351
|
Banerjee A, Dhar P. Amalgamation of polyphenols and probiotics induce health promotion. Crit Rev Food Sci Nutr 2018; 59:2903-2926. [PMID: 29787290 DOI: 10.1080/10408398.2018.1478795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The residing microbiome with its vast repertoire of genes provide distinctive properties to the host by which they can degrade and utilise nutrients that otherwise pass the gastro-intestinal tract unchanged. The polyphenols in our diet have selective growth promoting effects which is of utmost importance as the state of good health has been linked to dominance of particular microbial genera. The polyphenols in native form might more skilfully exert anti-oxidative and anti-inflammatory properties but in a living system it is the microbial derivatives of polyphenol that play a key role in determining health outcome. This two way interaction has invoked great interest among researchers who have commenced several clinical surveys and numerous studies in in-vitro, simulated environment and living systems to find out in detail about the biomolecules involved in such interaction along with their subsequent physiological benefits. In this review, we have thoroughly discussed these studies to develop a fair idea on how the amalgamation of probiotics and polyphenol has an immense potential as an adjuvant therapeutic for disease prevention as well as treatment.
Collapse
Affiliation(s)
- Arpita Banerjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| |
Collapse
|
352
|
Kim CH. Immune regulation by microbiome metabolites. Immunology 2018; 154:220-229. [PMID: 29569377 PMCID: PMC5980225 DOI: 10.1111/imm.12930] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/18/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Commensal microbes and the host immune system have been co-evolved for mutual regulation. Microbes regulate the host immune system, in part, by producing metabolites. A mounting body of evidence indicates that diverse microbial metabolites profoundly regulate the immune system via host receptors and other target molecules. Immune cells express metabolite-specific receptors such as P2X7 , GPR41, GPR43, GPR109A, aryl hydrocarbon receptor precursor (AhR), pregnane X receptor (PXR), farnesoid X receptor (FXR), TGR5 and other molecular targets. Microbial metabolites and their receptors form an extensive array of signals to respond to changes in nutrition, health and immunological status. As a consequence, microbial metabolite signals contribute to nutrient harvest from diet, and regulate host metabolism and the immune system. Importantly, microbial metabolites bidirectionally function to promote both tolerance and immunity to effectively fight infection without developing inflammatory diseases. In pathogenic conditions, adverse effects of microbial metabolites have been observed as well. Key immune-regulatory functions of the metabolites, generated from carbohydrates, proteins and bile acids, are reviewed in this article.
Collapse
Affiliation(s)
- Chang H. Kim
- Department of Pathology and Mary H. Weiser Food Allergy CenterUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
353
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|
354
|
Masetti G, Moshkelgosha S, Köhling HL, Covelli D, Banga JP, Berchner-Pfannschmidt U, Horstmann M, Diaz-Cano S, Goertz GE, Plummer S, Eckstein A, Ludgate M, Biscarini F, Marchesi JR. Gut microbiota in experimental murine model of Graves' orbitopathy established in different environments may modulate clinical presentation of disease. MICROBIOME 2018; 6:97. [PMID: 29801507 PMCID: PMC5970527 DOI: 10.1186/s40168-018-0478-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/08/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Variation in induced models of autoimmunity has been attributed to the housing environment and its effect on the gut microbiota. In Graves' disease (GD), autoantibodies to the thyrotropin receptor (TSHR) cause autoimmune hyperthyroidism. Many GD patients develop Graves' orbitopathy or ophthalmopathy (GO) characterized by orbital tissue remodeling including adipogenesis. Murine models of GD/GO would help delineate pathogenetic mechanisms, and although several have been reported, most lack reproducibility. A model comprising immunization of female BALBc mice with a TSHR expression plasmid using in vivo electroporation was reproduced in two independent laboratories. Similar orbital disease was induced in both centers, but differences were apparent (e.g., hyperthyroidism in Center 1 but not Center 2). We hypothesized a role for the gut microbiota influencing the outcome and reproducibility of induced GO. RESULTS We combined metataxonomics (16S rRNA gene sequencing) and traditional microbial culture of the intestinal contents from the GO murine model, to analyze the gut microbiota in the two centers. We observed significant differences in alpha and beta diversity and in the taxonomic profiles, e.g., operational taxonomic units (OTUs) from the genus Lactobacillus were more abundant in Center 2, and Bacteroides and Bifidobacterium counts were more abundant in Center 1 where we also observed a negative correlation between the OTUs of the genus Intestinimonas and TSHR autoantibodies. Traditional microbiology largely confirmed the metataxonomics data and indicated significantly higher yeast counts in Center 1 TSHR-immunized mice. We also compared the gut microbiota between immunization groups within Center 2, comprising the TSHR- or βgal control-immunized mice and naïve untreated mice. We observed a shift of the TSHR-immunized mice bacterial communities described by the beta diversity weighted Unifrac. Furthermore, we observed a significant positive correlation between the presence of Firmicutes and orbital-adipogenesis specifically in TSHR-immunized mice. CONCLUSIONS The significant differences observed in microbiota composition from BALBc mice undergoing the same immunization protocol in comparable specific-pathogen-free (SPF) units in different centers support a role for the gut microbiota in modulating the induced response. The gut microbiota might also contribute to the heterogeneity of induced response since we report potential disease-associated microbial taxonomies and correlation with ocular disease.
Collapse
Affiliation(s)
- Giulia Masetti
- Division of Infection & Immunity, School of Medicine, Cardiff University, UHW main building, Heath Park, Cardiff, CF14 4XW, UK
- Departments of Bioinformatics, PTP Science Park Srl, via Einstein loc. Cascina Codazza, 29600, Lodi, Italy
| | - Sajad Moshkelgosha
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
- Faculty of Life Sciences and Medicine, King's College London, London, SE5 9NU, UK
- Latner Thoracic Surgery Laboratories, Toronto General Research Institute, University Health Network and University of Toronto, Toronto, M5G 1L7, Canada
| | - Hedda-Luise Köhling
- Cultech Ltd., Baglan, Port Talbot, SA127BZ, UK
- University Hospital Essen, University of Duisburg-Essen, Institute of Medical Microbiology, 45147, Essen, Germany
| | - Danila Covelli
- Cultech Ltd., Baglan, Port Talbot, SA127BZ, UK
- Graves' Orbitopathy Center, Endocrinology, Department of Clinical Sciences and Community Health, Fondazione Ca'Granda IRCCS, University of Milan, via Sforza 35, 20122, Milan, Italy
| | - Jasvinder Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
- Faculty of Life Sciences and Medicine, King's College London, London, SE5 9NU, UK
| | - Utta Berchner-Pfannschmidt
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
| | | | - Gina-Eva Goertz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
| | - Sue Plummer
- Cultech Ltd., Baglan, Port Talbot, SA127BZ, UK
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
| | - Marian Ludgate
- Division of Infection & Immunity, School of Medicine, Cardiff University, UHW main building, Heath Park, Cardiff, CF14 4XW, UK
| | - Filippo Biscarini
- Division of Infection & Immunity, School of Medicine, Cardiff University, UHW main building, Heath Park, Cardiff, CF14 4XW, UK
- Departments of Bioinformatics, PTP Science Park Srl, via Einstein loc. Cascina Codazza, 29600, Lodi, Italy
- Italian National Council for Research (CNR), via Bassini 15, 20133, Milan, Italy
| | - Julian Roberto Marchesi
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
- Center for Digestive and Gut Health, Imperial College London, W2 1NY, London, UK.
| |
Collapse
|
355
|
Structural Alteration of Gut Microbiota during the Amelioration of Human Type 2 Diabetes with Hyperlipidemia by Metformin and a Traditional Chinese Herbal Formula: a Multicenter, Randomized, Open Label Clinical Trial. mBio 2018; 9:mBio.02392-17. [PMID: 29789365 PMCID: PMC5964358 DOI: 10.1128/mbio.02392-17] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence implicates gut microbiota as promising targets for the treatment of type 2 diabetes mellitus (T2DM). With a randomized clinical trial, we tested the hypothesis that alteration of gut microbiota may be involved in the alleviation of T2DM with hyperlipidemia by metformin and a specifically designed herbal formula (AMC). Four hundred fifty patients with T2DM and hyperlipidemia were randomly assigned to either the metformin- or AMC-treated group. After 12 weeks of treatment, 100 patients were randomly selected from each group and assessed for clinical improvement. The effects of the two drugs on the intestinal microbiota were evaluated by analyzing the V3 and V4 regions of the 16S rRNA gene by Illumina sequencing and multivariate statistical methods. Both metformin and AMC significantly alleviated hyperglycemia and hyperlipidemia and shifted gut microbiota structure in diabetic patients. They significantly increased a coabundant group represented by Blautia spp., which significantly correlated with the improvements in glucose and lipid homeostasis. However, AMC showed better efficacies in improving homeostasis model assessment of insulin resistance (HOMA-IR) and plasma triglyceride and also exerted a larger effect on gut microbiota. Furthermore, only AMC increased the coabundant group represented by Faecalibacterium spp., which was previously reported to be associated with the alleviation of T2DM in a randomized clinical trial. Metformin and the Chinese herbal formula may ameliorate type 2 diabetes with hyperlipidemia via enriching beneficial bacteria, such as Blautia and Faecalibacterium spp.IMPORTANCE Metabolic diseases such as T2DM and obesity have become a worldwide public health threat. Accumulating evidence indicates that gut microbiota can causatively arouse metabolic diseases, and thus the gut microbiota serves as a promising target for disease control. In this study, we evaluated the role of gut microbiota during improvements in hyperglycemia and hyperlipidemia by two drugs: metformin and a specifically designed Chinese herbal formula (AMC) for diabetic patients with hyperlipidemia. Both drugs significantly ameliorated blood glucose and lipid levels and shifted the gut microbiota. Blautia spp. were identified as being associated with improvements in glucose and lipid homeostasis for both drugs. AMC exerted larger effects on the gut microbiota together with better efficacies in improving HOMA-IR and plasma triglyceride levels, which were associated with the enrichment of Faecalibacterium spp. In brief, these data suggest that gut microbiota might be involved in the alleviation of diabetes with hyperlipidemia by metformin and the AMC herbal formula.
Collapse
|
356
|
Wu C, Gao R, Zhang D, Han S, Zhang Y. PRWHMDA: Human Microbe-Disease Association Prediction by Random Walk on the Heterogeneous Network with PSO. Int J Biol Sci 2018; 14:849-857. [PMID: 29989079 PMCID: PMC6036753 DOI: 10.7150/ijbs.24539] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/28/2018] [Indexed: 12/24/2022] Open
Abstract
Microorganisms resided in human body play a vital role in metabolism, immune defense, nutrition absorption, cancer control and protection against pathogen colonization. The changes of microbial communities can cause human diseases. Based on the known microbe-disease association, we presented a novel computational model employing Random Walking with Restart optimized by Particle Swarm Optimization (PSO) on the heterogeneous interlinked network of Human Microbe-Disease Associations (PRWHMDA) (see Figure 1). Based on the known human microbe-disease associations, we constructed the heterogeneous interlinked network with Cosine similarity. The extended random walk with restart (RWR) method was derived to get the potential microbe-disease associations. PSO was utilized to get the optimal parameters of RWR. To evaluate the prediction effectiveness, we performed leave one out cross validation (LOOCV) and 5-fold cross validation (CV), which got the AUC (The area under ROC curve) of 0.915 (LOOCV) and the average AUCs of 0.8875 ± 0.0046 (5-fold CV). Moreover, we carried out three case studies of asthma, inflammatory bowel disease (IBD) and type 1 diabetes (T1D) for the further evaluation. The result showed that 10, 10 and 9 of top-10 predicted microbes were verified by previously published experimental results, respectively. It is anticipated that PRWHMDA can be effective to identify the disease-related microbes and maybe helpful to disclose the relationship between microorganisms and their human host.
Collapse
Affiliation(s)
- Chuanyan Wu
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Daoliang Zhang
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Shiyun Han
- General Clinic, The No. 2 People's Hospital of Tianqiao, Jinan, 250032, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| |
Collapse
|
357
|
Zununi Vahed S, Moghaddas Sani H, Rahbar Saadat Y, Barzegari A, Omidi Y. Type 1 diabetes: Through the lens of human genome and metagenome interplay. Biomed Pharmacother 2018; 104:332-342. [PMID: 29775902 DOI: 10.1016/j.biopha.2018.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a genetic- and epigenetic-related disease from which a large population worldwide suffers. Some genetic factors along with various mutations related to the immune system for disease mechanism(s) have contrastively been determined. However, sometimes mechanisms have not been fully managed for the clarification of the initiation and/or progression of diseases to help patients. In the recent years, due to familiarity with the role of gut microbiota in the health, it has been found that the changes of the microbial balance in the industrialized societies can cause a battery of modern diseases, for which we have no specific definition of how they emerge. This work aims to explore the relationship between the human gut microbiota and the immune system along with their possible role in avoiding/emerging of type 1 diabetes (T1D) accompanied with the relation between genome and metagenome and their imbalance in causing T1D. Moreover, it provides novel view on how to balance the intestinal microbiota by lifestyle to hinder the mechanisms leading to T1D.
Collapse
Affiliation(s)
| | | | - Yalda Rahbar Saadat
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
358
|
Mejía-León ME, López-Domínguez L, Aguayo-Patrón SV, Caire-Juvera G, Calderón de la Barca AM. Dietary Changes and Gut Dysbiosis in Children With Type 1 Diabetes. J Am Coll Nutr 2018; 37:501-507. [DOI: 10.1080/07315724.2018.1444519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria E. Mejía-León
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, México
| | - Lorena López-Domínguez
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, México
| | - Sandra V. Aguayo-Patrón
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, México
| | - Graciela Caire-Juvera
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, México
| | - Ana M. Calderón de la Barca
- Department of Nutrition and Metabolism, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, México
| |
Collapse
|
359
|
Codella R, Luzi L, Terruzzi I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis 2018; 50:331-341. [PMID: 29233686 DOI: 10.1016/j.dld.2017.11.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/11/2022]
Abstract
Limited animal and human research findings suggests that exercise might have a beneficial role for health gut. Cardiorespiratory fitness correlates with health-associated gut parameters such as taxonomic diversity and richness. Physical exercise may augment intestinal microbial diversity through several mechanisms including promotion of an anti-inflammatory state. Disease-associated microbial functions were linked to distinct taxa in previous studies of familial type 1 diabetes mellitus (T1D). An integrated multi-approach in the study of T1D, including physical exercise, is advocated. The present review explores how exercise might modulate gut microbiota and microbiome characteristics in chronic and immune-based diseases, given the demonstrated relationship between gut function and human health.
Collapse
Affiliation(s)
- Roberto Codella
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy.
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
360
|
Meijnikman AS, Gerdes VE, Nieuwdorp M, Herrema H. Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocr Rev 2018; 39:133-153. [PMID: 29309555 DOI: 10.1210/er.2017-00192] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
The pathophysiology of obesity and obesity-related diseases such as type 2 diabetes mellitus (T2DM) is complex and driven by many factors. One of the most recently identified factors in development of these metabolic pathologies is the gut microbiota. The introduction of affordable, high-throughput sequencing technologies has substantially expanded our understanding of the role of the gut microbiome in modulation of host metabolism and (cardio)metabolic disease development. Nevertheless, evidence for a role of the gut microbiome as a causal, driving factor in disease development mainly originates from studies in mouse models: data showing causality in humans are scarce. In this review, we will discuss the quality of evidence supporting a causal role for the gut microbiome in the development of obesity and diabetes, in particular T2DM, in humans. Considering overlap in potential mechanisms, the role of the gut microbiome in type 1 diabetes mellitus will also be addressed. We will elaborate on factors that drive microbiome composition in humans and discuss how alterations in microbial composition or microbial metabolite production contribute to disease development. Challenging aspects in determining causality in humans will be postulated together with strategies that might hold potential to overcome these challenges. Furthermore, we will discuss means to modify gut microbiome composition in humans to help establish causality and discuss systems biology approaches that might hold the key to unravelling the role of the gut microbiome in obesity and T2DM.
Collapse
Affiliation(s)
- Abraham S Meijnikman
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands.,Department of Internal Medicine, MC Slotervaart, Amsterdam, Netherlands
| | - Victor E Gerdes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands.,Department of Internal Medicine, MC Slotervaart, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands.,Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Internal Medicine, Academic Medical Center, Amsterdam, Netherlands.,Diabetes Center, Department of Internal medicine, VU University Medical Center, Amsterdam, Netherlands.,ICAR, VU University Medical Center, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
361
|
Barengolts E, Green SJ, Eisenberg Y, Akbar A, Reddivari B, Layden BT, Dugas L, Chlipala G. Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease. PLoS One 2018; 13:e0194171. [PMID: 29596446 PMCID: PMC5875756 DOI: 10.1371/journal.pone.0194171] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
Objective The gut microbiota is known to be related to type 2 diabetes (T2D), psychiatric conditions, and opioid use. In this study, we tested the hypothesis that variability in gut microbiota in T2D is associated with psycho-metabolic health. Methods A cross-sectional study was conducted among African American men (AAM) (n = 99) that were outpatients at a Chicago VA Medical Center. The main outcome measures included fecal microbiota ecology (by 16S rRNA gene sequencing), psychiatric disorders including opioid use, and circulating leptin and oxytocin as representative hormone biomarkers for obesity and psychological pro-social behavior. Results The study subjects had prevalent overweight/obesity (78%), T2D (50%) and co-morbid psychiatric (65%) and opioid use (45%) disorders. In the analysis of microbiota, the data showed interactions of opioids, T2D and metformin with Bifidobacterium and Prevotella genera. The differential analysis of Bifidobacterium stratified by opioids, T2D and metformin, showed significant interactions among these factors indicating that the effect of one factor was changed by the other (FDR-adjusted p [q] < 0.01). In addition, the pair-wise comparison showed that participants with T2D not taking metformin had a significant 6.74 log2 fold increase in Bifidobacterium in opioid users as compared to non-users (q = 2.2 x 10−8). Since metformin was not included in this pair-wise comparison, the significant ‘q’ suggested association of opioid use with Bifidobacterium abundance. The differences in Bifidobacterium abundance could possibly be explained by opioids acting as organic cation transporter 1 (OCT1) inhibitors. Analysis stratified by lower and higher leptin and oxytocin (divided by the 50th percentile) in the subgroup without T2D showed lower Dialister in High-Leptin vs. Low-Leptin (p = 0.03). Contrary, the opposite was shown for oxytocin, higher Dialister in High-Oxytocin vs. Low-Oxytocin (p = 0.04). Conclusions The study demonstrated for the first time that Bifidobacterium and Prevotella abundance was affected by interactions of T2D, metformin and opioid use. Also, in subjects without T2D Dialister abundance varied according to circulating leptin and oxytocin.
Collapse
Affiliation(s)
- Elena Barengolts
- Department of Medicine, University of Illinois Medical Center, Chicago, Illinois, United States of America
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| | - Stefan J. Green
- DNA Services Facility, Research Resources Center, University of Illinois, Chicago, Illinois, United States of America
| | - Yuval Eisenberg
- Department of Medicine, University of Illinois Medical Center, Chicago, Illinois, United States of America
| | - Arfana Akbar
- Department of Medicine, University of Illinois Medical Center, Chicago, Illinois, United States of America
- Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Bharathi Reddivari
- Department of Medicine, University of Illinois Medical Center, Chicago, Illinois, United States of America
- Research and Development Division, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Brian T. Layden
- Department of Medicine, University of Illinois Medical Center, Chicago, Illinois, United States of America
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Lara Dugas
- Department of Public Health Sciences, Loyola University, Maywood, Illinois, United States of America
| | - George Chlipala
- Core for Research Informatics, Research Resources Center, University of Illinois, Chicago, Illinois, United States of America
| |
Collapse
|
362
|
Han H, Li Y, Fang J, Liu G, Yin J, Li T, Yin Y. Gut Microbiota and Type 1 Diabetes. Int J Mol Sci 2018; 19:ijms19040995. [PMID: 29584630 PMCID: PMC5979537 DOI: 10.3390/ijms19040995] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Recently, the onset of type 1 diabetes (T1D) has increased rapidly and became a major public health concern worldwide. Various factors are associated with the development of T1D, such as diet, genome, and intestinal microbiota. The gastrointestinal (GI) tract harbors a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host homeostasis and metabolic diseases. Recent evidence shows that altered gut bacterial composition (dysbiosis) is highly associated with the pathogenesis of insulin dysfunction and T1D and, thus, targeting gut microbiota may serve as a therapeutic potential for T1D patients. In this study, we updated the effect of gut microbiota on T1D and potential mechanisms were discussed.
Collapse
Affiliation(s)
- Hui Han
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yuying Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Gang Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.
| |
Collapse
|
363
|
Catinean A, Neag MA, Muntean DM, Bocsan IC, Buzoianu AD. An overview on the interplay between nutraceuticals and gut microbiota. PeerJ 2018; 6:e4465. [PMID: 29576949 PMCID: PMC5855885 DOI: 10.7717/peerj.4465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/15/2018] [Indexed: 12/26/2022] Open
Abstract
Background Nowadays, growing attention was being given to the alternative ways to prevent or treat diseases. Nutraceuticals are used increasingly for this purpose. Many of these are being used as alternative therapy. Classic therapy with synthetic drugs, although very effective, has many side effects. The term “nutraceuticals” refers to the link between the nutritional and pharmaceutical domains. Also, lately, many studies have been done to investigate the role of microbiota in maintaining health. There is the hypothesis that some of the health benefits of nutraceuticals are due to their ability to change the microbiota. The aim of this review was to emphasize the link between the most commonly used nutraceuticals, the microbiota and the health benefits. Methods We selected the articles in PubMed, published up to July 2017, that provided information about most used nutraceuticals, microbiota and health benefits. In this review, we incorporate evidence from various types of studies, including observational, in vitro and in vivo, clinical studies or animal experiments. Results The results demonstrate that many nutraceuticals change the composition of microbiota and can interfere with health status of the patients. Discussion There is evidence which sustains the importance of nutraceuticals in people’s health through microbiota but further studies are needed to complete the assessment of nutraceuticals in health benefit as a consequence of microbiota’s changing.
Collapse
Affiliation(s)
- Adrian Catinean
- Department of Internal Medicine/Faculty of Medicine, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology/Faculty of Medicine, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics/Faculty of Pharmacy, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology/Faculty of Medicine, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology/Faculty of Medicine, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
364
|
Intestinal Immunomodulatory Cells (T Lymphocytes): A Bridge between Gut Microbiota and Diabetes. Mediators Inflamm 2018; 2018:9830939. [PMID: 29713241 PMCID: PMC5866888 DOI: 10.1155/2018/9830939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/10/2018] [Accepted: 01/28/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most familiar chronic diseases threatening human health. Recent studies have shown that the development of diabetes is closely related to an imbalance of the gut microbiota. Accordingly, there is increasing interest in how changes in the gut microbiota affect diabetes and its underlying mechanisms. Immunomodulatory cells play important roles in maintaining the normal functioning of the human immune system and in maintaining homeostasis. Intestinal immunomodulatory cells (IICs) are located in the intestinal mucosa and are regarded as an intermediary by which the gut microbiota affects physiological and pathological properties. Diabetes can be regulated by IICs, which act as a bridge linking the gut microbiota and DM. Understanding this bridge role of IICs may clarify the mechanisms by which the gut microbiota contributes to DM. Based on recent research, we summarize this process, thereby providing a basis for further studies of diabetes and other similar immune-related diseases.
Collapse
|
365
|
Huitema MJD, Schenk GJ. Insights into the Mechanisms That May Clarify Obesity as a Risk Factor for Multiple Sclerosis. Curr Neurol Neurosci Rep 2018; 18:18. [PMID: 29525910 PMCID: PMC5845596 DOI: 10.1007/s11910-018-0827-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The proportion to which genetic and environmental factors contribute to the etiology of multiple sclerosis (MS) is still incompletely understood. An interesting association between MS etiology and obesity has recently been shown although the mechanisms underlying this association are still unknown. We propose deregulated gut microbiota and increased leptin levels as possible mechanisms underlying MS etiology in obese individuals. RECENT FINDINGS Alterations in the human gut microbiota and leptin levels have recently been established as immune modulators in both MS patients and obese individuals. A resemblance between pro-inflammatory bacterial profiles in MS and obese individuals was observed. Furthermore, elevated leptin levels push the immune system towards a more pro-inflammatory state and inhibit the regulatory immune response. Deregulated gut microbiota and elevated leptin levels may explain the increased risk of developing MS in obese individuals. Further research to confirm causality is warranted.
Collapse
Affiliation(s)
- Marije J D Huitema
- Faculty of medicine, VU University, Van der Boechorststraat 7, 1081 BT, Amsterdam, Netherlands
| | - Geert J Schenk
- Department of Anatomy and Neurosciences, Neuroscience Amsterdam, VUmc MS Center Amsterdam, VU University Medical Center, De Boelelaan 1108, 1081 HV, Amsterdam, Netherlands.
| |
Collapse
|
366
|
Xiao L, Van't Land B, Engen PA, Naqib A, Green SJ, Nato A, Leusink-Muis T, Garssen J, Keshavarzian A, Stahl B, Folkerts G. Human milk oligosaccharides protect against the development of autoimmune diabetes in NOD-mice. Sci Rep 2018; 8:3829. [PMID: 29497108 PMCID: PMC5832804 DOI: 10.1038/s41598-018-22052-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
Development of Type 1 diabetes (T1D) is influenced by non-genetic factors, such as optimal microbiome development during early life that "programs" the immune system. Exclusive and prolonged breastfeeding is an independent protective factor against the development of T1D, likely via bioactive components. Human Milk Oligosaccharides (HMOS) are microbiota modulators, known to regulate immune responses directly. Here we show that early life provision (only for a period of six weeks) of 1% authentic HMOS (consisting of both long-chain, as well as short-chain structures), delayed and suppressed T1D development in non-obese diabetic mice and reduced development of severe pancreatic insulitis in later life. These protective effects were associated with i) beneficial alterations in fecal microbiota composition, ii) anti-inflammatory microbiota-generating metabolite (i.e. short chain fatty acids (SCFAs)) changes in fecal, as well as cecum content, and iii) induction of anti-diabetogenic cytokine profiles. Moreover, in vitro HMOS combined with SCFAs induced development of tolerogenic dendritic cells (tDCs), priming of functional regulatory T cells, which support the protective effects detected in vivo. In conclusion, HMOS present in human milk are therefore thought to be vital in the protection of children at risk for T1D, supporting immune and gut microbiota development in early life.
Collapse
Affiliation(s)
- Ling Xiao
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| | - Belinda Van't Land
- Nutricia Research, Department of Immunology/Human milk research platform, Utrecht, The Netherlands.
- University Medical Center Utrecht, The Wilhelmina Children's Hospital, Laboratory of Translational Immunology, Utrecht, The Netherlands.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Angie Nato
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| | - Thea Leusink-Muis
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| | - Johan Garssen
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
- Nutricia Research, Department of Immunology/Human milk research platform, Utrecht, The Netherlands
| | - Ali Keshavarzian
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
- Department of Pharmacology, Department of Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Bernd Stahl
- Nutricia Research, Department of Immunology/Human milk research platform, Utrecht, The Netherlands
| | - Gert Folkerts
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| |
Collapse
|
367
|
Ou J, Huang J, Zhao D, Du B, Wang M. Protective effect of rosmarinic acid and carnosic acid against streptozotocin-induced oxidation, glycation, inflammation and microbiota imbalance in diabetic rats. Food Funct 2018; 9:851-860. [PMID: 29372208 DOI: 10.1039/c7fo01508a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
This study evaluated the protective effects of two rosemary components, rosmarinic acid (RA) and carnosic acid (CA), against hypoglycemia, hyperlipidemia, oxidative stress and an imbalanced gut microbiota architecture in diabetic rats. Treatment with RA and CA (30 mg kg-1) decreased the levels of fasting plasma glucose (23.7%, 15.6%), total cholesterol (30.4%, 14.1%) and triglyceride (65.7%, 47.8%) at 15 weeks. RA and CA also exhibited an anti-oxidative and anti-glycative effect by lowering the formation of malondialdehyde and advanced glycation end products. In addition, they showed protective effects against tissue damage and inflammation in the abdominal aorta, based on microscopic observations and the analysis of protein expression. Finally, the prebiotic effects of RA and CA on gut microbiota were demonstrated by increasing the population of diabetes-resistant bacteria and decreasing the amounts of diabetes-sensitive bacteria. Overall, RA showed a stronger protective effect than CA in mitigating diabetic symptoms in rats.
Collapse
Affiliation(s)
- Juanying Ou
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
368
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the selective destruction of insulin-producing β cells as result of a complex interplay between genetic, stochastic and environmental factors in genetically susceptible individuals. An increasing amount of experimental data from animal models and humans has supported the role played by imbalanced gut microbiome in T1D pathogenesis. The commensal intestinal microbiota is fundamental for several physiologic mechanisms, including the establishment of immune homeostasis. Alterations in its composition have been correlated to changes in the gut immune system, including defective tolerance to food antigens, intestinal inflammation and enhanced gut permeability. Early findings reported differences in the intestinal microbiome of subjects affected by prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence microbiome composition and discusses their putative correlation with T1D development. Further studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced permeability and the autoimmune mechanisms responsible for T1D onset.
Collapse
|
369
|
Mullaney JA, Stephens JE, Costello ME, Fong C, Geeling BE, Gavin PG, Wright CM, Spector TD, Brown MA, Hamilton-Williams EE. Type 1 diabetes susceptibility alleles are associated with distinct alterations in the gut microbiota. MICROBIOME 2018; 6:35. [PMID: 29454391 PMCID: PMC5816355 DOI: 10.1186/s40168-018-0417-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/26/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Dysbiosis of the gut microbiota has been implicated in the pathogenesis of many autoimmune conditions including type 1 diabetes (T1D). It is unknown whether changes in the gut microbiota observed in T1D are due to environmental drivers, genetic risk factors, or both. Here, we have performed an analysis of associations between the gut microbiota and T1D genetic risk using the non-obese diabetic (NOD) mouse model of T1D and the TwinsUK cohort. RESULTS Through the analysis of five separate colonies of T1D susceptible NOD mice, we identified similarities in NOD microbiome that were independent of animal facility. Introduction of disease protective alleles at the Idd3 and Idd5 loci (IL2, Ctla4, Slc11a1, and Acadl) resulted in significant alterations in the NOD microbiome. Disease-protected strains exhibited a restoration of immune regulatory pathways within the gut which could also be reestablished using IL-2 therapy. Increased T1D disease risk from IL-2 pathway loci in the TwinsUK cohort of human subjects resulted in some similar microbiota changes to those observed in the NOD mouse. CONCLUSIONS These findings demonstrate for the first time that type 1 diabetes-associated genetic variants that restore immune tolerance to islet antigens also result in functional changes in the gut immune system and resultant changes in the microbiota.
Collapse
Affiliation(s)
- Jane A. Mullaney
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Juliette E. Stephens
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Mary-Ellen Costello
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD Australia
| | - Cai Fong
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Brooke E. Geeling
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Patrick G. Gavin
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Casey M. Wright
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, SE1 7EH UK
| | - Matthew A. Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD Australia
| | - Emma E. Hamilton-Williams
- Translational Research Institute, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD Australia
- Translational Research Institute, The University of Queensland Diamantina Institute, 37 Kent St, Woolloongabba, QLD 4102 Australia
| |
Collapse
|
370
|
Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, Ahmed SA, Bankole AA. Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus. Appl Environ Microbiol 2018; 84:e02288-17. [PMID: 29196292 PMCID: PMC5795066 DOI: 10.1128/aem.02288-17] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/24/2017] [Indexed: 01/11/2023] Open
Abstract
Gut microbiota dysbiosis has been observed in a number of autoimmune diseases. However, the role of the gut microbiota in systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by persistent inflammation in multiple organs of the body, remains elusive. Here we report the dynamics of the gut microbiota in a murine lupus model, NZB/W F1, as well as intestinal dysbiosis in a small group of SLE patients with active disease. The composition of the gut microbiota changed markedly before and after the onset of lupus disease in NZB/W F1 mice, with greater diversity and increased representation of several bacterial species as lupus progressed from the predisease stage to the diseased stage. However, we did not control for age and the cage effect. Using dexamethasone as an intervention to treat SLE-like signs, we also found that a greater abundance of a group of lactobacilli (for which a species assignment could not be made) in the gut microbiota might be correlated with more severe disease in NZB/W F1 mice. Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species (within the genera Odoribacter and Blautia and an unnamed genus in the family Rikenellaceae) and was less diverse, with increased representation of Gram-negative bacteria. The Firmicutes/Bacteroidetes ratios did not differ between the SLE microbiota and the non-SLE microbiota in our human cohort.IMPORTANCE SLE is a complex autoimmune disease with no known cure. Dysbiosis of the gut microbiota has been reported for both mice and humans with SLE. In this emerging field, however, more studies are required to delineate the roles of the gut microbiota in different lupus-prone mouse models and people with diverse manifestations of SLE. Here, we report changes in the gut microbiota in NZB/W F1 lupus-prone mice and a group of SLE patients with active disease.
Collapse
Affiliation(s)
- Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Michael R Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Yang Yu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Miranda D Vieson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | | | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | | |
Collapse
|
371
|
Liese AD, Ma X, Ma X, Mittleman MA, The NS, Standiford DA, Lawrence JM, Pihoker C, Marcovina SM, Mayer-Davis EJ, Puett RC. Dietary quality and markers of inflammation: No association in youth with type 1 diabetes. J Diabetes Complications 2018; 32:179-184. [PMID: 29198994 PMCID: PMC5773064 DOI: 10.1016/j.jdiacomp.2017.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Systemic inflammation is a key process underlying cardiovascular disease (CVD) development, and CVD risk is significantly elevated in persons with type 1 diabetes (T1D). Youth with T1D exhibit increased levels of inflammation. Studies in persons without diabetes suggest that dietary quality influences inflammation, yet little is known about dietary influences on inflammation in youth with T1D. METHODS This study evaluated the association of four distinct dietary quality indices (Dietary Approaches to Stop Hypertension (DASH), Healthy Eating Index 2010 (HEI2010), modified KIDMED and Total Antioxidant Capacity (TAC)) with biomarkers of inflammation (C-reactive protein (CRP), fibrinogen and interleukin-6 (IL-6)) in a sample of 2520 youth with T1D participating in the SEARCH for Diabetes in Youth Study. RESULTS Average diet quality was moderate to poor, with mean scores of 43 (DASH, range 0-80), 55 (HEI2010, range 0-100), 3.7 (mKIDMED, range 3-12) and 7237 (TAC). None of the four diet quality scores was associated with the selected biomarkers of inflammation in any analyses. Evaluation of a non-linear relationship or interactions with BMI or levels of glycemic control did not alter the findings. Replication of analyses using longitudinal data yielded consistent findings with our cross-sectional results. CONCLUSIONS Biomarkers of inflammation in youth with T1D may not be directly influenced by dietary intake, at least at the levels of dietary quality observed here. More work is needed to understand what physiologic mechanisms specific to persons with T1D might inhibit the generally beneficial influence of high dietary quality on systemic inflammation observed in populations without diabetes.
Collapse
Affiliation(s)
- Angela D Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| | - Xiaonan Ma
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Xiaoguang Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Zhejiang, China
| | - Murray A Mittleman
- Department of Epidemiology, TH Chan Harvard School of Public Health, Boston, MA, USA
| | - Natalie S The
- Department of Health Sciences, Furman University, SC, USA
| | - Debra A Standiford
- Division of Pediatric Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jean M Lawrence
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | | | | | | | - Robin C Puett
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, MD, USA
| |
Collapse
|
372
|
Zhao F, Feng J, Li J, Zhao L, Liu Y, Chen H, Jin Y, Zhu B, Wei Y. Alterations of the Gut Microbiota in Hashimoto's Thyroiditis Patients. Thyroid 2018; 28:175-186. [PMID: 29320965 DOI: 10.1089/thy.2017.0395] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is an organ-specific autoimmune disease in which both genetic predisposition and environmental factors serve as disease triggers. Many studies have indicated that alterations in the gut microbiota are important environmental factors in the development of inflammatory and autoimmune diseases. A comparative analysis was systematically performed of the gut microbiota in HT patients and healthy controls. METHODS First, a cross-sectional study of 28 HT patients and 16 matched healthy controls was conducted. Fecal samples were collected, and microbiota were analyzed using 16S ribosomal RNA gene sequencing. Second, an independent cohort of 22 HT patients and 11 healthy controls was used to evaluate the diagnostic potential of the selected biomarkers. RESULTS Similar levels of bacterial richness and diversity were found in the gut microbiota of HT patients and healthy controls (p = 0.11). A detailed fecal microbiota Mann-Whitney U-test (Q value <0.05) revealed that the abundance levels of Blautia, Roseburia, Ruminococcus_torques_group, Romboutsia, Dorea, Fusicatenibacter, and Eubacterium_hallii_group genera were increased in HT patients, whereas the abundance levels of Fecalibacterium, Bacteroides, Prevotella_9, and Lachnoclostridium genera were decreased. A correlation matrix based on the Spearman correlation distance confirmed correlations among seven clinical parameters. Additionally, the linear discriminant analysis effect size method showed significant differences in 27 genera between the two groups that were strongly correlated with clinical parameters. The linear discriminant analysis value was used to select the first 10 species from the 27 different genera as biomarkers, achieving area under the curve values of 0.91 and 0.88 for exploration and validation data, respectively. CONCLUSIONS Characterization of the gut microbiota in HT patients confirmed that HT patients have altered gut microbiota and that gut microbiota are correlated with clinical parameters, suggesting that microbiome composition data could be used for disease diagnosis. Further investigation is required to understand better the role of the gut microbiota in the pathogenesis of HT.
Collapse
Affiliation(s)
- Fuya Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Jing Feng
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Jun Li
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Lei Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Yang Liu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Huinan Chen
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Ye Jin
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Biqiang Zhu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Yunwei Wei
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| |
Collapse
|
373
|
Prelabor Cesarean Section and Risk of Childhood Type 1 Diabetes: A Nationwide Register-based Cohort Study. Epidemiology 2018; 27:547-55. [PMID: 27031040 DOI: 10.1097/ede.0000000000000488] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Unfavorable conditions associated with cesarean section may influence the risk of type 1 diabetes in offspring, but results from studies are conflicting. We aimed to evaluate the association between prelabor cesarean section and risk of childhood type 1 diabetes. METHODS A Danish nationwide cohort study followed all singletons born during 1982-2010. Four national registers provided information on mode of delivery, outcome, and confounders. The risk of childhood type 1 diabetes with onset before the age of 15 years was assessed by Cox regression. A total of 1,760,336 singletons contributed 20,436,684 person-years, during which 4,400 were diagnosed with childhood type 1 diabetes. RESULTS The hazard ratio (HR) for childhood type 1 diabetes was increased in children delivered by prelabor cesarean section compared with vaginal delivery when adjusted for year of birth, parity, sex, parental age, and education and paternal type 1 diabetes status at childbirth (HR = 1.2; 95% confidence interval [CI] = 1.0, 1.3), but not after additional adjustment for maternal type 1 diabetes status at childbirth (HR = 1.1; 95% CI = 0.95, 1.2). Delivery by intrapartum cesarean section was not associated with childhood type 1 diabetes. Paternal type 1 diabetes was a stronger risk factor for childhood type 1 (HR = 12; 95% CI = 10, 14) than maternal type 1 diabetes (HR = 6.5; 95% CI = 5.2, 8.0). CONCLUSIONS Delivery by prelabor cesarean section was not associated with an increased risk of childhood type 1 diabetes in the offspring.
Collapse
|
374
|
Sen P, Kemppainen E, Orešič M. Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells. Front Mol Biosci 2018; 4:96. [PMID: 29376056 PMCID: PMC5767226 DOI: 10.3389/fmolb.2017.00096] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are the key drivers of the immune responses. These cells undergo activation, proliferation and differentiation into various subsets. During these processes they initiate metabolic reprogramming, which is coordinated by specific gene and protein activities. PBMCs as a model system have been widely used to study metabolic and autoimmune diseases. Herein we review various omics and systems-based approaches such as transcriptomics, epigenomics, proteomics, and metabolomics as applied to PBMCs, particularly T helper subsets, that unveiled disease markers and the underlying mechanisms. We also discuss and emphasize several aspects of T cell metabolic modeling in healthy and disease states using genome-scale metabolic models.
Collapse
Affiliation(s)
- Partho Sen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Esko Kemppainen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
375
|
Henschel AM, Cabrera SM, Kaldunski ML, Jia S, Geoffrey R, Roethle MF, Lam V, Chen YG, Wang X, Salzman NH, Hessner MJ. Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and β-cell chemokine expression associated with autoimmune diabetes susceptibility. PLoS One 2018; 13:e0190351. [PMID: 29293587 PMCID: PMC5749787 DOI: 10.1371/journal.pone.0190351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental changes associated with modern lifestyles may underlie the rising incidence of Type 1 diabetes (T1D). Our previous studies of T1D families and the BioBreeding (BB) rat model have identified a peripheral inflammatory state that is associated with diabetes susceptibility, consistent with pattern recognition receptor ligation, but is independent of disease progression. Here, compared to control strains, islets of spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ weanlings provided a standard cereal diet expressed a robust proinflammatory transcriptional program consistent with microbial antigen exposure that included numerous cytokines/chemokines. The dependence of this phenotype on diet and gastrointestinal microbiota was investigated by transitioning DR+/+ weanlings to a gluten-free hydrolyzed casein diet (HCD) or treating them with antibiotics to alter/reduce pattern recognition receptor ligand exposure. Bacterial 16S rRNA gene sequencing revealed that these treatments altered the ileal and cecal microbiota, increasing the Firmicutes:Bacteriodetes ratio and the relative abundances of lactobacilli and butyrate producing taxa. While these conditions did not normalize the inherent hyper-responsiveness of DR+/+ rat leukocytes to ex vivo TLR stimulation, they normalized plasma cytokine levels, plasma TLR4 activity levels, the proinflammatory islet transcriptome, and β-cell chemokine expression. In lymphopenic DRlyp/lyp rats, HCD reduced T1D incidence, and the introduction of gluten to this diet induced islet chemokine expression and abrogated protection from diabetes. Overall, these studies link BB rat islet-level immunocyte recruiting potential, as measured by β-cell chemokine expression, to a genetically controlled immune hyper-responsiveness and innate inflammatory state that can be modulated by diet and the intestinal microbiota.
Collapse
Affiliation(s)
- Angela M. Henschel
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mary L. Kaldunski
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Shuang Jia
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Rhonda Geoffrey
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mark F. Roethle
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Vy Lam
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nita H. Salzman
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
376
|
Hasan S, Aho V, Pereira P, Paulin L, Koivusalo SB, Auvinen P, Eriksson JG. Gut microbiome in gestational diabetes: a cross-sectional study of mothers and offspring 5 years postpartum. Acta Obstet Gynecol Scand 2018; 97:38-46. [PMID: 29077989 DOI: 10.1111/aogs.13252] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/19/2017] [Indexed: 01/04/2023]
Abstract
INTRODUCTION An altered gut microbiome composition is shown to be associated with various diseases and health outcomes. We compare the gut microbiota of women who developed gestational diabetes mellitus (GDM) with that of those who did not, and the gut microbiota of their offspring, to determine any differences in the composition and diversity of their gut microbiota, which may be correlated with their GDM state. MATERIAL AND METHODS All women were at high risk for GDM and participated in the Finnish Gestational Diabetes Prevention Study (RADIEL). Stool samples were obtained, 5 years postpartum, from 60 GDM-positive women, 68 non-GDM control women, and their children (n = 109), 237 individuals in total. 16S ribosomal RNA gene sequencing was employed to determine the composition of bacterial communities present. Statistical correlations were inferred between clinical variables and microbiota, while taking into account potential confounders. RESULTS In mothers, no significant differences were observed in microbiota composition between the two groups. Genus Anaerotruncus was increased in children of women with GDM (p < 0.001). Beta-diversity measures showed that a mother and her child have a more similar microbiome composition when compared with unrelated children, other mothers, or the children compared with each other (p < 0.001). CONCLUSIONS These results suggest that there may be no discernible microbiome basis to GDM susceptibility in high-risk women, whereas microbiome differences between the offspring could be of greater biological significance. The heterogeneous nature of the disease could be obscuring potential differences between women. A longer time-series study, with carefully defined subject subgroups, may be an appropriate course of future investigation into GDM and the microbiome.
Collapse
Affiliation(s)
- Sayyid Hasan
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Velma Aho
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pedro Pereira
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Saila B Koivusalo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Kätilöopisto Maternity Hospital, Helsinki, Finland
| | - Petri Auvinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
377
|
Xie Y, Xiao M, Ni Y, Jiang S, Feng G, Sang S, Du G. Alpinia oxyphylla Miq. Extract Prevents Diabetes in Mice by Modulating Gut Microbiota. J Diabetes Res 2018; 2018:4230590. [PMID: 29967794 PMCID: PMC6008625 DOI: 10.1155/2018/4230590] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/05/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, the role of gut microbiota in the development of obesity and type 2 diabetes mellitus (T2DM) has been highlighted. We performed an 8-week administration protocol on T2DM (C57BL/6J db-/db-) mice and fecal samples were collected. Comparisons of fecal bacterial communities were performed between db-/db- mice and normal mice (DB/DB) and between the db-/db mice treated and untreated with AOE using next-generation sequencing technology. Our results showed that the db-/db-AOE group had improved glycemic control and renal function compared with the db-/db-H2O group. Compared with the db-/db-H2O group, AOE administration resulted in significantly increased ratio of Bacteroidetes-to-Firmicutes in db-/db- mice. In addition, the abundance of Akkermansia was significantly increased, while Helicobacter was significantly suppressed in the db-/db-AOE group compared with the db-/db-H2O group. Our data suggest that AOE treatment decreased blood glucose levels and significantly reduced damage of renal pathology in the T2DM mice by modulating gut microbiota composition.
Collapse
Affiliation(s)
- Yiqiang Xie
- First Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou 571101, China
| | - Yali Ni
- First Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Shangfei Jiang
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou 571101, China
| | - Guizhu Feng
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou 571101, China
| | - Shenggang Sang
- First Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou 571101, China
| |
Collapse
|
378
|
Montoya-Williams D, Lemas DJ, Spiryda L, Patel K, Carney OO, Neu J, Carson TL. The Neonatal Microbiome and Its Partial Role in Mediating the Association between Birth by Cesarean Section and Adverse Pediatric Outcomes. Neonatology 2018; 114:103-111. [PMID: 29788027 PMCID: PMC6532636 DOI: 10.1159/000487102] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/23/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cesarean sections (CS) are among the most commonly performed surgical procedures in the world. Epidemiologic data has associated delivery by CS with an increased risk of certain adverse health outcomes in children, such as asthma and obesity. OBJECTIVE To explore what is known about the effect of mode of delivery on the development of the infant microbiome and discuss the potentially mediating role of CS-related microbial dysbiosis in the development of adverse pediatric health outcomes. Recommendations for future inquiry are also provided. METHODS This study provides a narrative overview of the literature synthesizing the findings of literature retrieved from searches of PubMed and other computerized databases and authoritative texts. RESULTS Emerging evidence suggests that mode of delivery is involved in the development of the neonatal microbiome and may partially explain pediatric health outcomes associated with birth by CS. Specifically, the gut microbiome of vaginally delivered infants more closely resembles their mothers' vaginal microbiome and thus more commonly consists of potentially beneficial microbiota such as Lactobacillus, Bifidobacterium, and Bacteroides. Conversely, the microbiome of infants born via CS shows an increased prevalence of either skin flora or potentially pathogenic microbial communities such as Klebsiella, Enterococcus, and Clostridium. CONCLUSIONS Mode of delivery plays an important role in the development of the postnatal microbiome but likely tells only part of the story. More comprehensive investigations into all the pre- and perinatal factors that have the potential to contribute to the neonatal microbiome are warranted.
Collapse
Affiliation(s)
- Diana Montoya-Williams
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Dominick J Lemas
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Lisa Spiryda
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA
| | - Keval Patel
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - O'neshia Olivia Carney
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Josef Neu
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Tiffany L Carson
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
379
|
Fang B, Li JW, Zhang M, Ren FZ, Pang GF. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food Chem Toxicol 2018; 111:144-152. [DOI: 10.1016/j.fct.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/07/2023]
|
380
|
Kigerl KA, Mostacada K, Popovich PG. Gut Microbiota Are Disease-Modifying Factors After Traumatic Spinal Cord Injury. Neurotherapeutics 2018; 15:60-67. [PMID: 29101668 PMCID: PMC5794696 DOI: 10.1007/s13311-017-0583-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) disrupts the autonomic nervous system (ANS), impairing its ability to coordinate organ function throughout the body. Emerging data indicate that the systemic pathology that manifests from ANS dysfunction exacerbates intraspinal pathology and neurological impairment. Precisely how this happens is unknown, although new data, in both humans and in rodent models, implicate changes in the composition of bacteria in the gut (i.e., the gut microbiota) as disease-modifying factors that are capable of affecting systemic physiology and pathophysiology. Recent data from rodents indicate that SCI causes gut dysbiosis, which exacerbates intraspinal inflammation and lesion pathology leading to impaired recovery of motor function. Postinjury delivery of probiotics containing various types of "good" bacteria can partially overcome the pathophysiologal effects of gut dysbiosis; immune function, locomotor recovery, and spinal cord integrity are partially restored by a sustained regimen of oral probiotics. More research is needed to determine whether gut dysbiosis varies across a range of clinically relevant variables, including sex, injury level, and injury severity, and whether changes in the gut microbiota can predict the onset or severity of common postinjury comorbidities, including infection, anemia, metabolic syndrome, and, perhaps, secondary neurological deterioration. Those microbial populations that dominate the gut could become "druggable" targets that could be manipulated via dietary interventions. For example, personalized nutraceuticals (e.g., pre- or probiotics) could be developed to treat the above comorbidities and improve health and quality of life after SCI.
Collapse
Affiliation(s)
- Kristina A Kigerl
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Klauss Mostacada
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
381
|
Traversi D, Rabbone I, Ignaccolo MG, Carletto G, Racca I, Vallini C, Andriolo V, Cadario F, Savastio S, Siliquini R, Cerutti F. Gut microbiota diversity and T1DM onset: Preliminary data of a case-control study. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.humic.2017.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
382
|
Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol 2017; 200:203-217. [PMID: 29188341 DOI: 10.1007/s00203-017-1459-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Manoj Kumar Verma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
383
|
Rodrigues RR, Greer RL, Dong X, DSouza KN, Gurung M, Wu JY, Morgun A, Shulzhenko N. Antibiotic-Induced Alterations in Gut Microbiota Are Associated with Changes in Glucose Metabolism in Healthy Mice. Front Microbiol 2017; 8:2306. [PMID: 29213261 PMCID: PMC5702803 DOI: 10.3389/fmicb.2017.02306] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome plays an important role in health and disease. Antibiotics are known to alter gut microbiota, yet their effects on glucose tolerance in lean, normoglycemic mice have not been widely investigated. In this study, we aimed to explore mechanisms by which treatment of lean mice with antibiotics (ampicillin, metronidazole, neomycin, vancomycin, or their cocktail) influences the microbiome and glucose metabolism. Specifically, we sought to: (i) study the effects on body weight, fasting glucose, glucose tolerance, and fasting insulin, (ii) examine the changes in expression of key genes of the bile acid and glucose metabolic pathways in the liver and ileum, (iii) identify the shifts in the cecal microbiota, and (iv) infer interactions between gene expression, microbiome, and the metabolic parameters. Treatment with individual or a cocktail of antibiotics reduced fasting glucose but did not affect body weight. Glucose tolerance changed upon treatment with cocktail, ampicillin, or vancomycin as indicated by reduced area under the curve of the glucose tolerance test. Antibiotic treatment changed gene expression in the ileum and liver, and shifted the alpha and beta diversities of gut microbiota. Network analyses revealed associations between Akkermansia muciniphila with fasting glucose and liver farsenoid X receptor (Fxr) in the top ranked host-microbial interactions, suggesting possible mechanisms by which this bacterium can mediate systemic changes in glucose metabolism. We observed Bacteroides uniformis to be positively and negatively correlated with hepatic Fxr and Glucose 6-phosphatase, respectively. Overall, our transkingdom network approach is a useful hypothesis generating strategy that offers insights into mechanisms by which antibiotics can regulate glucose tolerance in non-obese healthy animals. Experimental validation of our predicted microbe-phenotype interactions can help identify mechanisms by which antibiotics affect host phenotypes and gut microbiota.
Collapse
Affiliation(s)
- Richard R. Rodrigues
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Renee L. Greer
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Xiaoxi Dong
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Karen N. DSouza
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Manoj Gurung
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Jia Y. Wu
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Andrey Morgun
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Natalia Shulzhenko
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
384
|
Ishaq HM, Mohammad IS, Guo H, Shahzad M, Hou YJ, Ma C, Naseem Z, Wu X, Shi P, Xu J. Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis patients. Biomed Pharmacother 2017; 95:865-874. [DOI: 10.1016/j.biopha.2017.08.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022] Open
|
385
|
Cinek O, Kramna L, Lin J, Oikarinen S, Kolarova K, Ilonen J, Simell O, Veijola R, Autio R, Hyöty H. Imbalance of bacteriome profiles within the Finnish Diabetes Prediction and Prevention study: Parallel use of 16S profiling and virome sequencing in stool samples from children with islet autoimmunity and matched controls. Pediatr Diabetes 2017; 18:588-598. [PMID: 27860030 DOI: 10.1111/pedi.12468] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We set out to explore associations between the stool bacteriome profiles and early-onset islet autoimmunity, taking into account the interactions with the virus component of the microbiome. METHODS Serial stool samples were longitudinally collected from 18 infants and toddlers with early-onset islet autoimmunity (median age 17.4 months) followed by type 1 diabetes, and 18 tightly matched controls from the Finnish Diabetes Prediction and Prevention (DIPP) cohort. Three stool samples were analyzed, taken 3, 6, and 9 months before the first detection of serum autoantibodies in the case child. The risk of islet autoimmunity was evaluated in relation to the composition of the bacteriome 16S rDNA profiles assessed by mass sequencing, and to the composition of DNA and RNA viromes. RESULTS Four operational taxonomic units were significantly less abundant in children who later on developed islet autoimmunity as compared to controls-most markedly the species of Bacteroides vulgatus and Bifidobacterium bifidum. The alpha or beta diversity, or the taxonomic levels of bacterial phyla, classes or genera, showed no differences between cases and controls. A correlation analysis suggested a possible relation between CrAssphage signals and quantities of Bacteroides dorei. No apparent associations were seen between development of islet autoimmunity and sequences of yet unknown origin. CONCLUSIONS The results confirm previous findings that an imbalance within the prevalent Bacteroides genus is associated with islet autoimmunity. The detected quantitative relation of the novel "orphan" bacteriophage CrAssphage with a prevalent species of the Bacteroides genus may exemplify possible modifiers of the bacteriome.
Collapse
Affiliation(s)
- Ondrej Cinek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Lenka Kramna
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Jake Lin
- BioMediTech, Computational Biology, University of Tampere, Tampere, Finland
| | - Sami Oikarinen
- School of Medicine, Department of Virology, University of Tampere, Tampere, Finland
| | - Katerina Kolarova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Simell
- Department of Pediatrics and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Reija Autio
- School of Health Sciences, University of Tampere, Tampere, Finland
| | - Heikki Hyöty
- School of Medicine, Department of Virology, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
386
|
The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol 2017; 18:105-120. [PMID: 29034905 DOI: 10.1038/nri.2017.111] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of autoimmune diseases has been steadily rising. Concomitantly, the incidence of most infectious diseases has declined. This observation gave rise to the hygiene hypothesis, which postulates that a reduction in the frequency of infections contributes directly to the increase in the frequency of autoimmune and allergic diseases. This hypothesis is supported by robust epidemiological data, but the underlying mechanisms are unclear. Pathogens are known to be important, as autoimmune disease is prevented in various experimental models by infection with different bacteria, viruses and parasites. Gut commensal bacteria also play an important role: dysbiosis of the gut flora is observed in patients with autoimmune diseases, although the causal relationship with the occurrence of autoimmune diseases has not been established. Both pathogens and commensals act by stimulating immunoregulatory pathways. Here, I discuss the importance of innate immune receptors, in particular Toll-like receptors, in mediating the protective effect of pathogens and commensals on autoimmunity.
Collapse
|
387
|
Groele L, Szajewska H, Szypowska A. Effects of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: protocol of a randomised controlled trial. BMJ Open 2017; 7:e017178. [PMID: 29025837 PMCID: PMC5652563 DOI: 10.1136/bmjopen-2017-017178] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/13/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Recent evidence has demonstrated that, among other factors, dysbiosis (imbalances in the composition and function of the gut microbiota) may be relevant in the development of type 1 diabetes (T1D). Thus, gut microbiota may be a target for improving outcomes in subjects with T1D. The aim of the study is to examine the effects of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed T1D. METHODS AND ANALYSIS A total of 96 children aged 8 to 17 years with newly diagnosed T1D, confirmed by clinical history and the presence of at least one positive autoantibody, will be enrolled in a double-blind, randomised, placebo-controlled trial in which they will receive L. rhamnosus GG and B. lactis Bb12 at a dose of 109 colony-forming units or an identically appearing placebo, orally, once daily, for 6 months. The follow-up will be for 12 months. The primary outcome measures will be the area under the curve of the C-peptide level during 2-hour responses to a mixed meal. ETHICS AND DISSEMINATION The Bioethics Committee approved the study protocol. The findings of this trial will be submitted to a peer-reviewed paediatric journal. Abstracts will be submitted to relevant national and international conferences. TRIAL REGISTRATION NUMBER NCT03032354; Pre-results.
Collapse
Affiliation(s)
- Lidia Groele
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
388
|
Huang G, Xu J, Lefever DE, Glenn TC, Nagy T, Guo TL. Genistein prevention of hyperglycemia and improvement of glucose tolerance in adult non-obese diabetic mice are associated with alterations of gut microbiome and immune homeostasis. Toxicol Appl Pharmacol 2017; 332:138-148. [PMID: 28412308 PMCID: PMC5592136 DOI: 10.1016/j.taap.2017.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/25/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Although studies have linked soy phytoestrogen 4,7,4-trihydroxyisoflavone genistein (GEN) to reduced type 1 diabetes (T1D) risk, the mechanism of dietary GEN on T1D remains unknown. In our studies, adult non-obese diabetic (NOD) mouse model was employed to investigate the effects of GEN exposure on blood glucose level (BGL), glucose tolerance, gut microbiome, and immune responses. Adult male and female NOD mice were fed with either soy-based or casein-based diet, and received GEN at 20mg/kg body weight by gavage daily. The BGL and immune responses (represented by serum antibodies, cytokines and chemokines, and histopathology) were monitored, while the fecal gut microbiome was sequenced for 16S ribosomal RNA to reveal any alterations in gut microbial communities. A significantly reduced BGL was found in NOD males fed with soy-based diet on day 98 after initial dosing, and an improved glucose tolerance was observed on both diets. In addition, an anti-inflammatory response (suggested by reduced IgG2b and cytokine/chemokine levels, and alterations in the microbial taxonomy) was accompanied by an altered β-diversity in gut microbial species. Among the NOD females exposed to GEN, a later onset of T1D was observed. However, the profiles of gut microbiome, antibodies and cytokines/chemokines were all indicative of pro-inflammation. This study demonstrated an association among GEN exposure, gut microbiome alteration, and immune homeostasis in NOD males. Although the mechanisms underlying the protective effects of GEN in NOD mice need to be explored further, the current study suggested a GEN-induced sex-specific effect in inflammatory status and gut microbiome.
Collapse
Affiliation(s)
- Guannan Huang
- Department of Environmental Health Sciences, College of Public Health, United States
| | - Joella Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States
| | - Daniel E Lefever
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States
| | - Travis C Glenn
- Department of Environmental Health Sciences, College of Public Health, United States
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States.
| |
Collapse
|
389
|
Xiao L, Van't Land B, van de Worp WRPH, Stahl B, Folkerts G, Garssen J. Early-Life Nutritional Factors and Mucosal Immunity in the Development of Autoimmune Diabetes. Front Immunol 2017; 8:1219. [PMID: 29033938 PMCID: PMC5626949 DOI: 10.3389/fimmu.2017.01219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an immune-mediated disease with a strong genetic basis but might be influenced by non-genetic factors such as microbiome development that “programs” the immune system during early life as well. Factors influencing pathogenesis, including a leaky intestinal mucosal barrier, an aberrant gut microbiota composition, and altered immune responsiveness, offer potential targets for prevention and/or treatment of T1D through nutritional or pharmacologic means. In this review, nutritional approaches during early life in order to protect against T1D development have been discussed. The critical role of tolerogenic dendritic cells in central and peripheral tolerance has been emphasized. In addition, since the gut microbiota affects the development of T1D through short-chain fatty acid (SCFA)-dependent mechanisms, we hypothesize that nutritional intervention boosting SCFA production may be used as a novel prevention strategy. Current retrospective evidence has suggested that exclusive and prolonged breastfeeding might play a protective role against the development of T1D. The beneficial properties of human milk are possibly attributed to its bioactive components such as unique immune-modulatory components human milk oligosaccharides and metabolites derived thereof, including SCFAs. These components might play a key role in healthy immune development and creating a fit and resilient immune system in early and later life.
Collapse
Affiliation(s)
- Ling Xiao
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Belinda Van't Land
- Nutricia Research, Utrecht, Netherlands.,Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Wouter R P H van de Worp
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Gert Folkerts
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| |
Collapse
|
390
|
Pinto E, Anselmo M, Calha M, Bottrill A, Duarte I, Andrew PW, Faleiro ML. The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins. MICROBIOLOGY-SGM 2017; 163:161-174. [PMID: 28270263 DOI: 10.1099/mic.0.000412] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, the intestinal microbial proteome of children with established type 1 diabetes (T1D) was compared with the proteome of healthy children (Control) with the aim to identify differences in the activity of the intestinal microbiota that not only will contribute to a deeper knowledge of the functionality of the gut in these children but also may provide new approaches to improve the control of the disease. Faecal protein extracts collected from three T1D children (aged 9.3±0.6 years) and three Control children (aged 9.3±1.5 years) were analysed using a combination of 2D gel electrophoresis and spectral counting. The results evidenced markedly differences between the intestinal proteome of T1D children and the Control. The T1D microbial intestinal proteome was enriched with proteins of clostridial cluster XVa and cluster IV and Bacteroides. In contrast, the Control proteome was enriched with bifidobacterial proteins. In both groups, proteins with moonlight function were observed. Human proteins also distinguished the two groups with T1D children depleted in exocrine pancreatic enzymes.
Collapse
Affiliation(s)
- Elsa Pinto
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marisol Anselmo
- Núcleo de Diabetologia, Nutrição e Doenças Metabólicas (NDNDM) do Hospital de Faro, 8000-386 Faro, Portugal
| | - Manuela Calha
- Núcleo de Diabetologia, Nutrição e Doenças Metabólicas (NDNDM) do Hospital de Faro, 8000-386 Faro, Portugal
| | - Andrew Bottrill
- Protein and Nucleic Acid Chemistry Laboratory (PNACL), University of Leicester, Leicester LE1 7RH, UK
| | - Isabel Duarte
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK
| | - Maria L Faleiro
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
391
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize potential modulations of the intestinal microbiome aimed at preventing or delaying progression to overt type 1 diabetes in the light of recently identified perturbations of the gut microbiota associated with the development of type 1 diabetes. RECENT FINDINGS Accumulated data suggest that the gut microbiota is involved at two different steps in the evolution of type 1 diabetes. At the first step, the intestinal tract is colonized by a microbial community unable to provide an adequate education of the immune system. As a consequence, the infant acquires susceptibility to immune-mediated diseases, type 1 diabetes included. At the other step, the young child seroconverts to positivity for diabetes-associated autoantibodies. This is preceded or accompanied by a decrease in the diversity of the intestinal microbiota and an increased abundance of Bacteroides species. These changes will affect the disease process promoting progression toward overt type 1 diabetes. By providing specific probiotics, one can affect the colonization of the intestinal tract in the newborn infant or strengthen the immune education in early life. Human milk oligosaccharides function as nutrients for "healthy" bacteria. Dietary interventions applying modified starches can influence the numbers and activities of both autoreactive and regulatory T cells and provide protection against autoimmune diabetes in non-obese diabetic mice. Modulation of the intestinal microbiome holds the promise of effective protection against human type 1 diabetes.
Collapse
Affiliation(s)
- Mikael Knip
- Children's Hospital, University of Helsinki, P.O. Box 22, (Stenbäckinkatu 11), FI, -00014, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland.
| | - Jarno Honkanen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
392
|
Houttuynia cordata Facilitates Metformin on Ameliorating Insulin Resistance Associated with Gut Microbiota Alteration in OLETF Rats. Genes (Basel) 2017; 8:genes8100239. [PMID: 28937612 PMCID: PMC5664089 DOI: 10.3390/genes8100239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Metformin and Houttuynia cordata are representative anti-diabetic therapeutics in western and oriental medicine, respectively. The current study examined the synergistic anti-diabetic effect of Houttuynia cordata extraction (HCE) and metformin combination in Otsuka Long–Evans Tokushima Fatty (OLETF) rats. Fecal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE) and real-time PCR. Combining HCE + metformin resulted in significantly ameliorated glucose tolerance (oral glucose tolerance test (OGTT))—the same as metformin alone. Particularly, results of the insulin tolerance test (ITT) showed that combining HCE + metformin dramatically improved insulin sensitivity as compared to metformin treatment alone. Both fecal and serum endotoxin, as well as cytokines (tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6)) were significantly ameliorated by HCE + metformin compared to metformin alone. Meanwhile, the activation of AMPK (adenosine monophosphate-activated protein kinase) by metformin was distinctly enhanced by HCE. Both of HCE and metformin evidently changed the gut microbiota composition, causing the alteration of bacterial metabolite, like short-chain fatty acids. H. cordata, together with metformin, exerts intensive sensibilization to insulin; the corresponding mechanisms are associated with alleviation of endotoxemia via regulation of gut microbiota, particularly Roseburia, Akkermansia, and Gram-negative bacterium.
Collapse
|
393
|
Shang Q, Jiang H, Cai C, Hao J, Li G, Yu G. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview. Carbohydr Polym 2017; 179:173-185. [PMID: 29111040 DOI: 10.1016/j.carbpol.2017.09.059] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/01/2017] [Accepted: 09/17/2017] [Indexed: 02/08/2023]
Abstract
The gut microbiota that resides in the mammalian intestine plays a critical role in host health, nutrition, metabolic and immune homeostasis. As symbiotic bacteria, these microorganisms depend mostly on non-digestible fibers and polysaccharides as energy sources. Dietary polysaccharides that reach the distal gut are fermented by gut microbiota and thus exert a fundamental impact on intestinal ecology. Marine polysaccharides contain a class of dietary fibers that are widely used in food and pharmaceutical industries (e.g., agar and carrageenan). In this regard, insights into fermentation of marine polysaccharides and its effects on intestinal ecology are of vital importance for understanding the beneficial effects of these glycans. Here, in this review, to provide an overlook of current advances and facilitate future studies in this field, we describe and summarize up-to-date findings on how marine polysaccharides are metabolized by gut microbiota and what effects these polysaccharides have on intestinal ecology.
Collapse
Affiliation(s)
- Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
394
|
Sedighi M, Razavi S, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Mehrtash A, Amirmozafari N. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog 2017; 111:362-369. [PMID: 28912092 DOI: 10.1016/j.micpath.2017.08.038] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/18/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
Recent studies indicate that inflammatory reactions leading to the development of type 2 diabetes mellitus (T2DM) may also contribute to variations in the composition of the intestinal microbiota, suggesting a relation between T2DM and bacterial residents in the intestinal tract. This case-control study was designed to evaluate the composition of the gut microbiota dominant bacterial groups in patients with T2DM compared to the healthy people. A total of 36 adult subjects (18 patients diagnosed with T2DM and 18 healthy persons) were included in the study. The intestinal microbiota composition was investigated by quantitative real-time polymerase chain reaction (qPCR) method using bacterial 16S rRNA gene. The quantities of two groups of bacteria were meaningfully different among T2DM patients and healthy individuals. While, the level of Lactobacillus was significantly higher in the patients with T2DM (P value < 0.001), Bifidobacterium was significantly more frequent in the healthy people (P value < 0.001). The quantities of Prevotella (P value = 0.0.08) and Fusobacterium (P value = 0.99) genera in faecal samples were not significantly different between the two groups. The significant alterations in dominant faecal bacterial genera found in T2DM patients participating in the current study highlight the link between T2DM disease and compositional variation in intestinal flora. These findings may be valuable for developing approaches to control T2DM by modifying the gut microbiota. More investigations with focus on various taxonomic levels (family, genus and species) of bacteria are necessary to clarify the exact relevance of changes in the gut microbial communities with the progression of T2DM disorder.
Collapse
Affiliation(s)
- Mansour Sedighi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Navab-Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Alaei-Shahmiri
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| | - Amirhosein Mehrtash
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
395
|
Lang J, Wang X, Liu K, He D, Niu P, Cao R, Jin L, Wu J. Oral delivery of staphylococcal nuclease by Lactococcus lactis prevents type 1 diabetes mellitus in NOD mice. Appl Microbiol Biotechnol 2017; 101:7653-7662. [PMID: 28889199 DOI: 10.1007/s00253-017-8480-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by the self-destruction of insulin-producing β cells. Recently, studies have revealed that neutrophils contribute to the early pathological injury to the pancreas, predominantly via the formation of neutrophil extracellular traps (NETs). To determine whether early intervention targeting NETs with staphylococcal nuclease (SNase) can delay the onset of T1DM, non-obese diabetic (NOD) mice were orally administered recombinant Lactococcus lactis (L. lactis) expressing SNase. The results showed that NETs were effectively disrupted by SNase both in vivo and in vitro, leading to a significant decrease in neutrophil-derived circulating free DNA (cf-DNA/NETs), neutrophil elastase (NE), and protease 3 (PR3) in the serum compared with the controls. In addition, SNase effectively regulated the blood glucose levels of NOD mice, and the onset of diabetes was postponed with reduced mortality and morbidity. Recombinant L. lactis also ameliorated inflammation in NOD mice, as evidenced by the remarkable increase in IL-4 and reductions in TNF-α and CRP. Moreover, HE staining results showed that L. lactis expressing SNase exerted protective effects on pancreatic islets and relieved inflammation of the small intestine in NOD mice. Hence, the present study indicates that the oral delivery of SNase by L. lactis can effectively prevent T1DM, ameliorate inflammation, and contribute to immunomodulatory balance in NOD mice.
Collapse
Affiliation(s)
- Junchao Lang
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoke Wang
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Kunfeng Liu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dongmei He
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Pancong Niu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Rongyue Cao
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Liang Jin
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
396
|
de Oliveira GLV, Leite AZ, Higuchi BS, Gonzaga MI, Mariano VS. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology 2017; 152. [PMID: 28556916 PMCID: PMC5543467 DOI: 10.1111/imm.12765 10.1111/imm.12765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In humans, a complex interaction between the host immune system and commensal microbiota is required to maintain gut homeostasis. In this symbiotic relationship, the microbiota provides carbohydrate fermentation and digestion, vitamin synthesis and gut-associated lymphoid tissue development, as well as preventing colonization by pathobionts, whereas the host offers a niche and nutrients for the survival of the microbiota. However, when this mutualistic relationship is compromised and an altered interaction between immune cells and microorganisms occurs, the gut microbiota may cause or contribute to the establishment of infectious diseases and trigger autoimmune diseases. Researchers have made efforts to clarify the role of the microbiota in autoimmune disease development and find new therapeutic approaches to treat immune-mediated diseases. However, the exact mechanisms involved in the dysbiosis and breakdown of the gut epithelial barrier are currently unknown. Here, we provide a general overview of studies describing gut microbiota perturbations in animal models of autoimmune diseases, such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. Moreover, we include the main studies concerning dysbiosis in humans and a critical discussion of the existing data on the use of probiotics in these autoimmune diseases.
Collapse
Affiliation(s)
| | - Aline Zazeri Leite
- Microbiome Study GroupSchool of Health Sciences Dr Paulo PrataBarretosSão PauloBrazil
| | | | - Marina Ignácio Gonzaga
- Microbiome Study GroupSchool of Health Sciences Dr Paulo PrataBarretosSão PauloBrazil,Barretos Cancer HospitalBarretosSão PauloBrazil
| | | |
Collapse
|
397
|
Chen B, Sun L, Zhang X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J Autoimmun 2017; 83:31-42. [DOI: 10.1016/j.jaut.2017.03.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
|
398
|
Hatziioanou D, Gherghisan-Filip C, Saalbach G, Horn N, Wegmann U, Duncan SH, Flint HJ, Mayer MJ, Narbad A. Discovery of a novel lantibiotic nisin O from Blautia obeum A2-162, isolated from the human gastrointestinal tract. MICROBIOLOGY-SGM 2017; 163:1292-1305. [PMID: 28857034 DOI: 10.1099/mic.0.000515] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel lanC-like sequence was identified from the dominant human gut bacterium Blautia obeum strain A2-162. This sequence was extended to reveal a putative lantibiotic operon with biosynthetic and transport genes, two sets of regulatory genes, immunity genes, three identical copies of a nisin-like lanA gene with an unusual leader peptide, and a fourth putative lanA gene. Comparison with other nisin clusters showed that the closest relationship was to nisin U. B. obeum A2-162 demonstrated antimicrobial activity against Clostridium perfringens when grown on solid medium in the presence of trypsin. Fusions of predicted nsoA structural sequences with the nisin A leader were expressed in Lactococcus lactis containing the nisin A operon without nisA. Expression of the nisA leader sequence fused to the predicted structural nsoA1 produced a growth defect in L. lactis that was dependent upon the presence of biosynthetic genes, but failed to produce antimicrobial activity. Insertion of the nso cluster into L. lactis MG1614 gave an increased immunity to nisin A, but this was not replicated by the expression of nsoI. Nisin A induction of L. lactis containing the nso cluster and nisRK genes allowed detection of the NsoA1 pre-peptide by Western hybridization. When this heterologous producer was grown with nisin induction on solid medium, antimicrobial activity was demonstrated in the presence of trypsin against C. perfringens, Clostridium difficile and L. lactis. This research adds to evidence that lantibiotic production may be an important trait of gut bacteria and could lead to the development of novel treatments for intestinal diseases.
Collapse
Affiliation(s)
- Diane Hatziioanou
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Cristina Gherghisan-Filip
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | | | - Nikki Horn
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Udo Wegmann
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Sylvia H Duncan
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Harry J Flint
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Melinda J Mayer
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Arjan Narbad
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| |
Collapse
|
399
|
Stefanaki C, Peppa M, Mastorakos G, Chrousos GP. Examining the gut bacteriome, virome, and mycobiome in glucose metabolism disorders: Are we on the right track? Metabolism 2017; 73:52-66. [PMID: 28732571 DOI: 10.1016/j.metabol.2017.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
Human gut microbiome is defined as the gene complement of the gut microbial community, measured via laboratory metagenomic techniques. It includes bacteriome, virome and mycobiome, which represent, respectively, the assemblages of bacteria, viruses and fungi, living in the human gut. Gut microbiota function as a living "organ" that interacts with the gastro-intestinal environment, provides nutrients and vitamins to the organism and transduces hormonal messages, essentially influencing the main metabolic pathways, including drug metabolism. A clear association between gut, and glucose metabolism disorders has recently emerged. Medications acting on glucose absorption in the gut, or enhancing gut hormone activity are already extensively employed in the therapy of diabetes. Moreover, the gut is characterized by immune, and autonomous neuronal features, which play a critical role in maintaining glucose metabolism homeostasis. Gut microbes respond to neuroendocrine, and immune biochemical messages, affecting the health, and behavior of the host. There is vast heterogeneity in the studies included in this review, hence a meta-analysis, or a systematic review were not applicable. In this article, we attempt to reveal the interplay between human gut microbiota physiology, and hyperglycemic states, synthesizing, and interpreting findings from human studies.
Collapse
Affiliation(s)
- Charikleia Stefanaki
- 1st Department of Pediatrics, Choremeio Research Laboratory, Athens University Medical School, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Melpomeni Peppa
- Endocrine Unit, 2nd Department of Internal Medicine Propaedeutic, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - George Mastorakos
- Department of Endocrinology, Metabolism and Diabetes, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- 1st Department of Pediatrics, Choremeio Research Laboratory, Athens University Medical School, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
400
|
Cui Y, Wang Q, Liu S, Sun R, Zhou Y, Li Y. Age-Related Variations in Intestinal Microflora of Free-Range and Caged Hens. Front Microbiol 2017; 8:1310. [PMID: 28744281 PMCID: PMC5504432 DOI: 10.3389/fmicb.2017.01310] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022] Open
Abstract
Free range feeding pattern puts the chicken in a mixture of growth materials and enteric bacteria excreted by nature, while it is typically unique condition materials and enteric bacteria in commercial caged hens production. Thus, the gastrointestinal microflora in two feeding patterns could be various. However, it remains poorly understood how feeding patterns affect development and composition of layer hens’ intestinal microflora. In this study, the effect of feeding patterns on the bacteria community in layer hens’ gut was investigated using free range and caged feeding form. Samples of whole small intestines and cecal digesta were collected from young hens (8-weeks) and mature laying hens (30-weeks). Based on analysis using polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing of bacterial 16S rDNA gene amplicons, the microflora of all intestinal contents were affected by both feeding patterns and age of hens. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria were the main components. Additionally, uncultured environmental samples were found too. There were large differences between young hens and adult laying hens, the latter had more Firmicutes and Bacteroidetes, and bacterial community is more abundant in 30-weeks laying hens of all six phyla than 8-weeks young hens of only two phyla. In addition, the differences were also observed between free range and caged hens. Free range hens had richer Actinobacteria, Bacteroidetes, and Proteobacteria. Most of strains found were detected more abundant in small intestines than in cecum. Also the selected Lactic acid bacteria from hens gut were applied in feed and they had beneficial effects on growth performance and jejunal villus growth of young broilers. This study suggested that feeding patterns have an importance effect on the microflora composition of hens, which may impact the host nutritional status and intestinal health.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Qiuju Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Shengjun Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Rui Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Yaqiang Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| |
Collapse
|