351
|
Mega C, Teixeira-de-Lemos E, Fernandes R, Reis F. Renoprotective Effects of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin: A Review in Type 2 Diabetes. J Diabetes Res 2017; 2017:5164292. [PMID: 29098166 PMCID: PMC5643039 DOI: 10.1155/2017/5164292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is now the single commonest cause of end-stage renal disease (ESRD) worldwide and one of the main causes of death in diabetic patients. It is also acknowledged as an independent risk factor for cardiovascular disease (CVD). Since sitagliptin was approved, many studies have been carried out revealing its ability to not only improve metabolic control but also ameliorate dysfunction in various diabetes-targeted organs, especially the kidney, due to putative underlying cytoprotective properties, namely, its antiapoptotic, antioxidant, anti-inflammatory, and antifibrotic properties. Despite overall recommendations, many patients spend a long time well outside the recommended glycaemic range and, therefore, have an increased risk for developing micro- and macrovascular complications. Currently, it is becoming clearer that type 2 diabetes mellitus (T2DM) management must envision not only the improvement in glycaemic control but also, and particularly, the prevention of pancreatic deterioration and the evolution of complications, such as DN. This review aims to provide an overview of the current knowledge in the field of renoprotective actions of sitagliptin, namely, improvement in diabetic dysmetabolism, hemodynamic factors, renal function, diabetic kidney lesions, and cytoprotective properties.
Collapse
Affiliation(s)
- Cristina Mega
- Agrarian School of Viseu (ESAV), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
- Centre for the Study of Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
- Institute of Pharmacology and Experimental Therapeutics and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Edite Teixeira-de-Lemos
- Agrarian School of Viseu (ESAV), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
- Centre for the Study of Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology and Experimental Therapeutics and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
352
|
Suda M, Shimizu I, Yoshida Y, Hayashi Y, Ikegami R, Katsuumi G, Wakasugi T, Yoshida Y, Okuda S, Soga T, Minamino T. Inhibition of dipeptidyl peptidase-4 ameliorates cardiac ischemia and systolic dysfunction by up-regulating the FGF-2/EGR-1 pathway. PLoS One 2017; 12:e0182422. [PMID: 28771625 PMCID: PMC5542565 DOI: 10.1371/journal.pone.0182422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/18/2017] [Indexed: 01/21/2023] Open
Abstract
Dipeptidyl peptidase 4 inhibitors are used worldwide in the management of diabetes, but their role in the prevention or treatment of cardiovascular disorders has yet to be defined. We found that linagliptin, a DPP-4 inhibitor, suppressed capillary rarefaction in the hearts of mice with dietary obesity. Metabolomic analysis performed with capillary electrophoresis/mass spectrometry (LC-MS/MS) showed that linagliptin promoted favorable metabolic remodeling in cardiac tissue, which was characterized by high levels of citrulline and creatine. DNA microarray analysis revealed that the cardiac tissue level of early growth response protein 1 (EGR-1), which activates angiogenesis, was significantly reduced in untreated mice with dietary obesity, while this decrease was inhibited by administration of linagliptin. Mature fibroblast growth factor 2 (FGF-2) has a putative truncation site for DPP-4 at the NH2-terminal, and LC-MS/MS showed that recombinant DPP-4 protein cleaved the NH2-terminal dipeptides of mature FGF-2. Incubation of cultured neonatal rat cardiomyocytes with FGF-2 increased Egr1 expression, while it was suppressed by recombinant DPP-4 protein. Furthermore, vascular endothelial growth factor-A had a critical role in mediating FGF-2/EGR-1 signaling. In conclusion, pharmacological inhibition of DPP-4 suppressed capillary rarefaction and contributed to favorable remodeling of cardiac metabolism in mice with dietary obesity.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuka Hayashi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takayuki Wakasugi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| |
Collapse
|
353
|
Lee JJ, Wang TY, Liu CL, Chien MN, Chen MJ, Hsu YC, Leung CH, Cheng SP. Dipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid Carcinoma. J Clin Endocrinol Metab 2017; 102:2930-2940. [PMID: 28575350 DOI: 10.1210/jc.2017-00346] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
CONTEXT Dipeptidyl peptidase IV (DPP4) is overexpressed in thyroid cancer and certain malignancies. Furthermore, DPP4 has been identified as a discriminatory marker for thyroid cancer. However, it remains unclear whether DPP4 expression plays a prognostic role. OBJECTIVE The aim of this study was to investigate the expression and function of DPP4 in thyroid cancer and the mechanisms involved. DESIGN We determined the expression of DPP4 by immunohistochemistry in tissue microarrays of thyroid tumors. In vitro functional studies were performed after genetic and pharmacological inhibition of DPP4. Gene expression and pathway analyses were used to identify downstream targets. The therapeutic potential of DPP4 inhibition was evaluated in a mouse xenograft model. RESULTS High DPP4 expression was associated with extrathyroidal extension (P < 0.001), BRAF mutation (P < 0.001), and advanced tumor stage (P = 0.007) in papillary thyroid cancer. Patients in the high-DPP4 expression group were less likely to be classified as having no evidence of disease at final follow-up (P = 0.042). DPP4 silencing or treatment with DPP4 inhibitors significantly suppressed colony formation, cell migration, and invasion. Analysis of differentially expressed genes after DPP4 knockdown suggested that the transforming growth factor-β signaling pathway is involved. In vivo experiments revealed that sitagliptin treatment reduced tumor growth and xenograft transforming growth factor-β receptor I expression. CONCLUSIONS Increased DPP4 expression is associated with cellular invasion and more aggressive disease in papillary thyroid cancer. Targeting DPP4 may be a therapeutic strategy for DPP4-expressing thyroid cancer.
Collapse
Affiliation(s)
- Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
- Graduate Institute of Medical Sciences and Department of Pharmacology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tao-Yeuan Wang
- Department of Pathology, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
| | - Ming-Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
- Graduate Institute of Medical Sciences and Department of Pharmacology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan
| | - Ching-Hsiang Leung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan
- Graduate Institute of Medical Sciences and Department of Pharmacology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
354
|
South American herbal extracts reduce food intake through modulation of gastrointestinal hormones in overweight and obese women. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
355
|
Lovshin JA, Rajasekeran H, Lytvyn Y, Lovblom LE, Khan S, Alemu R, Locke A, Lai V, He H, Hittle L, Wang W, Drucker DJ, Cherney DZI. Dipeptidyl Peptidase 4 Inhibition Stimulates Distal Tubular Natriuresis and Increases in Circulating SDF-1α 1-67 in Patients With Type 2 Diabetes. Diabetes Care 2017; 40:1073-1081. [PMID: 28550195 DOI: 10.2337/dc17-0061] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/03/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Antihyperglycemic agents, such as empagliflozin, stimulate proximal tubular natriuresis and improve cardiovascular and renal outcomes in patients with type 2 diabetes. Because dipeptidyl peptidase 4 (DPP-4) inhibitors are used in combination with sodium-glucose cotransporter 2 (SGLT2) inhibitors, we examined whether and how sitagliptin modulates fractional sodium excretion and renal and systemic hemodynamic function. RESEARCH DESIGN AND METHODS We studied 32 patients with type 2 diabetes in a prospective, double-blind, randomized, placebo-controlled trial. Measurements of renal tubular function and renal and systemic hemodynamics were obtained at baseline, then hourly after one dose of sitagliptin or placebo, and repeated at 1 month. Fractional excretion of sodium and lithium and renal hemodynamic function were measured during clamped euglycemia. Systemic hemodynamics were measured using noninvasive cardiac output monitoring, and plasma levels of intact versus cleaved stromal cell-derived factor (SDF)-1α were quantified using immunoaffinity and tandem mass spectrometry. RESULTS Sitagliptin did not change fractional lithium excretion but significantly increased total fractional sodium excretion (1.32 ± 0.5 to 1.80 ± 0.01% vs. 2.15 ± 0.6 vs. 2.02 ± 1.0%, P = 0.012) compared with placebo after 1 month of treatment. Moreover, sitagliptin robustly increased intact plasma SDF-1α1-67 and decreased truncated plasma SDF-1α3-67. Renal hemodynamic function, systemic blood pressure, cardiac output, stroke volume, and total peripheral resistance were not adversely affected by sitagliptin. CONCLUSIONS DPP-4 inhibition promotes a distal tubular natriuresis in conjunction with increased levels of intact SDF-1α1-67. Because of the distal location of the natriuretic effect, DPP-4 inhibition does not affect tubuloglomerular feedback or impair renal hemodynamic function, findings relevant to using DPP-4 inhibitors for treating type 2 diabetes.
Collapse
Affiliation(s)
- Julie A Lovshin
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada .,Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Harindra Rajasekeran
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yulyia Lytvyn
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Leif E Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Shajiha Khan
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Robel Alemu
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Amy Locke
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vesta Lai
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Huaibing He
- Pharmacokinetic Pharmacodynamics and Drug Metabolism, Merck and Co., Inc., Rahway, NJ
| | - Lucinda Hittle
- Pharmacokinetic Pharmacodynamics and Drug Metabolism, Merck and Co., Inc., Rahway, NJ
| | - Weixun Wang
- Pharmacokinetic Pharmacodynamics and Drug Metabolism, Merck and Co., Inc., Rahway, NJ
| | - Daniel J Drucker
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
356
|
Plasma dipeptidyl-peptidase-4 activity is associated with left ventricular systolic function in patients with ST-segment elevation myocardial infarction. Sci Rep 2017; 7:6097. [PMID: 28733630 PMCID: PMC5522492 DOI: 10.1038/s41598-017-06514-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Plasma dipeptidyl-peptidase-4 activity (DPP4a) is inversely associated with left ventricular function in patients with heart failure (HF) or diabetes. However, the association between DPP4a and left ventricular function in ST-segment elevation myocardial infarction (STEMI) patients has not been reported. We studied this association in 584 consecutive STEMI patients at a tertiary referral center from July 2014 to October 2015. DPP4a and plasma N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) levels were quantified by enzymatic assays. The median serum NT-proBNP levels were highest in patients of the lowest tertile (T1) of DPP4a compared with that of the highest tertile (T3) (p = 0.028). The STEMI patients in T1 exhibited lower left ventricular systolic function (T1 vs. T3: left ventricular ejection fraction (LVEF): 50.13 ± 9.12 vs. 52.85 ± 6.82%, p = 0.001). Multivariate logistic-regression analyses (adjusted for confounding variables) showed that a 1 U/L increase in DPP4a was associated with a decreased incidence of left ventricular systolic dysfunction (LVSD) (adjusted odds ratio: 0.90; 95% CI: 0.87–0.94; p < 0.01). In conclusion, low DPP4a is independently associated with LVSD in STEMI patients, which suggests that DPP4 may be involved in the mechanisms of LVSD in STEMI patients.
Collapse
|
357
|
Sun Q, Zhang Y, Huang J, Yu F, Xu J, Peng B, Liu W, Han S, Yin J, He X. DPP4 regulates the inflammatory response in a rat model of febrile seizures. Biomed Mater Eng 2017; 28:S139-S152. [PMID: 28372289 DOI: 10.3233/bme-171635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Febrile seizures (FS) are the most common seizure disorders in children aged 6 months to 5 years. Children suffering from complex FS have a high risk of developing subsequent temporal lobe epilepsy (TLE). Neuroinflammation is involved in the pathogenesis of FS although the mechanism remains unknown. Our previous study using the Whole Rat Genome Oligo Microarray determined that Dipeptidyl peptidase IV (DPP4) is potentially a related gene in FS rats. In this study, we demonstrated that DPP4 expression was significantly increased at both the protein and mRNA levels after hyperthermia induction. Sitagliptin, a specific enzyme inhibitor of DPP4, remarkably attenuated the severity of seizures in FS rats, and hyperthermia-induced astrocytosis was suppressed after DPP4 inhibition. Furthermore, sitagliptin significantly decreased the levels of the inflammatory cytokines IL-1β, TNF-α, and IL-6 but not IL-10. In addition, sitagliptin prevented NF-κB activation by decreasing phosphorylation of the p65 subunit. Taken together, our findings demonstrate that DPP4 functions as a critical regulator of neuroinflammation in hyperthermia-induced seizures and the DPP4 inhibitor may be a viable option for FS therapeutics.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yusong Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jian Xu
- Weifang Maternity and Child Hospital, Weifang, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
358
|
Hasan AA, Hocher B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J Mol Endocrinol 2017; 59:R1-R10. [PMID: 28420715 DOI: 10.1530/jme-17-0005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membrane-bound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure- and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations.
Collapse
Affiliation(s)
- Ahmed A Hasan
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Department of BiochemistryFaculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Berthold Hocher
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Institut für Laboriatorumsmedizin IFLbBerlin, Germany
- Departments of Embryology and NephrologyBasic Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
359
|
Duan L, Rao X, Xia C, Rajagopalan S, Zhong J. The regulatory role of DPP4 in atherosclerotic disease. Cardiovasc Diabetol 2017; 16:76. [PMID: 28619058 PMCID: PMC5472996 DOI: 10.1186/s12933-017-0558-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
The increasing prevalence of atherosclerosis has become a worldwide health concern. Although significant progress has been made in the understanding of atherosclerosis pathogenesis, the underlying mechanisms are not fully understood. Recent studies suggest dipeptidyl peptidase-4 (DPP4), a regulator of inflammation and metabolism, may be involved in the development of atherosclerotic diseases. There has been increasing clinical and pre-clinical evidence showing DPP4-incretin axis is involved in cardiovascular disease. Although the cardiovascular outcome of DPP4 inhibition or incretin analogues has been or being evaluated by several large scale clinical trials, the exact role of DPP4 in atherosclerotic diseases is not completely understood. In the current review, we will summarize the recent advances in direct and indirect regulatory role of DPP4 in atherosclerosis.
Collapse
Affiliation(s)
- Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China.,Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH, 44106, USA
| | - Xiaoquan Rao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH, 44106, USA
| | - Chang Xia
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH, 44106, USA.,Department of Microbiology and Immunology, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH, 44106, USA
| | - Jixin Zhong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH, 44106, USA.
| |
Collapse
|
360
|
Normand E, Franco A, Moreau A, Marcil V. Dipeptidyl Peptidase-4 and Adolescent Idiopathic Scoliosis: Expression in Osteoblasts. Sci Rep 2017; 7:3173. [PMID: 28600546 PMCID: PMC5466660 DOI: 10.1038/s41598-017-03310-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/25/2017] [Indexed: 12/25/2022] Open
Abstract
It has been proposed that girls with adolescent idiopathic scoliosis (AIS) tend to have a taller stature and a lower body mass index. Energy homeostasis, that is known to affect bone growth, could contribute to these characteristics. In circulation, dipeptidyl peptidase-4 (DPP-4) inactivates glucagon-like peptide-1 (GLP-1), an incretin that promotes insulin secretion and sensitivity. Our objectives were to investigate DPP-4 status in plasma and in osteoblasts of AIS subjects and controls and to evaluate the regulatory role of metabolic effectors on DPP-4 expression. DPP-4 activity was assessed in plasma of 113 girls and 62 age-matched controls. Osteoblasts were isolated from bone specimens of AIS patients and controls. Human cells were incubated with glucose, insulin, GLP-1 and butyrate. Gene and protein expressions were evaluated by RT-qPCR and Western blot. Our results showed 14% inferior plasma DPP-4 activity in AIS patients when compared to healthy controls (P = 0.0357). Similarly, osteoblasts derived from AIS subjects had lower DPP-4 gene and protein expression than controls by 90.5% and 57.1% respectively (P < 0.009). DPP-4 expression was regulated in a different manner in osteoblasts isolated from AIS participants compared to controls. Our results suggest a role for incretins in AIS development and severity.
Collapse
Affiliation(s)
- Emilie Normand
- Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Anita Franco
- Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, Quebec, H3A 1J4, Canada
| | - Valérie Marcil
- Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada.
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada.
| |
Collapse
|
361
|
Reichetzeder C, von Websky K, Tsuprykov O, Mohagheghi Samarin A, Falke LG, Dwi Putra SE, Hasan AA, Antonenko V, Curato C, Rippmann J, Klein T, Hocher B. Head-to-head comparison of structurally unrelated dipeptidyl peptidase 4 inhibitors in the setting of renal ischemia reperfusion injury. Br J Pharmacol 2017; 174:2273-2286. [PMID: 28423178 PMCID: PMC5481645 DOI: 10.1111/bph.13822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 01/17/2023] Open
Abstract
Background and Purpose Results regarding protective effects of dipeptidyl peptidase 4 (DPP4) inhibitors in renal ischaemia–reperfusion injury (IRI) are conflicting. Here we have compared structurally unrelated DPP4 inhibitors in a model of renal IRI. Experimental Approach IRI was induced in uninephrectomized male rats by renal artery clamping for 30 min. The sham group was uninephrectomized but not subjected to IRI. DPP4 inhibitors or vehicle were given p.o. once daily on three consecutive days prior to IRI: linagliptin (1.5 mg·kg−1·day−1), vildagliptin (8 mg·kg−1·day−1) and sitagliptin (30 mg·kg−1·day−1). An additional group received sitagliptin until study end (before IRI: 30 mg·kg−1·day−1; after IRI: 15 mg·kg−1·day−1). Key Results Plasma‐active glucagon‐like peptide type 1 (GLP‐1) increased threefold to fourfold in all DPP4 inhibitor groups 24 h after IRI. Plasma cystatin C, a marker of GFR, peaked 48 h after IRI. Compared with the placebo group, DPP4 inhibition did not reduce increased plasma cystatin C levels. DPP4 inhibitors ameliorated histopathologically assessed tubular damage with varying degrees of drug‐specific efficacies. Renal osteopontin expression was uniformly reduced by all DPP4 inhibitors. IRI‐related increased renal cytokine expression was not decreased by DPP4 inhibition. Renal DPP4 activity at study end was significantly inhibited in the linagliptin group, but only numerically reduced in the prolonged/dose‐adjusted sitagliptin group. Active GLP‐1 plasma levels at study end were increased only in the prolonged/dose‐adjusted sitagliptin treatment group. Conclusions and Implications In rats with renal IRI, DPP4 inhibition did not alter plasma cystatin C, a marker of glomerular function, but may protect against tubular damage.
Collapse
Affiliation(s)
- Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karoline von Websky
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oleg Tsuprykov
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institut für Laboratoriumsmedizin, Berlin, Germany
| | - Azadeh Mohagheghi Samarin
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Institute of Aquaculture, University of South Bohemia, České Budějovice, Czech Republic
| | - Luise Gabriele Falke
- Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sulistyo Emantoko Dwi Putra
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - Ahmed Abdallah Hasan
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Viktoriia Antonenko
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Caterina Curato
- German Rheumatism Research Center (DRFZ), Berlin, Germany.,Cluster of Excellence NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Rippmann
- Cardio Metabolic Diseases, Boehringer-Ingelheim Pharma GmbH&Co KG, Biberach, Germany
| | - Thomas Klein
- Cardio Metabolic Diseases, Boehringer-Ingelheim Pharma GmbH&Co KG, Biberach, Germany
| | - Berthold Hocher
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Institut für Laboratoriumsmedizin, Berlin, Germany.,Department of Basic Medicine, Medical College of Hunan Normal University, Changsha, China
| |
Collapse
|
362
|
Domínguez Avila JA, Rodrigo García J, González Aguilar GA, de la Rosa LA. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1) and Insulin Signaling. Molecules 2017; 22:molecules22060903. [PMID: 28556815 PMCID: PMC6152752 DOI: 10.3390/molecules22060903] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Type-2 diabetes mellitus (T2DM) is an endocrine disease related to impaired/absent insulin signaling. Dietary habits can either promote or mitigate the onset and severity of T2DM. Diets rich in fruits and vegetables have been correlated with a decreased incidence of T2DM, apparently due to their high polyphenol content. Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. The present review describes the antidiabetic effects of polyphenols, specifically related to the secretion and effects of insulin and glucagon-like peptide 1 (GLP1), an enteric hormone that stimulates postprandial insulin secretion. The evidence suggests that polyphenols from various sources stimulate L-cells to secrete GLP1, increase its half-life by inhibiting dipeptidyl peptidase-4 (DPP4), stimulate β-cells to secrete insulin and stimulate the peripheral response to insulin, increasing the overall effects of the GLP1-insulin axis. The glucose-lowering potential of polyphenols has been evidenced in various acute and chronic models of healthy and diabetic organisms. Some polyphenols appear to exert their effects similarly to pharmaceutical antidiabetics; thus, rigorous clinical trials are needed to fully validate this claim. The broad diversity of polyphenols has not allowed for entirely describing their mechanisms of action, but the evidence advocates for their regular consumption.
Collapse
Affiliation(s)
- J Abraham Domínguez Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Carretera a La Victoria km 0.6, AP 1735, Hermosillo 83304, Sonora, Mexico.
| | - Joaquín Rodrigo García
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| | - Gustavo A González Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Carretera a La Victoria km 0.6, AP 1735, Hermosillo 83304, Sonora, Mexico.
| | - Laura A de la Rosa
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| |
Collapse
|
363
|
Wang Z, Yang L, Fan H, Wu P, Zhang F, Zhang C, Liu W, Li M. Screening of a natural compound library identifies emodin, a natural compound from Rheum palmatum Linn that inhibits DPP4. PeerJ 2017; 5:e3283. [PMID: 28507818 PMCID: PMC5428354 DOI: 10.7717/peerj.3283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/07/2017] [Indexed: 12/11/2022] Open
Abstract
Historically, Chinese herbal medicines have been widely used in the treatment of hyperglycemia, but the mechanisms underlying their effectiveness remain largely unknown. Here, we screened a compound library primarily comprised of natural compounds extracted from herbs and marine organisms. The results showed that emodin, a natural compound from Rheum palmatum Linn, inhibited DPP4 activity with an in vitro IC50 of 5.76 µM without inhibiting either DPP8 or DPP9. A docking model revealed that emodin binds to DPP4 protein through Glu205 and Glu206, although with low affinity. Moreover, emodin treatment (3, 10 and 30 mg/kg, P.O.) in mice decreased plasma DPP4 activity in a dose-dependent manner. Our study suggests that emodin inhibits DPP4 activity and may represent a novel therapeutic for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Zhaokai Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Longhe Yang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Hu Fan
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Peng Wu
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Fang Zhang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Chao Zhang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Wenjie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen, P. R. China
| | - Min Li
- College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| |
Collapse
|
364
|
Ren X, Liu G, Wang Y, Zhang W, Xue F, Li R, Yu W. Influence of Dipeptidyl Peptidase-IV Inhibitor Sitagliptin on Extracellular Signal-Regulated Kinases 1/2 Signaling in Rats with Diabetic Nephropathy. Pharmacology 2017; 100:1-13. [PMID: 28329747 DOI: 10.1159/000455874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022]
Abstract
The protective effects of sitagliptin on the kidneys of rats with diabetic nephropathy (DN) and its influence on extracellular signal-regulated kinases 1/2 (ERK1/2) signaling were investigated. Male Wistar rats (n = 40) were randomly assigned to normal control, DN, low-dose sitagliptin intervention (ST1), or high-dose sitagliptin intervention (ST2) groups. Animals were euthanized after a 16-week treatment, and blood glucose (BG), glycosylated hemoglobin (HbA1c), urinary albumin excretion rate (AER), serum creatinine (Scr), creatinine clearance rate (Ccr), active glucagon-like peptide-1 (GLP-1) levels, kidney hypertrophy index, and renal pathohistology were determined. Immunohistochemical methods and real-time polymerase chain reaction (PCR) were used to detect protein and mRNA expression of podocalyxin, ERK1/2, GLP-1 receptor (GLP-1R) and transforming growth factor-β (TGF-β). After 16 weeks, BG, AER, Scr, HbA1c and the kidney hypertrophy index were all significantly decreased (p < 0.05) in ST1 and ST2 groups, while Ccr and active GLP-1 levels were increased (p < 0.05), with changes more pronounced in ST2 (p < 0.05). Glomerular pathological lesions were also improved following sitagliptin treatment, especially in ST2. Immunohistochemical and real-time PCR revealed that protein and mRNA expression levels of podocalyxin and GLP-1R were increased significantly in ST1 and ST2, while expression of ERK1/2 and TGF-β was decreased (p < 0.05). Sitagliptin therefore delayed DN progression, possibly via the inhibition of ERK1/2 signaling and promotion of the interaction between GLP-1 and the GLP-1R.
Collapse
Affiliation(s)
- Xiaojun Ren
- Department of Nephrology, Shanxi Dayi Hospital (Shanxi Academy of Medical Sciences), Taiyuan, China
| | | | | | | | | | | | | |
Collapse
|
365
|
Colin IM, Colin H, Dufour I, Gielen CE, Many MC, Saey J, Knoops B, Gérard AC. Extrapancreatic effects of incretin hormones: evidence for weight-independent changes in morphological aspects and oxidative status in insulin-sensitive organs of the obese nondiabetic Zucker rat (ZFR). Physiol Rep 2017; 4:4/15/e12886. [PMID: 27511983 PMCID: PMC4985551 DOI: 10.14814/phy2.12886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022] Open
Abstract
Incretin‐based therapies are widely used to treat type 2 diabetes. Although hypoglycemic actions of incretins are mostly due to their insulinotropic/glucagonostatic effects, they may also influence extrapancreatic metabolism. We administered exendin‐4 (Ex‐4), a long‐acting glucagon‐like peptide receptor agonist, at low dose (0.1 nmol/kg/day) for a short period (10 days), in obese nondiabetic fa/fa Zucker rats (ZFRs). Ex‐4‐treated ZFRs were compared to vehicle (saline)‐treated ZFRs and vehicle‐ and Ex‐4‐treated lean rats (LRs). Blood glucose levels were measured at days 0, 9, and 10. Ingested food and animal weight were recorded daily. On the day of sacrifice (d10), blood was sampled along with liver, epididymal, subcutaneous, brown adipose, and skeletal muscle tissues from animals fasted for 24 h. Plasma insulin and blood glucose levels, food intake, and body and epididymal fat weight were unchanged, but gross morphological changes were observed in insulin‐sensitive tissues. The average size of hepatocytes was significantly lower in Ex‐4‐treated ZFRs, associated with decreased number and size of lipid droplets and 4‐hydroxy‐2‐nonenal (HNE) staining, a marker of oxidative stress (OS). Myocytes, which were smaller in ZFRs than in LRs, were significantly enlarged and depleted of lipid droplets in Ex‐4‐treated ZFRs. Weak HNE staining was increased by Ex‐4. A similar observation was made in brown adipose tissue, whereas the elevated HNE staining observed in epididymal adipocytes of ZFRs, suggestive of strong OS, was decreased by Ex‐4. These results suggest that incretins by acting on OS in insulin‐sensitive tissues may contribute to weight‐independent improvement in insulin sensitivity.
Collapse
Affiliation(s)
- Ides M Colin
- Endocrino-Diabetology Research Unit, Centre Hospitalier Régional (CHR) Mons-Hainaut, Mons, Belgium
| | - Henri Colin
- Faculté de Médecine, Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique (IREC) Secteur des Sciences de la Santé (SSS) Université catholique de Louvain (UCL), Brussels, Belgium
| | - Ines Dufour
- Faculté de Médecine, Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique (IREC) Secteur des Sciences de la Santé (SSS) Université catholique de Louvain (UCL), Brussels, Belgium
| | - Charles-Edouard Gielen
- Faculté de Médecine, Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique (IREC) Secteur des Sciences de la Santé (SSS) Université catholique de Louvain (UCL), Brussels, Belgium
| | - Marie-Christine Many
- Faculté de Médecine, Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique (IREC) Secteur des Sciences de la Santé (SSS) Université catholique de Louvain (UCL), Brussels, Belgium
| | - Jean Saey
- Endocrino-Diabetology Research Unit, Centre Hospitalier Régional (CHR) Mons-Hainaut, Mons, Belgium
| | - Bernard Knoops
- Group of Animal and Molecular Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain (UCL), Louvain-La-Neuve, Belgium
| | - Anne-Catherine Gérard
- Endocrino-Diabetology Research Unit, Centre Hospitalier Régional (CHR) Mons-Hainaut, Mons, Belgium Group of Animal and Molecular Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain (UCL), Louvain-La-Neuve, Belgium
| |
Collapse
|
366
|
Miglio G, Vitarelli G, Klein T, Benetti E. Effects of linagliptin on human immortalized podocytes: a cellular system to study dipeptidyl-peptidase 4 inhibition. Br J Pharmacol 2017; 174:809-821. [PMID: 28177527 DOI: 10.1111/bph.13739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Dipeptidyl-peptidase 4 (DPP4) is expressed by resident renal cells, including glomerular cells. DPP4 inhibitors (gliptins) exert albuminuria lowering effects, but the role of renal DPP4 as a pharmacological target has not been elucidated. To better understand the actions of gliptins, the effects of linagliptin on the behaviour of immortalized human podocytes and mesangial cells were evaluated. EXPERIMENTAL APPROACH The expression of DPP4 was measured at both the mRNA and protein levels. The effects of linagliptin on DPP4 activity, cell growth and cell cycle progression were determined. The contribution of the stromal cell-derived factor-1- CXCR4/CXCR7 signalling pathways was evaluated by studying the effects of AMD3100 (a CXCR4 antagonist and CXCR7 agonist) alone and in combination with linagliptin. The contribution of ERK1/2 activation was analysed by studying the effects of the MAPK kinase 1/2 inhibitor AZD6244. KEY RESULTS DPP4 was highly expressed in podocytes. The activity of DPP4 and podocyte growth were reduced by linagliptin. The effects of sitagliptin on podocyte growth were similar to those of linagliptin, were associated with inhibition of cell proliferation and mimicked by AMD3100. Moreover, linagliptin and AMD3100 were found to have a synergistic interaction, whereas no interaction was seen between linagliptin and AZD6244. CONCLUSIONS AND IMPLICATIONS Our cultures of human glomerular cells represent a reliable system for investigating the actions of gliptins. Moreover, DPP4 contributes to the regulation of podocyte behaviour. Inhibition of DPP4 in podocytes could underlie the effects of linagliptin on glomerular cells.
Collapse
Affiliation(s)
- Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Giovanna Vitarelli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Thomas Klein
- Department of Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
367
|
Kharitonenkov A, DiMarchi R. Fibroblast growth factor 21 night watch: advances and uncertainties in the field. J Intern Med 2017; 281:233-246. [PMID: 27878865 DOI: 10.1111/joim.12580] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor (FGF) 21 belongs to a hormone-like subgroup within the FGF superfamily. The members of this subfamily, FGF19, FGF21 and FGF23, are characterized by their reduced binding affinity for heparin that enables them to be transported in the circulation and function in an endocrine manner. It is likely that FGF21 also acts in an autocrine and paracrine fashion, as multiple organs can produce this protein and its plasma concentration seems to be below the level necessary to induce a pharmacological effect. FGF21 signals via FGF receptors, but for efficient receptor engagement it requires a cofactor, membrane-spanning βKlotho (KLB). The regulation of glucose uptake in adipocytes was the initial biological activity ascribed to FGF21, but this hormone is now recognized to stimulate many other pathways in vitro and display multiple pharmacological effects in metabolically compromised animals and humans. Understanding of the precise physiology of FGF21 and its potential medicinal role has evolved exponentially over the last decade, yet numerous aspects remain to be defined and others are a source of debate. Here we provide a historical overview of the advances in FGF21 biology focusing on the uncertainties in the mechanism of action as well as the differing viewpoints relating to this intriguing protein.
Collapse
Affiliation(s)
- A Kharitonenkov
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - R DiMarchi
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
368
|
Rufinatscha K, Radlinger B, Dobner J, Folie S, Bon C, Profanter E, Ress C, Salzmann K, Staudacher G, Tilg H, Kaser S. Dipeptidyl peptidase-4 impairs insulin signaling and promotes lipid accumulation in hepatocytes. Biochem Biophys Res Commun 2017; 485:366-371. [PMID: 28213130 DOI: 10.1016/j.bbrc.2017.02.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023]
Abstract
Dipeptidyl-peptidase 4 [DPP-4) has evolved into an important target in diabetes therapy due to its role in incretin hormone metabolism. In contrast to its systemic effects, cellular functions of membranous DPP-4 are less clear. Here we studied the role of DPP-4 in hepatic energy metabolism. In order to distinguish systemic from cellular effects we established a cell culture model of DPP-4 knockdown in human hepatoma cell line HepG2. DPP-4 suppression was associated with increased basal glycogen content due to enhanced insulin signaling as shown by increased phosphorylation of insulin-receptor substrate 1 (IRS-1), protein kinase B/Akt and mitogen-activated protein kinases (MAPK)/ERK, respectively. Additionally, glucose-6-phosphatase cDNA expression was significantly decreased in DPP-4 deficiency. Reduced triglyceride content in DPP-4 knockdown cells was paralleled by enhanced expressions of peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase -1 (CPT-1) while sterol regulatory element-binding protein 1c (SREBP-1c) expression was significantly decreased. Our data suggest that hepatic DPP-4 induces a selective pathway of insulin resistance with reduced glycogen storage, enhanced glucose output and increased lipid accumulation in the liver. Hepatic DPP-4 might be a novel target in fatty liver disease in patients with glucose intolerance.
Collapse
Affiliation(s)
- Kerstin Rufinatscha
- Christian Doppler Laboratory for Metabolic Crosstalk, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Radlinger
- Christian Doppler Laboratory for Metabolic Crosstalk, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Jochen Dobner
- Christian Doppler Laboratory for Metabolic Crosstalk, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Sabrina Folie
- Christian Doppler Laboratory for Metabolic Crosstalk, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Claudia Bon
- Christian Doppler Laboratory for Metabolic Crosstalk, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Clinica Medica 3, Padua University Hospital, Padua, Italy
| | - Elisabeth Profanter
- Christian Doppler Laboratory for Metabolic Crosstalk, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Claudia Ress
- Christian Doppler Laboratory for Metabolic Crosstalk, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Karin Salzmann
- Christian Doppler Laboratory for Metabolic Crosstalk, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Gabriele Staudacher
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Susanne Kaser
- Christian Doppler Laboratory for Metabolic Crosstalk, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
369
|
Nistala R, Savin V. Diabetes, hypertension, and chronic kidney disease progression: role of DPP4. Am J Physiol Renal Physiol 2017; 312:F661-F670. [PMID: 28122713 DOI: 10.1152/ajprenal.00316.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
The protein dipeptidyl peptidase 4 (DPP4) is a target in diabetes management and reduction of associated cardiovascular risk. Inhibition of the enzymatic function and genetic deletion of DPP4 is associated with tremendous benefits to the heart, vasculature, adipose tissue, and the kidney in rodent models of obesity, diabetes and hypertension, and associated complications. The recently concluded, "Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53" trial revealed a reduction in proteinuria in chronic kidney disease patients (stages 1-3). These results have spurred immense interest in the nonenzymatic and enzymatic role of DPP4 in the kidney. DPP4 is expressed predominantly in the glomeruli and S1-S3 segments of the nephron and to a lesser extent in other segments. DPP4 is known to facilitate absorption of cleaved dipeptides and regulate the function of the sodium/hydrogen exchanger-3 in the proximal tubules. DPP4, also known as CD26, has an important role in costimulation of lymphocytes via caveolin-1 on antigen-presenting cells in peripheral blood. Herein, we present our perspectives for the ongoing interest in the role of DPP4 in the kidney.
Collapse
Affiliation(s)
- Ravi Nistala
- Division of Nephrology and Hypertension, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri; and
| | - Virginia Savin
- Department of Nephrology, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
370
|
Goodwin NC, Ding ZM, Harrison BA, Strobel ED, Harris AL, Smith M, Thompson AY, Xiong W, Mseeh F, Bruce DJ, Diaz D, Gopinathan S, Li L, O'Neill E, Thiel M, Wilson AGE, Carson KG, Powell DR, Rawlins DB. Discovery of LX2761, a Sodium-Dependent Glucose Cotransporter 1 (SGLT1) Inhibitor Restricted to the Intestinal Lumen, for the Treatment of Diabetes. J Med Chem 2017; 60:710-721. [PMID: 28045524 DOI: 10.1021/acs.jmedchem.6b01541] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The increasing number of people afflicted with diabetes throughout the world is a major health issue. Inhibitors of the sodium-dependent glucose cotransporters (SGLT) have appeared as viable therapeutics to control blood glucose levels in diabetic patents. Herein we report the discovery of LX2761, a locally acting SGLT1 inhibitor that is highly potent in vitro and delays intestinal glucose absorption in vivo to improve glycemic control.
Collapse
Affiliation(s)
- Nicole C Goodwin
- Department of Medicinal Chemistry, Lexicon Pharmaceuticals , 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | | | - Bryce A Harrison
- Department of Medicinal Chemistry, Lexicon Pharmaceuticals , 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Eric D Strobel
- Department of Medicinal Chemistry, Lexicon Pharmaceuticals , 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | - Kenneth G Carson
- Department of Medicinal Chemistry, Lexicon Pharmaceuticals , 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | | | - David B Rawlins
- Department of Medicinal Chemistry, Lexicon Pharmaceuticals , 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| |
Collapse
|
371
|
Kutoh E, Wada A, Terayama S. Teneligliptin, a Chemotype Prolyl-Thiazolidine-Based Novel Dipeptidyl Peptidase-4 Inhibitor with Insulin Sensitizing Properties. Clin Drug Investig 2017; 36:809-18. [PMID: 27352309 DOI: 10.1007/s40261-016-0427-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Teneligliptin, a chemotype prolyl-thiazolidine-based novel dipeptidyl peptidase (DPP)-4 inhibitor, was preliminarily shown to reduce insulin resistance in patients with type 2 diabetes mellitus (T2DM). The objective of this study is to further investigate the insulin sensitising properties of teneligliptin in comparison to those of sitagliptin. METHODS Treatment-naïve subjects with T2DM were administered 20 mg/day teneligliptin monotherapy (n = 45). As a comparator, 25-50 mg/day sitagliptin monotherapy was performed in a non-randomized manner (n = 71). No other drugs were administered. At 3 months, levels of diabetic parameters were compared with those at baseline. RESULTS At 3 months, while similar reductions of glycated hemoglobin (HbA1c) levels were observed with these two drugs, indexes for insulin sensitivity [homeostasis model assessment (HOMA)-R and 20/(C-peptide × fasting blood glucose (FBG)) levels] ameliorated only with teneligliptin. Then, the subjects were divided into two groups representing distinct degrees of insulin resistance; high HOMA-R (≥4) and low HOMA-R (<2) groups. With teneligliptin, similar decreases of HbA1c levels were observed in high (9.85-7.66 %, p < 0.0005) and low (10.12-8.51 %, p < 0.01) HOMA-R groups. HOMA-R (-32.6 %, p < 0.05) and non-high density lipoprotein cholesterol (non-HDL-C, -6 %, p < 0.05) levels significantly decreased and 20/(C-peptide × FBG) levels significantly increased (53 %, p < 0.001) in high HOMA-R group. HOMA-B levels increased in both groups with significant inter-group differences (+101.7 % in low HOMA-R group vs. +55.4 % in high HOMA-R group). Group 2. With sitagliptin, similar decreases of HbA1c levels were observed from those of teneligliptin in either high or low HOMA-R group, but no changes of HOMA-R, non-HDL-C or 20/(C-peptide × FBG) levels were noted. Increases of HOMA-B levels with sitagliptin were comparable to those with teneligliptin in either high or low HOMA-R group. CONCLUSIONS These results indicate that: (i) teneligliptin ameliorates insulin sensitivity and non-HDL-C levels in subjects with high degrees of insulin resistance. This is not the case with sitagliptin, though similar glycemic efficacies were observed. (ii) glycemic efficacy of teneligliptin may be determined by the balance of its capacity in modulating insulin resistance and beta-cell function depending on the degrees of baseline insulin resistance.
Collapse
Affiliation(s)
- Eiji Kutoh
- Department of Clinical Research, Biomedical Center, Tokyo, Japan.
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Gyoda General Hospital, Saitama, Japan.
| | - Asuka Wada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Gyoda General Hospital, Saitama, Japan
| | - Sayaka Terayama
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Gyoda General Hospital, Saitama, Japan
| |
Collapse
|
372
|
Mulvihill EE, Varin EM, Gladanac B, Campbell JE, Ussher JR, Baggio LL, Yusta B, Ayala J, Burmeister MA, Matthews D, Bang KWA, Ayala JE, Drucker DJ. Cellular Sites and Mechanisms Linking Reduction of Dipeptidyl Peptidase-4 Activity to Control of Incretin Hormone Action and Glucose Homeostasis. Cell Metab 2017; 25:152-165. [PMID: 27839908 DOI: 10.1016/j.cmet.2016.10.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/06/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022]
Abstract
Pharmacological inhibition of the dipeptidyl peptidase-4 (DPP4) enzyme potentiates incretin action and is widely used to treat type 2 diabetes. Nevertheless, the precise cells and tissues critical for incretin degradation and glucose homeostasis remain unknown. Here, we use mouse genetics and pharmacologic DPP4 inhibition to identify DPP4+ cell types essential for incretin action. Although enterocyte DPP4 accounted for substantial intestinal DPP4 activity, ablation of enterocyte DPP4 in Dpp4Gut-/- mice did not produce alterations in plasma DPP4 activity, incretin hormone levels, and glucose tolerance. In contrast, endothelial cell (EC)-derived DPP4 contributed substantially to levels of soluble plasma DPP4 activity, incretin degradation, and glucose control. Surprisingly, DPP4+ cells of bone marrow origin mediated the selective degradation of fasting GIP, but not GLP-1. Collectively, these findings identify distinct roles for DPP4 in the EC versus the bone marrow compartment for selective incretin degradation and DPP4i-mediated glucoregulation.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Bojana Gladanac
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - John R Ussher
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Bernardo Yusta
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jennifer Ayala
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Center for Metabolic Origins of Disease, Orlando, FL 32827, USA
| | - Melissa A Burmeister
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Center for Metabolic Origins of Disease, Orlando, FL 32827, USA
| | - Dianne Matthews
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - K W Annie Bang
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Division of Reproductive Sciences, University of Toronto, Toronto, ON M5S 2J7, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Julio E Ayala
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Center for Metabolic Origins of Disease, Orlando, FL 32827, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada.
| |
Collapse
|
373
|
Caron J, Domenger D, Dhulster P, Ravallec R, Cudennec B. Protein Digestion-Derived Peptides and the Peripheral Regulation of Food Intake. Front Endocrinol (Lausanne) 2017; 8:85. [PMID: 28484425 PMCID: PMC5401913 DOI: 10.3389/fendo.2017.00085] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
Abstract
The gut plays a central role in energy homeostasis. Food intake regulation strongly relies on the gut-brain axis, and numerous studies have pointed out the significant role played by gut hormones released from enteroendocrine cells. It is well known that digestive products of dietary protein possess a high satiating effect compared to carbohydrates and fat. Nevertheless, the processes occurring in the gut during protein digestion involved in the short-term regulation of food intake are still not totally unraveled. This review provides a concise overview of the current data concerning the implication of food-derived peptides in the peripheral regulation of food intake with a focus on the gut hormones cholecystokinin and glucagon-like peptide 1 regulation and the relationship with some aspects of glucose homeostasis.
Collapse
Affiliation(s)
- Juliette Caron
- Université Lille, INRA, Université Artois, Université Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille, France
| | - Dorothée Domenger
- Université Lille, INRA, Université Artois, Université Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille, France
| | - Pascal Dhulster
- Université Lille, INRA, Université Artois, Université Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille, France
| | - Rozenn Ravallec
- Université Lille, INRA, Université Artois, Université Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille, France
| | - Benoit Cudennec
- Université Lille, INRA, Université Artois, Université Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille, France
- *Correspondence: Benoit Cudennec,
| |
Collapse
|
374
|
Yanagimachi T, Fujita Y, Takeda Y, Honjo J, Sakagami H, Kitsunai H, Takiyama Y, Abiko A, Makino Y, Kieffer TJ, Haneda M. Dipeptidyl peptidase-4 inhibitor treatment induces a greater increase in plasma levels of bioactive GIP than GLP-1 in non-diabetic subjects. Mol Metab 2016; 6:226-231. [PMID: 28180064 PMCID: PMC5279935 DOI: 10.1016/j.molmet.2016.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/24/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022] Open
Abstract
Objective Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) possess multiple bioactive isoforms that are rendered non-insulinotropic by the enzyme dipeptidyl peptidase-4 (DPP-4). Recently, some ELISA kits have been developed to specifically measure “active” GIP and GLP-1, but it is unclear if these kits can accurately quantify all bioactive forms. Therefore, it remains uncertain to what extent treatment with a DPP-4 inhibitor boosts levels of biologically active GIP and GLP-1. Thus, we evaluated our novel receptor-mediated incretin bioassays in comparison to commercially available ELISA kits using plasma samples from healthy subjects before and after DPP-4 inhibitor administration. Methods We utilized cell lines stably co-transfected with human GIP or GLP-1 receptors and a cAMP-inducible luciferase expression construct for the bioassays and commercially available ELISA kits. Assays were tested with synthetic GIP and GLP-1 receptor agonists and plasma samples collected from subjects during a 75 g oral glucose tolerance test (OGTT) performed before or following 3-day administration of a DPP-4 inhibitor. Results A GIP isoform GIP(1–30)NH2 increased luciferase activity similarly to GIP(1–42) in the GIP bioassay but was not detectable by either a total or active GIP ELISA kit. During an OGTT, total GIP levels measured by ELISA rapidly increased from 0 min to 15 min, subsequently reaching a peak of 59.2 ± 8.3 pmol/l at 120 min. In contrast, active GIP levels measured by the bioassay peaked at 15 min (43.4 ± 6.4 pmol/l) and then progressively diminished at all subsequent time points. Strikingly, at 15 min, active GIP levels as determined by the bioassay reached levels approximately 20-fold higher after the DPP-4 inhibitor treatment, while total and active GIP levels determined by ELISA were increased just 1.5 and 2.1-fold, respectively. In the absence of DPP-4 inhibition, total GLP-1 levels measured by ELISA gradually increased up to 90 min, reaching 23.5 ± 2.4 pmol/l, and active GLP-1 levels determined by the bioassay did not show any apparent peak. Following administration of a DPP-4 inhibitor there was an observable peak of active GLP-1 levels as determined by the bioassay at 15 min after oral glucose load, reaching 11.0 ± 0.62 pmol/l, 1.4-fold greater than levels obtained without DPP-4 inhibitor treatment. In contrast, total GLP-1 levels determined by ELISA were decreased after DPP-4 inhibitor treatment. Conclusion Our results using bioassays indicate that there is a greater increase in plasma levels of bioactive GIP than GLP-1 in subjects treated with DPP-4 inhibitors, which may be unappreciated using conventional ELISAs. Receptor-mediated bioassays were used to measure GIP and GLP-1 in humans. The GIP bioassay, but not two ELISAs, detected both GIP(1–42) and GIP(1–30)NH2. Active GIP levels were increased more than GLP-1 after DPP-4 inhibitor treatment.
Collapse
Affiliation(s)
- Tsuyoshi Yanagimachi
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yukihiro Fujita
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Yasutaka Takeda
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Jun Honjo
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hidemitsu Sakagami
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroya Kitsunai
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yumi Takiyama
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Atsuko Abiko
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yuichi Makino
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Timothy J Kieffer
- Laboratory of Molecular & Cellular Medicine, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
375
|
Berti L, Hartwig S, Irmler M, Rädle B, Siegel-Axel D, Beckers J, Lehr S, Al-Hasani H, Häring HU, Hrabě de Angelis M, Staiger H. Impact of fibroblast growth factor 21 on the secretome of human perivascular preadipocytes and adipocytes: a targeted proteomics approach. Arch Physiol Biochem 2016; 122:281-288. [PMID: 27494767 DOI: 10.1080/13813455.2016.1212898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONTEXT Perivascular adipose tissue (PVAT) is suggested to impact on vascular cells via humoral factors, possibly contributing to endothelial dysfunction and atherosclerosis. OBJECTIVE To address whether the hepatokine fibroblast growth factor (FGF) 21 affects the PVAT secretome. METHODS Human perivascular (pre)adipocytes were subjected to targeted proteomics and whole-genome gene expression analysis. RESULTS Preadipocytes, as compared to adipocytes, secreted higher amounts of inflammatory cytokines and chemokines. Adipocytes released higher amounts of adipokines [e.g. adipisin, visfatin, dipeptidyl peptidase 4 (DPP4), leptin; p < 0.05, all]. In preadipocytes, omentin 1 release was 1.28-fold increased by FGF-21 (p < 0.05). In adipocytes, FGF-21 reduced chemerin release by 5% and enhanced DPP4 release by 1.15-fold (p < 0.05, both). FGF-21 altered the expression of four secretory genes in preadipocytes and of 18 in adipocytes (p < 0.01, all). CONCLUSION The hepatokine FGF-21 exerts secretome-modulating effects in human perivascular (pre)adipocytes establishing a new liver-PVAT-blood vessel axis that possibly contributes to vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Lucia Berti
- a Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen , Tübingen , Germany
- b Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics , Neuherberg , Germany
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
| | - Sonja Hartwig
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
- d Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Martin Irmler
- b Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics , Neuherberg , Germany
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
| | - Bernhard Rädle
- b Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics , Neuherberg , Germany
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
| | - Dorothea Siegel-Axel
- a Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen , Tübingen , Germany
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
- e Department of Internal Medicine , Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen , Tübingen , Germany , and
| | - Johannes Beckers
- b Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics , Neuherberg , Germany
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
- f Chair for Experimental Genetics, Technical University Munich , Neuherberg , Germany
| | - Stefan Lehr
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
- d Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Hadi Al-Hasani
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
- d Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Hans-Ulrich Häring
- a Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen , Tübingen , Germany
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
- e Department of Internal Medicine , Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen , Tübingen , Germany , and
| | - Martin Hrabě de Angelis
- b Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics , Neuherberg , Germany
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
- f Chair for Experimental Genetics, Technical University Munich , Neuherberg , Germany
| | - Harald Staiger
- a Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen , Tübingen , Germany
- c German Centre for Diabetes Research (DZD) , Neuherberg , Germany
- e Department of Internal Medicine , Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen , Tübingen , Germany , and
| |
Collapse
|
376
|
Vellecco V, Mitidieri E, Gargiulo A, Brancaleone V, Matassa D, Klein T, Esposito F, Cirino G, Bucci M. Vascular effects of linagliptin in non-obese diabetic mice are glucose-independent and involve positive modulation of the endothelial nitric oxide synthase (eNOS)/caveolin-1 (CAV-1) pathway. Diabetes Obes Metab 2016; 18:1236-1243. [PMID: 27460695 DOI: 10.1111/dom.12750] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
Abstract
AIM To test the effect of linagliptin in non-obese diabetic (NOD) mice, a murine model of type 1 diabetes, to unveil a possible direct cardiovascular action of dipeptidyl peptidase 4 (DPP-4) inhibitors beyond glycaemia control. METHODS NOD mice were grouped according to glycosuria levels as NODI: none; NODII: high; NODIII: severe. Linagliptin treatment was initiated once they reached NODII levels. Vascular reactivity was assessed ex vivo on aorta harvested from mice upon reaching NODIII level. In a separate set of experiments, the effect of linagliptin was tested directly in vitro on vessels harvested from untreated NODIII, glucagon-like peptide-1 (GLP-1) receptor knockout and soluble guanylyl cyclase-α1 knockout mice. Molecular and cellular studies were performed on endothelial and endothelial nitric oxide synthase (eNOS)-transfected cells. RESULTS In this ex vivo vascular study, endothelium-dependent vasorelaxation was ameliorated and eNOS/nitric oxide (NO)/soluble guanylyl cyclase (sGC) signalling was enhanced. In the in vitro vascular study, linagliptin exerted a direct vasodilating activity on vessels harvested from both normo- or hyperglycaemic mice. The effect was independent from GLP-1/GLP-1 receptor (GLP-1R) interaction and required eNOS/NO/sGC pathway activation. Molecular studies performed on endothelial cells show that linagliptin rescues eNOS from caveolin-1 (CAV-1)-binding in a calcium-independent manner. CONCLUSION Linagliptin, by interfering with the protein-protein interaction CAV-1/eNOS, led to an increased eNOS availability, thus enhancing NO production. This mechanism accounts for the vascular effect of linagliptin that is independent from glucose control and GLP-1/GLP-1R interaction.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Emma Mitidieri
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Antonella Gargiulo
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | - Danilo Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG Cardio-metabolic Diseases, Ingelheim am Rhein, Germany
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
377
|
Pujadas G, Drucker DJ. Vascular Biology of Glucagon Receptor Superfamily Peptides: Mechanistic and Clinical Relevance. Endocr Rev 2016; 37:554-583. [PMID: 27732058 DOI: 10.1210/er.2016-1078] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regulatory peptides produced in islet and gut endocrine cells, including glucagon, glucagon-like peptide-1 (GLP-1), GLP-2, and glucose-dependent insulinotropic polypeptide, exert actions with considerable metabolic importance and translational relevance. Although the clinical development of GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors has fostered research into how these hormones act on the normal and diseased heart, less is known about the actions of these peptides on blood vessels. Here we review the effects of these peptide hormones on normal blood vessels and highlight their vascular actions in the setting of experimental and clinical vascular injury. The cellular localization and signal transduction properties of the receptors for glucagon, GLP-1, GLP-2, and glucose-dependent insulinotropic polypeptide are discussed, with emphasis on endothelial cells and vascular smooth muscle cells. The actions of these peptides on the control of blood flow, blood pressure, angiogenesis, atherosclerosis, and vascular inflammation are reviewed with a focus on elucidating direct and indirect mechanisms of action. How these peptides traverse the blood-brain barrier is highlighted, with relevance to the use of GLP-1 receptor agonists to treat obesity and neurodegenerative disorders. Wherever possible, we compare actions identified in cell lines and primary cell culture with data from preclinical studies and, when available, results of human investigation, including studies in subjects with diabetes, obesity, and cardiovascular disease. Throughout the review, we discuss pitfalls, limitations, and challenges of the existing literature and highlight areas of controversy and uncertainty. The increasing use of peptide-based therapies for the treatment of diabetes and obesity underscores the importance of understanding the vascular biology of peptide hormone action.
Collapse
Affiliation(s)
- Gemma Pujadas
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
378
|
Fujita K, Kaneko M, Narukawa M. Factors Related to the Glucose-Lowering Efficacy of Dipeptidyl Peptidase-4 Inhibitors: A Systematic Review and Meta-Analysis Focusing on Ethnicity and Study Regions. Clin Drug Investig 2016; 37:219-232. [DOI: 10.1007/s40261-016-0478-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
379
|
Zhong J, Kankanala S, Rajagopalan S. Dipeptidyl peptidase-4 inhibition: insights from the bench and recent clinical studies. Curr Opin Lipidol 2016; 27:484-92. [PMID: 27472408 PMCID: PMC5147592 DOI: 10.1097/mol.0000000000000340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Atherosclerosis is the leading cause of death globally. The pathophysiology of atherosclerosis is not fully understood. Recent studies suggest dipeptidyl peptidase-4 (DPP4), a regulator of inflammation and metabolism, may be involved in the development of atherosclerotic diseases. Recent advances in the understanding of DPP4 function in atherosclerosis will be discussed in this review. RECENT FINDINGS Multiple preclinical and clinical studies suggest DPP4/glucagon-like peptide-1 axis is involved in the development of atherosclerotic disease. However, several recent trials assessing the cardiovascular effects of DPP4 inhibition indicate enzymatic inhibition of DPP4 lacks beneficial effects on cardiovascular disease. SUMMARY Catalytic inhibition of DPP4 with DPP4 inhibitors alters pathways that could favor cardioprotection. Glucagon-like peptide-1 receptor-independent aspects of DPP4 function may contribute to the overall neutral effects on cardiovascular outcome seen in the outcome trials.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA *Jixin Zhong and Sanjay Rajagopalan contributed equally to the writing of this article
| | | | | |
Collapse
|
380
|
Fitchett DH, Udell JA, Inzucchi SE. Heart failure outcomes in clinical trials of glucose‐lowering agents in patients with diabetes. Eur J Heart Fail 2016; 19:43-53. [DOI: 10.1002/ejhf.633] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 01/27/2023] Open
Affiliation(s)
| | - Jacob A. Udell
- Toronto General Hospital and Women's College Hospital University of Toronto Canada
| | - Silvio E. Inzucchi
- Section of Endocrinology Yale University School of Medicine New Haven CT USA
| |
Collapse
|
381
|
Waldrop G, Zhong J, Peters M, Rajagopalan S. Incretin-Based Therapy for Diabetes: What a Cardiologist Needs to Know. J Am Coll Cardiol 2016; 67:1488-1496. [PMID: 27012410 DOI: 10.1016/j.jacc.2015.12.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 01/11/2023]
Abstract
Incretin-based therapies are effective glucose-lowering drugs that have an increasing role in the treatment of type 2 diabetes because of their efficacy, safety, and ease of use. Both glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors are commonly used for glycemic control as adjuncts to metformin, other oral antiglycemic agents, or insulin. Glucagon-like peptide-1 receptor agonists may have additional effects, such as weight loss, that may be advantageous in obese patients. There is a large body of evidence from randomized controlled clinical trials supporting the cardiovascular safety of dipeptidyl peptidase-4 inhibitors and some glucagon-like peptide-1 receptor agonists, at least in the short term. However, concerns have been raised, particularly regarding their safety in patients with heart failure. In this review, the authors provide a brief but practical evidence-based analysis of the use of incretin-based agents in patients with diabetes, their efficacy, and cardiovascular safety.
Collapse
Affiliation(s)
- Greer Waldrop
- Division of Cardiovascular Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Jixin Zhong
- Division of Cardiovascular Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Matthew Peters
- Division of Cardiovascular Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland Baltimore, Baltimore, Maryland.
| |
Collapse
|
382
|
|
383
|
Hardigan T, Abdul Y, Ergul A. Linagliptin reduces effects of ET-1 and TLR2-mediated cerebrovascular hyperreactivity in diabetes. Life Sci 2016; 159:90-96. [PMID: 26898123 PMCID: PMC4988948 DOI: 10.1016/j.lfs.2016.02.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
AIMS The anti-hyperglycemic agent linagliptin, a dipeptidyl peptidase-4 inhibitor, has been shown to reduce inflammation and improve endothelial cell function. In this study, we hypothesized that DPP-IV inhibition with linagliptin would improve impaired cerebral blood flow in diabetic rats through improved insulin-induced cerebrovascular relaxation and reversal of pathological cerebrovascular remodeling that subsequently leads to improvement of cognitive function. MAIN METHODS Male type-2 diabetic Goto-Kakizaki (GK) and nondiabetic Wistar rats were treated with linagliptin, and ET-1 plasma levels and dose response curves to ET-1 (0.1-100nM) in basilar arteries were assessed. The impact of TLR2 antagonism on ET-1 mediated basilar contraction and endothelium-dependent relaxation to acetylcholine (ACh, 1nM-1M) in diabetic GK rats was examined with antibody directed against the TLR2 receptor (Santa Cruz, 5μg/mL). The expression of TLR2 in middle cerebral arteries (MCAs) from treated rats and in brain microvascular endothelial cells (BMVEC) treated with 100nM linagliptin was assessed. KEY FINDINGS Linagliptin lowered plasma ET-1 levels in diabetes, and reduced ET-1-induced vascular contraction. TLR2 antagonism in diabetic basilar arteries reduced ET-1-mediated cerebrovascular dysfunction and improved endothelium-dependent vasorelaxation. Linagliptin treatment in the BMVEC was able to reduce TLR2 expression in cells from both diabetic and nondiabetic rats. CONCLUSIONS These results suggest that inhibition of DPPIV using linagliptin improves the ET-1-mediated cerebrovascular dysfunction observed in diabetes through a reduction in ET-1 plasma levels and reduced cerebrovascular hyperreactivity. This effect is potentially a result of linagliptin causing a decrease in endothelial TLR2 expression and a subsequent increase in NO bioavailability.
Collapse
Affiliation(s)
- Trevor Hardigan
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Yasir Abdul
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Adviye Ergul
- Department of Physiology, Augusta University, Augusta, GA, United States; Charlie Norwood Veterans Administration Medical Center, Augusta, GA, United States.
| |
Collapse
|
384
|
Kanasaki K. The pathological significance of dipeptidyl peptidase-4 in endothelial cell homeostasis and kidney fibrosis. Diabetol Int 2016; 7:212-220. [PMID: 30603266 DOI: 10.1007/s13340-016-0281-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
Abstract
Endothelial dysfunction and tubulointerstitial fibrosis are characteristics of diabetic kidneys. Recent evidence has suggested that the diabetic kidney is associated with dipeptidyl peptidase (DPP)-4 overexpression in endothelial cells. Several insults can induce endothelial cells to alter their phenotype into a mesenchymal-like phenotype via endothelial-mesenchymal transition (EndMT), which plays pivotal roles in tissue fibrosis. We have recently revealed the fibrogenic role of DPP-4 through the induction of EndMT in diabetic kidneys. This review mainly focuses on the biological and pathological significance of DPP-4 overexpression in endothelial cells through the mechanisms of endothelial homeostasis defects, EndMT, and kidney fibrosis.
Collapse
Affiliation(s)
- Keizo Kanasaki
- 1Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan.,2Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
385
|
Gong Q, Shi W, Li L, Wu X, Ma H. Ultrasensitive Fluorescent Probes Reveal an Adverse Action of Dipeptide Peptidase IV and Fibroblast Activation Protein during Proliferation of Cancer Cells. Anal Chem 2016; 88:8309-14. [PMID: 27444320 DOI: 10.1021/acs.analchem.6b02231] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dipeptide peptidase IV (DPPIV) and fibroblast activation protein (FAP) are isoenzymes. Evidence shows that DPPIV is related to antitumor immunity, and FAP may be a drug target in cancer therapy, making it seem that the two enzymes might have a synergistic role during the proliferation of cancer cells. Surprisingly, herein, we find an adverse action of DPPIV and FAP in the proliferation process by analyzing their changes with two tailor-made ultrasensitive fluorescent probes. First, the up-regulation of DPPIV and down-regulation of FAP in cancer cells under the stimulation of genistein are detected. Then, we find that MGC803 cells with a higher FAP but lower DPPIV level than SGC7901 cells exhibit a faster proliferation rate. Importantly, inhibiting the DPPIV expression with siRNA increases the proliferation rate of MGC803 cells, whereas the FAP inhibition decreases the rate. These findings suggest that the two enzymes play an adverse role during the proliferation of cancer cells, which provides us a new viewpoint for cancer studies.
Collapse
Affiliation(s)
- Qiuyu Gong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
386
|
Incretin-Based Therapies for Diabetic Complications: Basic Mechanisms and Clinical Evidence. Int J Mol Sci 2016; 17:ijms17081223. [PMID: 27483245 PMCID: PMC5000621 DOI: 10.3390/ijms17081223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
An increase in the rates of morbidity and mortality associated with diabetic complications is a global concern. Glycemic control is important to prevent the development and progression of diabetic complications. Various classes of anti-diabetic agents are currently available, and their pleiotropic effects on diabetic complications have been investigated. Incretin-based therapies such as dipeptidyl peptidase (DPP)-4 inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1RA) are now widely used in the treatment of patients with type 2 diabetes. A series of experimental studies showed that incretin-based therapies have beneficial effects on diabetic complications, independent of their glucose-lowering abilities, which are mediated by anti-inflammatory and anti-oxidative stress properties. Based on these findings, clinical studies to assess the effects of DPP-4 inhibitors and GLP-1RA on diabetic microvascular and macrovascular complications have been performed. Several but not all studies have provided evidence to support the beneficial effects of incretin-based therapies on diabetic complications in patients with type 2 diabetes. We herein discuss the experimental and clinical evidence of incretin-based therapy for diabetic complications.
Collapse
|
387
|
Sánchez-Garrido MA, Habegger KM, Clemmensen C, Holleman C, Müller TD, Perez-Tilve D, Li P, Agrawal AS, Finan B, Drucker DJ, Tschöp MH, DiMarchi RD, Kharitonenkov A. Fibroblast activation protein (FAP) as a novel metabolic target. Mol Metab 2016; 5:1015-1024. [PMID: 27689014 PMCID: PMC5034526 DOI: 10.1016/j.molmet.2016.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 01/10/2023] Open
Abstract
Objective Fibroblast activation protein (FAP) is a serine protease belonging to a S9B prolyl oligopeptidase subfamily. This enzyme has been implicated in cancer development and recently reported to regulate degradation of FGF21, a potent metabolic hormone. Using a known FAP inhibitor, talabostat (TB), we explored the impact of FAP inhibition on metabolic regulation in mice. Methods To address this question we evaluated the pharmacology of TB in various mouse models including those deficient in FGF21, GLP1 and GIP signaling. We also studied the ability of FAP to process FGF21 in vitro and TB to block FAP enzymatic activity. Results TB administration to diet-induced obese (DIO) animals led to profound decreases in body weight, reduced food consumption and adiposity, increased energy expenditure, improved glucose tolerance and insulin sensitivity, and lowered cholesterol levels. Total and intact plasma FGF21 were observed to be elevated in TB-treated DIO mice but not lean animals where the metabolic impact of TB was significantly attenuated. Furthermore, and in stark contrast to naïve DIO mice, the administration of TB to obese FGF21 knockout animals demonstrated no appreciable effect on body weight or any other measures of metabolism. In support of these results we observed no enzymatic degradation of human FGF21 at either end of the protein when FAP was inhibited in vitro by TB. Conclusions We conclude that pharmacological inhibition of FAP enhances levels of FGF21 in obese mice to provide robust metabolic benefits not observed in lean animals, thus validating this enzyme as a novel drug target for the treatment of obesity and diabetes. Pharmacological inhibition of FAP reduces weight, improves glucose and lipid metabolism in obese, but not lean mice. FAP inhibitor Talabostat at higher doses lessens food intake, without any apparent adverse effects in short term studies. Obese FGF21 deficient mice did not exhibit meaningful change in metabolic regulation when treated with Talabostat. The mechanism of Talabostat in vivo action appears to center on an increase in total and active levels of plasma FGF21. FAP inhibition alone, or in combination with DPP4 is proposed as a novel approach to treat metabolic diseases.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Munich, 85748, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, 85748, Germany; German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Kirk M Habegger
- Department of Medicine Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Munich, 85748, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, 85748, Germany; German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Cassie Holleman
- Department of Medicine Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Munich, 85748, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, 85748, Germany; German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Diego Perez-Tilve
- Division of Endocrinology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45237, United States
| | - Pengyun Li
- Department of Chemistry, Indiana University, Bloomington, IN, 46405, United States
| | - Archita S Agrawal
- Department of Chemistry, Indiana University, Bloomington, IN, 46405, United States
| | - Brian Finan
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Munich, 85748, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, 85748, Germany; German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Daniel J Drucker
- Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, 600 University Ave, TCP5-1004 Mailbox 39, Toronto, Ontario, M5G 1X5, Canada
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Munich, 85748, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, 85748, Germany; German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, 46405, United States.
| | - Alexei Kharitonenkov
- Department of Chemistry, Indiana University, Bloomington, IN, 46405, United States.
| |
Collapse
|
388
|
Abstract
Glucagon-like peptide-1, produced predominantly in enteroendocrine cells, controls glucose metabolism and energy homeostasis through regulation of islet hormone secretion, gastrointestinal motility, and food intake, enabling development of GLP-1 receptor (GLP-1R) agonists for the treatment of diabetes and obesity. GLP-1 also acts on the immune system to suppress inflammation, and GLP-1R signaling in multiple tissues impacts cardiovascular function in health and disease. Here we review how GLP-1 and clinically approved GLP-1R agonists engage mechanisms that influence the risk of developing cardiovascular disease. We discuss how GLP-1R agonists modify inflammation, cardiovascular physiology, and pathophysiology in normal and diabetic animals through direct and indirect mechanisms and review human studies illustrating mechanisms linking GLP-1R signaling to modification of the cardiovascular complications of diabetes. The risks and benefits of GLP-1R agonists are updated in light of recent data suggesting that GLP-1R agonists favorably modify outcomes in diabetic subjects at high risk for cardiovascular events.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
389
|
João AL, Reis F, Fernandes R. The incretin system ABCs in obesity and diabetes - novel therapeutic strategies for weight loss and beyond. Obes Rev 2016; 17:553-72. [PMID: 27125902 DOI: 10.1111/obr.12421] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
Incretins are gastrointestinal-derived hormones released in response to a meal playing a key role in the regulation of postprandial secretion of insulin (incretin effect) and glucagon by the pancreas. Both incretins, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1), have several other actions by peripheral and central mechanisms. GLP-1 regulates body weight by inhibiting appetite and delaying gastric, emptying actions that are dependent on central nervous system GLP-1 receptor activation. Several other hormones and gut peptides, including leptin and ghrelin, interact with GLP-1 to modulate appetite. GLP-1 is rapidly degraded by the multifunctional enzyme dipeptidyl peptidase-4 (DPP-4). DPP-4 is involved in adipose tissue inflammation, which is associated with insulin resistance and diabetes progression, being a common pathophysiological mechanism in obesity-related complications. Furthermore, the incretin system appears to provide the basis for understanding the high weight loss efficacy of bariatric surgery, a widely used treatment for obesity, often in association with diabetes. The present review brings together new insights into obesity pathogenesis, integrating GLP-1 and DPP-4 in the complex interplay between obesity and inflammation, namely, in diabetic patients. This in turn will provide the basis for novel incretin-based therapeutic strategies for obesity and diabetes with promising benefits in addition to weight loss. © 2016 World Obesity.
Collapse
Affiliation(s)
- A L João
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine and Center for Neuroscience and Cell Biology - Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| | - F Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine and Center for Neuroscience and Cell Biology - Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| | - R Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine and Center for Neuroscience and Cell Biology - Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
390
|
Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 2016; 15:639-660. [PMID: 27256476 DOI: 10.1038/nrd.2016.75] [Citation(s) in RCA: 500] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| |
Collapse
|
391
|
Tanaka S, Kanazawa I, Notsu M, Sugimoto T. Visceral fat obesity increases serum DPP-4 levels in men with type 2 diabetes mellitus. Diabetes Res Clin Pract 2016; 116:1-6. [PMID: 27321309 DOI: 10.1016/j.diabres.2016.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/02/2016] [Accepted: 04/16/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The relationship between serum DPP-4 level and visceral fat mass is still unclear in type 2 diabetes mellitus (T2DM). This study thus aimed to examine the association of visceral fat accumulation and metabolic syndrome with serum DPP-4 levels in T2DM. METHODS Visceral and subcutaneous fat areas were evaluated by performing computed tomography scan in 135 men with T2DM, who had never taken DPP-4 inhibitors or GLP-1 receptor agonists. We investigated the association between serum DPP-4 levels and visceral fat area as well as the presence of metabolic syndrome. RESULTS Multiple regression analysis adjusted for age, duration of T2DM, body mass index, serum creatinine, and HbA1c showed that serum DPP-4 levels were positively associated with visceral fat area (β=0.25, p=0.04), but not subcutaneous fat area (β=-0.18, p=0.13). In logistic regression analyses adjusted for the confounding factors described above, serum DPP-4 levels were positively associated with visceral fat obesity and metabolic syndrome [odds ratio (OR)=1.63, 95% confidence interval (CI)=1.00-2.66 per standard deviation (SD) increase, p=0.04; OR=1.77, 95%CI=1.09-2.88 per SD increase, p=0.02, respectively]. CONCLUSIONS The present study showed that serum DPP-4 level was positively and specifically associated with accumulation of visceral fat and the presence of metabolic syndrome in men with T2DM.
Collapse
Affiliation(s)
- Sayuri Tanaka
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Japan.
| | - Ippei Kanazawa
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Japan.
| | - Masakazu Notsu
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Japan.
| | - Toshitsugu Sugimoto
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Japan.
| |
Collapse
|
392
|
Kankanala SR, Syed R, Gong Q, Ren B, Rao X, Zhong J. Cardiovascular safety of dipeptidyl peptidase-4 inhibitors: recent evidence on heart failure. Am J Transl Res 2016; 8:2450-2458. [PMID: 27347354 PMCID: PMC4891459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/17/2016] [Indexed: 06/06/2023]
Abstract
The cardiovascular safety of DPP4 inhibitors as a class, especially in regards to heart failure, has been questioned after the publication of first trials (SAVOR-TIMI 53 and EXAMINE) assessing the cardiovascular risks of DPP4 inhibitors alogliptin and sitagliptin in 2013. Although there were no increased risks in composite cardiovascular outcomes, the SAVOR-TIMI 53 trial reported a 27% increase in hospitalization for heart failure in diabetic patients who received the DPP4 inhibitor saxagliptin. There has been substantial increase in knowledge on the heart failure effect of DPP4 inhibition since 2013. This review will summarize the role of the DPP4/incretin axis in heart failure and discuss the findings from recent large scale clinical trials assessing the effects of DPP4 inhibitors on heart failure.
Collapse
Affiliation(s)
- Saumya Reddy Kankanala
- Division of Cardiovascular Medicine, University of Maryland School of MedicineBaltimore, MD 21201, USA
| | - Rafay Syed
- Division of Cardiovascular Medicine, University of Maryland School of MedicineBaltimore, MD 21201, USA
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze UniversityJingzhou, Hubei 434023, China
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze UniversityJingzhou, Hubei 434023, China
| | - Xiaoquan Rao
- Division of Cardiovascular Medicine, University of Maryland School of MedicineBaltimore, MD 21201, USA
| | - Jixin Zhong
- Division of Cardiovascular Medicine, University of Maryland School of MedicineBaltimore, MD 21201, USA
| |
Collapse
|
393
|
Tkáč I, Gotthardová I. Pharmacogenetic aspects of the treatment of Type 2 diabetes with the incretin effect enhancers. Pharmacogenomics 2016; 17:795-804. [PMID: 27166975 DOI: 10.2217/pgs-2016-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Incretin effect enhancers are drugs used in the treatment of Type 2 diabetes and include GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors (gliptins). Variants in several genes were shown to be involved in the physiology of incretin secretion. Only two gene variants have evidence also from pharmacogenetic studies. TCF7L2 rs7903146 C>T and CTRB1/2 rs7202877 T>G minor allele carriers were both associated with a smaller reduction in HbA1c after gliptin treatment when compared with major allele carriers. After replication in further studies, these observations could be of clinical significance in helping to identify patients with potentially lower or higher response to gliptin treatment.
Collapse
Affiliation(s)
- Ivan Tkáč
- Department of Internal Medicine 4, Šafárik University, Faculty of Medicine, Rastislavova 43, 041 90 Košice, Slovakia.,Department of Internal Medicine 4, Pasteur University Hospital, Košice, Slovakia
| | - Ivana Gotthardová
- Department of Internal Medicine 4, Šafárik University, Faculty of Medicine, Rastislavova 43, 041 90 Košice, Slovakia.,Department of Internal Medicine 4, Pasteur University Hospital, Košice, Slovakia
| |
Collapse
|
394
|
Kongwatcharapong J, Dilokthornsakul P, Nathisuwan S, Phrommintikul A, Chaiyakunapruk N. Effect of dipeptidyl peptidase-4 inhibitors on heart failure: A meta-analysis of randomized clinical trials. Int J Cardiol 2016; 211:88-95. [DOI: 10.1016/j.ijcard.2016.02.146] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 02/08/2016] [Accepted: 02/28/2016] [Indexed: 01/27/2023]
|
395
|
Portillo-Sanchez P, Cusi K. Treatment of Nonalcoholic Fatty Liver Disease (NAFLD) in patients with Type 2 Diabetes Mellitus. Clin Diabetes Endocrinol 2016; 2:9. [PMID: 28702244 PMCID: PMC5471954 DOI: 10.1186/s40842-016-0027-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/28/2016] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is believed to be the most common chronic liver disease, affecting at least one-third of the population worldwide. The more aggressive form is known as nonalcoholic steatohepatitis (NASH) and characterized by hepatocyte necrosis and inflammation. The presence of fibrosis is not uncommon. Fibrosis indicates a more aggressive course and patients with NASH that are at high-risk of cirrhosis and premature mortality, as well as at increased risk of hepatocellular carcinoma (HCC). Patients with type 2 diabetes mellitus (T2DM) are at the highest risk for the development of NASH, even in the setting of normal plasma aminotransferase levels. The presence of dysfunctional adipose tissue in most overweight and obese subjects, combined with insulin resistance, hyperglycemia, and atherogenic dyslipidemia, contribute to their increased cardiovascular risk. Many therapeutic agents have been tested for the treatment of NASH but few studies have focused in patients with T2DM. At the present moment, the only FDA-approved agents that in controlled studies have shown to significantly improve liver histology in patients with diabetes are pioglitazone and liraglutide. Current research efforts are centering on the mechanisms for intrahepatic triglyceride accumulation and for the development of steatohepatitis, the role of mitochondrial dysfunction in NASH, and the impact of improving glycemic control per se on the natural history of the disease. This brief review summarizes our current knowledge on the pharmacological agents available for the treatment of NASH to assist healthcare providers in the management of these challenging patients.
Collapse
Affiliation(s)
- Paola Portillo-Sanchez
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, 1600 SW Archer Road, room H-2, Gainesville, FL 32610 USA
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, 1600 SW Archer Road, room H-2, Gainesville, FL 32610 USA
- Division of Endocrinology, Diabetes, and Metabolism, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL 32608 USA
| |
Collapse
|
396
|
Poudyal H. Mechanisms for the cardiovascular effects of glucagon-like peptide-1. Acta Physiol (Oxf) 2016; 216:277-313. [PMID: 26384481 DOI: 10.1111/apha.12604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022]
Abstract
Over the past three decades, at least 10 hormones secreted by the enteroendocrine cells have been discovered, which directly affect the cardiovascular system through their innate receptors expressed in the heart and blood vessels or through a neural mechanism. Glucagon-like peptide-1 (GLP-1), an important incretin, is perhaps best studied of these gut-derived hormones with important cardiovascular effects. In this review, I have discussed the mechanism of GLP-1 release from the enteroendocrine L-cells and its physiological effects on the cardiovascular system. Current evidence suggests that GLP-1 has positive inotropic and chronotropic effects on the heart and may be important in preserving left ventricular structure and function by direct and indirect mechanisms. The direct effects of GLP-1 in the heart may be mediated through GLP-1R expressed in atria as well as arteries and arterioles in the left ventricle and mainly involve in the activation of multiple pro-survival kinases and enhanced energy utilization. There is also good evidence to support the involvement of a second, yet to be identified, GLP-1 receptor. Further, GLP-1(9-36)amide, which was previously thought to be the inactive metabolite of the active GLP-1(7-36)amide, may also have direct cardioprotective effects. GLP-1's action on GLP-1R expressed in the central nervous system, kidney, vasculature and the pancreas may indirectly contribute to its cardioprotective effects.
Collapse
Affiliation(s)
- H. Poudyal
- Department of Diabetes, Endocrinology and Nutrition; Graduate School of Medicine and Hakubi Centre for Advanced Research; Kyoto University; Kyoto Japan
| |
Collapse
|
397
|
Mulvihill EE, Varin EM, Ussher JR, Campbell JE, Bang KWA, Abdullah T, Baggio LL, Drucker DJ. Inhibition of Dipeptidyl Peptidase-4 Impairs Ventricular Function and Promotes Cardiac Fibrosis in High Fat-Fed Diabetic Mice. Diabetes 2016; 65:742-54. [PMID: 26672095 DOI: 10.2337/db15-1224] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) inhibitors used for the treatment of type 2 diabetes are cardioprotective in preclinical studies; however, some cardiovascular outcome studies revealed increased hospitalization rates for heart failure (HF) among a subset of DPP4 inhibitor-treated subjects with diabetes. We evaluated cardiovascular function in young euglycemic Dpp4(-/-) mice and in older, high fat-fed, diabetic C57BL/6J mice treated with either the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide or the highly selective DPP4 inhibitor MK-0626. We assessed glucose metabolism, ventricular function and remodeling, and cardiac gene expression profiles linked to inflammation and fibrosis after transverse aortic constriction (TAC) surgery, a pressure-volume overload model of HF. Young euglycemic Dpp4(-/-) mice exhibited a cardioprotective response after TAC surgery or doxorubicin administration, with reduced fibrosis; however, cardiac mRNA analysis revealed increased expression of inflammation-related transcripts. Older, diabetic, high fat-fed mice treated with the GLP-1R agonist liraglutide exhibited preservation of cardiac function. In contrast, diabetic mice treated with MK-0626 exhibited modest cardiac hypertrophy, impairment of cardiac function, and dysregulated expression of genes and proteins controlling inflammation and cardiac fibrosis. These findings provide a model for the analysis of mechanisms linking fibrosis, inflammation, and impaired ventricular function to DPP4 inhibition in preclinical studies.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John R Ussher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - K W Annie Bang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Tahmid Abdullah
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
398
|
Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. FIBROGENESIS & TISSUE REPAIR 2016; 9:1. [PMID: 26877767 PMCID: PMC4752740 DOI: 10.1186/s13069-016-0038-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage kidney disease worldwide and is associated with increased morbidity and mortality in patients with both type 1 and type 2 diabetes. Recent evidence revealed that dipeptidyl peptidase-4 (DPP-4) inhibitors may exhibit a protective effect against DN. In fact, the kidney is the organ where the DPP-4 activity is the highest level per organ weight. A preclinical analysis revealed that DPP-4 inhibitors also ameliorated kidney fibrosis. In this review, we analyzed recent reports in this field and explore the renoprotective effects and possible mechanism of the DPP-4 inhibitors.
Collapse
Affiliation(s)
- Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; The Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou, 646000 People's Republic of China
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
399
|
Röhrborn D, Brückner J, Sell H, Eckel J. Reduced DPP4 activity improves insulin signaling in primary human adipocytes. Biochem Biophys Res Commun 2016; 471:348-54. [PMID: 26872429 DOI: 10.1016/j.bbrc.2016.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
DPP4 is a ubiquitously expressed cell surface protease which is also released to the circulation as soluble DPP4 (sDPP4). Recently, we identified DPP4 as a novel adipokine oversecreted in obesity and thus potentially linking obesity to the metabolic syndrome. Furthermore, sDPP4 impairs insulin signaling in an autocrine and paracrine fashion in different cell types. However, it is still unknown which functional role DPP4 might play in adipocytes. Therefore, primary human adipocytes were treated with a specific DPP4 siRNA. Adipocyte differentiation was not affected by DPP4 silencing. Interestingly, DPP4 reduction improved insulin responsiveness of adipocytes at the level of insulin receptor, proteinkinase B (Akt) and Akt substrate of 160 kDa. To investigate whether the observed effects could be attributed to the enzymatic activity of DPP4, human adipocytes were treated with the DPP4 inhibitors sitagliptin and saxagliptin. Our data show that insulin-stimulated activation of Akt is augmented by DPP4 inhibitor treatment. Based on our previous observation that sDPP4 induces insulin resistance in adipocytes, and that adipose DPP4 levels are higher in obese insulin-resistant patients, we now suggest that the abundance of DPP4 might be a regulator of adipocyte insulin signaling.
Collapse
Affiliation(s)
- Diana Röhrborn
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Julia Brückner
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Henrike Sell
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany.
| |
Collapse
|
400
|
Linagliptin but not Sitagliptin inhibited transforming growth factor-β2-induced endothelial DPP-4 activity and the endothelial-mesenchymal transition. Biochem Biophys Res Commun 2016; 471:184-90. [DOI: 10.1016/j.bbrc.2016.01.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 12/25/2022]
|