidity, and early mortality. Currently, the etiology of NIC is unknown, and there are no diagnostic and prognostic markers to identify patients at risk. Objectives: To identify immune cell markers that associate with NIC in PAD patients. Methods: We developed a standardized 11-color flow cytometry panel that was utilized for in-depth analysis of B and T cells in 62 adult PAD patients and 59 age-matched controls. Results: Nine males had mutations in Bruton's tyrosine kinase (BTK) and were defined as having X-linked agammaglobulinemia. The remaining 53 patients were not genetically defined and were clinically diagnosed with agammaglobulinemia (n = 1), common variable immunodeficiency (CVID) (n = 32), hypogammaglobulinemia (n = 13), IgG subclass deficiency (n = 1), and specific polysaccharide antibody deficiency (n = 6). Of the 53, 30 (57%) had one or more NICs, 24 patients had reduced B-cell numbers, and 17 had reduced T-cell numbers. Both PAD–NIC and PAD+NIC groups had significantly reduced Ig class-switched memory B cells and naive CD4 and CD8 T-cell numbers. Naive and IgM memory B cells, Treg, Th17, and Tfh17 cells were specifically reduced in the PAD+NIC group. CD21lo B cells and Tfh cells were increased in frequencies, but not in absolute numbers in PAD+NIC. Conclusion: The previously reported increased frequencies of CD21lo B cells and Tfh cells are the indirect result of reduced naive B-cell and T-cell numbers. Hence, correct interpretation of immunophenotyping of immunodeficiencies is critically dependent on absolute cell counts. Finally, the defects in naive B- and T-cell numbers suggest a mild combined immunodeficiency in PAD patients with NIC. Together with the reductions in Th17, Treg, and Tfh17 numbers, these key differences could be utilized as biomarkers to support definitive diagnosis and to predict for disease progression.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Pei M Aui
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia
| | - Robert G Stirling
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul U Cameron
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Josh Chatelier
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Fiona Hore-Lacy
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
393
|
Barnas JL, Looney RJ, Anolik JH. B cell targeted therapies in autoimmune disease. Curr Opin Immunol 2019; 61:92-99. [PMID: 31733607 DOI: 10.1016/j.coi.2019.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW FDA-approved B cell-targeted therapy has expanded to a multitude of autoimmune diseases ranging from organ specific diseases, like pemphigus and multiple sclerosis, to systemic diseases such as ANCA-associated vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). In this review, we discuss the variability in response to B cell-targeted therapies with a focus on the diversity of human B cells and plasma cells, and will discuss several of the promising new B cell-targeted therapies. RECENT FINDING The pathogenic roles for B cells include autoantibody-dependent and autoantibody-independent functions whose importance may vary across diseases or even in subsets of patients with the same disease. Recent data have further demonstrated the diversity of human B cell subsets that contribute to disease as well as novel pathways of B cell activation in autoimmune disease. The importance of eliminating autoreactive B cells and plasma cells will be discussed, as well as new approaches to do so. SUMMARY The past several years has witnessed significant advances in our knowledge of human B cell subsets and function. This has created a nuanced picture of the diverse ways B cells contribute to autoimmunity and an ever-expanding armamentarium of B cell-targeted therapies.
Collapse
Affiliation(s)
- Jennifer L Barnas
- Department of Medicine, Division of Allergy Immunology and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Richard John Looney
- Department of Medicine, Division of Allergy Immunology and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Jennifer H Anolik
- Department of Medicine, Division of Allergy Immunology and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States.
| |
Collapse
|
394
|
Meffre E, O'Connor KC. Impaired B‐cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol Rev 2019; 292:90-101. [DOI: 10.1111/imr.12821] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Eric Meffre
- Department of Immunobiology Yale University School of Medicine New Haven CT USA
- Section of Rheumatology, Allergy, and Clinical Immunology Yale University School of Medicine New Haven CT USA
| | - Kevin C. O'Connor
- Department of Immunobiology Yale University School of Medicine New Haven CT USA
- Department of Neurology Yale University School of Medicine New Haven CT USA
| |
Collapse
|
395
|
Trivedi N, Weisel F, Smita S, Joachim S, Kader M, Radhakrishnan A, Clouser C, Rosenfeld AM, Chikina M, Vigneault F, Hershberg U, Ismail N, Shlomchik MJ. Liver Is a Generative Site for the B Cell Response to Ehrlichia muris. Immunity 2019; 51:1088-1101.e5. [PMID: 31732168 DOI: 10.1016/j.immuni.2019.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 02/01/2023]
Abstract
The B cell response to Ehrlichia muris is dominated by plasmablasts (PBs), with few-if any-germinal centers (GCs), yet it generates protective immunoglobulin M (IgM) memory B cells (MBCs) that express the transcription factor T-bet and harbor V-region mutations. Because Ehrlichia prominently infects the liver, we investigated the nature of liver B cell response and that of the spleen. B cells within infected livers proliferated and underwent somatic hypermutation (SHM). Vh-region sequencing revealed trafficking of clones between the spleen and liver and often subsequent local clonal expansion and intraparenchymal localization of T-bet+ MBCs. T-bet+ MBCs expressed MBC subset markers CD80 and PD-L2. Many T-bet+ MBCs lacked CD11b or CD11c expression but had marginal zone (MZ) B cell phenotypes and colonized the splenic MZ, revealing T-bet+ MBC plasticity. Hence, liver and spleen are generative sites of B cell responses, and they include V-region mutation and result in liver MBC localization.
Collapse
Affiliation(s)
- Nikita Trivedi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shuchi Smita
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen Joachim
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Muhamuda Kader
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | - Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark Jay Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
396
|
Li D, Qi J, Wang J, Pan Y, Li J, Xia X, Dou H, Hou Y. Protective effect of dihydroartemisinin in inhibiting senescence of myeloid-derived suppressor cells from lupus mice via Nrf2/HO-1 pathway. Free Radic Biol Med 2019; 143:260-274. [PMID: 31419476 DOI: 10.1016/j.freeradbiomed.2019.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by multi-organ injury. However, whether myeloid-derived suppressor cells (MDSCs) senescence exists and participates in SLE pathogenesis remains unclear. And whether dihydroartemisinin (DHA) attenuates the symptoms of SLE via relieving MDSCs senescence remains elusive. In the present study, we measured the senescence of MDSCs in SLE using SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. We identified that the MDSCs senescence promoted the SLE progress by adaptive transfer MDSCs assays. Meanwhile, we further showed DHA ameliorated the symptoms of pristane-induced lupus by histopathological detection, Western blot analysis, immunofluorescence, QPCR and flow cytometry analysis. DHA reversed MDSCs senescence by detecting SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. Furthermore, mechanistic analysis indicated that the inhibitory effect of DHA on MDSCs senescence was blocked by ML385, the specific antagonist of Nrf2, which revealed that the effect of DHA on MDSCs senescence was dependent on the induction of Nrf2/HO-1 pathway. Of note, we revealed that DHA inhibited MDSCs senescence to ameliorate the SLE development by adaptive transfer DHA-treated MDSCs assays. In conclusion, MDSCs senescence played a vital role in the pathogenesis of SLE, and DHA attenuated the symptoms of SLE via relieving MDSCs aging involved in the induction of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingjing Qi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
397
|
Du SW, Arkatkar T, Al Qureshah F, Jacobs HM, Thouvenel CD, Chiang K, Largent AD, Li QZ, Hou B, Rawlings DJ, Jackson SW. Functional Characterization of CD11c + Age-Associated B Cells as Memory B Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2817-2826. [PMID: 31636237 DOI: 10.4049/jimmunol.1900404] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]
Abstract
Age-associated B cells (ABCs) are a unique subset of B cells defined by surface CD11b and CD11c expression. Although ABC expansion has been observed in both human and animal studies in the setting of advanced age, during humoral autoimmunity and following viral infection, the functional properties of this cellular subset remain incompletely defined. In the current study, we demonstrate that ABCs fulfill the criteria for memory B cells (MBCs), based on evidence of Ag-dependent expansion and persistence in a state poised for rapid differentiation into Ab-secreting plasma cells during secondary responses. First, we show that a majority of ABCs are not actively cycling but exhibit an extensive replication history consistent with prior Ag engagement. Second, despite unswitched surface IgM expression, ABCs show evidence of activation-induced cytidine deaminase (AID)-dependent somatic hypermutation. Third, BCRs cloned from sorted ABCs exhibit broad autoreactivity and polyreactivity. Although the overall level of ABC self-reactivity was not increased relative to naive B cells, ABCs lacked features of functional anergy characteristic of autoreactive B cells. Fourth, ABCs express MBC surface markers consistent with being poised for rapid plasma cell differentiation during recall responses. Finally, in a murine model of viral infection, adoptively transferred CD11c+ B cells rapidly differentiated into class-switched Ab-secreting cells upon Ag rechallenge. In summary, we phenotypically and functionally characterize ABCs as IgM-expressing MBCs, findings that together implicate ABCs in the pathogenesis of systemic autoimmunity.
Collapse
Affiliation(s)
- Samuel W Du
- Seattle Children's Research Institute, Seattle, WA 98101
| | - Tanvi Arkatkar
- Seattle Children's Research Institute, Seattle, WA 98101
| | - Fahd Al Qureshah
- Seattle Children's Research Institute, Seattle, WA 98101.,King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia.,Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109
| | - Holly M Jacobs
- Seattle Children's Research Institute, Seattle, WA 98101
| | | | - Kristy Chiang
- Seattle Children's Research Institute, Seattle, WA 98101
| | | | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - David J Rawlings
- Seattle Children's Research Institute, Seattle, WA 98101.,Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA 98101; .,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
398
|
Sanz I, Wei C, Jenks SA, Cashman KS, Tipton C, Woodruff MC, Hom J, Lee FEH. Challenges and Opportunities for Consistent Classification of Human B Cell and Plasma Cell Populations. Front Immunol 2019; 10:2458. [PMID: 31681331 PMCID: PMC6813733 DOI: 10.3389/fimmu.2019.02458] [Citation(s) in RCA: 369] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
The increasingly recognized role of different types of B cells and plasma cells in protective and pathogenic immune responses combined with technological advances have generated a plethora of information regarding the heterogeneity of this human immune compartment. Unfortunately, the lack of a consistent classification of human B cells also creates significant imprecision on the adjudication of different phenotypes to well-defined populations. Additional confusion in the field stems from: the use of non-discriminatory, overlapping markers to define some populations, the extrapolation of mouse concepts to humans, and the assignation of functional significance to populations often defined by insufficient surface markers. In this review, we shall discuss the current understanding of human B cell heterogeneity and define major parental populations and associated subsets while discussing their functional significance. We shall also identify current challenges and opportunities. It stands to reason that a unified approach will not only permit comparison of separate studies but also improve our ability to define deviations from normative values and to create a clean framework for the identification, functional significance, and disease association with new populations.
Collapse
Affiliation(s)
- Ignacio Sanz
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Chungwen Wei
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Scott A Jenks
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Kevin S Cashman
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Christopher Tipton
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Matthew C Woodruff
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Jennifer Hom
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - F Eun-Hyung Lee
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
399
|
Hirose S, Lin Q, Ohtsuji M, Nishimura H, Verbeek JS. Monocyte subsets involved in the development of systemic lupus erythematosus and rheumatoid arthritis. Int Immunol 2019; 31:687-696. [PMID: 31063541 PMCID: PMC6794944 DOI: 10.1093/intimm/dxz036] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
AbstractMonocytes are evolutionally conserved innate immune cells that play essential roles for the protection of the host against pathogens and also produce several inflammatory cytokines. Thus, the aberrant functioning of monocytes may affect not only host defense but also the development of inflammatory diseases. Monocytes are a heterogeneous population with phenotypical and functional differences. Most recent studies have shown that monocytes are divided into three subsets, namely classical, intermediate and non-classical subsets, both in humans and mice. Accumulating evidence showed that monocyte activation is associated with the disease progression in autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). However, it remains to be determined how monocytes contribute to the disease process and which subset is involved. In this review, we discuss the pathogenic role of monocyte subsets in SLE and RA on the basis of current studies by ourselves and others to shed light on the suitability of monocyte-targeted therapies in these diseases.
Collapse
Affiliation(s)
- Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - Qingshun Lin
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - Mareki Ohtsuji
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| |
Collapse
|
400
|
Bodogai M, O'Connell J, Kim K, Kim Y, Moritoh K, Chen C, Gusev F, Vaughan K, Shulzhenko N, Mattison JA, Lee-Chang C, Chen W, Carlson O, Becker KG, Gurung M, Morgun A, White J, Meade T, Perdue K, Mack M, Ferrucci L, Trinchieri G, de Cabo R, Rogaev E, Egan J, Wu J, Biragyn A. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci Transl Med 2019; 10:10/467/eaat4271. [PMID: 30429354 DOI: 10.1126/scitranslmed.aat4271] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
Abstract
Aging in humans is associated with increased hyperglycemia and insulin resistance (collectively termed IR) and dysregulation of the immune system. However, the causative factors underlying their association remain unknown. Here, using "healthy" aged mice and macaques, we found that IR was induced by activated innate 4-1BBL+ B1a cells. These cells (also known as 4BL cells) accumulated in aging in response to changes in gut commensals and a decrease in beneficial metabolites such as butyrate. We found evidence suggesting that loss of the commensal bacterium Akkermansia muciniphila impaired intestinal integrity, causing leakage of bacterial products such as endotoxin, which activated CCR2+ monocytes when butyrate was decreased. Upon infiltration into the omentum, CCR2+ monocytes converted B1a cells into 4BL cells, which, in turn, induced IR by expressing 4-1BBL, presumably to trigger 4-1BB receptor signaling as in obesity-induced metabolic disorders. This pathway and IR were reversible, as supplementation with either A. muciniphila or the antibiotic enrofloxacin, which increased the abundance of A. muciniphila, restored normal insulin response in aged mice and macaques. In addition, treatment with butyrate or antibodies that depleted CCR2+ monocytes or 4BL cells had the same effect on IR. These results underscore the pathological function of B1a cells and suggest that the microbiome-monocyte-B cell axis could potentially be targeted to reverse age-associated IR.
Collapse
Affiliation(s)
- Monica Bodogai
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jennifer O'Connell
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ki Kim
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Yoo Kim
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kanako Moritoh
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Chen Chen
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Fedor Gusev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kelli Vaughan
- Nonhuman Primate Core Facility, National Institute on Aging, Baltimore, MD 21224, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Julie A Mattison
- Nonhuman Primate Core Facility, National Institute on Aging, Baltimore, MD 21224, USA
| | - Catalina Lee-Chang
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Weixuan Chen
- Janssen Research & Development, San Diego, CA 92121, USA
| | - Olga Carlson
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Manoj Gurung
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - James White
- Resphera Biosciences, Baltimore, MD 21231, USA
| | - Theresa Meade
- Comparative Medicine Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kathy Perdue
- Comparative Medicine Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Matthias Mack
- Department of Nephrology, Universitätsklinikum Regensburg, Regensburg 93001-93059, Germany
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Giorgio Trinchieri
- Cancer Inflammation Program, National Cancer Institute, Frederick, MD 21701, USA
| | - Rafael de Cabo
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Evgeny Rogaev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Josephine Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jiejun Wu
- Janssen Research & Development, San Diego, CA 92121, USA
| | - Arya Biragyn
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|